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ABSTRACT

This paper shows that the masked-modelling principle driving the success of large
foundational language models can be effectively applied to video by making pre-
dictions in latent space. We introduce V-JEPA, a method for self-supervised learn-
ing from video that predicts masked spatio-temporal regions in a learned represen-
tation space. Our latent video prediction strategy produces visual features that can
be applied to various downstream image and video tasks without adaption of the
model’s parameters, achieving 82.1% on Kinetics-400 and 71.2% on Something-
Something-v2, surpassing the previous best video models by +4 and +10 points
respectively when using a frozen evaluation protocol. We also demonstrate the
benefit of video pretraining compared to image pretraining for tasks involving mo-
tion understanding, where V-JEPA outperforms the largest state-of-the-art image
models, DINOv2 and OpenCLIP. Finally, V-JEPA trained only on videos achieves
77.9% on ImageNet classification without any image fine-tuning, surpassing the
previous best video model by +6 points top-1.
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Figure 1: (Left) V-JEPA pretrained on video learns visual representations that perform well on motion-based
tasks (Something-Something-v2) and appearance-based tasks (Kinetics 400) by training a single cross-attention
layer on top of the frozen encoder backbone. (Right) V-JEPA trains a visual encoder by predicting masked
spatio-temporal regions in a learned latent space.

1 INTRODUCTION

Several cognitive theories assert that a fundamental learning mechanism in biological systems is
the adaptation of an internal model to predict missing input information (Rao & Ballard, 1999;
Friston, 2005). This self-supervised principle of learning by filling-in-the-blanks has fueled the
recent success of large foundation language models (Devlin et al., 2018; Mann et al., 2020; Touvron
et al., 2023), which are trained to predict masked words in a large text corpus. However, it remains
an open question how to best instantiate this learning principle with sensory data such as video.

The recently proposed Joint-Embedding Predictive Architecture (JEPA) (LeCun, 2022; Assran et al.,
2023) demonstrated that one could learn representations of images that perform well off-the-shelf
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(without fine-tuning) by predicting masked image regions in a learned representation space. Com-
pared to other methods for masked image modelling (He et al., 2021; Tong et al., 2022; Feichtenhofer
et al., 2022), which predict low-level visual tokens or pixels, JEPAs make predictions in a learned
latent space, where unpredictable pixel-level details can be eliminated, thereby leading the model to
learn more semantic features (Assran et al., 2023).

In this work, we study the problem of self-supervised representation learning from video data and
extend the JEPA-based learning principle to video. We propose to train a visual encoder by pre-
dicting missing regions of a spatio-temporally masked video in a learned representation space. We
refer to this approach as V-JEPA: Video-based Joint-Embedding Predictive Architecture (cf. Fig-
ure 1). Empirically, we show that training a V-JEPA model on 2 million publicly available videos
from academic datasets leads to strong off-the-shelf performance on a diverse set of image and
video tasks, including SomethingSomething-v2 (SSv2) (Goyal et al., 2017), AVA (Gu et al., 2018),
ImageNet (Russakovsky et al., 2015), and Kinetics (Kay et al., 2017).

On visual tasks that require a semantic temporal understanding of a scene, such as action classifica-
tion on SSv2 or action localization on AVA, we find V-JEPA to provide a significant boost in frozen
evaluation over the largest state-of-the-art image and video models, such as VideoMAE (Tong et al.,
2022; Wang et al., 2023), DINOv2 (Oquab et al., 2023), and OpenCLIP (Radford et al., 2021; Cherti
et al., 2023). Specifically, we achieve 71.2% top-1 frozen evaluation on Something-Something-v2,
surpassing VideoMAE, DINOv2 and OpenCLIP by +10, +21, and +32 points respectively (cf. Fig-
ure 1). On tasks that require good image-level features, such as Kinetics and ImageNet, we observe
that V-JEPA is an effective pretraining strategy. We obtain the first unsupervised video model to
achieve 82.1% top-1 frozen evaluation accuracy on Kinetics, without any fine-tuning, outperform-
ing the previous best video model, VideoMAE, by +4.2 points. Similarly, V-JEPA obtains 77.9%
top-1 on ImageNet, without any image fine-tuning.

Finally, through a series of ablations, we highlight the importance of the pretraining data distribution
on the model’s downstream performance. Specifically, we find that increasing the video dataset size
continues to improve performance, even with a fixed computation budget, hinting at a promising
path to further improve video foundation models.

2 BACKGROUND

How can we train machines to perceive the visual world? Towards answering this long-standing
question, various families of approaches have been proposed for visual representation learning from
static images and videos.

Weakly supervised learning. One family of approaches trains a visual encoder to predict the rep-
resentations of text captions often found accompanying images from the Web, as in CLIP (Radford
et al., 2021). The largest open source CLIP model to date, numbering 2B parameters and trained on
over 2B web-scraped images (Cherti et al., 2023), demonstrates impressive performance on a wide
range of downstream image and video tasks. Notably, this is achieved using only the light-weight
adaptation of task-specific heads, also referred to as frozen-evaluation, and does not require expen-
sive end-to-end fine-tuning of the pretrained model. This family of approaches has been extended to
video data by leveraging closed captioning, often computed from an ASR transcription of audio data
accompanying internet videos. For instance, VideoBERT (Sun et al., 2019; Xu et al., 2021) trains
a video encoder to predict masked spans in the textual closed captions. Similarly, VideoCLIP (Xu
et al., 2021) trains a video encoder to predict the representation of video captions computed by a
text encoder. Follow-up work such as MERLOT Reserve (Zellers et al., 2022), VATT (Akbari et al.,
2021), and InternVideo (Wang et al., 2022) extended VideoCLIP by adding a self-supervised audio
or video loss. We compare our work with the latter two models and show that V-JEPA surpasses
their performances on downstream tasks while using no text supervision.

Self-supervised learning from Images. Self-supervised methods aim to learn representations
without the need for human-annotated training data. Invariance-based pretraining, for instance,
trains a visual encoder to be invariant to hand-crafted image transformations (Chen et al., 2020;
Caron et al., 2020), however, such methods still require a significant amount of task-specific in-
ductive bias (e.g., through specifying the set of transformations), which can limit their applicabil-
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ity (Assran et al., 2022a). Denoising auto-encoders present an alternative approach for learning
representations by reconstructing a corrupted input (Vincent et al., 2008). Masked Autoencoders
(MAEs) (He et al., 2021) use this principle to train a visual encoder-decoder that predicts the pix-
els of image patches that are masked at the input. When finetuned, MAEs achieve state-of-the-art
performance on image recognition tasks. However, the representations produced by MAEs require
involved adaptation procedures and fall short of the representations produced by invariance-based
methods in frozen-evaluations (Assran et al., 2022b). Other works (Baevski et al., 2022b; Assran
et al., 2023; Baevski et al., 2022a) have explored masked image modelling tasks while predicting
in a representation space rather than raw pixels. One such method in particular, I-JEPA (Assran
et al., 2023), demonstrated strong performance on downstream tasks using only frozen evaluations,
without requiring end-to-end fine-tuning.

The DINOv2 method of Oquab et al. (2023) combines an invariance-based loss with a masked-
image modelling loss and is currently the most competitive instantiation of self-supervised learning
with (static) images, scaled to a model with over 1.1B parameters trained on a curated dataset of
142M images. Notably, DINOv2 demonstrated the feasibility of matching or surpassing CLIP in
frozen evaluations while using no textual supervision during pretraining. However, since it is only
trained on static images, we do not expect DINOv2 representations to be able to capture information
about motion dynamics in video. We will show that by pretraining on video, V-JEPA outperforms
DINOv2 on video tasks that require an understanding of the underlying video motion.

Self-supervised learning from Videos. Self-supervised learning has also been explored with
video. For instance, Feichtenhofer et al. (2021) explores the slow-feature assumption (Wiskott &
Sejnowski, 2002), which encourages the learning of invariant representations across time in a video.
MC-JEPA (Bardes et al., 2023) trains a ConvNet to predict the representation of the next frame us-
ing a hierarchical architecture. VITO (Parthasarathy et al., 2022) demonstrates that self-supervised
learning from video can lead to strong representations for image segmentation. VideoMAE (Tong
et al., 2022; Feichtenhofer et al., 2022) and VideoMAEv2 (Wang et al., 2023) directly extend the
masked autoencoder approach to spatio-temporal volumes by training an encoder-decoder model to
predict masked spatio-temporal voxels. Li et al. (2023) train a model using a masked-modelling
loss that is computed in the frozen representation space of a pretrained CLIP encoder. Contrary to
that work, V-JEPA predicts in a representation space that is learned online during training. Omn-
iMAE (Girdhar et al., 2023) simultaneously trains a visual encoder on both images and video. In
an orthogonal direction, Ryali et al. (2023) demonstrate the benefit of a hierarchical transformer ar-
chitecture for masked autoencoding, while Gupta et al. (2023) explore masked autoencoding using
a frame-level encoder and a cross-attention based video decoder. The MAE-based approaches in-
duce minimal inductive biases during pretraining and exhibit strong performance when fine-tuning
on downstream visual tasks, however, we will empirically demonstrate that V-JEPA leads to better
off-the-shelf representations.

Evaluation protocols. Toward the goal of learning a generalist model that can solve a wide range
of tasks, it is common to measure the performance of large-scale image and video foundation models
under a frozen-evaluation procedure, where the pretrained network is frozen, and a small set of
task-specific parameters are optimized on top of the frozen backbone (Chen et al., 2020; Oquab
et al., 2023; Yuan et al., 2023). These task-specific parameters are often specified as a linear layer
processing the output of the frozen backbone, or a cross-attention layer, which pools the output
feature map into a single feature vector, followed by a linear layer. The latter procedure is often
referred to as attentive pooling (Huang et al., 2022). Frozen evaluation has been studied in large-
scale evaluations of image and video models, such as in Oquab et al. (2023) and Yuan et al. (2023).

3 METHODOLOGY

Joint-Embedding Predictive Architecture. The main idea behind a JEPA (LeCun, 2022) is to
learn by using one part of an input (context), to predict another part of the input (target), in an
abstract latent space. The basic architecture is made up of three networks: a context encoder, Eθ(·),
which computes the representation of the context, a target encoder, Eθ̄(·), which computes the
representation of the target, and a predictor, Pϕ(· , ·), which predicts the target representation from
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(a) Short-range mask. Sample 8 blocks of scale
0.15 with aspect ratio in the range (0.75, 1.5), and
take their union.

(b) Long-range mask. Sample 2 blocks of scale 0.7
with aspect ratio in the range (0.75, 1.5), and take
their union.

Figure 2: 3D Multi-Block Masking. We leverage two 3D Multi-Block masking strategies during pretraining:
short-range masks and long-range masks, which lead the model to capture different types of features in a video.

the context representation given information about the relative transformation between them. All
three networks are trained by minimizing the error between the predictor and target encoder outputs.

We instantiate the architecture for video with V-JEPA by using masking; see Figure 1 (right). The
context-encoder and predictor networks process a masked video and output a prediction about the
content of the masked regions. This prediction is then regressed via an L1 loss to the output of the
target encoder, which processes the full (unmasked) video.

Architecture. As previously mentioned, we use a standard Vision Transformer (ViT) (Dosovitskiy
et al., 2020) as our default video backbone, which processes a 1D sequence of tokens, each of
dimension d, and outputs a d-dimensional embedding vector for each token. The context encoder is
a regular ViT network (ViT-L or ViT-H) consisting of standard transformer blocks with joint space-
time attention. The target encoder is also a regular ViT network, initialized identically to the context
encoder. Finally, the predictor is a narrow ViT implemented using 12 transformer blocks with an
embedding dimension of 384. For simplicity, we keep the number of self-attention heads in the
predictor equal to that of the context encoder.

Input. Since ViT networks process a 1D sequence of tokens, we must first convert an input video
clip into a 1D token sequence. To do so, we apply a 3D convolution comprising d filters of size
2 × 16 × 16 with a temporal stride of 2 and a spatial stride of 16, resulting in a tensor of shape
8×14×14×d. Next we add absolute 3D sin-cos positional embeddings to the spatio-temporal feature
map and flatten it, resulting in a 1D token sequence of shape 1568×d. This process is demonstrated
in Figure 4 in Appendix A. Unless stated otherwise, during during pretraining, we always randomly
sample a clip of 16 frames from each input video with a temporal stride of 4 between sampled
frames. An input video clip therefore covers 64 frames in total, or roughly 2 seconds of a given
video running at 30 frames per second. We then resize the video’s spatial dimensions to 224× 224,
resulting in an overall shape of 16× 224× 224× 3 for the entire clip.

3D Multi-Block Masking. We use a simple 3D extension of the block masking strategy employed
for images (Bao et al., 2021). Given a video, we sample several (possibly overlapping) spatially
continuous blocks with various aspect ratios and take their union to construct a single mask. This
spatial mask is then repeated across the entire temporal dimension. Masking a large continuous
block that covers the full temporal dimension limits information leakage due to the spatial and
temporal redundancy of videos, and results in a harder prediction task (Tong et al., 2022).

In V-JEPA, we consider two types of masks: short-range masks, where we take the union of 8
randomly sampled target blocks with a spatial scale of 0.15, and long-range masks, where we take
the union of 2 randomly sampled target blocks with a spatial scale of 0.7. In both cases, the aspect
ratio for all sampled blocks is randomly chosen in the range (0.75, 1.5). Given that both short-
range and long-range masks are produced by sampling many blocks and taking their union, the
result is an average masking ratio of ∼ 90% with our masking hyper-parameters, meaning that
the context encoder only needs to process ∼ 10% of the video. Figure 2 illustrates our masking
strategy, which we refer to as 3D Multi-Block. Extensive ablations on the 3D Multi-Block Masking
hyper-parameters are provided in Appendix C.3.

Patch-Level Loss. To compute the V-JEPA loss in each iteration, we sample both a video clip,
and a video mask. We denote a video clip represented as a 1D token sequence of length L = 1568
by xL = (x1, . . . , xL). Similarly, given a mask of M < L patches, leaving N = L −M patches
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Figure 3: V-JEPA training operates on a video clip flattened into a sequence of tokens. The sequence is
masked and fed to the context-encoder. The output of the context-encoder is then concatenated with a set of
learnable mask tokens, indicating the spatio-temporal positions of the masked patches, and fed to the predictor
network, which outputs an embedding vector for each mask token. To compute the prediction targets, the target
encoder processes the complete (unmasked) token sequence. The output of the predictor is then regressed to
the corresponding output tokens of the target encoder using an L1 loss.

unmasked, we denote the indices of masked patches by (i1, . . . , iM ) and its complement (the indices
of unmasked patches) by (j1, . . . , jN ).

Computing the context representations. To compute the V-JEPA loss, we first produce the context
representations by masking the video clip and feeding it into the context encoder; we denote the
masked video by xN = (xj1 , . . . , xjN ). Applying the context encoder Eθ(·) to the masked clip
gives a sequence of patch representations, denoted as zN = Eθ(xN ) = (zj1 , . . . , zjN ).

Predicting the target regions. Next, the V-JEPA predictor network Pϕ(·, ·) takes as input the to-
kens produced by the context encoder and predicts the missing regions in the video clip, which
are specified by a set of learnable mask tokens. Specifically, the mask tokens are parameterized as
the sum of a shared learnable vector and an absolute 3D sin-cos positional embedding, denoted by
mM = (mi1 , . . . ,miM ). The output of the predictor is thus given by, ŝM = Pϕ(zN ,mM ) =
(ŝi1 , . . . , ŝiM ), corresponding to a d-dimensional output for each of the M masked patches.

Computing the target representations. Finally to compute the prediction targets, the entire unmasked
video clip is processed by the target encoder to obtain a set of target representations, denoted by
sL = Eθ̄(xL) = (s1, . . . , sL). The V-JEPA loss is now computed as

Loss =
1

M

∑
k∈(i1,...,iM )

∥ŝk − sk∥1, (1)

which is simply the average L1 distance between the output of the predictor and the target encoder.
We then compute a gradient update with respect to the parameters of the context encoder, θ, and
the predictor, ϕ, and subsequently update the parameters of the target encoder, θ̄, as an exponential
moving average of the context encoder weights (Polyak average). A detailed diagram of the V-JEPA
procedure is provided in Figure 3.

Multi-Mask Prediction. To increase the efficiency of V-JEPA, we use a multi-masking strat-
egy (Caron et al., 2020; Baevski et al., 2022a), which enables us to amortize the cost of the tar-
get computation. As previously mentioned, for a given video clip, we sample 2 different masks,
short-range and long-range. While we need to forward propagate the context encoder and predictor
separately for each mask, we only need to compute the target representation once.

Collapse Prevention Mechanism. Representation collapse, wherein the encoder produces a con-
stant output regardless of the input, is a trivial solution of our loss function. By adding a stop-
gradient at the output of the target encoder and updating its weights as an exponential moving
average of the context encoder, we are able to avoid this uninformative solution. This collapse
prevention mechanism has previously been employed by image-based methods for self-supervised
learning (Chen & He, 2020; Grill et al., 2020; Baevski et al., 2022b). A theoretical motivation for
its effectiveness was proposed in Grill et al. (2020) for the BYOL method. We provide a simple
adaptation of this analysis for our L1 loss in Appendix D.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Pretraining. We pretrain V-JEPA on a combination of publicly available academic datasets. Spe-
cially, we combine Kinetics-400/600/700 (Kay et al., 2017), HowTo100M (Miech et al., 2019),
and Something-Something-v2 (Goyal et al., 2017), and remove any videos appearing in the valida-
tion sets of Kinetics-400/600/700 and Something-Something-v2. Through this process, we obtain a
dataset for self-supervised pretraining containing approximately 2 millions videos, which we refer to
as VideoMix2M. All V-JEPA models are trained for 90,000 iterations on VideoMix2M with a batch
size of 3072 for the ViT-L/16 and ViT-H/16 models, and a batch size of 2400 for the ViT-H/16384
model. Note that this training schedule is an order of magnitude shorter than previous state-of-the-art
video and image models; see Appendix C.2. Pretraining details are reported in Appendix A.

Evaluation Datasets. We evaluate models on both video tasks and static-image tasks. On video
tasks, we use a subset of the VideoGLUE benchmark (Yuan et al., 2023) to test for various capa-
bilities; specifically, we investigate action recognition on Kinetics-400 (K400) (Kay et al., 2017),
motion classification on Something-Something-v2 (SSv2) (Goyal et al., 2017), and action localiza-
tion on AVA (Gu et al., 2018). Action classification on Kinetics evaluates the content understanding
of the model, since many action classes in the dataset can be inferred from the presence of certain
objects in the video (Sevilla-Lara et al., 2021). Motion classification on Something-Something-v2
evaluates the temporal understanding of the model, since action classes in the dataset are decou-
pled from the appearance/presence of specific objects in the video (Goyal et al., 2017). Finally,
action localization on AVA evaluates the ability of the model to understand and localize motions in
the video. For static-image tasks, we explore object recognition on ImageNet (Russakovsky et al.,
2015), scene classification on Places205 (Zhou et al., 2014), and fine-grained recognition on iNatu-
ralist 2021 (Van Horn et al., 2018).

Evaluation Protocol. In contrast to specialist models that only focus on one task, our goal is to
learn a generalist video model that can be quickly adapted to a wide variety of tasks. We there-
fore explore a frozen-evaluation protocol where the video encoder is kept fixed after pretraining and
lightweight task-specialized probes are learned for each downstream tasks. For classification, we use
the attentive probing protocol (Chen et al., 2022; Yuan et al., 2023) where a simple cross-attention
module with a learnable query token and a linear classifier is learned on top of the frozen encoder.
For spatio-temporal action detection, we extend the practice used for 2D segmentation (Bardes et al.,
2022) and learn a linear head on top of the frozen backbone. More details regarding the evalua-
tion implementation are provided in Appendix B. Fine-tuning on a given tasks usually improves a
model’s accuracy while reducing its generality; see Section 4.4 for fine-tuning evaluations.

Baselines. We report the performance of V-JEPA and various self-supervised and weakly-
supervised baselines trained on static images and videos to allow the research community to com-
pare V-JEPA with previous works. Our self-supervised video model baselines consist of Video-
MAE (Tong et al., 2022) and VideoMAEv2 (Wang et al., 2023), which train exclusively on videos,
and OmniMAE, which combines a self-supervised loss on static images with a self-supervised loss
on videos. Our weakly-supervised video model baselines consist of InternVideo (Wang et al., 2022)
and VATT (Akbari et al., 2021), which combine a weakly-supervised contrastive text loss with a
self-supervised video loss. We also evaluate baselines trained exclusively on static images. Our
image model baselines consist of OpenCLIP (Cherti et al., 2023), which uses a weakly-supervised
contrastive text loss, DINOv2 (Oquab et al., 2023), which uses a self-supervised view-invariance
loss, and I-JEPA (Assran et al., 2023), which uses a self-supervised masked image modelling loss.
The I-JEPA method is particularly relevant for our analysis, since it is also based on the concept of
a joint-embedding predictive architecture.

4.2 EVALUATION ON VIDEO TASKS

This section uses a frozen evaluation protocol to measure the ability of a model to produce video
embeddings that excel at many downstream tasks. While task-specific end-to-end usually improves a
model’s accuracy, it also reduces its generality. We note that specialist models using end-to-end fine-
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Table 1: Frozen Evaluation on Video Datasets. We compare V-JEPA with various image and video baselines
in frozen evaluation with an attentive probe. Models are pretrained using either image, video, text or a com-
bination of those modalities. V-JEPA outperforms previous video model across all tasks. On tasks requiring
motion understanding, V-JEPA outperforms image-pretrained models by over +21 points. Results shown in
gray are reported from the attentive probe evaluation in Yuan et al. (2023). All the other results are obtained

with our attentive probe evaluation pipeline.

Method Pretrain Data Arch. Image Video Text K400 SSv2 AVA
Methods pretrained on Images
I-JEPA IN1K ViT-H/16448 ✓ 74.5 42.1 16.3
OpenCLIP LAION ViT-G/14 ✓ ✓ 83.3 39.0 23.2
DINOv2 LVD-142M ViT-g/14 ✓ 84.4 50.0 24.3

Methods pretrained on Videos
InternVideo UnlabeledHybrid - ✓ ✓ 73.7 60.3 19.6
VATT HowTo100M - ✓ ✓ 75.1 58.7 22.9
OmniMAE IN1K + SSv2 ViT-L/16 ✓ ✓ 65.4 56.1 14.4
Hiera K400 Hiera-H ✓ 73.3 60.7 17.5
VideoMAE K400 ViT-L/16 ✓ 77.9 61.2 21.6
VideoMAEv2 UnlabeledHybrid ViT-g/14 ✓ 70.6 58.0 12.9

V-JEPA
K400 ViT-L/16 ✓ 78.7 61.7 25.0

VideoMix2M
ViT-L/16 ✓ 79.1 67.0 25.6
ViT-H/16 ✓ 81.7 69.1 25.8
ViT-H/16384 ✓ 82.1 71.2 25.0

tuning still achieve absolute state-of-art on those tasks. InternVideo (Wang et al., 2022) achieves an
accuracy of 91.1 and 77.2 on K400 and SSv2 respectively, while Hiera (Ryali et al., 2023) achieves
a score 43.3 on AVA.

Comparing with video models. Table 1 reports the performance of pretrained video models on
downstream video tasks under the attentive probing protocol. On K400, V-JEPA achieves a score
of 82.1% and surpasses the previous best video model by +4.2 points; on SSv2, V-JEPA achieves
a score of 71.2% and surpasses the previous best video model by +10 points; and on AVA, V-JEPA
achieves a score of 25.8 mAP and surpasses the previous best video model by +2.9 mAP.

Comparing with image models. Table 1 also demonstrates the importance of video pretraining
(as opposed to pretraining on static images) for learning general visual representations. Recall that
the Something-Something-v2 benchmark requires a fine-grained understanding of video motion,
as appearance features are not informative with respect to the action labels. We observe that V-
JEPA provides a major improvement (over +21 points) on this task compared to strong image-
baselines such as DINOv2 and OpenCLIP, which are trained on large-scale image datasets. We
hypothesize that self-supervised pretraining from videos allows us to model dynamic concepts that
are not possible to learn from static image dataset. Similarly, on the action-localization task, we
observe that the V-JEPA models outperform image-based pretraining.

However, it is worth noting that static image models still learn strong static visual features compared
to models that are pretrained on videos. By evaluating the DINOv2 model with an attentive probe
on K400, we report a new state-of-the-art baseline on this task. Specifically, while DINOv2 (Oquab
et al., 2023) previously reported 78.4% on K400 with a linear probe, we improve their frozen eval-
uation to 84.4% by using an attentive probe. It has previously been reported in Sevilla-Lara et al.
(2021) that motion information is less important than appearance-based cues to solve this task, and
our results further support this observation.

Controlling for the pretraining distribution. We pretrain a ViT-L/16 using V-JEPA on the K400
dataset (comprising 240K videos) using the regular pretraining hyperparameters described in Sec-
tion 4.1. We compare this model to a VideoMAE ViT-L/16 also pretrained on K400. VideoMAE
uses similar masked video modelling loss, but in pixel space. V-JEPA has a consistent advantage
over VideoMAE with an improvement of +0.7, +0.5 and +3.4 points on K400, SSv2 and AvA.
Furthermore, V-JEPA demonstrates a favourable scaling behavior; by pretraining on VideoMix2M
(comprising 2M videos), the performance is boosted by +0.5, +5.3 and +0.6 points, respectively.
We do not observe a similar performance improvement when evaluating a VideoMAEv2 model pre-
trained on the UnlabeledHybrid dataset (comprising 1.35M videos).
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Table 2: Frozen Evaluation on Image Datasets. We compare V-JEPA with image and video baselines in
frozen evaluation with an attentive probe. Models are pretrained using either image, video, text or a combina-
tion of those modalities. V-JEPA outperforms previous self-supervised video models across all tasks. While
image pretrained models show an advantage on downstream image tasks, V-JEPA significantly reduces the gap
between image and video models. Scores are obtained with our attentive probing evaluation pipeline.

Method Pretrain Data Arch. Image Video Text IN1K Places iNat21
Methods pretrained on Images
I-JEPA IN1K ViT-H/16448 ✓ 81.1 63.5 80.3
OpenCLIP LAION-2B ViT-G/14 ✓ ✓ 85.3 70.2 83.6
DINOv2 LVD-140M ViT-g/14 ✓ 86.2 68.4 88.8
Methods pretrained on Videos
OmniMAE IN1K+ SSv2 ViT-L/16 ✓ ✓ 75.1 59.8 66.1
VideoMAE K400 ViT-L/16 ✓ 71.9 60.0 65.8
VideoMAEv2 UnlabeledHybrid ViT-g/14 ✓ 71.4 60.6 68.3

V-JEPA VideoMix2M
ViT-L/16 ✓ 73.7 60.5 67.4
ViT-H/16 ✓ 75.3 61.1 68.3
ViT-H/16384 ✓ 77.4 61.8 73.4

4.3 EVALUATION ON IMAGE TASKS

Table 2 investigates performance on image tasks with an attentive probe. In particular V-JEPA
achieves a score of 77.4% on ImageNet using a one-layer attentive probe, which can be further im-
proved to 77.9% using a two-layer attentive probe. While, V-JEPA outperforms models pretrained
on video, such as VideoMAE, the largest image models still have a clear advantage for image tasks.
We hypothesize that the distributions of the video datasets are too constrained and lack the visual
diversity of internet-scale pretraining data used by the images models. We further investigate this
question in Section 4.5 by pretraining image models on static frames from video datasets.

4.4 FINETUNING

In Table 3 we evaluate a V-JEPA model by finetuning (separately) on K400 and SSv2, and com-
paring with VideoMAEv2 (Wang et al., 2023) and VideoMAEv1 (Tong et al., 2022) models. The
pretraining time per iteration is measured with a batch-size of 16 on an A100 using our codebase
for V-JEPA, and the official codebases for VideoMAEv2 and VideoMAEv1. V-JEPA outperforms
VideoMAEv1 by +0.1% on K400 and +0.5% on SSv2, when using 16 frames clip for fine-tuning.
While V-JEPA time per iteration is higher than that of VideoMAEv1, V-JEPA model is trained for
fewer iterations, thus our result is obtained in 60% of the VideoMAEv1 training time. The Video-
MAEv2 model improves on VideoMAEv1 by training a ViT-g/14 model for an order of magnitude
more iterations. Efficiency is maintained by using a shallower 4-layer decoder and employing de-
coder masking. This VideoMAEv2 ViT-g/14 model outperforms our V-JEPA model in finetuning
by +0.5% on K400 and +1.7% on SSv2; however, this result requires training 6.5× longer than
V-JEPA. Additionally, we note that by increasing the number of frames to 32 instead of 16, we can
further improve the V-JEPA score to 75.9 on SSv2.

Table 3: Finetuning results. We evaluate a V-JEPA model with the finetuning protocol on the K400 and
SSv2 datasets using 16 frames per clip and multi-view fusion (5×3 or 2×3) for inference. The #Samples Seen
entry corresponds to the number of video clips processed during pretraining, which is larger than the size of the
pretraining dataset for multi-epoch training. The pretraining time per iteration is measured with a batch-size of
16 on an A100 using our codebase for V-JEPA, and the official codebases for VideoMAEv2 and VideoMAEv1.
We report the VideoMAEv2 results without instruction-turning for consistency with the other approaches.

Method Arch. Data #Samples Seen Time/Itr (s) K400 SSv2 Slowdown
(16×5×3) (16×2×3)

V-JEPA ViT-H/16384 VideoMix2M 210M 2.225 86.7 75.3 1.0×

VideoMAEv1 ViT-L/16 K400|SSv2 380M|410M 1.924 85.2 74.3 1.56×|1.69×
ViT-H/16 K400|SSv2 380M|410M 2.018 86.6 74.8 1.65×|1.76×

VideoMAEv2 ViT-H/16 Un.Hybrid 1600M 1.867 86.9 76.8 6.4×
ViT-g/14 Un.Hybrid 1600M 1.904 87.2 77.0 6.5×
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Table 4: Ablating Pretraining Distribution

(a) Image vs. Video Pretraining. We compare I-JEPA
pretrained on IN1K to I-JEPA pretrained on K400 for
400 epochs, and V-JEPA pretrained on K400 for 300
epochs. When controlling for the pretraining distribu-
tion, V-JEPA outperforms its image-only counterpart.

Method Arch. Pretraining Data IN1K
I-JEPA ViT-H/16 IN1K 78.0

I-JEPA ViT-H/16 K400 50.4
V-JEPA ViT-L/16 K400 70.4

(b) Video Pretraining Data Distribution. Even
with a fixed computational budget, V-JEPA per-
formance with a ViT-L/16 network continues to
increase on SSv2 and IN1k as we increase the
scale of the pretraining dataset.

Dataset Size ∼ SSv2 IN1K
K400 240K 61.7 70.4
K400/600/700 650K 63.7 72.9
VideoMix2M 2M 67.1 73.7

4.5 ABLATIONS

Image versus video pretraining. Video data offer rich temporal supervision that can reveal prop-
erties such as 3D-geometry, object permanence, solidity/rigidity, affordances, etc. However, Sec-
tion 4.3 indicates that the best performing models on static image tasks use only image data during
pretraining. We hypothesize that this observation is largely due to the visual diversity of static image
datasets, which tend to be well aligned with the considered image downstream tasks.

To test this hypothesis in a controlled ablation, we compare video pretraining with V-JEPA to image
pretraining with I-JEPA (Assran et al., 2023). The I-JEPA model is also based on a joint-embedding
predictive architecture and relies on the same learning principle as V-JEPA, but is applied to static
images, where the goal is to predict the representations of missing 2D blocks. We take the official
implementation of I-JEPA and first pretrain a ViT-H/16 on ImageNet at resolution 224×224 to obtain
a baseline. Next, we take a randomly initialized model and pretrain it with I-JEPA on the K400 video
dataset at resolution 224 × 224 by processing individual frames as static images. Finally, we take
a randomly initialized ViT-L/16 model, and pretrain it with V-JEPA on the K400 video dataset at
resolution 224× 224.

We report frozen evaluation on ImageNet in Table 4a. When controlling for the pretraining data dis-
tribution, we see that V-JEPA outperforms I-JEPA on ImageNet-1K classification by approximately
+20 points, despite using a significantly smaller visual encoder. This suggests that the distribu-
tion shift between video and image datasets is an important factor in establishing the differences
between image pretraining and video pretraining. This result suggests that simply dedicating more
effort towards improving and scaling the distribution of video data, as is already common practice
with image datasets (Oquab et al., 2023), may provide a path for producing state-of-the-art image
features with video models.

Impact of pretraining dataset scale. To further study the impact of the video pretraining data
distribution, we explore the impact of data scale on V-JEPA pretraining with a fixed computational
budget in Table 4b. First, we pretrain V-JEPA on roughly 200K videos, corresponding to K400, next
we pretrain V-JEPA on roughly 650K videos, corresponding to a combination of K400/600/700, and
finally we pretrain V-JEPA on roughly 2M videos, corresponding to a combination K400/600/700
and other academic video datasets. Crucially, we keep the number of pretraining iterations fixed
across the three runs. As show in Table 4b, the performance of V-JEPA improves monotonically
with data scale on both motion-based tasks (SSv2) and appearance-based tasks (IN1k).

5 DISCUSSION

We introduced V-JEPA, a self-supervised approach for learning representations from video, which
can be applied to various downstream image and video tasks without adaption of the model param-
eters. V-JEPA outperforms previous video representation learning approaches in frozen evaluation
on action recognition, spatio-temporal action detection, and image recognition tasks. Additionally,
we show that pretraining V-JEPA on videos is particularly effective for solving downstream tasks
that require motion understanding, while approaches trained only on internet scale image datasets
fall short. In future work, we will explore how scaling and improving the diversity of the pretraining
video distribution could be used to improve video foundation models.
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Table 5: Pretraining hyper-parameters for V-JEPA.

Hyper-parameter ViT-L/16224 ViT-H/16224 ViT-H/16384

data
datasets VideoMix2M VideoMix2M VideoMix2M
resolution 224 224 384
num frames 16 16 16
temporal stride 4 4 4
horizontal flip true true true
random resize scale (0.3, 1.0) (0.3, 1.0) (0.3, 1.0)
random resize aspect ratio (0.75, 1.33) (0.75, 1.33) (0.75, 1.33)

masking
block aspect ratio (0.75, 1.5) (0.75, 1.5) (0.75, 1.5)
shortrange mask num blocks 8 8 8
shortrange mask spatial scale 0.15 0.15 0.15
longrange mask num blocks 2 2 2
longrange mask spatial scale 0.7 0.7 0.7

optimization
batch size 3072 3072 2400
total number of iterations 90000 90000 90000
warmup iterations fraction 0.15 0.15 0.15
lr 6.25e-4 6.25×10−4 6.25×10−4

start lr 2×10−4 2×10−4 2×10−4

final lr 1×10−6 1×10−6 1×10−6

start momentum 0.998 0.998 0.998
final momentum 1.0 1.0 1.0
start weight decay 0.04 0.04 0.04
final weight decay 0.4 0.4 0.4
scheduler scale factor 1.25 1.25 1.25

architecture
patch size 16 16 16
tubelet size 2 2 2
pred depth 12 12 12
pred embed dim 384 384 384

hardware
dtype bfloat16 bfloat16 bfloat16
accelerator A100 80G A100 80G A100 80G

A PRETRAINING DETAILS

In section, we report V-JEPA pretraining details. Table 5 summarizes the main hyperparameters
used during pretraining.

[16 x 224 x 224 x 3]

3D Conv
[2 x 16 x 16 x d]

[8 x 14 x 14 x d]

3D sin-cos absolute position 
embeddings

[8 x 14 x 14 x d]

[1568 x d]

+16 video frames
resolution 224 x 224

flatten

Figure 4: V-JEPA training operates on a video clip flattened into a sequence of tokens. To convert a video
clip of size 16 × 224 × 224 × 3 into a 1D token sequence, we apply a 3D convolution comprising d filters
of size 2 × 16 × 16 with a temporal stride of 2 and a spatial stride of 16, resulting in a tensor of shape
8× 14× 14× d. Next we add absolute 3D sin-cos positional embeddings to the spatio-temporal feature map
and flatten it, resulting in a 1D token sequence of shape 1568× d.
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Table 6: Frozen Evaluation hyper-parameters.

Hyper-parameter K400 SSv2 IN1K Place205 iNat21

data
num clips 8 1 N.A. N.A. N.A.
num frames 16 16 N.A. N.A. N.A.
temporal stride 4 4 N.A. N.A. N.A.
horizontal flip true true true true true
random resize scale (0.08, 1.0) (0.08, 1.0) (0.08, 1.0) (0.08, 1.0) (0.08, 1.0)
random resize aspect ratio (0.75, 1.33) (0.75, 1.33) (0.75, 1.33) (0.75, 1.33) (0.75, 1.33)
auto augment false false true false false

optimization
batch size 256 256 512 256 256
epochs 20 20 20 20 20
lr 1e-3 1e-3 1e-3 1e-3 1e-3
final lr 0 0 0 0 0
weight decay 0.01 0.01 0.01 0.01 0.01

Architectures. We use Vision Transformer (Dosovitskiy et al., 2020) (ViT) architectures for the
context-encoder and target-encoder. We train three V-JEPA encoders: a ViT-L/16224, a ViT-H/16224

and a ViT-H/16384. All three encoders take as input a short video clip of 16 frames with a temporal
stride of 4 between consecutive frames. The subscripts, 224 and 384, indicate the spatial resolution
of the video clip. V-JEPA flattens the video clip into a sequence of non-overlapping spatio-temporal
patches of size 16×16×2 (see Figure 4). For all three models, the predictor is designed as a narrow
ViT architecture, consisting of 12 transformer blocks with an embedding dimension of 384. For
simplicity, we keep the number of self-attention heads in the predictor equal to that of the backbone
used for the context-encoder/target-encoder. V-JEPA is pretrained without using a [cls] token.

Optimization. We use AdamW (Loshchilov & Hutter, 2017) to optimize the context-encoder and
predictor weights. The ViT-L/16224 and ViT-H/16224 models use a batch size of 3072 while the ViT-
H/16384 uses a batch size of 2400. Models are trained for a total of 90,000 iterations. The learning
rate is linearly increased from 2 × 10−4 to 6.25 × 10−4 during the first 12, 000 iterations of pre-
training, and decayed to 10−6 following a cosine schedule. Weight-decay is also linearly increased
from 0.04 to 0.4 throughout pretraining. The target-encoder weights are initialized identically to the
context-encoder, and subsequently updated as an exponential moving average (EMA) (Tarvainen &
Valpola, 2017) of the context-encoder weights using a momentum value which starts at 0.998 and
is linearly increased to 1.0 during training (Caron et al., 2021; Assran et al., 2022b). We scale all
hyper-parameter schedules 25% beyond the actual training schedule. Specifically, the learning rate
schedule, weight-decay schedule, and EMA schedule are computed assuming a training length of
112,500 iterations, even though we only train our model for 90,000 iterations. We found the last 25%
of the default scheduler period to update hyper-parameters too aggressively, and simply truncating
the schedulers improved performance.

Masking. As described in Section 3, we propose a 3D Multi-Block masking strategy. We use two
type of masks: short-range masks, where we take the union of 8 randomly sampled target blocks
with a spatial scale of 0.15, and long-range masks, where we take the union of 2 randomly sampled
target blocks with a spatial scale of 0.7. In both cases, the aspect ratio for all sampled blocks is
randomly chosen in the range (0.75, 1.5).

B EVALUATION DETAILS

B.1 FROZEN CLASSIFICATION

Attentive Probing. Given an input video, xL, the V-JEPA target encoder Eθ̄(·) outputs a sequence
of L tokens, Eθ̄(xL) = (s1, . . . , sL), where si ∈ Rd. To pool this sequence of tokens into a single
feature vector, we apply a lightweight cross-attention using a learnable query token (Chen et al.,
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2022). Specifically, our attentive pooling performs the following computation:

L∑
i=1

exp(q⊤Wksi)∑
j exp(q

⊤Wksj)
Wvsi,

where Wk,Wv ∈ Rd×d are the key and value matrices, and q ∈ Rd is a learnable query token.
The output of the attentive pooler is then fed into a standard linear classifier, and its parameters are
jointly learned with that of the linear classifier for the downstream task, while the encoder parameters
are kept frozen. Note that, in practice, we actually use an attentive pooler with 12 heads, each of
dimension d/12. In Appendix C we show that both V-JEPA and baselines benefit from the attentive
probing protocol.

Optimization. For all the tasks, we use AdamW optimizer with a cosine scheduler (no warmup)
that decays the learning rate from 0.001 to 0. We use a fixed weight-decay of 0.01 and apply simple
data augmentations (random resized crops and horizontal flips) during training of the attentive probe,
except on ImageNet, where we apply AutoAugment (Dogus Cubuk et al., 2019). Table 6 reports the
hyperparameters used for the different evaluation tasks.

Extension to multiple clips. On Kinetics-400 frozen evaluation, our attentive probe takes 8 video
clips as input to increase the temporal coverage of the video. Specifically, we first divide a video in
8 equal-length temporal segments and sample 1 clip at random per segment. The video encoder Eθ̄
processes each clip separately and produces a clip-level feature map. The feature maps for each clip
are then concatenated together and fed to the attentive probe.

Application of video models to images. To evaluate the video models on image tasks, we simply
duplicate input images to generate still video clips of 16 frames. We perform this duplication op-
eration simply for convenience in evaluation of the video models, however we find this step to be
unnecessary in general. Given a video tokenizer implemented as a 3D-conv with a temporal stride
of 2, it is sufficient to simply duplicate the image into a 2 frame video clip. This would result in the
same number of input tokens as that produced by a static image model with a 2D-conv tokenizer.

Application of image models to videos. To evaluate image models such as DINOv2 and Open-
CLIP on video tasks, we simply process each frame independently with the image encoder to pro-
duce a frame-level feature map. The feature maps for each frame are then concatenated and fed to
the attentive probe, just as we do with the clip-level feature maps when evaluating video models.

B.2 FROZEN DETECTION

We evaluate our model on the AVA (Gu et al., 2018) spatio-temporal localization of human actions
dataset, containing 211k training and 57k validation video segments. We follow the experimental
protocol of (Feichtenhofer et al., 2021), and use precomputed masks from a pretrained Faster-RCNN
adapted to videos, which uses a ResNeXt-101-FPN backbone and is pretrained on ImageNet and
COCO. We train a linear classifier on top of the frozen V-JEPA features to classify the extracted re-
gions of interest and report mean Average Precision (mAP) on the 60 most common classes. Hyper-
parameters are provided in Table 7. Our frozen features are obtained by concatenating the last layer
of the transformer encoder with three intermediate layers. We use a batch size of 64 and pretrain
for 30 epochs with AdamW using a learning rate of 0.0001 with 2 epochs of warmup and a weight
decay of 0.05.

B.3 FINETUNING

We evaluate in Appendix 4.4 our V-JEPA ViT-H/16384 model on Kinetics-400 and Something-
Something v2 in the finetuning setting. Following Tong et al. (2022), we finetune a linear layer
on top of our model, using a layer decay schema and mixup as the data augmentation pipeline. We
provide all hyper-parameters for both K400 and SSv2 in Table 8.
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Table 7: Frozen Detection hyper-parameters.

Hyper-parameter ViT-L/16 ViT-H/16

out layers [18, 20, 22, 24] [26, 28, 30, 32]
batch size 64 64
epochs 30 30
opt AdamW AdamW
opt eps 0.00000001 0.00000001
momentum 0.9 0.9
weight decay 0.05 0.05
lr 0.0001 0.0001
warmup lr 0.000001 0.000001
min lr 0.000001 0.000001
warmup epochs 2 2
warmup steps 1 1

Table 8: Finetuning Evaluation hyper-parameters.

Hyper-parameter K400 SSv2
data
num segments 1 1
num frames 16 32
sampling rate 4 4
resolution 384 384
model
model name ViT-H ViT-H
tubelet size 2 2
drop path 0.2 0.2
head drop rate 0.5 0.5
optimization
batch size 64 64
epochs 35 20
opt adamw adamw
opt eps 0.00000001 0.00000001
momentum 0.9 0.9
weight decay 0.05 0.05
lr 0.0003 0.0001
layer decay 0.8 0.8
warmup lr 0.00000001 0.00000001
min lr 0.000001 0.000001
warmup epochs 5 5
warmup steps 1 1
augmentations
color jitter 0.4 0.4
num sample 2 2
aa rand-m7-n4-mstd0.5-inc1 rand-m7-n4-mstd0.5-inc1
smoothing 0.1 0.1
train interpolation bicubic bicubic
test num segment 5 2
test num crop 3 3
erase
prob 0.25 0.25
mode pixel pixel
count 1 1
split False False
mixup
mixup 0.8 0.8
cutmix 1.0 1.0
mixup prob 1.0 1.0
mixup switch prob 0.5 0.5
mixup mode batch batch
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C EXTRA RESULTS

C.1 FROZEN EVALUATION.

Table 9: Linear vs. Attentive Probe Evaluation for V-JEPA and VideoMAE. We evaluate the effect of
linear (Lin.) and attentive (Att.) probing when adapting V-JEPA to the K400 and SSv2 tasks. V-JEPA and
VideoMAE benefit from using a non-linear attentive probe. Specifically, using an attentive probe with V-JEPA
leads to an improvement of +22 points on K400 and +17 points on SSv2.

K400 SSv2
Method Arch. Lin. Att. Lin. Att.
VideoMAE ViT-L/16 52.5 77.6 41.3 61.2
V-JEPA ViT-L/16 56.7 79.1 50.1 67.1

Table 10: Linear vs. Attentive Probe Evaluation for DINOv2 and OpenCLIP. We evaluate the effect
of linear (Lin.) and attentive probing (Att.) when adapting DINOv2 and OpenCLIP. Image-baselines benefit
from using an attentive probing strategy. Results shown in gray are reported from the linear probe evaluation
in Oquab et al. (2023).

K400 SSv2 IN1K Place205 iNat21
Method Arch. Lin. Att. Lin. Att. Lin. Att. Lin. Att. Lin. Att.
DINOv2 ViT-g/14 78.4 84.4 38.3 50.0 86.5 86.2 67.5 68.4 85.7 88.8
OpenCLIP ViT-G/14 78.3 83.3 35.8 39.0 86.2 85.3 69.8 70.2 76.0 83.6

Linear vs. Attentive probe We compare the effect of using an attentive versus a linear probe
when adapting a pretrained model to various downstream tasks. Table 9 shows that V-JEPA and
VideoMAE benefit from using a non-linear attentive probe on the K400 and SSv2 downstream tasks.
In particular, using an attentive probe with V-JEPA leads to an improvement of +22 points on
K400 and +17 points on SSv2. Additionally, Table 10 shows that attentive probing leads to better
performance on average for DINOv2 and OpenCLIP models. Since attentive probing improves the
performance of all models, we use it as our default evaluation protocol.

Table 11: Temporal Coverage on Kinetics-400. We evaluate the effect of temporal coverage on K400. We
train an attentive probe on K400 using either 1 clip (≈ 2 seconds of a video) or 8 clips (≈ 16 seconds of a
video). To sample N clips, we first divide a video in N equal-length temporal segments and sample one clip
at random per segment. The video encoder processes each clip in parallel and all the encoder output tokens are
concatenated at the input of the attentive probe. Increasing the temporal coverage from 1 clip per video to 8
clips significantly improves the performance for both our VideoMAE baseline and V-JEPA. Specifically, using
8 clips leads to an improvement of +6.2 points on K400 with a V-JEPA ViT-H/16384.

Method Arch. 1 Clip 8 Clips
VideoMAE ViT-L/16 69.4 77.6

V-JEPA ViT-L/16 72.3 79.1
ViT-H/16384 75.8 82.0

Temporal coverage on Kinetics-400. We examine the impact of changing the temporal coverage
of a model during downstream evaluation on K400 action classification. In Table 11, we evaluate
VideoMAE and V-JEPA models using an attentive probe with access to either the feature map of 1
clip randomly sampled from the video, or the concatenated feature map of 8 clips randomly sampled
from the video. To sample 8 clips from a video, we first divide the video into 8 equal length temporal
segments, and sample 1 clip at random from each segment. A single clip corresponds to ≈ 2 seconds
of a video on average, while 8 clips correspond to ≈ 16 seconds. The video encoders processes each
clip separately to produce a clip-level feature map, which are then concatenated at the input to the
attentive probe.

Increasing the temporal coverage from 1 clip per video to 8 clips improves the performance of
both V-JEPA and VideoMAE on K400 action classification. Specifically, using 8 clips leads to
an improvement of +6.2 points on K400 with a V-JEPA ViT-H/16384. We therefore use the 8
clip attentive probing setup as our default evaluation pipeline on K400 for all video and image
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models. While we would expect multi-clip evaluation to be helpful for other downstream video
action classification tasks, we still only sample one clip when training an attentive probe on SSv2,
as videos from that dataset are only 2 to 4 seconds long on average.

C.2 SAMPLE EFFICIENCY OF PRETRAINING

We compare the sample efficiency of pretraining various state-of-the-art image and video models.
Specifically, we look at the number of samples (image or video clips) processed by the network
during pretraining, which is larger than the size of the pretraining dataset for multi-epoch training.
Notably, our results with V-JEPA are obtained while processing an order of magnitude fewer samples
than previous methods, and notably two orders of magnitude fewer samples than OpenCLIP. We
believe that further investment towards improving the video pretraining data distribution could lead
to substantial gains in downstream image and video tasks.

Table 12: Sample efficiency. We compare the sample efficiency of pretraining various state-of-the-art image
and video models. The #Samples Seen entry corresponds to the number of samples (image or video clips)
processed by the network during pretraining, which is larger than the size of the pretraining dataset for multi-
epoch training. The V-JEPA results in this paper are obtained while processing an order of magnitude fewer
samples than previous methods.

Method Arch. Data #Samples Seen
OpenCLIP ViT-G/14 LAION-2B 39000M
DINOv2 ViT-g/14 LVD 142M 1900M
VideoMAEv2 ViT-g/14 UnlabeledHybrid 1600M
V-JEPA ViT-H/16384 VideoMix2M 210M

C.3 MASKING STRATEGY

An important component of the V-JEPA pretraining strategy is the 3D clip masking strategy. In this
section, we detail 26 ablation experiments exploring different masks. For all the experiments, we
pretrain a ViT-B/16 pretrained on K400. Figure 5 presents a summary of those results.

Recall that each video mask is constructed by sampling several (possibly overlapping) blocks and
taking their union. These spatial multi-block masks are then repeated along the temporal dimension
to create a 3D Multi-Block mask. Figure 5c shows the effect of changing the spatial and temporal
masking ratio. Figure 5b ablates the number of sampled blocks used to construct the masks given a
fixed effective masking ratio of 90%. Finally, in Figure 5a we examine our multi-masking strategy
and find that sampling two masks for each clip (long-range and short-range) to be more effective
than sampling just a single mask for each clip. By default we sample masks that remove roughly
90% of the frame and extend along the entire temporal dimension of the clip.
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Figure 5: Masking Strategy Ablation. Evaluating a linear probe on a ViT-B/16 pretrained with V-JEPA on
K400 under various 3D Multi-Block masking settings. We examine the impact of (a) sampling several masks
per video, (b) varying the number of blocks in a mask, and (c) varying the average spatial and temporal masking
ratio. A temporal masking ratio of 100% extends the spatial mask across all the frames in the clip. We find it
important to maintain a high spatial and temporal masking ratio during pretraining.

In Table 13, we explore different average spatial and temporal masking ratio, i.e. the spatial/temporal
ratio of the area that is covered by a mask on average for a clip. Recall that each mask is constructed
by sampling several (possibly overlapping) blocks and taking their union. We change the average
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Table 13: Masking Ratio. We explore the impact of the spatial and temporal ratio masking. Low spatial or
temporal coverage results in a trivial prediction task, which degrades downstream performance.

Mask Statistics 3D Multi-Block Mask Details
Avg. Depth Avg. Spatial Size Spatial Size of Block Frames per Block Blocks per Mask K400 Acc.

100%

25 % 112× 112 16 1 0.23
50 % 160× 160 16 1 0.31
75 % 192× 192 16 1 0.44
90 % 176× 176 16 2 0.50
95 % 192× 192 16 2 0.47

75%

25 % 112× 112 12 1 0.10
50 % 160× 160 12 1 0.14
75 % 192× 192 12 1 0.16
90 % 176× 176 12 2 0.22
95 % 192× 192 12 2 0.21

50%

25 % 112× 112 8 1 0.04
50 % 160× 160 8 1 0.11
75 % 192× 192 8 1 0.13
90 % 176× 176 8 2 0.12
95 % 192× 192 8 2 0.14

spatial or temporal masking ratio by changing block spatial or temporal size, as well as the overall
number of blocks. We found that low spatial or temporal coverage results in a trivial prediction task,
which degrades downstream performance. Based on those results, we sample masks that remove
roughly 90% of the frame and extend along the entire temporal dimension of the clip by default.

Table 14: Block Spatial Size. We investigate the impact of blocks spatial size given an effective masking ratio
of 75%. We find that sampling several small blocks to perform better than sampling a single large block.

Mask Statistics 3D Multi-Block Mask Details
Avg. Depth Avg. Spatial Size Spatial Size of Block Frames per Block Blocks per Mask K400 Acc.

100% 75%

64× 64 16 16 0.49
96× 96 16 8 0.50

128× 128 16 6 0.49
160× 160 16 2 0.48
192× 192 16 1 0.47

In Table 14, we explore different block size given an effective spatial masking ratio of 75% and
temporal ratio of 100%. We keep the masking ratio approximately constant by changing the block
size and the number of block at the same time. We find that sampling several blocks to perform
better than sampling a single large block. Figure 6 visually illustrates the effect of sampling several
smaller blocks to construct a mask.

Table 15: Number of Masks Per Sample. We explore the effect of sampling several mask for each video
clip in the batch. Sampling two masks for each clip, with different spatial block sizes for each, is more effective
than sampling just a single mask.

3D Multi-Block Mask Details
Masks per Sample Spatial Size of Block Frames per Block Blocks per Mask K400 Acc.

1 160× 160 16 2 0.50
2 160× 160 16 2 0.55
3 160× 160 16 2 0.55

In Table 15, we explore the effect of sampling various number of masks per samples. We find that
sampling two masks for each clip, with different spatial block sizes for each, to be more effective
than sampling just a single mask. We hypothesize that this masking strategy induces complementary
tasks. In our experiment, we use this as our default masks sampling.

D THEORETICAL MOTIVATION OF EMA FOR L1 LOSS

Consider just the first loss term in the summation of equation 1. To condense the notation, denote
the output of the context encoder with parameters θ by zN (θ), and denote the first token output
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(a) Num. Blocks: 8, Spatial Block Size: 32× 32

(b) Num. Blocks: 4, Spatial Block Size: 80× 80

(c) Num. Blocks: 2, Spatial Block Size: 160× 160

Figure 6: Illustration of mask with number of blocks and block size. Each mask is constructed by
sampling several (possibly overlapping) blocks and taking their union.

by the predictor as p(zN (θ)) = [Pϕ(zN ,mM )]i1 . Finally, define the corresponding target token
(output by the target encoder) as a random vector X ∈ Rd. Now, if we were to compute the optimal
predictor under our loss function, we would obtain the following functional expression,

p⋆(zN (θ)) = argminp∥p(zN (θ))−X∥1 = median(X|zN (θ)).

Substituting this expression for the optimal predictor into the loss function and evaluating the ex-
pected gradient of the context encoder gives

∇θE∥p⋆(zN (θ))−X∥1 = ∇θ

d∑
l=1

MAD(Xl|zN (θ)),

where Xl is the lth entry of the random vector X , and MAD(· |zN (θ)) is the median absolute devia-
tion of a random variable conditioned on zN (θ). Thus, in the case where the predictor is optimal, the
context encoder must learn to capture as much information about the masked clip as possible to min-
imize the deviation of the target. The hypothesis is that by updating the target encoder weights via
an exponential moving average of the context encoder weights, we ensure that the predictor evolves
much faster than the target encoder and remains close to optimal, thereby preventing collapse.
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