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Abstract
The robustness of neural networks is crucial in
safety-critical applications, where identifying a re-
liable input space is essential for effective model
selection, robustness evaluation, and the devel-
opment of reliable control strategies. Most ex-
isting robustness verification methods assess the
worst-case output under the assumption that the
input space is known. However, precisely identi-
fying a verifiable input space C, where no adver-
sarial examples exist, is challenging due to the
possible high dimensionality, discontinuity, and
non-convex nature of the input space. To address
this challenge, we propose a novel framework,
LEVIS, consisting of LEVIS-α and LEVIS-β.
LEVIS-α identifies a single, large verifiable
ball that intersects at least two boundaries of a
bounded region C. In contrast, LEVIS-β sys-
tematically captures the entirety of the verifiable
space by integrating multiple verifiable balls. Our
contributions are fourfold: (1) We introduce a ver-
ification framework, LEVIS, incorporating two
optimization techniques for computing nearest
and directional adversarial points based on mixed-
integer programming (MIP). (2) To enhance scal-
ability, we integrate complementarity-constrained
(CC) optimization with a reduced MIP formula-
tion, achieving up to a 6-fold reduction in runtime
while approximating the verifiable region in a
principled manner. (3) We provide a theoretical
analysis characterizing the properties of the veri-
fiable balls obtained through LEVIS-α. (4) We
validate our approach across diverse applications,
including electrical power flow regression and

*Equal contribution 1Chandra Department of Electrical
and Computer Engineering, The University of Texas at
Austin, Austin, TX, USA 2Los Alamos National Labora-
tory, Los Alamos, NM, USA. Correspondence to: Mo-
hamad Chehade <chehade@utexas.edu>, Wenting Li <went-
ing@lanl.gov>, Brian W. Bell <bwbell@lanl.gov>, Russell Bent
<rbent@lanl.gov>, Saif R. Kazi <skazi@lanl.gov>, Hao Zhu
<haozhu@utexas.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

image classification, demonstrating performance
improvements and visualizing the geometric prop-
erties of the verifiable region.

1. Introduction
Despite the remarkable growth and transformative impact of
neural network models, their deployment in safety-critical
domains remains limited. An example is neural network-
based controllers for electric inverters that have significant
potential to support the integration of renewable energy
resources (Cui et al., 2022). These applications demand ex-
tremely high accuracy and reliability, as even minor errors
can lead to millions of dollars in economic losses or large-
scale power grid failures. However, neural networks are
inherently vulnerable to data variations, including both natu-
ral perturbations and adversarial attacks. For instance, slight
noise added to input data can lead to significant misclassifi-
cation errors (Goodfellow et al., 2015). Even state-of-the-art
foundation models can achieve less than 80% accuracy when
evaluated on perturbed inputs (Liu et al., 2023).

One promising approach to addressing these robustness
challenges is neural network verification. Most existing re-
search focuses on verifying whether the outputs of a neural
network satisfy specific worst-case criteria within a prede-
fined input domain (Tjeng et al., 2019; Gowal et al., 2018).
Techniques range from transforming nonlinear activations
into integer constraints to compute worst-case outputs, to
using linear (Wang & et.al., 2021) or quadratic (Kuvshinov
& Günnemann, 2022) relaxations to estimate bounds. Ad-
vanced methods further integrate optimization techniques
like bound tightening and leverage parallelism for speedup
(Zhang et al., 2022). However, these approaches typically
assume the input domain is predefined and do not explicitly
evaluate the structure of the input space itself, potentially
leading to under- or over-estimations of robust input regions.

As illustrated in Figure 1, the verifiable input space C con-
tains all inputs x ∈ C that produce outputs satisfying a
given specification, such as f(x) > 0 (shown by the red
boundary). However, C is often non-convex, discontinuous,
and high-dimensional, making it difficult to characterize
precisely. Early work explored the input space primarily to
identify adversarial vulnerabilities (Peck et al., 2017), while
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Figure 1. The verifiable input space (orange) is C, consisting of
the inputs x ∈ C that produce outputs satisfying the condition
f(x) > 0, determined by the red line. Note: the left orange space
may only be a subset of the pre-image of the right orange space.

more recent research has aimed to define verifiable input
regions meeting physical or accuracy-based criteria. These
include abstraction-based approaches (Matoba & Fleuret,
2020), over-approximation of verifiable regions (Kotha et al.,
2024; Sundar et al., 2023), and probabilistic verification
techniques (Grunbacher et al., 2021; Bell et al., 2025). Nev-
ertheless, the task of precisely identifying input regions
that are entirely free of adversarial points remains largely
unexplored.

To address this gap, we propose a novel framework, LEVIS
(Large and Exact Verifiable Input Spaces), to identify verifi-
able input regions for neural networks. LEVIS consists of
two algorithms: LEVIS-α and LEVIS-β. LEVIS-α identi-
fies a single, large verifiable ball that intersects the true space
C at two boundaries, capturing a substantial region guaran-
teed to be verifiable. In contrast, LEVIS-β extends this idea
by constructing a collection of verifiable balls to cover the
entire input space, which may be high-dimensional, non-
convex, and discontinuous. Importantly, every point in the
regions identified by LEVIS is guaranteed to satisfy the
given verification criteria.

To this end, we develop a new optimization framework that
computes the largest verifiable ball at a given center, lo-
cates adversarial points along specific directions, and scales
effectively to large-scale problems. Our contributions are
summarized as follows:

1. We develop a novel optimization framework to accu-
rately locate the largest verifiable ball centered at a
known input x0 ∈ Rn, using mixed-integer program-
ming (MIP) with global optimality guarantees. We fur-
ther incorporate directional constraints into the frame-
work to locate adversarial points along specific direc-
tions.

2. To enhance scalability, we propose a complementarity-
constrained (CC) relaxation that formulates an approx-
imate verifier. Unlike other approximate methods, our
approach explicitly characterizes the conditions under
which the solution remains globally optimal. This re-
laxation achieves up to a 6× speedup while maintaining

a negligible error in global optimality (experimentally
within 0.004). The core idea is to reformulate ReLU
activations using CC constraints, reducing the number
of integer variables in the MIP formulation.

3. We propose two search strategies: LEVIS-α, which
seeks a single large verifiable ball centered in the in-
terior of C, and LEVIS-β, which aggregates multiple
verifiable balls to cover the full verifiable input space.

4. We evaluate our methods on two neural network ap-
plications—electric power flow regression and image
classification—demonstrating both performance gains
and visual insights into the geometry of the verifiable
input space.

2. Background and Related Work
Preliminary Notation. We use C and V to denote the veri-
fiable region and the union of verifiable balls, respectively.
B(c) represents a ball centered at c. The vector ek is a
standard basis vector where the k-th position is 1 and all
others are 0. The ∥x∥p norm is defined as (

∑d
i=1 |xi|p)1/p

for p = 1, 2, and ∥x∥∞ = maxi |xi|. We define an L-
layer rectified linear (ReLU) neural network, where layer
i (for i = 1, . . . , L) uses weights W i ∈ Rdi×di−1 and
biases βi ∈ Rdi . The pre-activation and post-activation
outputs for layer i are given by zi = W iẑi−1 + βi and
ẑi = σ(zi) = max(zi, 0), respectively. The input ẑ0 equals
the input data x ∈ Rd0 , and the output of the network is
f(x) = zL ∈ RdL .

Bounds on the Output Domain: Verification of Neural
Networks. Bounding the outputs of neural networks (NNs)
is an effective strategy for verifying robustness and enhanc-
ing model reliability. In standard verification, given an input
region S , the output must satisfy a predefined specification
P to ensure safety or correctness. This is typically framed
as an optimization problem: find f∗ = minx∈S f(x), sub-
ject to ẑ0 = x, zi = W iẑi−1 + βi, and ẑi = max(zi, 0)
for i = 1, . . . , L. The input domain is defined as S = {x |
∥x− x0∥∞ ≤ ε}, and the network is considered verified if
the condition P = {f∗ > 0} holds.

Verification of neural networks is NP-complete, primarily
due to nonlinear activation functions. Solution approaches
can be categorized into three types: exact or complete ver-
ifiers (Tjeng et al., 2019), approximate or incomplete ver-
ifiers (Gowal et al., 2018; Wang & et.al., 2021), and prob-
abilistic verifiers (Grunbacher et al., 2021; Marzari et al.,
2024). Unlike these methods, which focus on confirming
output correctness for a known input domain, our work
prioritizes input domain analysis to identify the largest pos-
sible region that yields verifiable outputs, ensuring all points
within this region meet the satisfaction criteria.
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Bounds on the Input Domain: Robustness to Adversar-
ial Perturbations. Inputs that, when perturbed, result in
erroneous neural network outputs are termed adversarial ex-
amples. The subset of inputs free from adversarial examples
forms the verifiable input region, which is crucial for robust
model selection and training (Kuvshinov & Günnemann,
2022; Li et al., 2023). Early works primarily focused on
measuring the maximum perturbation magnitudes that in-
duce adversarial examples rather than characterizing the
global structure of the verifiable input region (Kuvshinov
& Günnemann, 2022). A recent approach approximates the
input space using a convex hull derived via bound propaga-
tion techniques (Kotha et al., 2024). However, this method
results in an over-approximation of the verifiable region,
meaning that some points within the convex hull may not
actually be verifiable.

3. Problem Formulation
A verifiable space comprises input data points for neural
networks that consistently yield verifiable outputs. Pre-
cisely identifying large verifiable spaces is crucial for model
selection, robustness evaluation, and safe control opera-
tions (Kotha et al., 2024). The challenge lies in maximizing
the verifiable input space C, where all data points in C gen-
erate outputs that satisfy verification guarantees. This objec-
tive can be formalized as maxC minx∈C f(x) > 0, which
defines a fundamentally intractable min-max optimization
problem, especially when C is non-convex.

To manage this complexity, we propose approximating the
verifiable space using one or more verifiable balls. Each ball
is defined by a center and radius such that all data points
within it produce verifiable outputs when passed through the
neural network. Crucial to our approach is the identification
of centers and radii that ensure (1) the verifiability of all
interior points under specified conditions, and (2) scalability
to high-dimensional, non-convex input regions.

4. Proposed Approach
Our method begins by precisely identifying a maximal veri-
fiable ball centered at a given point x0, denoted as the center
c, and then iteratively shifts this center to either identify a
large boundary-touching verifiable ball (LEVIS-α) or as-
semble a large union of such verifiable balls (LEVIS-β).

4.1. Find a Maximum Verifiable Input Ball around c

We find the maximum verifiable ball around center c by
locating the nearest adversarial data point x∗. This point
lies on the boundary of the verifiable input space and yields
a violating output f(x∗) ≤ 0. The optimization problem for

finding x∗ is structured as follows:

min
x

∥x− c∥p (1a)

subject to ẑ0 = x (1b)

zi = W iẑ(i−1) + βi, i = 1, . . . , L (1c)

ẑ(i) = σ(z(i)), i = 1, . . . , L− 1 (1d)

f(x) = zL (1e)
f(x) ≤ 0 (1f)

Equation (1f) ensures the solution violates the specified
output condition, i.e., x is adversarial. The objective in (1a)
minimizes the lp-norm distance from the center c, seeking
the nearest such adversarial point.

To solve this nonlinear program, we leverage a mixed-
integer programming (MIP) formulation by explicitly encod-
ing the ReLU activation functions. ReLU is a piecewise lin-
ear function: for ẑ = ReLU(Wz+b), we have ẑ = Wz+b
if Wz + b ≥ 0, and ẑ = 0 otherwise. This behavior can be
encoded in a MIP by introducing a binary variable a, where
a = 1 if Wz + b ≥ 0 and a = 0 otherwise. Using the
Big-M method, this conditional logic is translated into a set
of linear constraints, thereby enabling the global optimiza-
tion of ReLU networks using standard MILP solvers (Tjeng
et al., 2019). Similar formulations have been used for prov-
ing equivalence between networks (Kleine Büning et al.,
2020) and for finding the closest input that yields a target
label (Szegedy et al., 2014).

The verifiable ball, denoted as B(c), is characterized by the
center c and radius r = ∥x∗ − c∥p. All points inside B(c)
are guaranteed to produce verifiable outputs, with x∗ repre-
senting the closest violation. To improve the scalability of
the MIP solver, we propose a hybrid approach that integrates
efficient nonlinear programming (NLP) with a reduced MIP
formulation, achieving both computational efficiency and
guaranteed optimality.

4.2. Fast Solver with complementarity Constraints

We represent the ReLU function using complementarity
constraints (CC): 0 ≤ ẑi ⊥ ẑi − zi ≥ 0, where the “⊥”
operator enforces that at least one of the two inequalities
holds as an equality; that is, ẑi = 0, ẑi = zi, or both.
This CC-based formulation replaces integer variables with
continuous functions, enabling a more scalable neural net-
work representation (Yang et al., 2022; Kilwein et al., 2023).
Although standard nonlinear programming (NLP) solvers
can handle this formulation, they may converge to spurious
stationary points with feasible descent directions (Leyffer
& Munson, 2007). To mitigate this, we adopt the two-step
hybrid strategy (Kazi et al., 2024), which integrates the NLP
formulation with a reduced mixed-integer programming
(MIP) approach. This strategy ensures global optimality
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under certain conditions while improving computational
efficiency.

Specifically, let pi and qi be the complementarity variables
for the ith neuron. The nonlinear optimization of (1) trans-
forms into:

min
x,pi,qi

(1a)

s.t. zi = pi − qi, ẑi = pi (2a)

piqi ≤ 0, pi, qi ≥ 0 (2b)
(1b), (1c)–(1f) (2c)

where constraints in (2b) represent a nonlinear equivalent of
the ReLU function. To improve convergence behavior, we
introduce a small regularization parameter ε > 0 (suggested
to be 10−5), modifying the constraint to piqi ≤ ε (Scholtes,
2001). This reduces the problem complexity from an NP-
hard integer formulation to polynomial scaling in the num-
ber of neurons, N .

However, NLP solvers may still converge to locally optimal
solutions and spurious points where the bi-active set is non-
empty, i.e., I0 ≡ {j | pij = qij = 0}. To address this, we
classify neurons into three groups: if pij > 0 and qij = 0,
then j ∈ Ii+; if pij = 0 and qij > 0, then j ∈ Ii−; and if
pij = qij = 0, then j ∈ Ii0. We then construct a reduced
MIP that introduces integer variables only for neurons in
the set I0, balancing efficiency and optimality. This reduces
the number of integer variables from N to |I0|, which is
typically a small subset, as confirmed in Section 5.2. We
assert that the solution is globally optimal and verifiable
for all inputs within the ball, provided the neuron activation
states—active (in I+) or inactive (in I−)—remain consistent
with the sets I+ and I−.

In terms of computational complexity, the NLP formulation
derived from neural network verification exhibits substantial
sparsity in its constraint Jacobian, owing to the localized
connectivity and layered architecture of neural networks.
As both the number of decision variables and constraints
scale linearly with the total number of neurons, denoted by
N , we characterize the overall complexity in terms of N .
When solved using a sparse interior-point method such as
IPOPT (Wächter & Biegler, 2006), the computational com-
plexity is primarily governed by the cost of factorizing the
Karush–Kuhn–Tucker (KKT) system at each iteration. This
cost depends critically on the sparsity pattern and numerical
properties of the constraint matrix. In favorable cases—such
as when the matrix has a particular structure that permits
efficient factorization—the per-iteration cost can be reduced
to O(NlogN) using solvers like MA57 (Duff, 2004). In
contrast, for less structured or denser matrices, the cost may
grow toward O(N2).

4.3. LEVIS: Large Exact Verifiable Input Spaces for
Neural Networks

LEVIS employs two search strategies for identifying verifi-
able balls. The key innovation lies in dynamically updating
the centers based on adversarial points along different direc-
tions, ensuring the verifiability of the newly selected centers.
We first present the optimization formulation for computing
directional adversarial points, followed by a detailed discus-
sion on how these points guide the search trajectory across
various geometric structures of the input space.

4.3.1. DIRECTIONAL ADVERSARIAL POINT

Our LEVIS search algorithms are guided by adversarial
points along specific directions, referred to as directional
adversarial points. To achieve this, we incorporate direc-
tional constraints into the original optimization problem
in (1), which dictate the search direction. Given the center
of the previous verifiable ball c and an adversarial point b,
the next adversarial point b̂ ∈ Rn is determined along a
direction that forms a specified angle θ with the vector

−→
bc.

Precisely, we construct a general directional constraint and
formulate the optimization for the directional adversarial
point b̂ in (3), where the search direction forms a user-
defined angle θ with

−→
bc. To define this direction, we in-

troduce two orthogonal vectors d, q ∈ Rn: the vector d,
aligned with

−→
bc, is given by d = c−b

∥c−b∥∞
. The vector q rep-

resents an orthogonal direction. It can be explicitly specified
or generated by sampling a random vector ξ ∼ N (0, 1) and
removing its component along d, yielding q = ξ − ξT d

dT d
d,

where the second term represents the projection of ξ onto d.

Using these definitions, any direction can be expressed as
ϕ(θ) = d cos(θ)+q sin(θ), and the directional constraint for
b̂ is given by b̂ = c+ kϕ. Special cases of this formulation
include: when θ = 0, the constraint reduces to the collinear
direction; when θ = 90◦, it corresponds to the orthogonal
constraint, i.e., (b̂−c)·(b−c) = 0. This formulation enables
flexible directional adversarial search while maintaining
mathematical rigor and generalizability.

min
b̂,k>0

∥b̂− c∥p (3a)

subject to (1b)− (1f), x = b̂ (3b)

b̂ = c+ kϕ(θ) (3c)
ϕ(θ) = d cos(θ) + q sin(θ) (3d)

d =
c− b

∥c− b∥∞
, q = ξ − ξT d

dT d
d (3e)
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Figure 2. Illustration of the sequence of balls centered at the red
points c0, · · · , cn obtained by LEVIS−α, where the arrows point
to the nearest adversarial points that define the radius of those balls.
The search converges at the final ball B(cn), which touches at least
two boundaries of the bounded verifiable input space.

4.3.2. (1) LEVIS-α: SEARCH FOR THE LARGE
BOUNDARY-TOUCHING VERIFIABLE BALL

The core technique of this search strategy is to average
d pairs of boundary adversarial points b2j+1 and b2j+2,
j = 0, . . . , d−1, obtained by solving the minimization in (1)
with directional constraints. The detailed algorithm, termed
LEVIS-α, is described in Algorithm 1 and illustrated in
Figure 2.

Algorithm 1 LEVIS-α: Iterative Refinement for Center
Estimation

1: Initialize: Given the original data x0 as the ball center
c = x0, set r =∞, rold = 0, tolerance ϵ > 0, and neu-
ral network parameters Θ = {W i, βi, i = 1, . . . , L}.

2: while ∥r − rold∥ ≥ ϵ do
3: b1 ← Solve (1), set r = ∥b1 − c∥p
4: b2 ← Solve (3) given b1 and θ = 90◦

5: for j = 1 to d− 1 do
6: b2j+1 ← Solve (3) given b2j−1, θ = 90◦

7: b2j+2 ← Solve (3) given b2j , θ = 0◦

8: end for
9: c← 1

2d

∑2d
l=1 bl, rold ← r

10: end while
11: Return c, r

Algorithm 1 updates the center of the verifiable ball in each
iteration and eventually converges to a large exact verifiable
ball in the central region of the verifiable space, touching
at least two adversarial points, as illustrated in Figure 2. In
each iteration, the algorithm searches for d pairs of adver-
sarial points along collinear and orthogonal directions. The
final region obtained from LEVIS-α is rigorously described
below.

Theorem 4.1. For any bounded verifiable region C ⊂ Rd,
the sequence of balls {B(cn)} generated by LEVIS-α con-
verges to a ball B(c) that intersects the boundary of C at
least at two points. Specifically, for any ϵ > 0, there exists

Figure 4. LEVIS-β searches for the union of verifiable balls
guided by directional adversarial points.

N such that for all n > N , B(c) contains two points almost
symmetric about the center c, with less than ϵ mismatch,
and these points lie on the boundary of C.

The rationale is that LEVIS-α progressively averages
the collinear adversarial pairs (b2j+1, b2j+2) using c =
1
2d

∑2d
l=1 bl, minimizing asymmetry relative to the center

in each iteration. Given that C is bounded, the search halts
when at least one pair (b′1, b

′
2) touches the surface of the

ball, while other pairs become symmetric with less than
ϵ mismatch. Hence, the final ball intersects the boundary
of C at at least two distinct points. The complete proof is
provided in Appendix A.

LEVIS-α is suitable for exploring small, bounded verifi-
able input spaces. In contrast, we introduce LEVIS-β, a
more comprehensive and parallel-friendly strategy that sys-
tematically identifies verifiable regions even when they are
high-dimensional, non-convex, or discontinuous.

4.3.3. (2) LEVIS-β: COLLECT THE LARGE UNION OF
VERIFIABLE BALLS

Figure 3. Illustration of the geometric po-
sition of the surface point.

The innovative
idea of this
search strategy
is to look for a
verifiable new
center outside the
known verifiable
union by exten-
sively moving
in all directions.
Specifically, by solving (1) and (3), we obtain a verifiable
ball B(c) centered at c and its nearest directional adversarial
point b. Once a new ball B(c) is found, we define the next
center to be the point that lies on the same line as c and b
but on the internal surface of B(c), i.e.,

m = c− γ
c− b

∥c− b∥p
· r, γ < 1,

as illustrated in Figure 3.

Our new Algorithm 2, termed LEVIS-β, preserves the ver-
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Algorithm 2 LEVIS-β
1: Initialize: Given one data point x0 and label y0, the in-

put bounds [l, u], tolerance ϵ > 0, shift factor γ = 0.99,
trained neural network parameters Θ = {W i, βi, i =
1, . . . , L}, step size ∆, angle θ, and a random seed.

2: Initialize the set of verifiable balls V = ∅, let c =
x0 +∆, and initialize the queue Q = {c}

3: while Q is not empty do
4: Pop the first element of Q as c; solve (1) to obtain

the radius r centered at c with a corresponding adver-
sarial point b.

5: if r < ϵ then
6: Sample a point from either the range [l, c] or [c, u]

and iteratively resample until it is verifiable.
7: Add this point to Q.
8: else
9: Update the set V = V ∪ {(c, r)}.

10: Solve (3) along the direction ϕ(θ) to find the direc-
tional adversarial point b̂.

11: Compute the surface point: m = c− γ c−b
∥c−b∥p

· r.
12: Terminate the search if m /∈ [l, u], otherwise add

m to Q.
13: while m ∈ V and ∥m− b̂∥p > ϵ do
14: m = (m+ b̂)/2
15: end while
16: end if
17: end while
18: Return V

ifiability of the center while exploring multiple directions
to identify external balls beyond the known union. Step 6
prevents the search from getting stuck at discontinuous or
local boundaries before reaching the full extent of the input
space, effectively addressing the discontinuity challenge in
C. Steps 10–12 update the center using the surface point in
the ϕ(θ) direction, ensuring both feasibility (i.e., m ∈ [l, u])
and that m lies within a verifiable ball. Steps 13–15 refine
m by nudging it toward b̂ if it overlaps with the existing
union.

Figure 4 illustrates the expansion of the union over iterations,
where blue lines indicate search directions and red circles
represent verifiable balls.

Remark: We assert that the new center c remains a verifi-
able point throughout the execution of Algorithm 2. Since
b̂ is the nearest adversarial point along the direction ϕ(θ),
any point closer to the original center c along this direction
remains verifiable. The surface point computed in Steps
10–12 satisfies this condition. Moreover, because each new
center c is located outside the existing union of verifiable
balls, the union’s total volume expands progressively during
the search. Notably, LEVIS-β can be executed in parallel
across multiple directions with varying angles θ, shift pa-

rameters ∆, and random seeds to efficiently discover the
full verifiable input space, as discussed in Section 5.7.

5. Experiments
We implement our algorithms on two benchmark systems
designed to meet specific requirements for physical con-
straints and robust accuracy. We employ three-layer dense
neural networks to model solutions for both optimal power
flow (regression) and image classification tasks.

For the optimal power flow (OPF) problem, we generate a
direct-current (DC) power flow dataset, denoted as D1 =
{(xk, yk) | xk ∈ R3, yk ∈ R3}1000k=1 , using the IEEE 9-
bus power grid benchmark—a widely recognized model for
simulating energy flow in power systems. The specification
for DC-OPF requires the network output to remain within a
predefined limit ymax, i.e., f(xk) ≤ ymax

k .

For image classification, we utilize the MNIST (LeCun et al.,
2010) and CIFAR-10 (Krizhevsky et al., 2009) datasets.
MNIST consists of 60,000 training and 10,000 testing sam-
ples with an input dimension of 784, while CIFAR-10 in-
cludes 50,000 training and 10,000 testing samples with an
input dimension of 3,072. The robustness requirement man-
dates that the predicted probability of the ground-truth class
j must be higher than that of an adversarial class l, for-
mulated as: f(xk)j − f(xk)l > 0. Further details on the
datasets are provided in Appendix B.

To solve the mixed-integer programming (MIP) problems in
(1) and (3), we use Gurobi with OMLT (Ceccon et al., 2022)
for small neural networks (fewer than 100 neurons) trained
on DC-OPF datasets. For large-scale MNIST and CIFAR-
10 networks, we adopt the Complementary Constraints
(CC) approach (Section 4.2), employing Ipopt (Wächter
& Biegler, 2006) for the NLP formulation and Gurobi for
the reduced MIP. All optimization models are implemented
using Pyomo (Hart et al., 2024).

5.1. Visualization of the Exact Verifiable Ball

Figure 5 illustrates the verifiable balls for different ℓp norms
(p = 1, 2,∞) using the DC-OPF dataset in 3D. The anal-
ysis provides key insights into selecting p and refining the
search strategy. Notably, the volumes of these balls vary
significantly, with the ℓ∞ norm producing the largest. We
choose p =∞ because its cube-shaped geometry minimizes
gaps when adjacent cubes intersect, enhancing coverage. Al-
though our solution to (1) guarantees verifiability within the
ball, points equidistant from x0 to x∗ may still be adver-
sarial, potentially appearing anywhere on the surface. This
highlights the challenge of expanding verifiable regions via
vertex enumeration. Instead, our method explores optimal
directions to identify new verifiable balls, improving both
coverage and efficiency.
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Figure 5. Single maximum verifiable balls obtained by solving (1)
with different ℓp norms using the DC-OPF dataset. The center is
x0 = [125, 90, 100], with the nearest adversarial points x∗ marked
as red nodes. The radius, given by ∥x∗ − x0∥p, represents the
smallest distance between x0 and x∗. In the 3D input space, the
verifiable regions for ℓ∞, ℓ1, and ℓ2 norms (left to right) corre-
spond to a cube, an octahedron, and a sphere, respectively.

5.2. Efficiency Comparison

We evaluate the runtime of solving the optimization prob-
lem in (1) and compare our method against a strengthened
MIP baseline that uses bounds from the CROWN method.
Experiments are conducted on image recognition datasets
(MNIST and CIFAR-10) using a three-layer ReLU network
with 894 neurons.

Table 1. Runtime (seconds) and relative speedup (in parentheses)
for each method. Speedup is relative to the MIPCROWN baseline.

Dataset MIPCROWN (s) Proposed (s) Optimality Gap

MNIST 10.48 1.34 (7.82×) 0.004
CIFAR-10 17.47 5.96 (2.93×) 0.0009

As shown in Table 1, the proposed method significantly
improves efficiency compared to the MIPCROWN baseline,
achieving a 7.82× speedup on MNIST and a 2.93× speedup
on CIFAR-10. Our solver (Section 4.2) solves each instance
in 1.34 seconds on MNIST and 5.96 seconds on CIFAR-10,
while maintaining a small optimality gap. The total runtime
includes both a nonlinear programming (NLP) phase and a
reduced MIP phase.

5.3. Comparison of Radius Size with the Baseline

We compare the size of the verifiable ball obtained by our
method with a baseline method based on Lipschitz con-
stants (Fazlyab et al., 2021). As neural networks are Lips-
chitz continuous with constant L =

∏L
i=1 ∥W i∥p, we can

estimate a lower bound on the adversarial radius as

∥x∗−c∥p ≥
δ

L
, where δ = min

i ̸=k

1√
2
|(ek−ei)T f(x∗)|.

We train neural networks to regress optimal power flow
solutions and compare the verifiable radius from our method
(solving the NLP in (1)–(1f)) against the Lipschitz-based
bound.

Due to the inherent randomness in training neural networks,
we repeat the experiment across five independently trained
models and report the resulting range of radius values. This
repetition ensures robustness of the comparison across dif-
ferent training instances.

Table 2 shows that our method consistently finds verifiable
balls with radii up to 10x larger than those estimated by
the baseline, underscoring the benefit of solving the exact
optimization problem directly.

Table 2. Comparison of radii from the exact solver vs. Lipschitz-
based lower bound for the DC-OPF network.

Method p =∞ p = 1 p = 2

Baseline r 4.52 4.80 12.88

Our r 16.24 47.28 28.12

5.4. Performance of LEVIS−α for DC-OPF

We implement LEVIS-α for the DC-OPF task and track
the variations in the radius of verifiable balls, as shown
in Figure 6. Each solid blue line denotes the mean radius
across five random implementations of LEVIS-α, and the
shaded regions represent standard deviations.

Figure 6. Radius over itera-
tions for ℓ∞

Similar behavior is observed
for other norms (p = 1, 2).
To demonstrate the substan-
tial size of the final verifiable
ball obtained by LEVIS-α,
we compare it against two al-
ternative methods: the Exact
Fixed Center (EFC) method
from (1), and a version of the
Lipschitz-based Lower Bound
(LLB) method (Fazlyab et al.,
2021). Two key observations
emerge: (1) LEVIS-α yields radii 3–9× larger than the
baselines, justifying its iterative center refinement in Algo-
rithm 1; and (2) the radius converges, suggesting that the
final ball touches two distinct edges of the verifiable region.

5.5. Performance of LEVIS-β for DC-OPF

We evaluate the statistical behavior of LEVIS-β on the
DC-OPF task. Across iterations, LEVIS-β discovers ver-
ifiable balls of varying radii, with smaller balls appearing
farther from the original center and closer to the bound-
ary of the verifiable region. Figure 7(a) shows a histogram

7
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Figure 7. Radii distribution for LEVIS-β: (a) histogram of radii;
(b) radii vs. distance to initial center. Smaller-radius balls tend to
lie near the boundary of the verifiable region.

Figure 8. Radii distribution from LEVIS-β for different directions
θ ∈ {0, 90, 180, 270, 360◦} (left) and initialization values ∆ ∈
{0.02, 0.04, 0.06, 0.08} with 10 random seeds per ∆ (right).

of radii, while (b) plots each radius against its distance to
the original center x0. Together, these visualizations indi-
cate that smaller-radius balls dominate the union and are
concentrated near the boundaries—highlighting the natural
shrinkage of verifiable regions in such areas.

5.6. Distribution of Radii Discovered by LEVIS-β in
High-Dimensional Space

We analyze the distribution of verifiable ball radii discovered
by LEVIS-β on the MNIST dataset. Compared to DC-OPF,
the radii are generally smaller, which we attribute to the
higher input dimensionality and network complexity. We
visualize the relationship between radii and distance to the
initial center under varying search angles θ, initialization
shifts ∆, and random seeds.

Figure 8 shows that most verifiable balls have radii below
0.07. Varying θ, ∆, and random seeds leads to diverse veri-
fiable balls distributed across the input space. Randomness
mainly affects the orthogonal vector q in (3d), thereby in-
fluencing search directions. Each run is independent and
can be parallelized over different θ and ∆ values. Multi-
directional searches can further boost coverage efficiency,
which we leave for future work.

Figure 9. t-SNE projection of verifiable ball centers under different
search directions θ = {0, 90, 180, 270}◦ (left) and initialization
shifts ∆ = {0, 0.02, 0.04, 0.06, 0.08} (right), with 10 runs per
setting.

5.7. Geometric Characteristics of the Verifiable Input
Space

Unlike over- or under-approximation methods, each verifi-
able ball in LEVIS-β is exactly verified and adversarial-free.
This allows us to recover structural insights into the geom-
etry of the input space. Figure 9 shows t-SNE projections
of verifiable centers based on varying θ (left) and ∆ (right).
The four clusters in Figure 9(left) reflect the orthogonal
directions used in the search and suggest regularity in the
structure of the verifiable region. In contrast, Figure 9(right)
shows that changing ∆ leads to denser but distinguishable
center clusters. Together, these plots highlight the struc-
tural diversity and robustness of our method in exploring
the verifiable space.

6. Conclusion and Future Work
Identifying verifiable input regions free from adversarial ex-
amples is crucial for model selection, robustness evaluation,
and reliable control strategies. This work introduces two
MIP-enabled search algorithms, LEVIS−α and LEVIS−β,
to identify verifiable input spaces. We formulate two opti-
mization problems: one for computing the maximum verifi-
able ball and another for locating nearest adversarial points
along specified directions. These guide the LEVIS algo-
rithms in dynamically updating ball centers, enabling effi-
cient exploration of the verifiable input space. We improve
MIP scalability by up to 6× via a hybrid NLP-MIP solver,
with a worst-case optimality gap below 0.004. Unlike lo-
cal optimizers, our method ensures global optimality when
neuron activation patterns match those from the NLP solu-
tion. We visualize verifiable balls under various norms to
inform search design and benchmark our method against
state-of-the-art techniques in terms of efficiency and radius
accuracy. Finally, we analyze the distribution of verifiable
balls collected by LEVIS-β across scenarios. Future work
will adapt LEVIS to neural network-based control systems
to certify safe input regions ensuring stability and reliability.
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A. Appendix: Theoretical Results
Theorem A.1. For any convex bounded verifiable region C ⊂ Rd, the sequence of balls {B(cn)} generated by LEVIS-α
converges to a ball B(c) that intersects the boundary of C at least at two points. Specifically, for any ϵ > 0, there exists a
number of algorithm iterations N such that for all n > N , B(c) encompasses two points almost symmetric about the center
c with less than ϵ mismatch, and these two points lie on the boundary of C.

Proof. Consider the convex, bounded, and closed region C ⊂ Rd. At each step n of Algorithm 1, a ball B(cn) with the
radius rn is generated, where cn is the center, with the property that B(cn) ⊆ C. By convexity and boundedness, the
boundary ∂C is non-empty, compact, and ensures that the sequence {B(cn)} must converge to a configuration where the
ball touches the boundary of C at multiple points.

Next, we introduce a constant λ, which we define as the greatest rate of change in the width of the region C along any line
passing through its center. Specifically, λ characterizes the maximum rate at which the distance between two points on the
boundary of C, on opposite sides of a line passing through the center, changes as we move the line across C. This constant λ
is finite due to the convexity and boundedness of C.

Now, consider the rays emanating from the center cn in the directions aligned with the axes of the ℓ1 norm. The algorithm
iteratively adjusts the center cn to reduce the asymmetry of the distances from cn to the boundary ∂C along these rays. Let
∆n denote the measure of asymmetry at the n-th step, defined as the maximum difference between the distances from cn to
∂C along opposite rays.

By the convexity of C, moving the center cn results in a decrease in ∆n at a rate proportional to the radius rn from cn to the
boundary ∂C. Specifically, due to the convexity and the definition of λ, the reduction in ∆n between steps n and n+ 1 can
be bounded below by λ · rn. Hence, the sequence {∆n} converges to zero as n increases.

To formalize this, given any ϵ > 0, choose N such that for all n > N , the asymmetry ∆n is less than ϵ. The constant λ
ensures that for n > N , the ball B(cn) touches the boundary ∂C at least at two distinct points, as the rays from the center
are symmetrized to within ϵ/λ. Thus, B(cn) intersects ∂C at two points, say xn and yn, satisfying ∥xn − yn∥1 ≥ rn

2 .

Moreover, since the asymmetry ∆n is controlled by λ, the point bn within B(cn) can be chosen such that ∥xn − bn∥1 > rn
2

and minr∈R ∥bn − r∥ < ϵ.

Therefore, the sequence {B(cn)} converges to a ball that touches the boundary of C at at least two distinct points, which
completes the proof.

Note: In general, for non-convex regions, this does not necessarily hold. In particular, separate convex sub-regions separated
by a bottleneck can form an oscillator in this algorithm without convergence. In practice, we conjecture that this is a rare
scenario and that our algorithm seems to reliably get “caught” in small convex sub-regions.

B. Appendix: Details of Datasets and Extra Experimental Results
B.1. Optimal Power Flow Datasets

Figure 10. IEEE 9-Bus system topology . The system has 3 demand nodes (5,7,9) with nominal values (125, 90, 100) in MW, and the 3
generator nodes with (1,2,3) with limits ([30,100], [60,200], [30,100]) in MW. Therefore, the neural network has 3 inputs and 3 outputs.

11



LEVIS: Verifiable NN Input Spaces

We generate direct-current (DC) power flow datasets using the IEEE 9-bus power grid benchmark, a widely recognized
model for simulating energy flow in power grids, depicted in Figure 10. Nodes 1, 2, and 3 are equipped with generators,
while nodes 5, 7, and 9 serve as load points. Power operators can adjust the output at generator nodes, allowing for variations
within predefined ranges. The neural network, fopf(PD) = PG, predicts the electricity generated (PG) at these three
generator nodes based on the demand (PD) from the load nodes and PD ∈ R3. The dataset is created by solving the DC
Optimal Power Flow (DC-OPF) problem (Frank et al., 2012) using nominal inputs x0 = [125, 90, 100]T from standard
datasets, perturbed by 10% uniform noise to produce a diverse set of 1,000 data samples. The DC-OPF specification
requires that outputs stay within the physical limits of the generators, specifically PG1 ∈ [30, 100], PG2 ∈ [60, 200], and
PG3 ∈ [30, 100]. We trained a three-layer ReLU neural network using the Adam optimizer (Kingma & Ba, 2014) to compute
DC-OPF solutions, selecting 80% of the data samples randomly for training and reserving the remaining for testing.
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Figure 11. The minimum perturbation needed to the clean image of “7” (on the left) has a value of 0.1 and is shown in the center image.
This results in an image (on the right) that is visually very close, but the classifier mistakes it for the digit “3”.

B.2. MNIST and CIFAR-10 Datasets

We utilize the MNIST digit dataset, which consists of 60,000 training and 10,000 testing samples, for an image recognition
task (LeCun et al., 2010). MNIST is a widely used benchmark in neural network verification problems (Gowal et al., 2018;
Wang & et.al., 2021; Kotha et al., 2024), comprising handwritten digits across ten classes (0 to 9). The neural network
fimage(x) = ŷ predicts class probabilities for each input x, and the goal is to ensure that the predicted probability for the true
class k exceeds that of any other class. This is operationalized as mink ̸=l(ek − el)

T fimage(x).

We implement a two-layer ReLU neural network trained using cross-entropy loss and optimized with the Adam optimizer at
a learning rate of 0.001. The network architecture for MNIST consists of three layers: input x0 ∈ R784, two hidden layers
z1, z2 ∈ R50, and output layer z3 ∈ R10. The network achieves a test accuracy of 97%. For evaluation, we select the first
image in the test dataset as the initial point x0 for computing the maximum verifiable ball. Principal Component Analysis
(PCA) is optionally used for MNIST to accelerate training, though it is not essential for the core results.

For the CIFAR-10 dataset (Krizhevsky et al., 2009), we use a subset of 10,000 test images. CIFAR-10 consists of 32×32
RGB images across ten object categories such as airplanes, cars, birds, and so on. Unlike MNIST, PCA is not used for
dimensionality reduction due to the higher complexity and diversity of the image content.

Code and experiments are being made available at: https://github.com/LEVIS-LANL/LEVIS

B.3. Visualization of the nearest adversarial point for image classification

For image recognition, we find the closest adversarial point to the clean image of the digit “7”, in Figure 11. The distance to
the adversarial point was 0.1. (in terms of pixel magnitude), and despite the image being visually the same, the classifier,
even with its high accuracy of 93%, mistakes it for the digit “3”.

B.4. Statistical Performance of LEVIS-β

Table 3. Statistical Summary of the Radii
Statistic Value

Number of Radii 52
Minimum Radius 0.10
Maximum Radius 23.58

Median 0.42
Mean 3.75

Lower Quartile 0.16
Upper Quartile 2.46

Variance 45.25
Standard Deviation 6.73

We provide more statistics on LEVIS-β for DC-OPF. The main results are found in Table 3.
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B.5. CPU Resources

We used three machines for the computations. The specifications of the machines are shown in Table 4, Table 5, and Table 6

Table 4. CPU 1 Information Summary
Attribute Details
Processor Intel(R) Core(TM) i7-8550U

CPU @ 1.80GHz
Base Speed 1.99 GHz
Current Speed 1.57 GHz (can vary)
Cores 4
Logical Processors 8
L1 Cache 256 KB
L2 Cache 1.0 MB
L3 Cache 8.0 MB
Virtualization Disabled
Hyper-V Support Yes

Table 5. CPU 2 Information Summary
Attribute Details
Processor Intel(R) Xeon(R) Gold

6258R CPU @ 2.70GHz
Base Speed 2.70 GHz
Cores 56
Logical Processors 112
L1 Cache 100 MB
L2 Cache 3136 MB
L3 Cache 154 MB

Table 6. CPU 3 Information Summary
Attribute Details
Processor Apple M3 Max CPU @

64GHz
Cores 16
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