
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Kostadin Garov * 1 Dimitar I. Dimitrov * 2 Nikola Jovanović 2 Martin Vechev 2

Abstract
Malicious server (MS) attacks have scaled data
stealing in federated learning to more challenging
settings. However, concerns regarding client-side
detectability of MS attacks were raised, question-
ing their practicality once they are publicly known.
In this work, we thoroughly study the problem of
detectability for the first time. We show that most
prior MS attacks, which fundamentally rely on
one of two key principles, are detectable by prin-
cipled client-side checks. Further, we propose
SEER, a novel attack framework that is less de-
tectable by design, and able to steal user data from
gradients even for large batch sizes (up to 512)
and under secure aggregation. Our key insight is
the use of a secret decoder, jointly trained with
the shared model to disaggregate in a secret space.
Our work is a promising first step towards more
principled treatment of MS attacks, paving the
way for realistic data stealing that can compro-
mise user privacy in real-world deployments.

1. Introduction
A long line of work on gradient leakage attacks in feder-
ated learning (FL) has shown that even passive servers can
reconstruct client data from gradients, breaking the key
privacy promise of FL; we survey such work in App. A. No-
tably, these attacks are only applicable to naive FL deploy-
ments (Huang et al., 2021)—under realistic assumptions,
they are limited to small batch sizes and no secure aggrega-
tion (Bonawitz et al., 2016). In response, recent work has
argued that the honest-but-curious threat model downplays
the risks to FL, as servers can be compromised or malicious.
This has led to malicious server (MS) attacks, which yield
promising results by lifting honest attacks to large batches.

Most prior MS attacks rely on one of two key underlying

*Equal contribution 1INSAIT, Sofia University 2ETH Zurich.
Correspondence to: Kostadin Garov <kostadin.garov@insait.ai>,
Dimitar I. Dimitrov <dimitar.iliev.dimitrov@inf.ethz.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

principles (see App. A). One attack class (Fowl et al., 2022b;
Zhao et al., 2023; Boenisch et al., 2021; Zhang et al., 2023)
uses model modifications to promote sparsity in dense layer
gradients, enabling the use of analytical honest attacks—we
refer to such attacks as boosted analytical. Other attacks
utilize example disaggregation (Pasquini et al., 2022; Wen
et al., 2022), reducing the effective batch size in the gradient
space by restricting the gradient flow for all examples but
one, allowing the use of optimization-based honest attacks.

Client-side detectability Nearly all prior work in the
field (Geiping et al., 2020; Fowl et al., 2022b; Zhao et al.,
2023; Boenisch et al., 2021; Fowl et al., 2022a; Pasquini
et al., 2022; Wen et al., 2022; Chu et al., 2023) has raised the
issue of client-side detectability of MS attacks, i.e., an FL
client may be able to detect malicious server activity, and
decide to opt out of the current or all future rounds. Despite
such concerns, no attempts have been made so far to study,
quantify, or improve client-side detectability of MS attacks.

This work: detecting and disguising MS attacks As
our first contribution, we study the question of client-side
detectability of MS attacks. In Sec. 2, we demonstrate that
while boosted analytical and example disaggregation attacks
pose a real threat as zero-day exploits, now that their key
principles are known, all current (and future) attacks from
these two classes are client-side detectable in a principled
way, bringing into question their practicality. We observe
that such limitations of prior attacks arise from their fun-
damental reliance on the honest attacks they lift. Namely,
boosted analytical attacks always require handcrafted modi-
fications which are weight-space detectable, and example
disaggregation attacks rely on the success of disaggregation,
which is equally evident to any party observing the gradi-
ents, i.e., it is gradient-space detectable. This illustrates the
need for fundamentally different attack approaches.

As a first step in that direction and our second contribution,
we propose a novel attack framework, SEER (Sec. 3), which
recovers data from batch sizes up to 512 (Sec. 4), yet does
not lift any honest attack and is by design harder to detect.
Our key insights are that (i) gradient-space detection can
be evaded using a secret decoder, disaggregating the data
in a space unknown to clients, and (ii) jointly training the
decoder and the shared model with SGD avoids handcrafted

1

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

100 101

Disaggregation Signal-to-noise Ratio (D-SNR; log scale)

Example Disaggregation
(Prior Work)

SEER (Our Method)

Non-Malicious Networks

Figure 1. D-SNR (Sec. 2) of real (model, data batch) pairs. High values indicate vulnerability to data leakage, which can manifest even in
non-malicious models (). Example disaggregation attacks () are easily detectable as they can successfully reconstruct data () only
when DSNR is unusually high (note the log scale), and fail otherwise (). Our method, SEER (, Sec. 3), successfully reconstructs a
datapoint even when D-SNR is low (), and is thus hard to detect in the original gradient space.

modifications and allows effective reconstruction.

2. Detectability of Malicious Server Attacks
We now study the issue of client-side detectability of two
MS attack classes introduced in Sec. 1, demonstrating that
both are detectable using principled checks. We point out
the underlying reasons for this, and discuss key desiderata
that attacks should satisfy to be more practically viable.

Boosted analytical attacks Applying boosted analytical
attacks to the realistic case of convolutional networks re-
quires highly unusual architectural modifications, i.e., plac-
ing a large dense layer in front, making the attack obvi-
ous (Fowl et al., 2022b). The only alternative way to apply
these attacks requires setting all convolutions to identity,
such that the inputs are transmitted unchanged to the dense
layer. As this is a pathological case that never occurs natu-
rally, and requires handcrafted changes to most parameters
(e.g., 98% of ResNet18), this approach is easily detectable
by inspecting model weights (e.g., by searching for con-
volutional filters with a single nonzero entry, see Sec. 4).
More importantly, it was shown (Fowl et al., 2022b) that
relevant levels of transmission are not possible in realistic
deep networks due to pooling and strides, which would fur-
ther worsen by attempts to conceal the weight changes (e.g.,
by adding noise).

Example disaggregation attacks While the detectability
of boosted analytical attacks in weight space was recognized
in prior work, example disaggregation attacks were thought
to be more promising. We argue example disaggregation
attacks are also fundamentally limited, as they are efficiently
detectable in the gradient space using a principled metric.

We now propose one such metric—disaggregation signal-to-
noise ratio (D-SNR). Assuming the standard cross-entropy
loss L(x, y), a shared model with parameters θ, and a batch
D = {(x1, y1), . . . , (xB , yB)}, we define:

D-SNR(θ, D) = max
W∈θlw

maxi∈{1,...,b}‖gi‖∑b
i=1‖gi‖ −maxi∈{1,...,b}‖gi‖

,

where gi = ∂L(xi,yi)
∂W and θlw denotes the set of weights

of all linear layers (dense and convolutional). Intuitively,
D-SNR looks for any layer where the batch gradient is dom-
inated by the gradient of a single example, implying disag-
gregation. While we focus on the case of disaggregating a
single point, our approach can be easily generalized.

We use D-SNR to study the detectability of example disag-
gregation attacks in a realistic setting (see Sec. 4 for exper-
imental details). As D-SNR is always ∞ for attacks pro-
posed in Wen et al. (2022), we modify them in an attempt
to smoothly control the strength of gradient flow restriction.
Our key observation (Fig. 1, red), is that in all cases where
the attack succeeds, D-SNR is unusually large, making the
attack easily detectable. Reducing the attack strength causes
a sharp drop in D-SNR, entering the range of most non-
malicious networks (blue), i.e., the attack is undetectable.
However, in all such cases the attack fails.

In rare cases (e.g., when overfitting), even natural networks
can produce high D-SNR and get flagged. This behavior is
desirable, as such networks indeed disaggregate a single ex-
ample, and are thus (unintentionally) exposing sensitive user
data. Thus, metrics such as D-SNR should be interpreted as
detecting vulnerability, and not necessarily maliciousness.

Discussion Our results show that all prior attacks are de-
tectable with general checks. We argue that this is caused
by fundamental problems in the two attack classes once
their principles are known, and can not be remedied by
refinements. Any attempt to lift an honest analytical at-
tack will inherit the limitation of being inapplicable to con-
volutions, and will require architectural changes or hand-
crafted modifications detectable in the weight space. Lifting
optimization-based attacks always requires example disag-
gregation, which is gradient space detectable. More broadly,
as all information needed to execute these attacks is in the
user gradients, the server has no informational advantage,
and no principled way to conceal the malicious intent. This
poses the question of finding novel attack principles that
better exploit the potential of the MS threat model, while
targeting realistic settings (convnets, large batches, no pro-

2

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Figure 2. Overview of SEER. A client propagates a batchX (where one image satisfies the property P only known to the server) through
the shared model f with malicious weights θf , and returns the aggregated gradient g, hoping that aggregation protects individual images.
The server steals the image that satisfies P by applying a secret disaggregator d to remove the impact of other images in a hidden space,
followed by a secret reconstructor r. SEER is trained by jointly optimizing θf , θd, and θr to minimize a combination of Lnul and Lrec.

tocol changes or unrealistic FL assumptions) and explicitly
considering weight and gradient space detection.

3. SEER Attack Framework
As a first step towards the above goal, we propose Data
Stealing via Secret Embedding and Reconstruction (SEER),
a novel attack framework that does not lift honest attacks,
and does not use handcrafted modifications. Instead, it fine-
tunes the shared model and the secret modules with SGD,
which evades obvious weight space detection. Further, we
avoid straightforward gradient space detection by disaggre-
gating the data in a hidden space defined by a server-side
secret decoder—in Fig. 1, SEER-trained networks (green)
have D-SNR values similar to those of natural networks.
Additionally, SEER requires no architecture or protocol
changes, and does not assume unrealistic knowledge of BN
statistics or batch labels (Huang et al., 2021).

Mounting SEER We first describe the stealing of data
with SEER once trained (Fig. 2). The client propagates their
batch (X,y) of B examples (xi, yi) through the shared
model f with parameters θf sent by the server, and returns
the gradient g = ∂`(f(X),y)

∂θf
of the public loss `. Due to

aggregation provided by large B, g is a mixture of gradients
gi of individual examples, i.e., g = (1/B)

∑B
i=1 gi.

Aiming to break this aggregation, the server passes g
through a secret decoder, i.e., a disaggregator d, and a
reconstructor r. If trained well, this reconstructs a client im-
age. The key concept that enables this is the secret property
P (far left in Fig. 2), which the server picks before training,
keeps secret, and uses for disaggregation. While the exact
choice of P is not essential, the goal is to pick the property
such that, as often as possible, only one example in the batch
satisfies it. Let Inul ⊆ [B] := {1, . . . , B} denote examples
that do not satisfy P , and Irec ⊆ [B] those that do.

To this end, we make the observation that batch normaliza-
tion (BN) enables an improvement over prior work (Fowl
et al., 2022b) which relies on properties that hold probabilis-
tically with probability of success 1

e ≈ 37% when the batch

size goes to∞. We define local properties which empiri-
cally hold almost always (for the case of big batches with no
secure aggregation). See App. B for more details. In Fig. 2
(and our experiments) we set P =“the least bright image in
the batch”, and observe (far left) that only x5 satisfies it.

The disaggregator d should ideally map g to a hidden space
in which embeddings of the images that violate P are re-
moved, leaving only the projection of the target image (in
our example, d(g5)). This allows the reconstructor r to steal
a client image x5, shown on the far right.

Training SEER SEER interprets gradient computation as
a latent space encoding of client data. While poor scalability
of honest attacks suggests that this encoding is often insuf-
ficient to recover user data, we observe that the MS threat
model allows us to overcome this by controlling the encod-
ing by fine-tuning θf with SGD (no handcrafted changes!)
to support downstream disaggregation and reconstruction.

The main goal of training is for d to nullify the contributions
of images not satisfying P , disaggregating the batch in a
secret lower-dimensional embedding space, addressing the
key limitation of previous disaggregation attacks. To this
end, d uses a linear map θd, driving the gradients of Inul to
≈ 0 when they are in or close to the null space of θd. Using
the additivity of the linear map we aim to get:

d(g) = d(

B∑
i=1

gi) =
∑
i∈Inul

d(gi)+
∑
i∈Irec

d(gi) ≈
∑
i∈Irec

d(gi).

To achieve this, we minimize the following objective:

Lnul =
∑
i∈Inul

‖ d(gi) ‖22.

To ensure that this does not also nullify the gradient of the
example of interest in Irec, we train the reconstructor r to
reconstruct the client image that satisifes P from d(g), i.e.,
the (noisy) isolated embedding of the target image gradient.
We define the following reconstruction objective:

Lrec = ‖ r(d(grec))− xrec ‖22.

3

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Table 1. Multi-client reconstruction on the bright and dark properties using different number of clients C on CIFAR10 and CIFAR100
datasets, for different total numbers of points. We report the percentage of correctly reconstructed images (Rec) and the average PSNR
across all reconstructions (PSNR All), and across the top 37% images (PSNR Top).

CIFAR10, Bright, C = 1 CIFAR100, Dark, C = 1 CIFAR10, Bright, C = 4 CIFAR10, Bright, C = 8

#Pts Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑

64 89.4 32.1± 2.0 27.2± 5.3 97.0 32.8± 1.3 29.3± 4.1 41.4 27.2± 3.7 19.3± 6.8 41.3 27.2± 3.4 19.5± 6.5

128 94.2 31.9± 1.7 28.2± 4.3 95.9 30.5± 1.3 26.8± 3.8 44.2 26.5± 3.1 19.4± 6.2 40.6 26.6± 3.7 19.2± 6.5

256 81.3 29.0± 2.1 24.4± 4.9 83.3 25.7± 1.3 22.2± 3.4 51.9 27.3± 2.6 20.3± 6.2 41.9 25.5± 3.2 18.6± 6.1

512 87.8 26.6± 1.8 23.2± 3.5 62.8 24.3± 1.5 20.2± 4.0 52.9 25.7± 2.2 20.0± 5.2 51.7 26.2± 3.2 20.2± 5.5

Ground
Truth

C=1

C=4

C=8

Ground
Truth

C=1

Figure 3. Results of SEER with 128 examples and different #clients C on CIFAR10 (left) and 64 examples on ResImageNet (right).

Finally, SEER trains all three components jointly to
minimize the linear combination of the two losses:
L = Lrec + α · Lnul. Complete algorithms describing the
training and mounting of SEER are deferred to App. F.

4. Experimental Evaluation
In all our experiments, we use ResNet18 (He et al., 2016)
and consider 3 datasets—CIFAR10, CIFAR100 (Krizhevsky
et al., 2009) (where we use a linear r) and Restricted Ima-
geNet (ResImageNet) (Tsipras et al., 2018) (where we use
a linear version of the U-Net decoder (Ronneberger et al.,
2015), see App. C. We use the properties of maximal/mini-
mal brightness (Bright and Dark) and three reconstruction
quality metrics: (i) average PSNR, (ii) fraction of recon-
structed images (PSNR > 19, Rec), and (iii) the average
PSNR for the top 1

e ≈ 37% of the batch reconstructions,
relevant for our multi-client experiments where we also rely
on probabilistic properties as in (Fowl et al., 2022b).

Results A reduced version of our main results on single
and multiple-client setups are given in Table 1. Our full re-
sults including more results with the Dark property and CI-
FAR100 follow similar trends and are deferred to App. H.1.

We make several key observations. First, in our single-client
experiments, our local property allows us to reconstruct a
large percentage of the batches (up to 97%), which is much
higher than the theoretical limit 1

e of probabilistic disaggre-
gation, used in prior work. Further, despite observing the
expected trend that the quality of reconstruction degrades
with the increased batch size B, our attack works well for
wide range of batch sizes, even reconstructing up to 87.8%
of client batches of size as large as 512.

Third, we compare the results on the CIFAR10 and CI-
FAR100 datasets and notice no discernible difference in

performance except for B = 512, where CIFAR10 is better.

Our multi-client attack consistently obtains average PSNR
> 25 on the top 37% of images, recovering them almost per-
fectly. We observe a slight degradation of success rate with
C, as expected. We show example attacks in Fig. 3 (left),
confirming visually the potency of SEER, with success rate
being the only clear difference between the two settings.

In Fig. 3 (right), we show our ResImageNet results, which
demonstrate that SEER scales to high-resolution images, by
training a model with B = 64. We obtain average PSNR
of 20.6± 3.7 and 23.8± 1.4 on all and the top 37% of the
images, respectively, corresponding to 77% successfully at-
tacked batches. We note that these results are significant, as
reconstructing even a single ImageNet image is not possible
with honest attacks without restrictive assumptions of BN
statistics and label data (Huang et al., 2021).

Measuring D-SNR To produce Fig. 1 we considered 4
SEER-trained malicious models (CIFAR10, Bright/Dark,
batch size 128/256), as well as 8 checkpoints made at var-
ious points during natural training, using the same ini-
tialization as used for SEER. Then, for each value of
B ∈ {16, 32, 64} we chose 5 random batches of size B
from the training set, and 5 random batches of size B from
the test set of CIFAR-10. For each batch, we computed the
D-SNR on each of the 12 networks and plotted the result-
ing value in Fig. 1 (blue for natural and green for SEER
networks). For example disaggregation attacks, we used a
publicly available implementation of the attacks of (Wen
et al., 2022) and modified the multiplier parameter to con-
trol the strength of the attack. We used the default setting
where batches are chosen such that all images belong to the
same class (car in this case). The three reconstructions of
the example disaggregation attack were obtained by running
the modernized variant of the attack of Geiping et al. (2020),

4

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Transmission Signal-to-noise Ra�o (Boosted Analy�cal = infinity)

SEER (Our Method)
Non-Malicious Networks

0.0 0.5 1.0 1.5

Figure 4. The transmission signal-to-noise ratio of several SEER-trained and naturally trained networks. The same metric has a value of
∞ for all boosted analytical attacks.

implemented in the Breaching framework (Geiping et al.,
2023), on the disaggregated batch. Finally, to allow for bet-
ter comparison, for SEER we chose to show a reconstruction
from the same class (a car) that has a D-SNR slightly below
the D-SNR of the leftmost example disaggregation point
(0.72). To do this, we used the Dark property and the dark
car image from Fig. 3, and sampled the other 63 points in
the batch randomly from the test set until the D-SNR fell in
the [0.62, 0.72] range. We stopped as soon as we found such
a batch and reported the reconstruction produced by SEER.

Measuring transmission As noted in Sec. 2, to be appli-
cable to convolutional networks, boosted analytical attacks
require handcrafted changes to convolutional layers that sim-
ply transmit the inputs unchanged. While, as noted above,
even in the ideal case this cannot lead to good reconstruc-
tions, we illustrate the point that such change is detectable
by defining a metric similar to D-SNR, which can be inter-
preted as a transmission signal-to-noise ratio, measured on
the first convolutional layer. Namely, for each filter in the
first convolutional layer, we divide the absolute values of
the largest entry, and the sum of absolute values of all other
entries.

TSNR(θ) = max
K∈θc1

K̂∑h
i=1

∑w
j=1 |Ki,j | − K̂

where K̂ = maxi∈{1,...,h},j∈{1,...,w} |Ki,j | and θc1 denotes
the set of weights of all kernels in the first convolutional
layer. Intuitively, we treat the entry with the largest absolute
value as the signal, and measure how well this is transmitted
by the filter. The ratio is high when the filter transmits the
input unchanged, and is∞ for the handcrafted changes used
by the boosted analytical attacks. We compute this metric
on the 12 networks used in Fig. 1 (see previous paragraph)
and show the results in Fig. 4. Intuitively, the red line at
1.0 indicates the case where there are equal amounts of
the pixel being transmitted and all other pixels. We can
observe that all networks have values below 0.3, confirming

that transmission is indeed unusual and not a case that ever
happens naturally, implying that if boosted analytical attacks
that use this technique would be able to obtain good results,
they still would be easily weight space detectable.

5. Conclusion and Outlook
In this work, we studied client-side detectability of MS at-
tacks in FL. We showed that prior attacks are detectable in
a principled way, and proposed SEER, a novel attack frame-
work that effectively steals data while being less detectable.

While SEER is a powerful attack that can harm user pri-
vacy, potentially demonstrating disparate impact (Wen et al.,
2022), we believe our work opens the door to a more prin-
cipled investigation of defenses, as it illustrates that tech-
niques such as secure aggregation are not as effective as
previously thought. To mitigate attacks such as SEER, prior
work has discussed differential privacy methods such as
DPSGD (Abadi et al., 2016), which in the global model is
incompatible with the MS setting as it requires a trusted
aggregator, and in the local model (Truex et al., 2020) is
known to degrade utility (Wei et al., 2019). Further, crypto-
graphic techniques such as SMPC or FHE are applicable in
theory, but still largely impractical (Kairouz et al., 2019).

Thus, we believe that principled client-side detection is the
most promising way forward. While SEER avoids pitfalls
of prior attacks which made them easily detectable, and
we see no clear ways to detect it in its current form, more
sophisticated detection techniques may be able to do so.
We encourage such work, and advocate for efficient and
robust checks accompanied by categorical analyses of at-
tack classes (such as in our work), as opposed to ad-hoc
detection which attack refinements can easily adapt to. On
the attack side, interesting future directions include apply-
ing SEER to other data modalities and model architectures,
improving its computational costs, investigating its depen-
dence on in-distribution data, and attempting to generalize
reconstruction beyond a single property.

5

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

References
Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In CCS, 2016.

Balunovic, M., Dimitrov, D. I., Jovanovic, N., and Vechev,
M. T. LAMP: extracting text from gradients with lan-
guage model priors. In NeurIPS, 2022a.

Balunovic, M., Dimitrov, D. I., Staab, R., and Vechev,
M. T. Bayesian framework for gradient leakage. In
ICLR, 2022b.

Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A. S.,
Shumailov, I., and Papernot, N. When the curious aban-
don honesty: Federated learning is not private. arXiv,
2021.

Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A. S.,
Shumailov, I., and Papernot, N. Reconstructing indi-
vidual data points in federated learning hardened with
differential privacy and secure aggregation. arXiv, 2023.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. NIPS, 2016.

Chu, H.-M., Geiping, J., Fowl, L. H., Goldblum, M., and
Goldstein, T. Panning for gold in federated learning:
Targeted text extraction under arbitrarily large-scale ag-
gregation. ICLR, 2023.

Fowl, L., Geiping, J., Reich, S., Wen, Y., Czaja, W., Gold-
blum, M., and Goldstein, T. Decepticons: Corrupted
transformers breach privacy in federated learning for lan-
guage models. ICLR, 2022a.

Fowl, L. H., Geiping, J., Czaja, W., Goldblum, M., and
Goldstein, T. Robbing the fed: Directly obtaining private
data in federated learning with modified models. In ICLR,
2022b.

Fung, C., Yoon, C. J. M., and Beschastnikh, I. The limi-
tations of federated learning in sybil settings. In RAID,
2020.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M.
Inverting gradients-how easy is it to break privacy in
federated learning? NeurIPS, 2020.

Geiping, J., Fowl, L., and Wen, Y. Breaching - a framework
for attacks against privacy in federated learning. https:
//github.com/JonasGeiping/breaching, 2023.

Geng, J., Mou, Y., Li, F., Li, Q., Beyan, O., Decker, S.,
and Rong, C. Towards general deep leakage in federated
learning. arXiv, 2021.

Gupta, S., Huang, Y., Zhong, Z., Gao, T., Li, K., and Chen,
D. Recovering private text in federated learning of lan-
guage models. In NeurIPS, 2022.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, Y., Gupta, S., Song, Z., Li, K., and Arora, S. Evalu-
ating gradient inversion attacks and defenses in federated
learning. In NeurIPS, 2021.

Jin, X., Chen, P., Hsu, C., Yu, C., and Chen, T. CAFE:
catastrophic data leakage in vertical federated learning.
arXiv, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K. A., Charles, Z., Cor-
mode, G., Cummings, R., D’Oliveira, R. G. L., Rouay-
heb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A.,
Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z.,
He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi,
M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Ko-
rolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu,
Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R.,
Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D.,
Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr,
F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang,
Q., Yu, F. X., Yu, H., and Zhao, S. Advances and open
problems in federated learning. arXiv, 2019.

Kariyappa, S., Guo, C., Maeng, K., Xiong, W., Suh, G. E.,
Qureshi, M. K., and Lee, H. S. Cocktail party attack:
Breaking aggregation-based privacy in federated learning
using independent component analysis. arXiv, 2022.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lam, M., Wei, G., Brooks, D., Reddi, V. J., and Mitzen-
macher, M. Gradient disaggregation: Breaking privacy in
federated learning by reconstructing the user participant
matrix. In ICML, 2021.

Melis, L., Song, C., Cristofaro, E. D., and Shmatikov, V.
Exploiting unintended feature leakage in collaborative
learning. In IEEE Symposium on Security and Privacy,
2019.

Pasquini, D., Francati, D., and Ateniese, G. Eluding secure
aggregation in federated learning via model inconsistency.
In CCS, 2022.

Phong, L. T., Aono, Y., Hayashi, T., Wang, L., and Moriai,
S. Privacy-preserving deep learning via additively homo-
morphic encryption. IEEE Trans. Inf. Forensics Secur.,
(5), 2018.

6

https://github.com/JonasGeiping/breaching
https://github.com/JonasGeiping/breaching

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Truex, S., Liu, L., Chow, K. H., Gursoy, M. E., and Wei,
W. Ldp-fed: federated learning with local differential
privacy. In EdgeSys@EuroSys, 2020.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy.
arXiv preprint arXiv:1805.12152, 2018.

Vero, M., Balunovic, M., Dimitrov, D. I., and Vechev, M. T.
Data leakage in tabular federated learning. ICML, 2022.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q. S., and Poor, H. V. Federated learning
with differential privacy: Algorithms and performance
analysis. arXiv, 2019.

Wen, Y., Geiping, J., Fowl, L., Goldblum, M., and Goldstein,
T. Fishing for user data in large-batch federated learning
via gradient magnification. In ICML, 2022.

Wu, H., Zhao, Z., Chen, L. Y., and van Moorsel, A. Feder-
ated learning for tabular data: Exploring potential risk to
privacy. In ISSRE, 2022.

Wu, R., Chen, X., Guo, C., and Weinberger, K. Q. Learning
to invert: Simple adaptive attacks for gradient inversion
in federated learning. arXiv, 2021.

Ye, J., Maddi, A., Murakonda, S. K., Bindschaedler, V.,
and Shokri, R. Enhanced membership inference attacks
against machine learning models. In CCS, 2022.

Yin, H., Mallya, A., Vahdat, A., Alvarez, J. M., Kautz, J.,
and Molchanov, P. See through gradients: Image batch
recovery via gradinversion. In CVPR, 2021.

Yue, K., Jin, R., Wong, C., Baron, D., and Dai, H. Gradient
obfuscation gives a false sense of security in federated
learning. arXiv, 2022.

Zhang, S., Huang, J., Zhang, Z., and Qi, C. Compromise
privacy in large-batch federated learning via malicious
model parameters. In ICA3PP, 2023.

Zhao, B., Mopuri, K. R., and Bilen, H. idlg: Improved deep
leakage from gradients. arXiv, 2020.

Zhao, J. C., Sharma, A., Elkordy, A. R., Ezzeldin, Y. H.,
Avestimehr, S., and Bagchi, S. Secure aggregation in
federated learning is not private: Leaking user data at
large scale through model modification. arXiv, 2023.

Zhu, J. and Blaschko, M. B. R-GAP: recursive gradient
attack on privacy. In ICLR, 2021.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients.
In NeurIPS, 2019.

7

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

A. Related Work
In this section, we discuss prior work on gradient leakage
attacks in federated learning.

Honest server attacks In the honest-but-curious setting,
the existing attacks fall into three types. Optimization-based
attacks (Zhu et al., 2019; Zhao et al., 2020; Geiping et al.,
2020; Geng et al., 2021; Wu et al., 2021; Yin et al., 2021) op-
timize a dummy batch with SGD to match the user-provided
gradient. Analytical attacks (Phong et al., 2018; Kariyappa
et al., 2022) can recover inputs of linear layers in closed
form, but are limited to batch size B = 1 and do not support
convolutional networks. Recursive attacks (Zhu & Blaschko,
2021) extend analytical attacks to convolutional networks
but are limited to B ≤ 5. Several works thoroughly study
these attacks (Yue et al., 2022; Balunovic et al., 2022b; Jin
et al., 2021; Huang et al., 2021). Crucially, Huang et al.
(2021) show that in realistic settings, where clients do not
provide batchnorm statistics and labels, existing attacks are
limited to B < 32 for low-resolution data, and fail even for
B = 1 on high-resolution data. This implies that large B
and secure aggregation (Bonawitz et al., 2016) are effective
in privacy protection against honest attacks.

Malicious server (MS) attacks As discussed in Sec. 2,
throughout the main paper we focus on analysing prior MS
attacks through the lens of the broadly applicable classes
of boosted analytical (Fowl et al., 2022b; Zhao et al., 2023;
Boenisch et al., 2021; Zhang et al., 2023) and example dis-
aggregation attacks (Wen et al., 2022; Pasquini et al., 2022).
Here, we reflect on other MS attacks that study more spe-
cific or orthogonal settings. Some works (Zhao et al., 2023;
Pasquini et al., 2022) require the additional ability to send
different updates to different users, which was shown easy
to overcome with reverse aggregation (Pasquini et al., 2022).
The attack of Lam et al. (2021) focuses on the rare setting
where participation side-channel data is present. While we
focus on images, various attacks consider other modalities
such as text (Balunovic et al., 2022a; Gupta et al., 2022;
Fowl et al., 2022a; Chu et al., 2023) or tabular data (Wu
et al., 2022; Vero et al., 2022). Similarly, we consider only
the threat of data reconstruction—some works (Pasquini
et al., 2022) study important but strictly weaker privacy
notions such as membership (Ye et al., 2022) or property
inference (Melis et al., 2019). Finally, another direction
orthogonal to our work concerns the notably stronger threat
model of sybil-based attacks (Fung et al., 2020; Boenisch
et al., 2023).

B. Choosing the Property P
In this section, we describe how we adapt our algorithm
to the single and multi-clients settings by using different

properties P . In our experiments, for both variants of SEER
we use properties P based on individual image brightnesses,
inspired by Fowl et al. (2022b), who define P by a threshold
on the global brightness distribution of the dataset, such that
Irec covers probability mass 1

B . Fowl et al. (2022b) shows
that this choice maximizes the probability of successful
client data disaggregation P (|Irec| = 1), which approaches
1
e ≈ 37% as B →∞.

Single-client properties In the single-client setting, we
improve upon Fowl et al. (2022b) by making the observa-
tion that using batch normalization (BN, present in most
convolutional networks), allows us to choose P such that,
empirically, |Irec| = 1 for nearly all batches, for B as large
as 512. This significantly improves the above probabilistic
solution, as it implies that in most cases a single FL round
is sufficient to steal client data. This is possible as each BN
layer normalizes the distribution of its input, intertwining
the computational graphs of images in the batch, which are
otherwise independent. With this in mind, we define P with
respect to the local distribution, e.g., as the maximal bright-
ness in the batch. As shown in Sec. 4, we find that SEER
can learn such P when trained with auxiliary data, almost
always singling out the brightest image at attack time.

Multi-client properties We remark that when Secure Ag-
gregation (Bonawitz et al., 2016) is applied in the multi-
client setting, BN layers no longer intertwine all inputs, and
inputs across different clients remain independent. This
observation suggests Secure Aggregation in the presence of
BN layers can be a strictly more powerful defence than us-
ing large batch sizes coming from a single client, an aspect
that was overlooked in prior work (Wen et al., 2022; Fowl
et al., 2022b).

To overcome this challenge, we design a more elaborate
P for the multi-client setting that uses a combination of
local and global properties of the brightness distribution. In
particular, we define P in terms of a brightness range that
we generated to be invariant to the mean and the standard
deviation of a single client batch, while still having proba-
bility mass equal to one over the total number of aggregated
datapoints. As finding those ranges still relies on the global
distribution, our reconstruction in this setting is probabilistic
with probability 1

e , similarly to prior work. Next, we give
detailed description of our brightness range computation.

To simplify our explanation, we focus on the particular
brightness range corresponding to the most bright images,
which in turn simplifies our range computation to calculating
a single brightness threshold τ . To calculate τ , we use the
insight that individual client gradients are still generated in
the presence of BN before their aggregation. To this end, we
normalize the brightnesses within individual client batches
of size B for 20000 sampled client batches and use the

8

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

sampled normalized brightness to generate the cumulative
density function (CDF) of their empirical distribution. We
then choose the threshold τ on this distribution, to maximize
the probability that exactly one out of the C aggregated
clients has exactly one image with normalized-brightness
above the threshold. We estimate the probability of having
exactly one image with normalized-brightness above the
threshold as:

(1− Φ1(τ)) ∗ Φ2(τ) ∗ Φ1(τ)C−1

where Φ1 is the CDF of the top-brightness in a sampled
batch, and Φ2 is the CDF of the second highest brightness
in a sampled batch. Up to a multiplicative constant, the prob-
ability equation can be intuitively rephrased as follows—for
exactly one client the highest normalized brightness within
its batch is above τ and the second highest brightness is
below τ , while for the rest all brightnesses are below τ . To
optimize the equation above for the threshold τ , we use
the golden section search method—a numerical optimiza-
tion technique that repeatedly divides a search interval by
the golden ratio to efficiently locate the (possibly-local)
extremum of a function of a single variable.

C. U-Net-based Image Reconstructor
In this section, we explain the architecture of our image
reconstructor r used in our ResImageNet experiments in
Sec. 4. Our architecture is inspired by the decoder portion
of an U-Net (Ronneberger et al., 2015), which has been
demonstrated to be a memory efficient architecture for gen-
erating images.

We show our architecture in Fig. 5. In the figure, g depicts
our model’s gradient subsampled randomly so that only 3%
of its entries are kept (See App. E.1). There are two main
differences between our r in Fig. 5 and the original 6 layer
U-Net architecture. First, we use no activation functions,
thus creating a (sparse) linear reconstructor function r. This
allows us, similarly to our CIFAR10/100 experiments, to
combine r and d into single linear layer, whose bias becomes
the target for our filtered out inputs Xnul. Second, as our
architecture does not include U-Net-style encoder, the U-
connections of our reconstructor are substituted by pairs
of linear layers with bottleneck in the middle applied on
g. In Fig. 5, we depict the bottleneck sizes and transposed
convolution sizes, as well as the intermediate output sizes of
the different layers. The bottlenecks ensure that the memory
efficiency of our method is preserved and are inspired by
the intuition that the U-connections only need to provide
high frequency content which can live in a much lower-
dimensional subspace. Finally, we note that for the purpose
of pretraining, we used the first 3 channels of the third
transposed convolution layer as our CIFAR10 output and
that our transposed convolution stack produces images of

size 264 × 264 which we then center-crop to produce our
ImageNet-sized final output.

D. Efficiently Computing Lnul

In this section, we detail why the disaggregation loss Lnul,
as presented in Sec. 3, is inefficient to compute and how
we approximate it to alleviate this issue. Computing Lnul
directly for large batch sizes B takes a lot of memory due
to the need to store gi for all i in the large set Inul. Note
that the reason for this is that we want to enforce all of
the individual gradient gi to fall in the null space of θd
separately. In practice, to save memory we enforce the same
condition by computing the surrogate:

L̂nul = ‖ 1

|Inul|
∑
i∈Inul

d(gi) ‖22 + ‖ d(gj∼Inul) ‖22,

where the first part of the equation nullifies the mean gradi-
ent, and the second part nullifies a different randomly chosen
gradient at every SGD step. In practice, this achieves similar
results to the original loss Lnull in that over time all gradients
in Inul go to 0.

E. Additional Implementation Details
In this section, we provide a few additional implementation
details about our solution.

E.1. Subsampled Gradients

In order to save memory and computation, we use only part
of the entries in our full model gradient g to construct our
intermediate disaggregation space Rnd . In particular, we
randomly sample 0.1% of the gradient entries of each of
the model’s parameters while ensuring that at least 8400
entries per parameter are sampled for our CIFAR10/100
experiments, and 2% and at least 9800 entries for our Res-
ImageNet experiments. This results in 1.6% of the total
gradient entries for CIFAR10/100 and 3.0% for ResIma-
geNet. We theorize that we are able to reconstruct nearly
perfectly with such small percent of the gradient entries be-
cause there is large redundancy in the information different
gradient entries provide.

E.2. Trainset Data Augmentation

For the purpose of training our encoder-decoder framework,
we observed data augmentation of our auxiliary dataset is
crucial, especially for large batch sizes B. We theorize
that the reason for this is the lack of diversity in the re-
construction samples Xrec. In particular, as B grows, an
increasingly smaller set of images are selected to be the
brightest or darkest of any batch sampled from the training
set. To this end when sampling our training batches, for

9

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

128x3x3 128x7x7 64x15x15 64x32x32 32x65x65 32x101x101 3x264x264

80
0

80
0

50
0

50
0

30
0

16
00

O
utput [: , 20:244, 20:244]

T
ransposeC

onv2d(128, 128, 3, 2)

T
ransposeC

onv2d(128, 64, 3, 2)

T
ransposeC

onv2d(64, 64, 4, 2)

T
ransposeC

onv2d(64, 32, 3, 2)

T
ransposeC

onv2d(32, 32, 3, 2)

T
ransposeC

onv2d(32, 3, 4, 2)

30
0

Figure 5. The architecture of our U-Net-based reconstructor r used in our ResImageNet experiments. Here g represents the randomly
subsampled model gradient and the output is the resulting reconstructed image.

CIFAR10/100 we first apply random ColorJitter with bright-
ness, contrast, saturation and hue parameters 0.2, 0.1, 0.1,
and 0.05, respectively, followed by random horizontal and
vertical flips, and random rotation at N ∗ 90 + ε degrees,
where N is a random integer and ε is chosen uniformly at
random on [−5, 5]. For ResImageNet, we additionally do a
random cropping of the original image to the desired size of
224× 224 before the other augmentations.

E.3. Trainset Batch Augmentation

When dealing with multiple clients, as detailed in App. B,
we adopt a probabilistic approach. As noted in Sec. 3, the
probability of attack success with a perfect threshold τ is 1

e
in the limit of the number of images being aggregated. As

we need SEER to successfully reconstruct images only in
the 1

e fraction of the securely-aggregated batches, where we
are expected to successfully disaggregate, we avoid training
on the rest 1 − 1

e >
1
2 fraction of the securely-aggregated

batches, which can act as a strong noise factor during train-
ing and prevent convergence. This in turn results in rejecting
training on a big portion of our sampled client batches.

To address this sample inefficiency, we use batch augmenta-
tion during training to transform the client batches to ones
with a desired brightness distribution. The batch augmen-
tation simply consists of adjusting the brightnesses of indi-
vidual images within each batch. We do two types of batch
augmentations based on two different target distributions—
one where it contains precisely one image in the batch with
brightness above the threshold τ and another, where pre-

10

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Algorithm 1 The training procedure of SEER

1: function TRAINSEER(f, `, B, X , Y)
2: Choose P , initialize d and r
3: while not converged do
4: X, y ← {xi,yi ∼ (X , Y) | i ∈ [B]}
5: Inul, Irec ← P(X,y)
6: Xnul,ynul ←X[Inul],y[Inul]
7: Xrec,yrec ←X[Irec],y[Irec]
8: gnul, grec ← BP(f, `,Xnul,Xrec,ynul,yrec)
9: Lnul ← ‖ d(gnul) ‖22

10: Lrec ← ‖ r(d(grec))−Xrec ‖22
11: L ← Lrec + α · Lnul
12: θm ← θm − γm · ∂L∂θm ,∀m ∈ {f, d, r}
13: end while
14: return f, d, r
15: end function
16: function BP(f, `, Xnul, Xrec, ynul, yrec)
17: Jlnul; lrecK← `(f(JXnul;XrecK), Jynul;yrecK)
18: return ∂lnul

∂θf
, ∂lrec
∂θf

19: end function

cisely zero images in the batch have brightness above the
threshold τ . We alternate the two augmentations at each
step of the training procedure. To achieve the distributions,
we adjust the all image brightness within a batch using a
heuristic method. The method first adjusts the brightness
of the most bright images (least bright images in the case
of the dark image property) such that they land on the de-
sired side of the threshold τ . However, as after adjusting
the image the brightnesses within the batch are no longer
normalized, we then renormalize the batch resulting in a
new batch brightness distribution. If the new distribution is
as desired we stop, otherwise we iterate until convergence.

F. End-to-end Attack Description &
Discussion

Algorithm 1 describes the training of SEER. We train on
client-sized batches (see App. H.5 for a related study) sam-
pled from our auxiliary data (Line 4). Based on P we
select the index sets Inul and Irec (Line 5), representing the
examples we aim to disaggregate. Then, we simulate the
client updates grec and gnul computed on the full batch X
(Line 8), and use them to compute our optimization objec-
tive (Line 11). We minimize the objective by jointly training
f , d, and r using SGD (Line 12).

Mounting SEER once the malicious weights θf have been
trained using Algorithm 1 is simple, as we illustrate in Al-
gorithm 2. The server, during an FL round, sends the client
the malicious model f (Line 2), and receives the gradient
update g. Then, it applies its secret disaggregator d and
reconstructor r (Line 3), to obtain xstolen, the reconstructed
private example from the client batch.

Algorithm 2 Mounting SEER

1: function MOUNTSEER(f, d, r)
2: g ←GETCLIENTUPDATE(f)
3: xstolen ← r(d(g))
4: return xstolen
5: end function

G. Hyperparameters
In this section, we provide more details about the exact hy-
perparameters used in our experiments in Sec. 4. We imple-
mented SEER in Pytorch 1.13. Throughout our experiments
we used the Adam optimizer with learning rate of 0.0001.
To stabilize our training convergence we adopt gradient ac-
cumulation and, thus, updated our modules’ parameters only
once every 10 gradient steps. For CIFAR10/100 we trained
between 500 and 1000 epochs, where an epoch is defined to
be 1000 sampled batches from our trainset. Having gradient
accumulation set to 10, this amounts to 100 gradient de-
scent steps per epoch. For ResImageNet, we trained for 370
epochs instead, with 400 gradient descent steps per epoch.

For faster convergence and better balance in the optimized
objective L = Lrec + α · Lnul we adopted a schedule
for the hyperparameter α, following an exponential curve
of the epoch κ. The schedule is defined as: α(κ) =

min(|B|, 2β(κ)), where β(κ) = (K−κ)β0+κβ1

K linearly in-
terpolates between β0 and β1 across the total number of
epochs K with (β0, β1) set to (−2, log2|B|). For ResIma-
geNet we set (β0, β1) to (−5, 5.3) to allow for better recon-
struction earlier in the training process.

H. Additional SEER Experiments
In this section we provide additional SEER experiments, not
included in the main body due to space constraints.

H.1. Extended Single-Client Experiments

In Table 2, we present the extended version of our CIFAR10
and CIFAR100 single-client experiments, first presented
in Sec. 4. We observe similar trends as in the original
experiments. For example, we observe that CIFAR10 and
CIFAR100 performances are similar up to B = 256 and
that there isn’t major difference in performance between the
most bright and most dark image properties.

H.2. Extended Multi-Client Experiments

In this section, we present and discuss the results of our
extended secure aggregation experiments. The results are
shown in Table 3 for C = 4 and C = 8 clients for the
Bright and Dark properties, with batch sizes such that the
total number of datapoints is the same as in Table 2.

11

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Table 2. Single-client reconstruction on the Bright and Dark properties from batches of different sizes B. We report the percentage of
well-reconstructed images (Rec), the average PSNR and its standard deviation across all reconstructions (PSNR All), and across the top
37% images (PSNR Top).

CIFAR10, Dark CIFAR10, Bright CIFAR100, Dark CIFAR100, Bright

B Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑

64 82.0 32.0± 1.6 26.6± 6.6 89.4 32.1± 2.0 27.2± 5.3 97.0 32.8± 1.3 29.3± 4.1 95.6 32.2± 1.5 28.2± 4.3

128 74.5 29.5± 1.4 23.6± 6.2 94.2 31.9± 1.7 28.2± 4.3 95.9 30.5± 1.3 26.8± 3.8 94.7 30.0± 1.3 26.5± 3.7

256 67.6 26.6± 1.7 21.6± 4.8 81.3 29.0± 2.1 24.4± 4.9 83.3 25.7± 1.3 22.2± 3.4 82.2 25.4± 1.1 22.1± 3.4

512 82.3 26.8± 1.3 22.8± 4.0 87.8 26.6± 1.8 23.2± 3.5 62.8 24.3± 1.5 20.2± 4.0 38.4 21.6± 1.4 17.4± 3.9

We observe similar trends to those observed in our main
experiments shown in Sec. 4. In particular, as before, our
attack consistently obtains image reconstructions with high
average PSNR > 25 on the top 37% of images, i.e., it recov-
ers all images, that can be recovered due to the probabilistic
nature of our property P in this setting, almost perfectly.
Compared to Table 2, the attack probability of reconstruc-
tion degrades with C, confirming our intuition (see App. B)
that secure aggregation provides additional protection in the
presence of BN, compared to simply using large batches.
Despite this, we observe that the obtained success probabil-
ity is still substantially higher than 37%. We suspect this
is due to the model learning a restricted version of our lo-
cal property reconstruction for each individual client. We
provide further comparison of our secure aggregation and
single-batch variants of SEER in App. H.3.

Even more surprisingly, we notice that both reconstruction
quality and the percentage of batches reconstructed rise
with the number of aggregated points. Experimentally, for
smaller batch sizes we observe that this is caused by sam-
pling too many images above the threshold τ , defining P ,
and thus failing to disaggregate as often. Therefore, we
believe that the observed improvements for large number of
aggregated points is caused by better estimation of τ on the
additional samples contained in larger batches.

H.3. Comparison between Properties P based on
Global and Local Ditributions

In this section, we compare our two SEER variants, based
on local and global properties P respectively. We mount
both variants of SEER on gradients coming from a single
client with batch size B = 128 on CIFAR10. We note that
both methods are well defined in this setting and either one
can successfully reconstruct data from the client batches,
however the global one is probabilistic in nature.

The results are depicted in Table 4. While both methods
successfully reconstruct the majority of client batches, we
clearly see the benefits of using the local property P . In
particular, the results in Table 4 suggest that the local distri-
bution approach reconstructs up to 1.75 times more images,
while also producing higher PSNR values not only on the

full set of reconstructed batches but also on the top 37%
of them. This motivates the need of our single-client at-
tack, that demonstrates that secure aggregation provides
additional protection to individual clients.

H.4. Additional Property P

This section, demonstrates that we are not restricted to
brightness properties only. We experiment with a prop-
erty that is invariant to the mean of a datapoint’s tensor
representation. The property is computed through a linear
combination with coefficients (2,−1,−1) along the RGB
color-channel dimension and summing the other dimensions.
The higher the property response computed on an image, the
redder the image appears to human perception. Experiments
are conducted in a single client setting with varying batch
sizes: B ∈ {64, 128, 256, 512} and reconstruction quality
is evaluated using the PSNR metric, as outlined in Table 5.
Comparative analysis of the experimental results against
other properties - bright and dark - reveals that the "redness"
property performs as well as the alternative properties. This
suggests that more sophisticated properties, such as arbi-
trary linear combinations on the entire tensor representation
of an image may yield satisfactory outcomes. This would
potentially enable an attacker to query and target specific
types of images for stealing by maximizing their response
to attacker-defined kernels.

H.5. Robustness to B

In this section, we demonstrate that attack parameters θf
generated by SEER for a particular client batch size B can
work to a large extend for batch sizes close to the original
one, thus relaxing the requirement that the exact client batch
size B is known during the crafting of the malicious model
f . In particular, in Table 6 we show the effect of applying
our single-client attack trained on B = 128 on CIFAR10
using the Bright image property for clients with varying
batch sizes Btest. We observe that while, as expected, SEER
performs best when Btest = B, both the success rate and the
quality of reconstruction on clients with batch sizes even 2×
larger than the trained one remain very good. We note that
Table 6 suggests that underestimating the client batch size

12

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Table 3. Multi-client reconstructions on the Bright and Dark properties using different number of clients C on CIFAR10, for different
total numbers of aggregated points. We report the percentage of correctly reconstructed images (Rec) and the average PSNR and its
standard deviation across all reconstructions (PSNR All), and across the top 37% images (PSNR Top).

C = 4, Dark C = 4, Bright C = 8, Dark C = 8, Bright

#Pts Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑

64 50.2 27.9± 3.0 20.2± 6.8 41.4 27.2± 3.7 19.3± 6.8 43.0 26.5± 3.7 19.0± 6.7 41.3 27.2± 3.4 19.5± 6.5

128 51.3 28.4± 3.0 20.7± 6.7 44.2 26.5± 3.1 19.4± 6.2 43.4 27.2± 3.8 19.1± 7.2 40.6 26.6± 3.7 19.2± 6.5

256 50.9 29.8± 2.4 21.2± 7.4 51.9 27.3± 2.6 20.3± 6.2 51.7 27.3± 2.9 20.5± 6.0 41.9 25.5± 3.2 18.6± 6.1

512 61.3 29.9± 2.6 21.8± 7.2 52.9 25.7± 2.2 20.0± 5.2 56.3 29.0± 2.8 21.4± 6.8 51.7 26.2± 3.2 20.2± 5.5

Table 4. Single-client reconstruction on the Bright and Dark properties from batches of size B = 128 on CIFAR10 using our Single-client
variant (Local) and our Secure Aggregation variant with C = 1 (Global). We report the percentage of well-reconstructed images (Rec),
the average PSNR and its standard deviation across all reconstructions (PSNR All), and across the top 37% images (PSNR Top).

CIFAR10, Bright CIFAR10, Dark

P Rec (%) PSNR Top ↑ PSNR All ↑ Rec (%) PSNR Top ↑ PSNR All ↑

Global 54.4 27.0± 1.8 20.6± 5.8 61.9 27.7± 2.2 21.1± 6.1

Local 94.2 31.9± 1.7 28.2± 4.3 74.5 29.5± 1.4 23.6± 6.2

Btest during the training of f is better than overestimating
it, as the reconstruction performance on Btest = 256 is
significantly better than onBtest = 64. This is mostly caused
by d filtering out all images in client batches smaller than
the batches used at train-time, resulting in the removal of all
the client data.

13

Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning

Table 5. Single-client reconstruction of red property samples on CIFAR10 on networks trained with different batch sizes and tested on the
corresponding batch size. We report the percentage of well-reconstructed images (Rec), the average PSNR and its standard deviation on
all reconstructions (PSNR All), and across the top 37% images (PSNR Top).

B Rec (%) PSNR Top ↑ PSNR All ↑

64 87.3 30.4± 1.1 26.5± 5.2

128 93.5 31.1± 1.2 27.8± 4.1

256 94.7 31.3± 1.0 28.0± 4.0

512 94.4 30.0± 1.2 26.6± 3.8

Table 6. Single-client reconstruction on the bright property on CIFAR10 on a network trained with batch size B = 128 and tested for
various client batch sizes Btest. We report the percentage of well-reconstructed images (Rec), the average PSNR and its standard deviation
on all reconstructions (PSNR All), and across the top 37% images (PSNR Top).

Btest Rec (%) PSNR Top ↑ PSNR All ↑

64 42.0 21.5± 1.8 18.5± 2.9

96 87.4 30.6± 1.3 26.3± 4.9

128 94.2 31.9± 1.7 28.2± 4.3

192 86.3 30.8± 2.4 25.8± 5.1

256 67.5 28.0± 2.8 22.4± 5.1

14

