
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACTION CHUNKING PROXIMAL POLICY OPTIMIZA-
TION FOR UNIVERSAL DEXTEROUS GRASPING

Anonymous authors
Paper under double-blind review

ABSTRACT

Universal dexterous grasping across diverse objects is a crucial step towards
human-like manipulation. In order to handle the high degrees of freedom (DoF) of
dexterous hands, state-of-the-art universal dexterous grasping methods adopt on-
line reinforcement learning (RL) algorithms such as Proximal Policy Optimization
(PPO) to learn action policies. Although PPO is a common choice, its vanilla ver-
sion often leads to insufficient exploration and slow policy improvement, requir-
ing additional training augmentation to achieve high performance. While action
chunking is a promising strategy to improve exploration by temporally coherent
actions, prior RL algorithms that integrate action chunking are unsuitable for dex-
terous hands due to their high-DoF Q-functions. To address this, we reformulate
the PPO objective over action chunks and use a standard state-value function as the
critic, naming Action Chunking Proximal Policy Optimization (ACPPO). ACPPO
retains the simplicity of PPO while encouraging temporally coherent exploration
and avoiding the curse of dimensionality. Validating on the DexGraspNet dataset,
we observe that ACPPO outperforms all prior PPO-based methods by a success
rate of 95.4% with 2.3× faster training without any auxiliary learning mecha-
nisms.

1 INTRODUCTION

Dexterous hands (Kappassov et al., 2015; Iberall, 1997; Pons et al., 1999; Sampath et al., 2023)
are robotic grippers that emulate the versatility of the human hand. While achieving human-level
dexterity would unlock a whole new field of applications, dexterous grasping (Kumar et al., 2016;
Ciocarlie et al., 2007; Li et al., 2016) still remains a challenge due to the high degrees of freedom
(DoF) and diversity of the target objects.

Recent works (Wan et al., 2023; Zhang et al., 2024a; Huang et al., 2025; Wang et al., 2025) uti-
lize reinforcement learning (RL) (Sutton et al., 1998), especially Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to learn universal dexterous grasping across diverse objects, vary-
ing in size and geometry (Xu et al., 2023). However, while PPO itself has proven to be excellent in
robotic environments with small DoF (Raffin, 2020; Raffin et al., 2021; Saeed et al., 2021; Han et al.,
2023), the algorithm alone struggles in the high-DoF dexterous grasping environment. Therefore,
recent works augment PPO with additional mechanisms such as curriculum learning (Wan et al.,
2023), residual learning and mixture of experts (Huang et al., 2025), transformers (Wang et al.,
2025), or motion objectives (Zhang et al., 2024a).

One promising direction for universal dexterous grasping is action chunking reinforcement learning
(ACRL), where the policy outputs a short sequence of actions at each decision point. By committing
multi-step commands, action chunking encourages temporally coherent exploration, exploring a
more diverse set of states. (Li et al., 2025b). This provides the critic with better knowledge of the
environment, which improves the performance of the learned policy.

Despite its potential, no prior ACRL method has been successfully applied to high-DoF dexterous
grasping since existing designs are fundamentally incompatible with the scale of the problem. Prior
action chunking methods learn a chunked action-value function Q(st, at:t+h−1) (Li et al., 2025a;b;
Seo & Abbeel, 2024), where the action space dimension h|A| becomes impractical for dexterous
hands with 20+ DoF (Ding et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Environment

h h+1 h+2 h+3 h+4 h+5 h+6 h+7Time

Action

State

Loss

π(|) π(|)

Temporally Coherent Exploration

with action chunking

Low-bias Policy Update

with chunked importance sampling

Figure 1: The overview of our method, Action Chunking Proximal Policy Optimization (ACPPO).
Using a chunked actor, ACPPO improves exploration with temporally coherent actions. Further-
more, the loss term with chunked importance sampling reduces bias when incorporating General-
ized Advantage Estimates, making each policy update more stable and efficient.

Here, we propose Action Chunking Proximal Policy Optimization (ACPPO), the first method to
apply action chunking in the domain of dexterous grasping. As highlighted in Fig. 1, our key insight
is to integrate the action chunking mechanism directly into the actor and the on-policy surrogate
objective, while completely avoiding intractable chunked Q-functions. Instead, ACPPO uses a sim-
ple, chunk-size independent state-value critic V (s), allowing temporally coherent exploration and a
lower surrogate bias while preserving the simplicity of PPO.

On the DexGraspNet dataset (Wang et al., 2023), ACPPO establishes a new state-of-the-art success
rate of 95.4%, outperforming prior PPO-based methods. Furthermore, ACPPO trains 2.3× faster,
as it does not require additional training mechanisms.

Our main contribution can be summarized as follows:

• We propose Action Chunking PPO, the first state-value function based action chunking rein-
forcement learning algorithm designed for high-dimensional continuous control tasks like dex-
terous grasping.

• We reformulate PPO over action chunks and derive a clipped surrogate with chunked importance
ratio, encouraging temporally coherent exploration and reducing the bias from Generalized Ad-
vantage Estimates.

• We demonstrate that ACPPO outperforms all PPO-based methods both in success rate and train-
ing efficiency in the DexGraspNet dataset, establishing a strong baseline for universal dexterous
grasping.

2 RELATED WORK

2.1 DEXTEROUS GRASPING

Dexterous Grasping (Okamura et al., 2000; Mukherjee, 1992) is a formidable challenge in robotics,
due to its high DoF and complex geometries of the target objects. While the initial challenge is
to generate an practical grasping pose for each object, recent works propose various methods such
as affordance (Yang et al., 2024; Mandikal & Grauman, 2021; Zurbrügg et al., 2025), grasping
datasets (Zhong et al., 2025; Chen et al., 2025; Wang et al., 2023), or diffusion models (Weng et al.,
2024; Zhang et al., 2024b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Recently, reinforcement learning has been adopted in the domain of dexterous grasping since it
can learn high Degree-of-Freedom (DoF) action policies without requiring explicit access to the
environmental dynamics. One major direction of exploiting reinforcement learning is focused on
imitation learning (Qin et al., 2022; Arunachalam et al., 2022; An et al., 2025), where policies are
trained to mimic expert demonstrations. These methods focus on reducing distribution shift, and
collecting demonstrations efficiently, for example through human videos.

Another line of work focuses on on-policy learning, where the policy is updated with its own roll-
outs. Our universal dexterous manipulation setup is mainly part of this group, since it is costly to col-
lect demonstrations for thousands of different objects. Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) is widely used in this setting, since it offers stable training with clipped surro-
gate objectives. While PPO-based methods have shown promising results in universal dexterous
grasping, they typically rely on additional mechanisms such as curriculum learning (Wan et al.,
2023), residual learning (Huang et al., 2025), or transformer backbones (Wang et al., 2025). This
is primarily due to the high-dimensional action space, which leads to challenging exploration and
optimization of the policy.

2.2 ACTION CHUNKING

Action chunking is a method that predicts and executes a sequence of actions rather than single-
step commands (Zhao et al., 2023). In imitation learning, action chunking has been known to im-
prove the robustness of learned policies and handle non-Markovian behaviors of human demonstra-
tions (George & Farimani, 2023; Bharadhwaj et al., 2024). Recent work integrated action chunking
into reinforcement learning, reporting that action chunking encourages temporally coherent explo-
ration and leads to efficient critic learning. (Li et al., 2025a;b; Seo & Abbeel, 2024).

However, these designs are impractical for dexterous grasping. Prior action chunking RL methods
focus on learning the chunked action value function Q(st, at:t+h−1) with chunk length h. The
action input dimension Rh|A| is tractable for low-DoF robots such as manipulators (DoF ≤ 7) but
becomes unmanageable for dexterous hands with 20+ DoF (Ding et al., 2024). In addition, several
action chunking RL methods (Li et al., 2025b; Seo & Abbeel, 2024) rely on an offline dataset,
which is intractable for universal grasping. Universal grasping inevitably requires high-dimensional
visual features of the target objects, making it extremely costly to cover the state space as offline
datasets. Architecturally, the transformer backbones used in some prior work (Li et al., 2025a) add
expressibility to the chunked action value function, but also become computationally costly as the
action dimension increases in dexterous hand settings.

To address these limitations, we propose Action Chunking Proximal Policy Optimization (ACPPO),
a fully online action-chunked RL method that operates by learning the state-value function V (s). By
avoiding the high-dimensional chunked Q function, we mitigate the effect of Rh|A| while retaining
the benefits of action chunking.

3 PRELIMINARIES

3.1 PROBLEM STATEMENT

To address the universal dexterous grasping task, we consider a Markov Decision Process
(MDP) (Sutton et al., 1998). It is defined by the tuple (S,A,p, r, γ), where S is the state
space, A is the action space, p(st+1|st, at) : S × A → S is the transition probability function,
r(s, a) : S × A → R is the reward function, and γ ∈ [0, 1) is the discount factor. The behavior of
the agent is determined by a stochastic policy π(a|s).
For the hand model, we use Shadow Hand (Shadow Robot, 2025). The states are concatenations of
robot proprioception ∈ R167, actions of the last step ∈ R24, pose of the object and the goal ∈ R16,
and PointNet features (Qi et al., 2017) of the target object ∈ R64. The exact input state is described
in Table 1. The action specifies the 24 DoF input to the Shadow Hand, containing 6 for the wrist, 5
for the thumb, 4 for the little finger, and 3 for each of the remaining fingers. Following Huang et al.
(2025), the reward function is designed as:

R = Rdist +Ralign + fcontact (Rgoal +Rlift +Rbonus). (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Input Type Elements (Dimension)

Proprioception (167) Wrist pose (6); Finger joints (angle, angular velocity, force) (22×3);
Fingertip position (5×3), quaternion rotation (5×4), linear velocity
(5×3), angular velocity (5×3), force (5×3) and torque (5×3).

Previous Action (24) Wrist force (3) and torque (3); Finger-joint angles (18).

Object State (16) Object pose (7), linear velocity (3), and angular velocity (3);
Object-goal distance (3).

Object Feature (64) PointNet features (64).

Table 1: Input state for the policy network. We consider a total 273D state input as a concatenation
of robot proprioception, previous action, object and goal states, and object features.

Here, Rdist penalizes the object-hand distance, while Ralign encourages a wide finger spread for the
stability of grasping. The remaining rewards are gated by a binary flag fcontact, which activates in
contact between the hand and the object. In contact, Rgoal penalizes the object-goal distance, Rlift
encourages the hand to lift up the object, and Rbonus is a bonus term when the object is placed near
the goal. Further descriptions on the reward function can be found in Appendix B.1.

3.2 PROXIMAL POLICY OPTIMIZATION

Given a batch of trajectories collected by the behavior policy πθ0 (typically the policy from the last
update), PPO (Schulman et al., 2017) performs multiple epochs of first-order updates on a clipped
surrogate objective that controls the deviation of πθ from πθ0 .

Define the clipping minimum operator Cϵ and the per-step importance sampling ratio ρt(θ) as:

Cϵ(ρ,A) := min
(
ρA, clip1+ϵ

1−ϵ(ρ)A
)
, ρt(θ) :=

πθ(at|st)
πθ0(at|st)

, (2)

where clip1+ϵ
1−ϵ(ρ) := max(1− ϵ,min(ρ, 1 + ϵ)).

Let Ât denote an estimate of the advantage Aπθ0 (st, at) via Generalized Advantage Estimates
(GAE) (Schulman et al., 2015b). PPO maximizes the clipped surrogate

LPPO(θ) := Eπθ0

[
Cϵ
(
ρt(θ), Ât

)]
. (3)

This keeps ρt inside the trust region [1− ϵ, 1+ ϵ], following the behavior of TRPO (Schulman et al.,
2015a) while keeping a simple first-order update. In practice, PPO is implemented with multiple
optimization epochs per batch and often includes entropy regularization. The full details of PPO are
provided in A.1.

4 METHOD

While effective across a wide range of domains (Raffin, 2020; Xiao, 2023; Zheng et al., 2023),
PPO operates on step-wise action advantages, causing insufficient exploration in high-DoF tasks
such as dexterous manipulation. This motivates our method, Action Chunking PPO. Our primary
challenge is to reformulate the objective over action chunks while keeping the relative objective
function unbiased, and maintaining a stable importance sampling ratio.

4.1 ACTION CHUNKING PPO

For merging action chunking into the domain of reinforcement learning, we define a chunked actor
π(at:t+h−1|st) that predicts the next h actions from the current state. Also, we define the chunked
advantage as follows, which is intuitively the sum of advantages inside the chunk:

Aπθ0 (st, st+h−1) :=

h−1∑
k=0

γkrt+k + γhV πθ0 (st+h)− V πθ0 (st). (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Action-Chunked PPO (ACPPO; boundary-GAE variant)
Inputs: horizon h, clip ϵ, LR α, policy πθ , value Vϕ

while not converged do
for rollout steps t = 0, . . . , T − 1 do

if t mod h = 0 then
Sample action-chunk at:t+h−1 ∼ πθ(· | st)
Cache log πθ0(at:t+h−1 | st) and boundary states (µ, log σ)

Execute at, store (st, at, rt, dt, Vϕ(st))

Compute returns R̂t and step-wise advantages ÂGAE(λ)
t

for epochs e = 1, . . . , E do
Sample mini-batches of timesteps B
Restrict policy terms to chunk boundaries Bpolicy = B ∩ ∂chunk
Compute joint ratio ρcht,h(θ) = exp

(
log πθ(at:t+h−1 | st)− log πθ0(at:t+h−1 | st)

)
Policy: Maximize Et∈Bpolicy

[
Cϵ
(
ρcht,h(θ), Â

GAE(λ)
t

)]
Value: Minimize Et∈B

[(
Vϕ(st)− R̂t

)2]
Adapt α using chunk KL DKL

[
πθ0(· | st) ∥πθ(· | st)

]
Update (θ, ϕ) with LR α

Update behavior policy: πθ0 ← πθ

Since the actor outputs a length h sequence of actions, the importance sampling ratio now becomes:

ρcht,h(θ) :=
πθ(at:t+h−1|st)
πθ0(at:t+h−1|st)

, (5)

Using these formulas, the relative objective function for the policy gradient can be written as:

J (θ)− J (θ0) = Eτ∼(p0,πθ,p)
a′
t∼πθ0

[
T−1∑
t=0

γt πθ(a
′
t|st)

πθ0(a
′
t|st)

Aπθ0 (st, a
′
t)

]
(6)

= Eτ∼(p0,πθ,p)
a′
t∼πθ0

[
(T−1)/h∑

l=0

γlh πθ(at:t+h−1|st)
πθ0(at:t+h−1|st)

A
πθ0

h (slh, sl(h+1)−1)

]
. (7)

Eq. 6 is reduced into the relative objective function of standard PPO when h = 1. Following the
standard PPO methodology, we construct a surrogate objective function by sampling on πθ0 , then
apply clipping for stable policy updates:

Lh
ACPPO(θ) := El

[
Cϵ
(
ρchlh,h(θ), A

πθ0

h (slh, sl(h+1)−1

)]
. (8)

For further reducing variance, we replace the chunked advantage with a Generalized Advantage
Estimate (GAE), defined with temporal-difference residuals δt:

δ
(ϕ)
t := rt + γVϕ(st+1)− Vϕ(st), (9)

Â
GAE(λ)
t :=

∞∑
l=0

(γλ)l δt+l. (10)

This yields our final objective function of ACPPO:

Lh
ACPPO(θ) := Et

[
Cϵ
(
ρchunkt,h (θ), Â

GAE(λ)
t

)]
. (11)

While the application of GAE introduces additional bias into the surrogate loss term, this bias is
smaller compared to the case of PPO. With a chunk size of h, the GAE can be decomposed as:

Â
GAE(λ)
t =

h−1∑
j=0

(γλ)j δt+j︸ ︷︷ ︸
inside chunk

+

∞∑
j=h

(γλ)j δt+j︸ ︷︷ ︸
tail bias

. (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Train Test

(Seen Category)

Test

(Unseen Category)

PPO

ACPPO

(Ours)

ResDex

Figure 2: Qualitative grasping pose comparisons between PPO (Schulman et al., 2017) (top), Res-
Dex (Huang et al., 2025) (middle), and ACPPO (bottom) across train, test-seen category, test-unseen
category objects. ACPPO consistently outputs more stable grasp poses compared to prior methods.

In PPO, the tail bias term starts at j = 1, while for ACPPO, the tail bias term starts at j = h(> 1).
This suppresses the bias for ACPPO by a factor of (γλ)h−1 relative to PPO, yielding a more accurate
advantage estimate.

The ACPPO training loop is summarized in Algorithm 1, and the complete derivation of ACPPO is
clarified in A.2.

4.2 BENEFITS OF ACTION CHUNKING IN DEXTEROUS MANIPULATION

By training a policy to output action sequences, ACPPO provides several key advantages that are
particularly impactful for high-DoF dexterous manipulation tasks. The core benefit, which has also
been observed by previous action chunking studies (Li et al., 2025b; Zhao et al., 2023; George &
Farimani, 2023; Bharadhwaj et al., 2024), is temporally coherent exploration.

Standard on-policy training often begins with high-frequency, jittery motions. Because these small
random actions cancel each other out, this form of exploration effectively traps the agent within
a small, local domain of the state space. Action chunking encourages the execution of smoother,
multi-step movements, allowing the policy to explore a much larger portion of the vast state space
of the high DoF dexterous hand. While this broader exploration may result in a slower discovery
of the global optimum direction, it allows the policy to gain a more comprehensive understanding
of the environment’s dynamics. This foundation leads the policy to build a better grasp pose in the
long term, yielding higher final performance.

Beyond exploration, the chunked actor also benefits in inference. First, it improves inference speed
by reducing the frequency of policy forward passes by h. Furthermore, the action chunks act like a
low-pass filter on the commanded motion: when only part of the dexterous hand (e.g. one or two
fingers) makes early contact with the objects, single-step policies often overreact with large whole-
hand corrections. However, the chunked policy, on the other hand, continues the planned action
sequence, avoiding oscillatory movement during rollout.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Success rates of state-based policies on the DexGraspNet dataset. Without any additional
training mechanisms, ACPPO achieves state-of-the-art performance. ACPPO also excels in training
time, training 2.3× faster compared to the prior fastest method, ResDex (Huang et al., 2025).

Method RL method Train (%)
Test (%) Training

TimeSeen Unseen

Xu et al. (2023) PPO + Curriculum 79.4 74.3 70.8 -1

Wan et al. (2023) PPO + Curriculum 87.9 84.3 83.1 48h2

Wang et al. (2025) PPO + Transformer 91.2 89.2 88.3 70h3

Huang et al. (2025) PPO + Residual 94.6 94.4 95.4 16h4

ACPPO (Ours) ACPPO 95.4±0.1 94.8±0.3 95.6±0.4 7h4

1Training details not released.
2Reported value, trained on 4× NVIDIA RTX 3090 Ti GPUs.
3Reported value, trained on 8× NVIDIA A100 GPUs.
4Trained on a single NVIDIA RTX A6000 GPU.

5 EXPERIMENTS

5.1 SET-UPS

Dataset. We evaluate our method on the DexGraspNet dataset (Wang et al., 2023), which consists
of 5519 object instances from 133 object categories. Following UniDexGrasp++ (Wan et al., 2023),
we use 3200 object instances for the training set, and construct two distinct test sets: (i) Seen-
category objects, containing 141 unseen instances from categories included in the training set; (ii)
Unseen-category objects, containing 100 objects from novel categories.
Implementation Details. For training the policy with ACPPO, we construct 6,400 parallel simula-
tion environments on IsaacGym (Makoviychuk et al., 2021). We train for 30,000 iterations on three
different seeds, using a single NVIDIA RTX A6000 GPU. For testing, we run 100 rollouts for each
object. A rollout is considered successful if the object is placed at the desired goal position z > 0
after all action sequences have been executed. For fairness, we keep the total environment steps
and network sizes of the RL algorithm matched with the prior methods, Xu et al. (2023), Wan et al.
(2023) and Huang et al. (2025). The hyperparameters for our training can be found in Appendix B.2.

5.2 RESULTS

We compare our method with the baseline methods using the policy trained with chunk size h = 2.
The ablation study on the size of action chunks is presented in Section 6.3. The baselines include
PPO combined with curriculum learning (Xu et al., 2023; Wan et al., 2023), residual learning and
mixture of experts (Huang et al., 2025), and transformer backbones (Wang et al., 2025), all designed
specifically for universal dexterous grasping in the DexGraspNet dataset.

Table 2 demonstrates that our method outperforms all PPO-based algorithms in universal dexter-
ous grasping. Although the success rate improvement compared to the previous state-of-the-art
model Huang et al. (2025) can be viewed as marginal, it is notable that we achieve this result with-
out any auxiliary training methods. This simple design also leads to superior training efficiency.
The fastest prior method Huang et al. (2025) requires 40,000 iterations with 11,000 parallel environ-
ments to train their hyper-policy, taking 16 hours on a single NVIDIA RTX A6000 GPU (reported
as 11 hours on a single NVIDIA RTX 4090 GPU). In contrast, ACPPO reaches higher performance
within only 30,000 iterations on 6,400 environments, completing training in 7 hours on the same
device.

6 ABLATION STUDY

For ablation study, we construct 3,200 parallel environments and train for 30,000 iterations, due to
the additional memory usage of double Q-policy networks (Van Hasselt et al., 2016) in Li et al.
(2025b).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Experiment results of ACFQL, PPO, and ACPPO on the DexGraspNet dataset. The poli-
cies are trained on 3200 parallel environments for 30000 iterations, PPO and ACPPO trained on 3
different seeds.

Method Train (%) Test (%) Training
Time (s)Seen Unseen

ACFQL (Li et al., 2025b) 77.1 76.7 79.0 15,125
PPO (Schulman et al., 2017) 90.5±1.1 90.1±1.0 92.3±0.5 17,803
ACPPO (Ours) 93.4±1.3 93.1±1.4 94.3±0.5 15,441

6.1 COMPARISON TO PRIOR REINFORCEMENT LEARNING ALGORITHMS

We compare the performance of ACPPO against two RL algorithms: Action Chunking Flow Q-
Learning (ACFQL) (Li et al., 2025b) and PPO (Schulman et al., 2017). PPO is the state-of-the-art
on-policy method, and ACFQL is a prior action chunking RL algorithm that relies on Q-functions.
For ACFQL, we used a chunk size of h = 5, which showed the best performance. As shown in Table
3, ACPPO consistently outperforms both ACFQL and PPO across all metrics: training success rate,
and test success rates on both seen and unseen objects.

Comparing the learning dynamics of PPO and ACPPO, ACPPO improves more slowly in the early
stage, but it soon overtakes PPO and converges to a higher success rate. The initial lag is due to
the temporally coherent exploration induced by action chunks, which spreads exploration around
over a broader region of the state-space. As the critic improves, the actor receives more informative
advantage estimates and generates a more stable grasp action sequence. In terms of efficiency,
ACPPO also benefits from fewer policy forward passes (one every h steps), which contributes to
a 12.7% speedup in the training process. Qualitatively, ACPPO rollouts exhibit more stable grasp
poses as displayed in Fig. 2.

6.2 PPO WITH REDUCED DECISION FREQUENCY

To isolate the contribution of our action chunking mechanism, we evaluate a naive action repetition
variant of PPO. At each boundary time t, the policy πθ(· | st) samples a single action at. The action
is then duplicated for the next h− 1 environment steps,

at+k ← at for k = 1, . . . , h− 1,

reducing the decision frequency by a factor of h. The reward for the chunk boundary is aggregated
as:

R
(h)
t = rt + γrt+1 + · · · γh−1rt+h−1, (13)

and is fed into GAE with the discount factors exponentiated by a factor of h.

However, this variant diverges early in training, as action duplication amplifies exploration in un-
structured ways, driving the policy into irrelevant regions rather than those useful for dexterous
grasping.

6.3 EFFECT OF ACTION CHUNK SIZE

We ablate the effect of action chunk sizes, h = 1, 2, 3, 4, 8. Since the backward pass of the learning
algorithm loop occurs every 8 iterations, it is impractical to use a chunk size that is greater than 8.
Furthermore, when using h = 3, the last action of the third chunk is discarded.

Table 4 summarizes the results with the best performance at h = 2. Increasing the chunk size yields
a success rate drop of near 2 3 percentage points across splits, demonstrating the trade-off between
temporal coherence and decision frequency. For h = 8, learning collapses: a single decision per
loop is too coarse, making it impossible to collect meaningful exploration.

Capacity also matters. In our implementation, the output dimension of the chunked actor scales
linearly with h, while the backbone remains a 4-layer MLP with widths [1024, 1024, 512, 512] for
a fair comparison. Larger h increases the number of parameters of the policy, and optimization
becomes much more challenging without an increase in the layer dimensions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on the chunk size h.

Method Train (%) Test (%) Training
Time (s)Seen Unseen

PPO (h=1) 90.5 90.1 92.3 17803
ACPPO (h=2) 93.4 93.1 94.3 15,441
ACPPO (h=3) 91.7 91.4 91.0 15,182
ACPPO (h=4) 91.4 91.1 91.1 14,997
ACPPO (h=8) 0 0 0 14,818

6.4 APPLICATION TO OTHER ENVIRONMENTS

One important question is whether ACPPO is a direct improvement over PPO, analogous to the
relationship between TRPO and PPO. Unfortunately, this is not the case. ACPPO introduces a
fundamental trade-off between decision frequency and temporal coherence, making its effectiveness
highly dependent on the characteristics of the environment.

In universal dexterous grasping, the gain from temporal coherence is advantageous, while high-
frequency control is less critical. Before contact with the object, small deviations rarely cause im-
mediate failure, making the task robust to minor errors. Once a stable grasp is achieved, the primary
objective shifts to simply maintaining the current pose, which further reduces the need for rapid
corrective actions. Overall, the temporal coherence of ACPPO helps improve exploration, without
sacrificing performance despite the reduced action frequency.

However, for more dynamic and unstable tasks such as robot balancing or locomotion, common
in benchmarks such as Raffin (2020), high-frequency feedback control is crucial. In such systems,
even small perturbations can lead to critical failures before ACPPO reaches the next decision step
and make recovery impossible when the actor reaches its next decision step. Therefore, ACPPO
should not be viewed as a universal replacement for PPO, but rather as a specialized algorithm
for domains like universal dexterous grasping, where the benefits of temporally coherent actions
outweigh the cost of a lower decision frequency.

7 CONCLUSION

We propose an on-policy algorithm that predicts short action sequences using a simple state-value
critic and chunked importance sampling, named Action Chunking Proximal Policy Optimization
(ACPPO). By moving to the chunked actor and reformulating the PPO surrogate over action chunks,
ACPPO delivers temporally coherent exploration, exposing the critic to a broader, more informative
subset of the state space, leading to an improved policy. On DexGraspNet, ACPPO outperforms all
prior PPO-based methods across train, seen/unseen splits, and training time.

While our study focuses on state-based policies, distillation into vision-based policies via DAg-
ger (Ross et al., 2011) is feasible and could extend our research to sim-to-real transfer. Furthermore,
one key limitation of our work is that action chunking can reduce reactivity to sudden perturba-
tions inside a chunk. While perturbations are not a major concern in simulated universal dexterous
grasping environments, this can emerge as a major problem when adapting to real, dynamic settings.
Future work could extend our approach to adaptive/learned chunk lengths, integrating curriculum or
residual controllers, and real-to-sim transfer with tactile sensing to address this issue.

USE OF LLMS

In this work, Large Language Models GPT 5 Thinking and Gemini 2.5 Pro assisted with polishing
writing and conducting literature review.

ETHICS STATEMENT

We affirm compliance with the ICLR Code of Ethics (https://iclr.cc/public/
CodeOfEthics). This work presents Action Chunking Proximal Policy Optimization, an on-

9

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/public/CodeOfEthics

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

line action chunking reinforcement learning algorithm designed for universal dexterous grasping.
All experiments utilized publicly available datasets, without private data.

REPRODUCIBILITY STATEMENT

We have prioritized reproducibility by detailing the algorithm of ACPPO, including its mathemat-
ical foundations, implementation details, and hyperparameters in the main text and appendix. All
datasets are publicly accessible and properly cited. Evaluation protocols and metrics are fully de-
scribed, and the source code is provided in the supplementary materials.

REFERENCES

Shan An, Ziyu Meng, Chao Tang, Yuning Zhou, Tengyu Liu, Fangqiang Ding, Shufang Zhang, Yao
Mu, Ran Song, Wei Zhang, et al. Dexterous manipulation through imitation learning: A survey.
arXiv preprint arXiv:2504.03515, 2025.

Sridhar Pandian Arunachalam, Sneha Silwal, Ben Evans, and Lerrel Pinto. Dexterous imitation
made easy: A learning-based framework for efficient dexterous manipulation. arXiv preprint
arXiv:2203.13251, 2022.

Homanga Bharadhwaj, Jay Vakil, Mohit Sharma, Abhinav Gupta, Shubham Tulsiani, and Vikash
Kumar. Roboagent: Generalization and efficiency in robot manipulation via semantic augmenta-
tions and action chunking. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4788–4795. IEEE, 2024.

Jiayi Chen, Yubin Ke, Lin Peng, and He Wang. Dexonomy: Synthesizing all dexterous grasp types
in a grasp taxonomy. In 3rd RSS Workshop on Dexterous Manipulation: Learning and Control
with Diverse Data, 2025.

Matei Ciocarlie, Corey Goldfeder, and Peter Allen. Dexterous grasping via eigengrasps: A low-
dimensional approach to a high-complexity problem. In Robotics: Science and systems manipu-
lation workshop-sensing and adapting to the real world, 2007.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 4(5):11, 2015.

Runyu Ding, Yuzhe Qin, Jiyue Zhu, Chengzhe Jia, Shiqi Yang, Ruihan Yang, Xiaojuan Qi, and Xiao-
long Wang. Bunny-visionpro: Real-time bimanual dexterous teleoperation for imitation learning.
arXiv preprint arXiv:2407.03162, 2024.

Abraham George and Amir Barati Farimani. One act play: Single demonstration behavior cloning
with action chunking transformers. arXiv preprint arXiv:2309.10175, 2023.

Dong Han, Beni Mulyana, Vladimir Stankovic, and Samuel Cheng. A survey on deep reinforcement
learning algorithms for robotic manipulation. Sensors, 23(7):3762, 2023.

Ziye Huang, Haoqi Yuan, Yuhui Fu, and Zongqing Lu. Efficient residual learning with mixture-of-
experts for universal dexterous grasping. In The Thirteenth International Conference on Learning
Representations, 2025.

Thea Iberall. Human prehension and dexterous robot hands. The International Journal of Robotics
Research, 16(3):285–299, 1997.

Zhanat Kappassov, Juan-Antonio Corrales, and Véronique Perdereau. Tactile sensing in dexterous
robot hands. Robotics and Autonomous Systems, 74:195–220, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In The Third
International Conference on Learning Representations, 2015.

Vikash Kumar, Abhishek Gupta, Emanuel Todorov, and Sergey Levine. Learning dexterous manip-
ulation policies from experience and imitation. arXiv preprint arXiv:1611.05095, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ge Li, Dong Tian, Hongyi Zhou, Xinkai Jiang, Rudolf Lioutikov, and Gerhard Neumann. Top-erl:
Transformer-based off-policy episodic reinforcement learning. In 7th Robot Learning Workshop:
Towards Robots with Human-Level Abilities, 2025a.

Miao Li, Kaiyu Hang, Danica Kragic, and Aude Billard. Dexterous grasping under shape uncer-
tainty. Robotics and Autonomous Systems, 75:352–364, 2016.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. In The
Exploration in AI Today Workshop at ICML 2025, 2025b.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High
performance gpu-based physics simulation for robot learning, 2021.

Priyanka Mandikal and Kristen Grauman. Learning dexterous grasping with object-centric visual
affordances. In 2021 IEEE international conference on robotics and automation (ICRA), pp.
6169–6176. IEEE, 2021.

Sudipto Mukherjee. Dexterous grasp and manipulation. The Ohio State University, 1992.

Allison M Okamura, Niels Smaby, and Mark R Cutkosky. An overview of dexterous manipulation.
In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 1, pp. 255–262. IEEE,
2000.

Jose L Pons, R Ceres, and Friedrich Pfeiffer. Multifingered dextrous robotics hand design and
control: a review. Robotica, 17(6):661–674, 1999.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017.

Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
Wang. Dexmv: Imitation learning for dexterous manipulation from human videos. In European
Conference on Computer Vision, pp. 570–587. Springer, 2022.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Muhammed Saeed, Mohammed Nagdi, Benjamin Rosman, and Hiba HSM Ali. Deep reinforcement
learning for robotic hand manipulation. In 2020 International Conference on Computer, Control,
Electrical, and Electronics Engineering (ICCCEEE), pp. 1–5. IEEE, 2021.

Suhas Kadalagere Sampath, Ning Wang, Hao Wu, and Chenguang Yang. Review on human-like
robot manipulation using dexterous hands. Cogn. Comput. Syst., 5(1):14–29, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

11

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Younggyo Seo and Pieter Abbeel. Reinforcement learning with action sequence for data-efficient
robot learning. In CoRL 2024 Workshop on Whole-body Control and Bimanual Manipulation:
Applications in Humanoids and Beyond, 2024.

Shadow Robot. The shadow dexterous hand. https://www.shadowrobot.com/
dexterous-hand-series/, 2025. Accessed: 2025-09-20.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan, Yaodong Yang, Li Yi, and He Wang. Unidex-
grasp++: Improving dexterous grasping policy learning via geometry-aware curriculum and iter-
ative generalist-specialist learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3891–3902, 2023.

Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu, Puhao Li, Tengyu Liu, and He Wang. Dex-
graspnet: A large-scale robotic dexterous grasp dataset for general objects based on simulation.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11359–11366.
IEEE, 2023.

Wenbo Wang, Fangyun Wei, Lei Zhou, Xi Chen, Lin Luo, Xiaohan Yi, Yizhong Zhang, Yaobo
Liang, Chang Xu, Yan Lu, et al. Unigrasptransformer: Simplified policy distillation for scalable
dexterous robotic grasping. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 12199–12208, 2025.

Zehang Weng, Haofei Lu, Danica Kragic, and Jens Lundell. Dexdiffuser: Generating dexterous
grasps with diffusion models. IEEE Robotics and Automation Letters, 2024.

Xiaochen Xiao. Quantitative investment decision model based on ppo algorithm. Highlights Sci.
Eng. Technol, 34:16–24, 2023.

Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu, Zikang Shan, Hao Shen, Ruicheng Wang,
Haoran Geng, Yijia Weng, Jiayi Chen, et al. Unidexgrasp: Universal robotic dexterous grasp-
ing via learning diverse proposal generation and goal-conditioned policy. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4737–4746, 2023.

Fan Yang, Wenrui Chen, Kailun Yang, Haoran Lin, Dongsheng Luo, Conghui Tang, Zhiyong Li,
and Yaonan Wang. Learning granularity-aware affordances from human-object interaction for
tool-based functional dexterous grasping. IEEE transactions on neural networks and learning
systems, 2024.

Hui Zhang, Sammy Christen, Zicong Fan, Otmar Hilliges, and Jie Song. Graspxl: Generating
grasping motions for diverse objects at scale. In European Conference on Computer Vision, pp.
386–403. Springer, 2024a.

Zhengshen Zhang, Lei Zhou, Chenchen Liu, Zhiyang Liu, Chengran Yuan, Sheng Guo, Ruiteng
Zhao, Marcelo H Ang Jr, and Francis EH Tay. Dexgrasp-diffusion: Diffusion-based uni-
fied functional grasp synthesis method for multi-dexterous robotic hands. arXiv preprint
arXiv:2407.09899, 2024b.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. In ICML Workshop on New Frontiers in Learning, Control,
and Dynamical Systems, 2023.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
Qin Liu, Yuhao Zhou, et al. Secrets of rlhf in large language models part i: Ppo. arXiv preprint
arXiv:2307.04964, 2023.

12

https://www.shadowrobot.com/dexterous-hand-series/
https://www.shadowrobot.com/dexterous-hand-series/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yiming Zhong, Qi Jiang, Jingyi Yu, and Yuexin Ma. Dexgrasp anything: Towards universal robotic
dexterous grasping with physics awareness. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 22584–22594, 2025.

René Zurbrügg, Andrei Cramariuc, and Marco Hutter. Graspqp: Differentiable optimization of force
closure for diverse and robust dexterous grasping. arXiv preprint arXiv:2508.15002, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A MATHEMATICAL DERIVATIONS

A.1 DERIVATION OF PROXIMAL POLICY OPTIMIZATION

Define the importance ratio ρt(θ) and advantage as Aπ(st, at):

ρt(θ) :=
πθ(at|st)
πθ0(at|st)

, (14)

Aπ(st, at) := Qπ(st, at)− V π(st). (15)

The relative objective function J (θ)− J (θ0) for the policy gradient can be formulated as follows:

J (θ)− J (θ0) = Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γtrt + γV πθ0 (st+1)− V πθ0 (st)

]
(16)

= Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γt(Qπθ0 (st, at)− V πθ0 (st))

]
(17)

= Eτ∼(p0,πθ,p)
a′
t∼πθ0

[
T−1∑
t=0

γt πθ(a
′
t|st)

πθ0(a
′
t|st)

Aπθ0 (st, a
′
t)

]
. (18)

Since the expectation that depends on the current policy θ is hard to utilize, define the surrogate
objective function:

K(θ; θ0) = Eτ∼(p0,πθ0
,p)

[
T−1∑
t=0

γtρt(θ)A
πθ0 (st, a

′
t)

]
. (19)

This surrogate objective function is accurate up to the first order, i.e.:

∇θJ (θ)
∣∣∣
θ=θ0

= ∇θK(θ; θ0)
∣∣∣
θ=θ0

. (20)

PPO maximizes the surrogate objective function while keeping the current policy θ close to the
driving policy θ0 by clipping the importance ratio. The corresponding objective function can be
written as:

Lclip(θ) := Eπθ0

[
Cϵ
(
ρt(θ), A

πθ0
t

)]
. (21)

While using Aπθ0 directly in the PPO term has no bias, it causes variance as a tradeoff. Therefore,
we use a Generalized Advantage Estimate (GAE) ÂGAE(λ)

t with temporal-difference residuals δt:

δ
(ϕ)
t := rt + γVϕ(st+1)− Vϕ(st), (22)

Â
GAE(λ)
t :=

∞∑
l=0

(γλ)l δt+l. (23)

The GAE estimators are now biased, but have smaller variance compared to Aπθ0 . Using GAE, we
finalize the PPO objective function as:

LPPO(θ) := Eπθ0

[
Cϵ
(
ρt(θ), Â

GAE(λ)
t

)]
. (24)

For the implementation of a continuous action space, the policy is commonly modeled as a Gaussian
distribution. This allows the agent to sample stochastic actions from a continuous action space, and
also keeps πθ(at|st) for calculating the importance sampling ratio.

πθ(at|st) =
1√

(2π)|A||Σ|
exp

(
−1

2
(at − µθ(st))

TΣθ(st)
−1(at − µθ(st))

)
. (25)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 ACTION CHUNKING PPO

Define the chunked importance sampling ratio as:

ρcht,h(θ) :=
πθ(at:t+h−1|st)
πθ0(at:t+h−1|st)

. (26)

Starting from 17, we apply a h-step tower property:

Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γt(Qπθ0 (st, at)− V πθ0 (st))

]

= Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γtAπθ0 (st, at)

]

= Eτ(h)

[
h−1∑
t=0

γtAπθ0 (st, at) + Eπθ

[
T−1∑
t=h

γtAπθ0 (st, at)

∣∣∣∣∣τ (h)
]]

= Es0∼p0,st+1∼p(·|st,at)
a0:h−1∼πθ(·|s0)
a′
0:h−1∼πθ0

(·|s0)

[
πθ(a

′
0:h−1|s0)

πθ0(a
′
0:h−1|s0)

h−1∑
t=0

γtAπθ0 (st, a
′
t) + Eπθ

[
T−1∑
t=h

γtAπθ0 (st, at)

∣∣∣∣∣τ (h)
]]

= Eτ∼(p0,πθ,p)
a′
t∼πθ0

[
(T−1)/h∑

l=0

[
ρchlh,h(θ)

(l+1)h−1∑
t=lh

γtAπθ0 (st, a
′
t)
]]

This formula is exact, regarding that all actions inside the chunk are being conditioned on the
same state, independent of each other. However, simply using the cumulative discounted advan-
tage

∑
γtA(s, a) causes a high variance. Instead, we define a chunked advantage:

Aπθ0 (st, at:t+h−1) =

h−1∑
k=0

γkrt+k + γhV πθ0 (st+h)− V πθ0 (st). (27)

Note that

Ep

[h−1∑
k=0

γkAπθ0 (st+k, at+k)
]
= Ep

[
A

πθ0

h (st, at:t+h−1)
]
.

Using the chunked advantage, we can rewrite:

Eτ∼(p0,πθ,p)
a′
t∼πθ0

[
(T−1)/h∑

l=0

[
ρchlh,h(θ)

(l+1)h−1∑
t=lh

γtAπθ0 (st, a
′
t)
]]

= Eτ∼(p0,πθ,p)
a′
t∼πθ0

[
(T−1)/h∑

l=0

γlhρchlh,h(θ)A
πθ0

h (slh, alh:lh+h−1)

]

≈ Eτ∼(p0,πθ0
,p)

[
(T−1)/h∑

l=0

γlhρchlh,h(θ)A
πθ0

h (slh, alh:lh+h−1)

]
The final ≈ is exactly the approximation we make for the surrogate objective function in 19. For
further reducing the variance, we replace the chunked advantage with the same GAE we use for
PPO:

Lh
ACPPO(θ) := Et

[
Cϵ
(
ρchunkt,h (θ), Â

GAE(λ)
t

)]
. (28)

While the application of GAE introduces additional bias into the surrogate loss term, this bias is
smaller compared to the case of PPO. With a chunk size of h, the GAE can be decomposed as:

Â
GAE(λ)
t =

h−1∑
j=0

(γλ)j δt+j︸ ︷︷ ︸
inside chunk

+

∞∑
j=h

(γλ)j δt+j︸ ︷︷ ︸
tail bias

. (29)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In PPO, the tail bias term starts at j = 1, while for ACPPO, the tail bias term starts at j = h(> 1).
This suppresses the bias for ACPPO by a factor of (γλ)h−1 relative to PPO, yielding a more accurate
advantage estimate.

A.3 DERIVATION OF ACTION CHUNKED IMPORTANCE SAMPLING

We further elaborate the details on applying importance sampling to the relative objective function
in the case of h = 2. Starting from the relative objective function, all formulations are exact.

J (θ)− J (θ0)

= Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γtrt + γV πθ0 (st+1)− V πθ0 (st)

]

= Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γt(Qπθ0 (st, at)− V πθ0 (st))

]

= Eτ∼(p0,πθ,p)

[
T−1∑
t=0

γtAπθ0 (st, at)

]

= Eτ(h)

[
h−1∑
t=0

γtAπθ0 (st, at) + Eπθ

[
T−1∑
t=h

γtAπθ0 (st, at)

∣∣∣∣∣τ (h)
]]

= E(a0,a1)∼πθ(·|s0)
s1∼p(·|s0,a0)

[
A(s0, a0) + γA(s1, a1) + E[· · ·]

]
=

∑
(a0,a1)∈A2,s1∈S

[
πθ(a0, a1|s0)

(
A(s0, a0) + γp(s1|s0, a0)A(s1, a1)

)
+ E[· · ·]

]

=
∑

(a0,a1)∈A2,s1∈S

[
πθ0(a0, a1|s0)

πθ(a0, a1|s0)
πθ0(a0, a1|s0)

(
A(s0, a0) + γp(s1|s0, a0)A(s1, a1)

)
+ E[· · ·]

]

= E(a0,a1)∼πθ0
(·|s0)

s1∼p(·|s0,a0)

[πθ(a0, a1|s0)
πθ0(a0, a1|s0)

(
A(s0, a0) + γA(s1, a1)

)
+ E[· · ·]

]

= Eτ∼(p0,πθ,p)
at∼πθ0

[
(T−1)/2∑

l=0

[πθ(al, al+1|sl)
πθ0(al, al+1|sl)

(
A(sl, al) + γA(sl+1, al+1)

)]]

B IMPLEMENTATION DETAILS

B.1 REWARD FUNCTION

The reward function for training the policy is defined as:
R = Rdist +Ralign + fcontact (Rgoal +Rlift +Rbonus).

Rdist penalizes the object-hand distance, encouraging the hand to reach for the object before con-
tact. Defining Xobj , Xhand, Xfinger,i as the position of the object, the palm, and the ith finger
respectively, Rdist is defined as follows:

Rdist = −1.0× ||Xobj −Xhand||2 − 0.5×
5∑

i=1

||Xobj −Xfinger,i||2.

Ralign encourages the thumb to spread away from the other four fingers for the stability of grasping.
Let the unit vectors from the object to the palm and each fingertips be:

upalm =
Xhand −Xobj

∥Xhand −Xobj∥2
, ufinger,i =

Xfinger,i −Xobj

∥Xfinger,i −Xobj∥2
.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Defining pairwise cosines ci,j = u⊤
finger,iufinger,j , the alignment reward Ralign is:

Ralign = −λalign

(
c2,1 + c3,1 + 0.5c4,1 + 0.1c5,1

)
.

The remaining rewards activate only once the hand is close enough to the object:

fcontact = 1[∥Xobj −Xhand∥2 ≤ 0.12] · 1

[
5∑

i=1

∥Xobj −Xfinger,i∥2 ≤ 0.06

]
.

where 1 is the indicator function.

Rgoal is the term that drives the object closer to the goal:

Rgoal = 0.9− 2 ∥Xobj −Xgoal∥2.

Rlift encourages lifting the object after contact, with staged bonuses at increasing height. Defining
Zmin(Xobj) as the object’s lowest point and az as the action’s vertical component, the lifting reward
Rlift is formulated as:

Rlift = 1[Zmin(Xobj) ≥ 0.63] (0.1 + 0.1 az) + 1[Zmin(Xobj) ≥ 0.80] 0.2.

Finally, Rbonus is a smooth shaping near the goal for precise placement:

Rbonus = 1[∥Xobj −Xgoal∥2 ≤ 0.05]
1

1 + 10 ∥Xobj −Xgoal∥2
.

B.2 HYPERPARAMETERS

For reproducibility, we state our hyperparameters for ACPPO as follows. The hyperparameters for
PPO are identical, with only setting h = 1.

Table 5: Hyperparameters of ACPPO.

Name Symbol Value

Episode length -- 200
Rollout steps per iteration -- 8

Training epochs per iteration -- 5
Num. minibatches per epoch -- 4

MLP dimensions -- [1024, 1024, 512, 512]
Optimizer -- Adam (Kingma & Ba, 2015)

Nonlinearity -- ELU (Clevert et al., 2015)
Clip gradient norm -- 1.0

Desired KL -- 0.016
Initial noise std. -- 0.8

Clip observations -- 5.0
Clip actions -- 1.0
Chunk size h 2

Learning rate η 3e-4
Discount factor γ 0.96
GAE lambda λ 0.95

Clip range ϵ 0.2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The hyperparameters for ACFQL are as follows.

Table 6: Hyperparameters of ACFQL.

Name Symbol Value

Episode length -- 200
Rollout steps per iteration -- 8

Training epochs per iteration -- 5
Num. minibatches per epoch -- 4

MLP dimensions -- [1024, 1024, 512, 512]
Optimizer -- Adam (Kingma & Ba, 2015)

Nonlinearity -- ELU (Clevert et al., 2015)
Clip gradient norm -- 1.0

Initial noise std. -- 0.8
Clip observations -- 5.0

Clip actions -- 1.0
Chunk size h 5

Learning rate η 2e-4
Discount factor γ 0.99

Clip range ϵ 0.2

18

	Introduction
	Related Work
	Dexterous Grasping
	Action Chunking

	Preliminaries
	Problem Statement
	Proximal Policy Optimization

	Method
	Action Chunking PPO
	Benefits of Action Chunking in Dexterous Manipulation

	Experiments
	Set-ups
	Results

	Ablation Study
	Comparison to Prior Reinforcement Learning Algorithms
	PPO with Reduced Decision Frequency
	Effect of Action Chunk Size
	Application to Other Environments

	Conclusion
	Mathematical Derivations
	Derivation of Proximal Policy Optimization
	Action Chunking PPO
	Derivation of Action Chunked Importance Sampling

	Implementation Details
	Reward Function
	Hyperparameters

