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ABSTRACT

We study the problem of learning multi-index models in high-dimensions using a
two-layer neural network trained with the mean-field Langevin algorithm. Under
mild distributional assumptions on the data, we characterize the effective dimen-
sion deff that controls both sample and computational complexity by utilizing
the adaptivity of neural networks to latent low-dimensional structures. When the
data exhibit such a structure, deff can be significantly smaller than the ambient
dimension. We prove that the sample complexity grows almost linearly with deff ,
bypassing the limitations of the information and generative exponents that appeared
in recent analyses of gradient-based feature learning. On the other hand, the compu-
tational complexity may inevitably grow exponentially with deff in the worst-case
scenario. Motivated by improving computational complexity, we take the first
steps towards polynomial time convergence of the mean-field Langevin algorithm
by investigating a setting where the weights are constrained to be on a compact
manifold with positive Ricci curvature, such as the hypersphere. There, we study
assumptions under which polynomial time convergence is achievable, whereas
similar assumptions in the Euclidean setting lead to exponential time complexity.

1 INTRODUCTION

A key characteristic of neural networks is their adaptability to the underlying statistical model. Several
works have shown that shallow neural networks trained by (variants of) gradient descent can adapt to
inherent structures in the learning problem, and learn functions of low-dimensional projections with
a sample complexity that depends on properties of the nonlinear link function such as the information
exponent (Ben Arous et al., 2021) or generative exponent (Damian et al., 2024) for single-index
models, and the leap complexity (Abbe et al., 2023) for multi-index models. Specifically, prior works
typically established a sample complexity of n ≳ dΘ(s) for gradient-based learning, where s can
be the information/leap exponent (Abbe et al., 2022; Bietti et al., 2022; Damian et al., 2023; Ba
et al., 2023; Mousavi-Hosseini et al., 2023b; Bietti et al., 2023; Dandi et al., 2023) or the generative
exponent (Dandi et al., 2024; Lee et al., 2024; Arnaboldi et al., 2024; Joshi et al., 2024), depending on
the implementation of gradient descent. This sample complexity is also predicted by the framework
of statistical query lower bounds (Damian et al., 2022; Abbe et al., 2023; Damian et al., 2024).

On the other hand, neural networks can efficiently approximate arbitrary multi-index models regard-
less of the generative/leap exponent s (Barron, 1993; E et al., 2022); moreover, if the (polynomial)
optimization budget is not taken into consideration, there exist computationally inefficient training
algorithms that can achieve sample complexity independent of s (Bach, 2017; Liu et al., 2024; Damian
et al., 2024). Intuitively speaking, a function depending on k = Od(1) directions of the input data has
kd = O(d) parameters to be estimated, and hence the information theoretically optimal algorithm on
isotropic data only requires n ≍ d samples. However, thus far it has been relatively unclear whether
standard first-order optimization algorithms for neural networks inherit this optimality.

A promising approach to close the sample complexity gap is to consider neural networks in the
mean-field regime (Nitanda & Suzuki, 2017; Chizat & Bach, 2018; Mei et al., 2018; Rotskoff &
Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2020), where overparameterization is utilized to lift
the gradient descent dynamics into the space of measures so that global convergence can be established.
While most existing results in this regime focus on optimization instead of generalization/learnability,
recent works have shown that under restrictive data and target assumptions (such as XOR), mean-field
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neural networks achieve a sample complexity that does not depend on the leap complexity (Wei et al.,
2019; Chizat & Bach, 2020; Telgarsky, 2023; Suzuki et al., 2023b). Among these works, Suzuki
et al. (2023b) proved quantitative convergence guarantees for learning k-parity with n ≍ d samples,
despite the target function having leap index k. Key to this result is the convergence rate analysis of
the mean-field Langevin algorithm (MFLA) (Hu et al., 2019; Nitanda et al., 2022; Chizat, 2022b).
However, existing learnability guarantees in the mean-field regime fall short in the following aspects:

• Learning general multi-index models. Prior works established optimal sample complexity for
mean-field neural networks under stringent assumptions on the data distribution (isotropic Gaussian,
hypercube, etc.) as well as on the target function such as single-index models with specific link
functions (Berthier et al., 2023; Mahankali et al., 2023), or k-sparse parity classification (Wei
et al., 2019; Telgarsky, 2023; Suzuki et al., 2023b). Hence, the problem of universally learning
functions of low-dimensional projections with minimal data assumptions using neural networks
with a standard training procedure remains largely open.

• Polynomial computational complexity. To achieve optimal sample complexity, the computational
complexity of the training algorithm in Telgarsky (2023); Suzuki et al. (2023b) is exponential in
the ambient (input) dimension. Although such exponential dependence may be unavoidable in
the most general setting, sufficient conditions under which the mean-field algorithm can achieve
statistical efficiency with polynomial compute is relatively under-explored, with the exception of a
recent work that studied the specific example of k-parity on anisotropic data (Nitanda et al., 2024).

1.1 OUR CONTRIBUTIONS

Motivated by the above discussion, in this work we address two key questions. First, we ask

Can we train two-layer neural networks using the MFLA to learn arbitrary multi-index models
with an (information theoretically) optimal sample complexity?

We answer this in the affirmative by showing that empirical risk minimization on a standard variant
of a two-layer neural network can be achieved by the MFLA. This result handles arbitrary multi-
index models on subGaussian data with general covariance, hence enabling us to obtain a sample
complexity with optimal dimension dependence up to polylogarithmic factors with standard gradient-
based training. However, such a universal guarantee will inevitably suffer from an exponential
computational complexity; thus, the second fundamental question we aim to answer is

Are there conditions under which the computational complexity of the MFLA can be improved
from exponential to (quasi)polynomial dimension dependence?

We provide a positive answer in two problem settings. In the Euclidean setting, we show that the
complexity of MFLA is governed by the effective dimension of the learning problem, instead of its
ambient dimension; this implies an improved efficiency of MFLA when the data is anisotropic. In the
Riemannian setting, we outline concrete conditions on the Ricci curvature of the compact manifold
defining the weight space under which MFLA converges in polynomial time.

1.2 RELATED WORKS

Mean-field Langevin dynamics. The training dynamics of neural networks in the mean-field
regime is described by a nonlinear partial differential equation in the space of parameter distributions
(Chizat & Bach, 2018; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018). Unlike the neural
tangent kernel (NTK) description (Jacot et al., 2018; Chizat et al., 2019) that freezes the parameters
around random initialization, the mean-field regime allows the parameters to travel and learn useful
features, leading to improved statistical efficiency. While convergence analyses for mean-field neural
networks are typically qualitative, in that they do not specify the speed of convergence or finite-width
discrepancy, the mean-field Langevin algorithm that we study is a noticeable exception, for which the
quantitative convergence rate (Hu et al., 2019; Nitanda et al., 2022; Chizat, 2022b) and uniform-in-
time propagation of chaos (Chen et al., 2022; Suzuki et al., 2022; 2023a; Kook et al., 2024; Nitanda,
2024; Chewi et al., 2024) have been established.

A recent work (Takakura & Suzuki, 2024) considered a two-timescale MFLD where the second
layer is optimized infinitely faster than the first layer, and provided statistical guarantees for learning
Barron spaces with a bounded activation function. The concurrent work of Wang et al. (2024) studied
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this two-timescale approach to MFLD in a more general setting of optimization over signed measures
without considering the estimation aspect and statistical guarantees. Our formulation here bypasses
the need for two-timescale dynamics while learning a similarly large class of target functions.

Learning low-dimensional targets. The benefit of feature learning has also been studied in a
“narrow-width” setting, where parameters of the neural network align with the low-dimensional target
function during gradient-based training. Examples of low-dimensional targets include single-index
models (Ben Arous et al., 2021; Ba et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2023a;
Damian et al., 2023; Lee et al., 2024) and multi-index models (Damian et al., 2022; Abbe et al., 2022;
2023; Dandi et al., 2023; Bietti et al., 2023; Collins-Woodfin et al., 2023; Vural & Erdogdu, 2024).
While the information-theoretic threshold for learning such functions is n ≳ d (for isotropic data)
(Mondelli & Montanari, 2018; Barbier et al., 2019; Damian et al., 2024), the complexity of gradient-
based learning is governed by properties of the link function. For instance, in the single-index setting,
prior works established a sufficient sample size of n ≳ dΘ(s) where s is the information exponent
for one-pass SGD on the squared/correlation loss (Dudeja & Hsu, 2018; Ben Arous et al., 2021;
Bietti et al., 2022; Damian et al., 2023), and the generative exponent (Damian et al., 2024) when the
algorithm can reuse samples or access a different loss (Dandi et al., 2024; Lee et al., 2024; Arnaboldi
et al., 2024; Joshi et al., 2024). This presents a gap between the information-theoretically achievable
sample complexity and the performance of neural networks optimized by gradient descent.

Notation. We denote the Euclidean inner product with ⟨·, ·⟩, the Euclidean norm for vectors and
the operator norm for matrices with ∥·∥, and the Frobenius norm with ∥·∥F. Given a topological
space W endowed with an underlying metric and Lebesgue measure, we use P(W), P2(W), and
Pac
2 (W) to denote the set of (Borel) probability measures, the set of probability measures with finite

second moment, and the set of absolutely continuous probability measures with finite second moment,
respectively. Finally, we use δw0

to denote the Dirac measure at w0, i.e.
∫
h(w)dδw0

(w) = h(w0).

2 PRELIMINARIES: OPTIMIZATION IN MEASURE SPACE

Statistical model. In this paper, we consider the regression setting where the input x ∈ Rd is
generated from some distribution and the response y ∈ R is given by the following multi-index model

y = g
(

⟨u1,x⟩√
k

, . . . , ⟨uk,x⟩√
k

)
+ ξ. (2.1)

Here, g : Rk → R is the unknown link function, ξ is a zero-mean ς-subGaussian noise independent
from x; for simplicity, we assume ς2 ≲ 1. Without loss of generality, we assume that the unknown
directions u1, . . . ,uk are orthonormal, and define U = (u1/

√
k, . . . ,uk/

√
k)⊤ ∈ Rk×d; thus, we

can use the shorthand notation y = g(Ux)+ ξ. Throughout the paper, we consider the setting k ≪ d,
and treat k as an absolute constant independent from the ambient input dimension d.

For a student model x → ŷ(x;W ) with W denoting its model parameters, we consider loss functions
of the form ℓ(ŷ, y) = ρ(ŷ−y) where ρ : R → R+ is convex. In the classical regression setting where
we observe n i.i.d. samples {(x(i), y(i))}ni=1 from the data distribution, the regularized population
risk and the regularized empirical risk are defined respectively as

Jλ(W ) := E[ℓ(ŷ(x;W ), y)] +
λ

2
R(W ) and Ĵλ(W ) :=

1

n

n∑
i=1

ℓ(ŷ(x(i);W ), y(i)) +
λ

2
R(W ),

where R is some regularizer on the model parameters and the expectation is over the joint distribution
of (x, y). In practice, we minimize the empirical risk Ĵλ as the finite sample approximation of the
population risk Jλ, anticipating that both minimizers are close to each other.

We use a two-layer neural network coupled with ℓ2 regularization to learn the statistical model (2.1),
where learning constitutes recovering both unknowns U and g. Denoting the m neurons with a matrix
W := (w1, . . . ,wm)⊤, the student model and the ℓ2-regularizer are given as

ŷm(x;W ) :=
1

m

m∑
j=1

Ψ(x;wj) and R(W ) :=
1

m
∥W ∥2F =

1

m

m∑
j=1

∥wj∥2, (2.2)
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where Ψ : Rd ×W → R is the activation function, and wj ∈ W with W denoting a Riemannian
manifold. In this formulation, the second layer weights are all fixed to be +1.

To minimize an objective J denoting either Jλ or Ĵλ, we will consider a discretization of the following
set of SDEs, which essentially define an interacting particle system over m neurons:

dwt
j = −m∇wjJ(w

t
1, . . . ,w

t
m)dt+

√
2β−1dBj

t for 1 ≤ j ≤ m, (2.3)

where ∇w is the Riemannian gradient and (Bj
t )
m
j=1 is a set of independent Brownian motions on W .

We scale the learning rate by m to compensate for the fact that the gradient will be of order m−1 with
respect to each neuron. The case β = ∞ corresponds to the classical gradient flow over J , while the
Brownian noise can help escaping from spurious local minima and saddle points.

Optimization in measure space. Notice that the neural network and the regularizer in (2.2) are both
invariant under permutations of the weights (w1, . . . ,wm); thus, an equivalent integral representation
of these functions can be written using Dirac measures δwj

centered at wj , namely

ŷ(x;µW ) :=

∫
Ψ(x; ·)dµW and R(µW ) :=

∫
∥ · ∥2dµW with µW =

1

m

m∑
j=1

δwj
. (2.4)

Here, µW is the empirical measure supported on m atoms. Indeed, ŷ(x;µW ) = ŷm(x;W ) and
R(µW ) = R(W ), and this formulation allows extension to infinite-width networks by removing the
condition that measures are supported on m atoms, and by expanding the feasible set of measures to
µ ∈ P2(W). Thus, we rewrite the population and the empirical risks in the space of measures as

Jλ(µW ) := Jλ(W ) and Ĵλ(µW ) := Ĵλ(W ),

with domain µ ∈ P2(W). Let J : P2(W) → R be the population risk Jλ or the empirical risk Ĵλ.
We can equivalently state the interacting SDE system (2.3) as (see e.g. (Chizat, 2022b, Prop. 2.4))

dwt
j = −∇wJ ′[µW t ](wt

j)dt+
√
2β−1dBj

t for 1 ≤ j ≤ m, (2.5)

where J ′[µ] ∈ L2(W) denotes the first variation of J (µ) defined via∫
J ′[µ](w)d(ν − µ)(w) = limϵ↓0

J ((1−ϵ)µ+ϵν)−J (µ)
ϵ , ∀ν ∈ P2(W), (2.6)

which is unique up to additive constants when it exists (Santambrogio, 2015, Definition 7.12).

As m → ∞, the empirical measure µW t weakly converges to a deterministic measure µt for all
fixed t, a phenomenon known as the propagation of chaos (Sznitman, 1991). Furthermore, µt can be
characterized as the law of the solution of the following SDE and non-linear Fokker-Planck equation

dwt = −∇wJ ′[µt](w
t)dt+

√
2β−1dBt and ∂tµt = ∇ · (µt∇J ′[µt]) + β−1∆µt, (2.7)

where ∇· and ∆ are the Riemannian divergence and Laplacian operators, respectively. Due to the
existence of mean-field interactions, (2.7) is known as the mean-field Langevin dynamics (MFLD).

For a pair of probability measures µ ≪ ν both in P(W), we define the relative entropy H(µ | ν) and
the relative Fisher information I(µ | ν) respectively as

H(µ | ν) :=
∫
W

ln
dµ

dν
dµ and I(µ | ν) :=

∫
W

∥∥∥∥∇ ln
dµ

dν

∥∥∥∥2dµ. (2.8)

It is well-known at this point that µt in (2.7) can be interpreted as the Wasserstein gradient flow of
the entropic regularized functional Fβ(µ) := J (µ) + 1

βH(µ | τ), where τ is the uniform measure
on compact W or the Lebesgue measure on a Euclidean space (Jordan et al., 1998; Ambrosio et al.,
2005; Villani, 2009). For this gradient flow to converge exponentially fast towards the minimizer
µ∗
β := argminµ Fβ(µ), we require a gradient domination condition on µ∗

β in the space of probability
measures, given as

H(µ |µ∗
β) ≤

CLSI

2
I(µ |µ∗

β), ∀µ ∈ P(W), (2.9)

which is referred to as the log-Sobolev inequality (LSI). If the measure dνµt ∝ exp(−βJ ′[µt])dτ
satisfies LSI with constant CLSI for all t ≥ 0, µt enjoys the following exponential convergence

Fβ(µt)−Fβ(µ∗
β) ≤ e

−2t
βCLSI (Fβ(µ0)−Fβ(µ∗

β)); (2.10)
see e.g. (Chizat, 2022b, Theorem 3.2) and (Nitanda et al., 2022, Theorem 1).
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3 LEARNING MULTI-INDEX MODELS IN THE EUCLIDEAN SETTING

In this section, we consider learning multi-index models in the Euclidean setting. For technical
reasons, we use an approximation of ReLU denoted by z 7→ ϕκ,ι(z) for some κ, ι > 1, which is
given by ϕκ,ι(z) = κ−1 ln(1+exp(κz)) for z ∈ (−∞, ι/2] and extended on (ι/2,∞) such that ϕκ,ι
is C2 smooth, |ϕκ,ι| ≤ ι,

∣∣ϕ′
κ,ι

∣∣ ≤ 1, and
∣∣ϕ′′
κ,ι

∣∣ ≤ κ. Note that ϕκ,ι recovers ReLU as κ, ι → ∞.
Recall that we freeze the second-layer weights at +1. Consequently, non-negative activations can
only learn non-negative functions. To alleviate this, we choose W = R2d+2, and use the notation
w = (ω⊤

1 ,ω
⊤
2 )

⊤ with ω1,ω2 ∈ Rd+1 to denote the first and the second half of weight coordinates,
and use the activation function

Ψ(x;w) := ϕκ,ι(⟨x̃,ω1⟩)− ϕκ,ι(⟨x̃,ω2⟩), (3.1)

where x̃ := (x, r̃x)
⊤ ∈ Rd+1 for a constant r̃x corresponding to a bias unit. The above can also be

seen as a 2-layer neural network with activation ϕκ,ι and second-layer weights frozen at ±1.

We use the neural network and the regularizer in (2.2) with weights W := (w1, . . . ,wm) ∈
R(2d+2)×m, and minimize the resulting empirical risk Ĵλ(W ) via the mean-field Langevin algorithm
(MFLA), which is a simple time discretization of (2.3) with the stepsize η and the number of iterations
l > 0,

wl+1
j = wl

j −mη∇wj Ĵλ(W ) +
√

2ηβ−1ξlj , 1 ≤ j ≤ m, (3.2)

where ξlj are independent standard Gaussian random vectors. When the stepsize is sufficiently small,
MFLA approximately tracks the system of continuous-time SDEs (2.3) as well as their equivalent
formulation in the measure space (2.5). If, in addition, the network width m is sufficiently large, prop-
agation of chaos will kick in and the dynamics will be an approximation to MFLD (2.7), ultimately
minimizing the corresponding entropic regularized objective Fβ,λ(µ) := Ĵλ(µ) + 1

βH(µ | τ).

We make the following assumption on the input distribution.

Assumption 1. The input x has zero mean and covariance Σ. Further, ∥x∥ and ∥Ux∥ are subGaus-
sian with respective norms σn∥Σ1/2∥F and σu∥Σ1/2U⊤∥F for some absolute constants σn, σu.

One example for the above assumption is the Gaussian case x ∼ N (0,Σ) where ∥Ax∥ is subGaus-
sian with norm ∥Σ1/2A∥ for any matrix A. In settings we consider, we can replace the operator
norm with the Frobenius norm to obtain a weaker assumption, since ∥Ax∥ is roughly concentrated
near its mean, scaling with ∥Σ1/2A⊤∥F. Note that Assumption 1 can cover much more broader
settings than Gaussianity, e.g. it is satisfied when x = Σ1/2z and z has mean-zero i.i.d. subGaussian
coordinates (Vershynin, 2018, Theorem 6.3.2.). Without loss of generality, we will consider a scaling
where ∥Σ∥ ≲ 1.

A key quantity in our analysis is the effective dimension which governs the algorithmic guarantees.

Definition 1 (Effective dimension). Define deff := c2x/r
2
x where cx := tr(Σ)1/2, rx := ∥Σ1/2U⊤∥F.

The effective dimension deff can be significantly smaller than the ambient dimension d, leading to
particularly favorable results in the following when deff = polylog(d). This concept has numerous
applications from learning theory to statistical estimation; see e.g. Vershynin (2018); Wainwright
(2019); Ghorbani et al. (2020); Ba et al. (2023). In covariance estimation, for example, the effective
dimension is typically defined as tr(Σ)/∥Σ∥ (e.g. (Wainwright, 2019, Example 6.4)), which is
equivalent to deff in Definition 1 provided that U lives in the top eigenspace of Σ. However, in
general, deff might be larger than tr(Σ)/∥Σ∥, which is expected as one can imagine a supervised
learning setup where the variations of x provide very little information about target directions U ,
making estimation more difficult. We make the following assumption on the link function in (2.1).

Assumption 2. The link function is locally Lipschitz: |g(z1)− g(z2)| ≤ L∥z1 − z2∥ for z1, z2∈
Rk satisfying ∥z1∥ ∨ ∥z2∥ ≤ r̃x := rx(1 + σu

√
2(q + 1) ln(n)) for some q > 0 and L = O(1/rx).

We also assume E
[
y2
]
≲ 1.

Note that the above Lipschitz condition is only local, thus allowing polynomially growing link
functions g. We scale the Lipschitz constant with 1/rx to make sure y has a variance of order Θ(1).
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Recall from Section 2 that in order to prove convergence of the MFLD (and its time/particle dis-
cretization MFLA), it is sufficient for the Gibbs potential νµW t

∝ exp(−βĴ ′
λ[µW t

]) to satisfy LSI
uniformly along its trajectory. Here, it is straightforward to derive the first variation as

Ĵ ′
λ[µ](w)= Ĵ ′

0[µ](w) +
λ

2
∥w∥2 with Ĵ ′

0[µ](w)=
1

n

n∑
i=1

ρ′(ŷ(x(i);µ)− y(i))Ψ(x(i);w). (3.3)

The following assumption introduces the uniform LSI constant for the trajectory of MFLA.

Assumption 3. Let W l = (wl
1, . . . ,w

l
m) denote the trajectory of MFLA. We assume the measure

νµ
W l

∝ exp(−βĴ ′
λ[µW l ]) satisfies the LSI (2.9) with constant CLSI for all l ≥ 0, and CLSI ≥ β.

The above condition is stated to simplify the exposition and will be verified in our results by using
the boundedness of ϕκ,ι; Ĵ ′

λ[µW l ] can be considered as a bounded perturbation of a strongly convex
potential, thus satisfies LSI by the Holley-Stroock argument (Holley & Stroock, 1986).
Proposition 2. Suppose ρ is Cρ-Lipschitz. Then for any µ ∈ P2(R2d+2), the probability measure
νµ ∝ exp(−βĴ ′

λ[µ]) with Ĵ ′
λ given by (3.3) satisfies the LSI (2.9) with constant

CLSI ≤
1

βλ
exp(4Cριβ). (3.4)

For the squared loss, we can replace Cρ above with Ĵ0(µW )1/2. With this, as Ĵ0(µW ) is uniformly
bounded along the trajectory, convergence of the infinite-width MFLD can be established. However,
for the finite-width MFLA, controlling Ĵ0(µW ) is challenging as there is non-trivial probability that
neurons incur a large loss, which is why we require Lipschitz ρ. Note that the right hand side of (3.4)
is independent of κ; thus, by letting κ → ∞, the proposition implies the same LSI constant for a
bounded variant of ReLU. However, for MFLA (the time discretization of MFLD), we additionally
require smoothness of the activation.

3.1 STATISTICAL AND COMPUTATIONAL COMPLEXITY OF MFLA

The main result of this section is stated in the following theorem.

Theorem 3. Under Assumptions 1, 2 and 3, consider MFLA (3.2) with parameters λ = λ̃r2x,
β = Θ̃(deff/λ̃), and η ≤ Õ

(
1

CLSIκ2r̄4x(d+r̄
2
x/λ)

)
, where r̄x := ∥Σ∥ ∨ r̃x. Suppose λ̃, κ−1 = on(1),

ι = Θ
( r̃2x
λ̃r2x

)
, the loss satisfies |ρ′| ∨ ρ′′ ≲ 1, and the algorithm is initialized with the weights sampled

i.i.d. from some distribution w0
j ∼ µ0 with E

[
∥w0

j∥22
]
≲ 1. Then, with the number of samples n, the

number of neurons m, and the number of iterations l that can respectively be bounded by

n = Õ(deff), m = Õ
(CLSIr̄

4
xκ

2

βλ

( d
β
+

r̄2x
λ

))
, l = Õ

(CLSIβ

η

)
, (3.5)

with probability at least 1−O(n−q) for some q > 0, the excess risk satisfies

EW l Ey,x[ρ(y − ŷm(x;W l))]− Eξ[ρ(ξ)] ≤ on(1). (3.6)

The above theorem demonstrates that (i) the effective dimension of Definition 1 controls the sample
complexity, and (ii) the LSI constant of Assumption 3 controls the computational complexity. To
that end, we can employ the LSI estimate of Proposition 2 to arrive at the following corollary.
Corollary 4. In the setting of Theorem 3, using the LSI estimate of Proposition 2, with the number of
samples, the number of neurons, and the number of iterations, respectively bounded by

n = Õ(deff), m = Õ(deÕ(deff )), l = Õ(deÕ(deff )), (3.7)

MFLA can achieve the excess risk bound (3.6) with λ̃−1, κ = polylog(n).

We observe that the above corollary demonstrates a certain adaptivity to the effective low-dimensional
structure, both in terms of statistical and computational complexity. Remarkably, this property of
MFLA emerges without explicitly encoding any information about the covariance structure in the
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Work Class of Targets Sample Complexity Input Covariance deff -adaptivity
Telgarsky (2023) 2-parity d hypercube isotropic ✗

Suzuki et al. (2023b) k-parity d hypercube isotropic ✗

Nitanda et al. (2024) k-parity tr(Σ)
∑k

i=1 ∥Σ
1/2ui∥−2 parallelotope full-rank ✓

Bach (2017) multi-index d
k+3
2 bounded general ✗

Theorem 3 multi-index tr(Σ)/∥Σ1/2U⊤∥2F subGaussian general ✓

Table 1: Learning guarantees of neural networks with exponential compute (we state the dimension dependence).
Our Theorem 3 improves upon prior bounds, with a potentially significant gap depending on the problem setup.

algorithm. In contrast, consider “fixed-grid” methods for optimization over the space of measures
P(R2d+2) (see Chizat (2022a) and references therein), in which the algorithm fixes the first-layer
of a two-layer network’s representation and only trains the second-layer, solving a convex problem
similar to the random features regression (Rahimi & Recht, 2007). However, fixed-grid methods do
not show any type of adaptivity to low-dimensions, and in particular their computational complexity
always scales exponentially with the ambient dimension d, unless information about the covariance
structure is explicitly used when specifying the fixed representation.

Table 1 compares recent works in various aspects. Bach (2017) requires d
k+3
2 sample complexity for

learning general k-index models, which is worse than the complexity deff of Theorem 3 even in the
worst case deff = d. The improvement in our bound is due to a refined control over ∥Ux∥; while Bach
(2017) assumes this quantity scales with

√
d, it can be verified that for centered x, its expectation is

independent of d. Further, Bach (2017) does not provide a quantitative analysis of the optimization
complexity, and it is not clear if their algorithm is adaptive to the covariance structure. Nitanda et al.
(2024) studied learning k-sparse parities, a subclass of multi-index models we considered, for which
it is considerably simpler to construct optimal neural networks with bounded activation. While the
effective dimension (and the resulting sample complexity) of Nitanda et al. (2024) is not explicitly
scale-invariant, we derive a scale-invariant translation of their bound in Appendix C, and show that it
is always lower bounded by our effective dimension, especially when Σ is nearly rank-deficient.

Remark. We make the following remarks on the complexity of learning multi-index models.

• Even though the complexity in Corollary 4 scales exponentially with deff , in Section 3.2 we outline
problem settings where deff = polylog(d), under which it is possible to achieve quasipolynomial
runtime for the MFLA. That said, the exponential dependence in deff is unavoidable in general
in LSI-based analysis (Menz & Schlichting, 2014), and is consequently present in the mean-field
literature (Chizat, 2022b; Suzuki et al., 2023a;b).

• In the isotropic setting Σ = Id, recent works have shown that certain variants of SGD can learn
single-index polynomials with almost linear sample complexity (Dandi et al., 2024; Lee et al., 2024;
Arnaboldi et al., 2024), which matches our sample complexity without needing exponential compute.
However, these analyses crucially relied on the polynomial link function, which has generative
exponent at most 2 (Damian et al., 2024) and is SQ-learnable with n = Õd(d) samples (Mondelli
& Montanari, 2018; Barbier et al., 2019; Chen & Meka, 2020). In contrast, our assumption on the
link function allows for arbitrarily large generative exponent, and hence the computational lower
bound in Damian et al. (2024) implies that achieving learnability in the n ≍ d scaling requires
exponential compute for statistical query learners.

3.2 UTILIZING THE EFFECTIVE DIMENSION

To better demonstrate the impact of effective dimension deff , we consider two covariance models.

Spiked covariance. We consider the spiked covariance model of Mousavi-Hosseini et al. (2023b).
Namely, given a spike direction θ ∈ Sd−1, suppose the covariance and the target directions satisfy

Σ = (1 + α)−1(Id + αθθ⊤), α ≍ dγ2 , ∥Uθ∥ ≍ d−γ1 , γ2 ∈ [0, 1], γ1 ∈ [0, 1/2]. (3.8)

Note that in high-dimensional settings, γ1 = 1/2 corresponds to a regime where θ is sampled
uniformly over Sd−1, whereas γ1 = 0 corresponds to the case where θ has a strong (perfect)
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correlation with U . We only consider γ2 ≤ 1 since γ2 > 1 corresponds to a setting where the input
is effectively one-dimensional. In this setting, effective dimension depends on γ1 and γ2.
Corollary 5. Under the spiked covariance model (3.8), we have deff ≍ d1−{(γ2−2γ1)∨0}.

To get improvements over the isotropic effective dimension d, either the spike magnitude α or
the spike-target alignment ∥Uθ∥ needs to be sufficiently large so that γ2 > 2γ1. Recall that the
effective dimension in the covariance estimation problem is tr(Σ)/∥Σ∥ ≍ d1−γ2 . Therefore, deff
in Corollary 5 only matches its unsupervised counterpart when γ1 = 0, i.e. θ has a significant
correlation with the target directions U . As γ2 → 1 and γ1 → 0, the effective dimension will be
smaller than polylog(d), leading to a computational complexity that is quasipolynomial in d.

Scaling laws under power-law spectra. Next, we consider a more general power-law decay for
the eigenspectrum. Specifically, suppose Σ =

∑d
i=1 λiθiθ

⊤
i is the spectral decomposition of Σ, and

λi
λ1

≍ i−α,
∥Uθi∥2

∥Uθ1∥2
≍ i−γ , for 1 ≤ i ≤ d, (3.9)

for some absolute constants α, γ > 0. Notice that
∑d
i=1∥Uθi∥2 = ∥U∥2F = 1. The following

corollary characterizes deff in terms of the parameters α and γ.
Corollary 6. Under the power-law eigenspectrum for the covariance matrix (3.9), we have

deff ≍


d1∧(2−α−γ) α < 1, γ < 1

d1−α α < 1, γ ≥ 1

d(1−γ)∨0 α ≥ 1

, (3.10)

where ≍ above hides polylog(d) dependencies.
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Figure 1: deff according to Corollary 6.

The scaling of deff (hence the sample complexity) is illus-
trated in Figure 1. We remark that the power-law assumption
(3.9) is parallel to the source condition and capacity condition
in the nonparametric regression literature (Cucker & Smale,
2002; Caponnetto & De Vito, 2007), where the capacity con-
dition measures the decay of feature eigenvalues, and the
source condition measures the alignment between the target
and feature eigenvectors.

Also, based on (3.10), the width and number of iterations
in Corollary 4 both become quasipolynomial in d when
α, γ ≥ 1. This corresponds to the setting where Σ is approxi-
mately low-rank with most of its eigenspectrum concentrated
in the first few principal components, and the corresponding
eigenvectors are aligned with the row space of U .

4 POLYNOMIAL TIME CONVERGENCE IN THE RIEMANNIAN SETTING

The strong statistical learning guarantees in the previous section come at a computational price;
MFLA may need exp(deff) many iterations and neurons to converge. This complexity arises since
in the worst case, the LSI constant that governs the convergence of MFLD will be exponential
in the inverse temperature parameter β (Menz & Schlichting, 2014). In this section, we provide
first steps towards achieving polynomial-time complexity for MFLD. In particular, we show that
if we constrain the weight space to be a compact Riemannian manifold with a uniformly lower
bounded Ricci curvature such as the hypersphere Sd−1, we can establish a uniform LSI constant with
polynomial dimension dependence, while the same set of assumptions in the Euclidean setting results
in exponential dimension dependence. Notice that due to the manifold constraint on the weights, we
no longer require ℓ2-regularization, and simply consider the objective Fβ(µ) = Ĵ0(µ)+β−1H(µ | τ).
Let (W, g) be a (d− 1)-dimensional compact Riemannian manifold with metric tensor g. We denote
the Ricci curvature of W with Ricg. We recall the neural network ŷ(x;µ) =

∫
Ψ(x;w)dµ(w)

where, in this case, we choose a C2-smooth activation Ψ(x; ·) : W → R defined on the manifold.
We consider the following model example to demonstrate our results.
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Example 7. W is the hypersphere Sd−1 equipped with its canonical metric tensor, and the activation
is Ψ(x;w) = ϕ(⟨w,x⟩) for some smooth ϕ : R → R. Suppose |ϕ′|, |ϕ′′| ≲ 1, and the distribution
of x satisfies the conditions of Assumption 1.

The following assumption plays an important role in the analysis.
Assumption 4. (W, g) satisfies the curvature-dimension condition Ricg ≽ ϱdg for an absolute
constant ϱ > 0. Further, there exists some µ̄ ∈ P(W) such that Ĵ0(µ̄) ≤ ε̄ and H(µ̄ | τ) ≤ ∆̄ for
some constants ε̄, ∆̄, where τ is the uniform distribution on W .

For the unit sphere Sd−1, we have Ricg ≽ (d − 2)g; thus, the curvature-dimension condition is
satisfied for sufficiently large d. Moreover, if there exists some µ with Ĵ0(µ) ≤ ε̄ (e.g. the minimizer
of Ĵ0) for which H(µ | τ) = ∞, one can construct µ̄ such that Ĵ0(µ̄) ≤ Õ(ε̄) and H(µ̄ | τ) ≤ Õ(d),
by smoothing µ via convolution with box kernels (see (Chizat, 2022a, Theorem 4.1) and its proof).
Therefore in the worst-case, we have ∆̄ = Θ̃(d). However, under a reasonable model assumption, we
can verify Assumption 4 with ∆̄ = o(d), which is demonstrated in the below proposition.
Proposition 8. Let y =

∫
Ψ(x; ·)dµ∗ for some µ∗ ∈ P(W) such that dµ∗ ∝ efdτ for f : W → R.

Then, Ĵ0(µ
∗) = 0 and H(µ∗ | τ) ≤

∫
f(dµ∗ − dτ) ≤ osc(f) where osc(f) := sup f − inf f .

In the above result, the constants in Assumption 4 can be identified as ε̄ = 0 and ∆̄ = osc(f) which
is the oscillation of the log-density of µ∗. Consequently, if the neurons in the teacher model are
sufficiently present in all directions of the weight space, we get osc(f) = o(d); consider e.g. the
extreme case µ∗ = τ which implies f is constant. Interestingly, in the case of k-multi-index models,
this condition implies that k grows with dimension, ruling out the case k = O(1). We include a
natural example of target functions of interest in the form of Proposition 8 in Appendix D.

For MFLD to converge to a minimizer of Ĵ0, the parameter β needs to satisfy β ≥ Ω̃(∆̄) to ensure
the entropic regularization is not the dominant term in the objective Fβ . In the Euclidean setting, this
implies an LSI constant of order exp(Õ(∆̄)), resulting in a computational complexity exp(Õ(∆̄)) as
shown in Theorem 3. In what follows, we demonstrate via the Bakry-Émery theory (Bakry & Émery,
1985) that in the Riemmanian setting, under a uniform lower bound on the Ricci curvature, the LSI
constant can be independent of ∆̄ and d as long as we have ∆̄ = o(d).
Proposition 9. Suppose Assumption 4 holds and the loss ρ is Cρ-Lipschitz. Then, for all µ ∈ P(W)

and β < ϱd/CρK, the probability measure νµ ∝ exp(−βĴ ′
0[µ]) satisfies the LSI with constant

CLSI ≤ (ϱd− βCρK)−1, (4.1)

where K = sup∥v∥g=1 ESn

[∣∣〈v,∇2
wΨ(x;w)v

〉∣∣], and ESn [·] denotes the expectation under empir-
ical data distribution over n samples.

Remark. In the setting of Example 7 with n ≥ Ω̃(tr(Σ)/∥Σ∥), we have K ≲ ∥Σ∥ with probability
at least 1−O(n−q) for some constant q > 0. Consequently, the LSI constant is independent of d.

We can now present the following global convergence guarantee to the minimizer of J0 for large d.
Theorem 10. Suppose Assumption 4 holds, and let K be as in Proposition 9. Let (µt)t≥0 denote the
law of the MFLD. For any ε > 0, let β = ∆̄/ε and d ≥ 2CρK∆̄/ϱε. Then, we have

Ĵ0(µT ) ≲ ε̄+ ε, whenever T ≥ ∆̄

εϱd
ln

(
Fβ(µ0)

ε

)
. (4.2)

Moreover, in the setting of Example 7 and for a 1-Lipschitz loss function, if we have d ≳ ∆̄/ϱε and
n ≥ Ω(∆̄(1 + ε̄/ε)/ε2) ∨ Ω̃(tr(Σ)/∥Σ∥) ∨ Ω̃(1/ε4), then

J0(µT ) ≲ ε̄+ ε, whenever T ≥ ∆̄

εϱd
ln

(
Fβ(µ0)

ε

)
, (4.3)

with probability at least 1−O(n−q) over the randomness of data, for some constant q > 0.

The sample complexity is controlled by the maximum of ∆̄ and tr(Σ)/∥Σ∥ up to log factors. We
remark that dependence on ε is not our main focus, and it may be possible to improve 1/ε4 with a
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more refined analysis. Remarkably, the time complexity improves in high dimensions, thanks to the
effect of the Ricci curvature. While the above result is for the continuous-time infinite-width MFLD,
the uniform-in-time propagation of chaos for MFLD strongly suggests that the cost of time/width
discretizations will be polynomial, see e.g. Suzuki et al. (2023a) for the Euclidean setting, and Li &
Erdogdu (2023) for the time-discretization of the Langevin diffusion on the hypersphere under LSI.

To compare the setting of this section to that of Section 3, as explored in Appendix A, we remark that
the Euclidean ℓ2 and entropic regularizations can be combined into a single effective regularizer of
the form β−1H(µ | γ), where γ = N (0, (λβ)−1I2d+2); therefore, in the Euclidean setting, γ plays
the role of τ . Further in the proof of Lemma 20, we show that in the Euclidean setting, ∆̄ ≍ λβ/r2x
and ε̄ ≍ cx/

√
λβ; thus, to learn with any non-trivial accuracy, we have ∆̄ ≍ c2x/r

2
x = deff . As

discussed above, controlling the effect of entropic regularization necessitates β ≥ Ω̃(∆̄). Unlike its
Riemannian counterpart, the Euclidean LSI estimate of Proposition 2 scales with exp(β), ultimately
resulting in a large computational gap between the two settings under the same ∆̄. This leaves open
the question of whether ∆̄ ≍ deff can be achievable in the Riemannian setting for k-multi-index
models with k = O(1), which is an interesting direction for future exploration.

5 CONCLUSION

In this paper, we investigated the mean-field Langevin dynamics for learning multi-index models. We
proved that the statistical and computational complexity of this problem can be characterized by an
effective dimension which captures the low-dimensional structure in the input covariance, along with
its correlation with the target directions. In particular, the sample complexity scales almost linearly
with the effective dimension, while without additional assumptions, the computational complexity may
scale exponentially with this quantity. Through this effective dimension, we showed both statistical
and computational adaptivity of the MFLD to low-dimensions when training neural networks,
outperforming rotationally invariant kernels and statistical query learners in terms of statistical
complexity, and fixed-grid convex optimization methods in terms of computational complexity.
Further, we studied conditions under which achieving a polynomial LSI in the inverse temperature,
and subsequently a polynomial-in-d runtime guarantee for the MFLD is possible. Specifically,
we showed that under certain assumptions, which are verified for teacher models with diverse
neurons, constraining the weights to a Riemannian manifold with positive Ricci curvature such as
the hypersphere can lead to such polynomial dependence. In contrast, the same assumptions in the
Euclidean setting result in an LSI constant scaling exponentially with the inverse temperature.

We conclude with some limitations of our work, along with future directions.

• Further assumptions are required to go beyond the current exponential computational complexity
of the MFLD. We leave the study of such conditions as an important direction for future work.

• While we focused on k = O(1), the versatility of the MFLD analysis may allow us to let k grow
with dimension as in Ghorbani et al. (2019); Martin et al. (2023); Oko et al. (2024), or g to exhibit
a more complex hierarchical structure (Allen-Zhu & Li, 2020; Nichani et al., 2023). Learning
these functions with the MFLD is an interesting direction for future research.

• Another important future direction is developing lower bounds for learning multi-index models
with gradient-based methods, under more realistic assumptions (e.g., non-adversarial noise) than
the statistical query setup. These lower bounds can highlight when exponential computation is
inevitable for optimal sample complexity, and present rigorous information-computation tradeoffs.
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A PROOFS OF SECTION 3

Before presenting the layout of the proofs, we introduce a useful reformulation of the objective
Fβ,λ(µ). Recall that

Fβ,λ(µ) = Ĵ0(µ) +
λ

2
R(µ) +

1

β
H(µ).

Let γ ∝ exp
(−λβ

2 ∥w∥2
)

be the centered Gaussian measure on R2d+2 with variance 1/(λβ). Then,
we can rewrite the above as

Fβ,λ(µ) = Ĵ0(µ) +
1

β
H(µ | γ) + d

2β
ln

(
λβ

2π

)
.

As a result, we can define

F̃β,λ(µ) := Ĵ0(µ) +
1

β
H(µ | γ), (A.1)

which is non-negative and equivalent to Fβ up to an additive constant. Notice that

µ∗
β := argmin

µ
Fβ,λ(µ) = argmin

µ
F̃β,λ(µ).

This reformulation, which was also used in Suzuki et al. (2023b), allows us to combine the effect
of weight decay and entropic regularization into a single non-negative term H(µ | γ). Furthermore,
the simple density expression for the Gaussian measure γ allows us to achieve useful estimates for
H(µ | γ). In particular, as we will show below, it is possible to control H(µ∗

β | γ) with effective
dimension rather than ambient dimension, which leads to dependence on deff rather than d in our
bounds.

We break down the proof of Theorem 3 into three steps:

1. In Section A.2 we show that there exists a measure µ∗ ∈ P2(R2d+2) where ŷ(·;µ∗) can
approximate g on the training set with bounds on R(µ∗). This construction provides upper
bounds on Ĵ0(µ

∗
β) and H(µ∗

β | γ).
2. In Section A.3, given the bound on H(µ∗

β | γ), we perform a generalization analysis via
Rademacher complexity tools which leads to a bound on J0(µ

∗
β).

3. Finally, in Section A.4, we estimate the LSI constant and constants related to smooth-
ness/discretization along the trajectory, which imply that Fm

β,λ(µ
m
l ) converges to Fβ(µ∗

β),
where Fm

β,λ is an adjusted objective over P(R(2d+2)m) defined in (A.6). This bound implies
the convergence of EW∼µm

l
[J0(W )] to J0(µ

∗
β), which was bounded in the previous step.

Before laying out these steps, in Section A.1, we will introduce the required concentration results.
In the following, we will use the unregularized population J0(µ) := E[ℓ(ŷ(x;µ), y)] and empirical
Ĵ0(µ) = ESn [ℓ(ŷ(x;µ), y)] risks, and also consider the finite-width versions J0(W ) := J0(µW )

and Ĵ0(W ) := Ĵ0(µW ). Additionally, we will use ϕ∞(z) := z ∨ 0 to denote the ReLU activation.

A.1 CONCENTRATION BOUNDS

We begin by specifying the definition of subGaussian and subexponential random variables in our
setting.

Definition 11 (Wainwright (2019)). A random variable x is σ-subGaussian if E
[
eλ(x−E[x])] ≤

eλ
2σ2/2 for all λ ∈ R, and is (ν, α)-subexponential if E

[
eλ(x−E[x])] ≤ eλ

2ν2/2 for all |λ| ≤ 1/α. If
x is σ-subGaussian, then

P(x− E[x] ≥ t) ≤ exp
(−t2

2σ2

)
. (A.2)

If x is (ν, α)-subexponential, then

P(x− E[x] ≥ t) ≤ exp
(
− 1

2
min

( t2
ν2

,
t

α

))
(A.3)
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Moreover, for centered random variables, let |·|ψ2
and |·|ψ1

denote the subGaussian and subexponen-
tial norm respectively (Vershynin, 2018, Definitions 2.5.6 and 2.7.5). Then x is σ-subGaussian if and
only if σ ≍ |x− E[x]|ψ2

, and is (ν, ν)-subexponential if and only if ν ≍ |x− E[x]|ψ1
.

Next, we bound several quantities that appear in various parts of our proofs.
Lemma 12. Under Assumption 1, for any q > 0 and all 1 ≤ i ≤ n, with probability at least 1−n−q ,∥∥∥Ux(i)

∥∥∥ ≤ rx
(
1 + σu

√
2(q + 1) lnn

)
= r̃x. (A.4)

Proof. By subGaussianity of ∥Ux∥ from Assumption 1 and the subGaussian tail bound, with
probability at least 1− n−q−1∥∥∥Ux(i)

∥∥∥ ≤ E[∥Ux∥] + σurx
√
2(q + 1) lnn

= rx + σurx
√

2(q + 1) lnn.

The statement of lemma follows from a union bound over 1 ≤ i ≤ n.

Lemma 13. Under Assumption 1, we have ESn

[
∥x∥2

]
≲ c2x with probability at least 1 −

exp(−Ω(n)).

Proof. By the triangle inequality,

|∥x∥|ψ2
≤ |∥x∥ − E[∥x∥]|ψ2

+ |E[∥x∥]|ψ2
≲ σn

∥∥∥Σ1/2
∥∥∥
F
+ tr(Σ)1/2 ≲ tr(Σ)1/2.

Recall c2x := tr(Σ). Furthermore, by (Vershynin, 2018, Lemma 2.7.6) we have∣∣∣∥x∥2∣∣∣
ψ1

= |∥x∥|2ψ2
≲ c2x.

We arrive at a similar result for the centered random variable ∥x∥2 − E[∥x∥]2 = ∥x∥2 − c2x. We
conclude the proof by the subexponential tail inequality,

P
(
ESn

[
∥x∥2

]
− c2x ≥ tc2x

)
≤ exp(−min(t, t2)Ω(n)).

Lemma 14. Under Assumption 1, we have ESn

[
y2
]
≲ 1 with probability at least 1− n−q .

Proof. By the local Lipschitzness of g, on the event of Lemma 12, we have

|y|2 ≤ 3g(0)2 + 3O(1/r2x)∥Ux∥2 + 3ξ2.

By a similar argument to Lemma 13 we have∣∣∣∥Ux∥2
∣∣∣
ψ1

= |∥Ux∥|2ψ2
≤ 2|∥Ux∥ − E[∥Ux∥]|2ψ2

+ 2E[∥Ux∥]2 ≲ (1 + σ2
u)r

2
x,

since E
[
∥Ux∥2

]
= r2x. As a result, by the subexponential tail bound,

ESn

[
∥Ux∥2

]
− E

[
∥Ux∥2

]
≲ (1 + σ2

u)r
2
x ≲ r2x,

with probability at least 1− exp(−Ω(n)). Similarly,
∣∣ξ2∣∣

ψ1
≤ |ξ|2ψ2

≲ ς2, therefore,

ESn

[
ξ2
]
− E

[
ξ2
]
≲ ς2 ≲ 1,

with probability at least 1− exp(−Ω(n)). The statement of the lemma follows by a union bound.

Lemma 15. Under Assumption 1, for any q > 0 and n ≳ c2x
∥Σ∥ (1 + σ2

n(q + 1) ln(n)) ln(dnq),
with probability at least 1 − O(n−q) we have

∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥. Further, if q ≥ 1, then

E
[∥∥ESn

[
xx⊤]∥∥1/2] ≲ ∥Σ∥1/2.
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Proof. First, note that by subGaussianity of ∥x∥, for every fixed i, we have with probability at least
1− n−q−1, ∥∥∥x(i)

∥∥∥− E[∥x∥] ≤ σn

∥∥∥Σ1/2
∥∥∥
F

√
2(q + 1) lnn.

Since E[∥x∥] ≤ cx, via a union bound, with probability at least 1− n−q ,∥∥∥x(i)
∥∥∥ ≤ cx + σncx

√
2(q + 1) lnn =: c̃x.

Define the clipped version of x via xc = x(1 ∧ c̃x
∥x∥ ). Then, on the above event,

ESn

[
xx⊤] = ESn

[
xcx

⊤
c

]
.

Moreover, ∥∥E[xcx⊤
c

]∥∥ = sup
∥v∥≤1

E
[
⟨xc,v⟩2

]
≤ sup

∥v∥≤1

E
[
⟨x,v⟩2

]
=
∥∥E[xx⊤]∥∥.

Finally, by the covariance estimation bound of (Wainwright, 2019, Corollary 6.20) for centered
subGaussian random vectors and the condition on n given in the statement of the lemma,∥∥ESn

[
xcx

⊤
c

]∥∥− ∥∥E[xcx⊤
c

]∥∥ ≲
∥∥E[xx⊤]∥∥

with probability at least 1−O(n−q). Consequently, we have
∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥ with probability

at least 1−O(n−q).

For the second part of the lemma, let E denote the event on which the above
∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥

holds. Then,

E
[∥∥ESn

[
xx⊤]∥∥1/2] = E

[
1(E)

∥∥ESn

[
xx⊤]∥∥1/2]+ E

[
1(EC)

∥∥ESn

[
xx⊤]∥∥1/2]

≲ ∥Σ∥1/2 + P
(
EC
)1/2 E[∥∥ESn

[
xx⊤]∥∥]1/2

≲ ∥Σ∥1/2 +O(n−q/2)cx.

Suppose q ≥ 1. Then for n ≳ c2x/∥Σ∥, we have E
[∥∥ESn

[
xx⊤]∥∥1/2] ≲ ∥Σ∥1/2, which completes

the proof.

We summarize the above results into a single event.

Lemma 16. Suppose n ≳ c2x
∥Σ∥ (1 + σ2

n(q + 1) ln(n)) ln(dnq). There exists an event E such that
P(E) ≥ 1−O(n−q), and on E:

1.
∥∥Ux(i)

∥∥ ≤ r̃x for all 1 ≤ i ≤ n.

2. ESn

[
∥x∥2

]
≲ c2x.

3.
∥∥ESn

[
xx⊤]∥∥ ≲ ∥Σ∥.

4. E
[∥∥ESn

[
xx⊤]∥∥1/2] ≲ ∥Σ∥1/2.

5. ESn

[
y2
]
≲ 1.

We recall the variational lower bound for the KL divergence, which will be used at various stages of
different proofs to relate certain expectations to the KL divergence.

Lemma 17 (Donsker-Varadhan Variational Formula for KL Divergence (Donsker & Varadhan, 1983)).
Let µ and ν be probability measures on W . Then,

H(µ | ν) = sup
f :W→R

∫
fdµ− ln

(∫
efdν

)
.
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Finally, we state the following lemma which will be useful in estimating smoothness constants in the
convergence analysis.
Lemma 18. Suppose (z,x) ∈ R× Rd are drawn from a probability distribution D. Then,

∥ED[zx]∥ ≤
√
ED[z2]∥ED[xx⊤]∥.

Proof. We have

∥ED[zx]∥ = sup
∥v∥≤1

⟨v,ED[zx]⟩ = sup
∥v∥≤1

ED[z⟨v,x⟩]

≤ sup
∥v∥≤1

√
ED[z2]ED

[
⟨v,x⟩2

]
(Cauchy-Schwartz)

≤
√
ED[z2] sup

∥v∥≤1

⟨v,ED[xx⊤]v⟩

=
√
ED[z2]∥ED[xx⊤]∥.

Notice that the distribution D can be both the empirical as well as the population distribution.

A.2 APPROXIMATING THE TARGET FUNCTION

We begin by stating the following approximation lemma which is the result of (Bach, 2017, Proposi-
tion 6) adapted to our setting.
Proposition 19. Suppose g : Rk → R is L-Lipschitz and |g(0)| = O(Lr̃x). On the event of
Lemma 16, there exists a measure µ ∈ P2(R2d+2) with R(µ) ≤ ∆2/r̃2x such that

max
i

∣∣∣g(Ux(i))− ŷ(x(i);µ)
∣∣∣ ≤ CkLr̃x

( ∆

Lr̃x

) −2
k+1

ln
( ∆

Lr̃x

)
+

ln 4

κ
,

for all ∆ ≥ Ck, where Ck is a constant depending only on k, provided that the hyperparameter ι

satisfies ι ≥ CkLr̃x

(
∆
Lr̃x

)2k/(k+1)

.

Proof. Throughout the proof, we will use Ck to denote a constant that only depends on k, whose
value may change across instantiations. Let z := Ux ∈ Rk and z̃ := (z⊤, r̃x)

⊤ ∈ Rk+1. Recall
that on the event of Lemma 12 we have ∥z(i)∥ ≤ r̃x and |g(z(i))| ≲ Lr̃x for all 1 ≤ i ≤ n. Let τ
denote the uniform probability measure on Sk. By (Bach, 2017, Proposition 6), for all ∆ ≥ Ck, there
exists p ∈ L2(τ) with ∥p∥L2(τ) ≤ ∆ such that

max
i

∣∣∣∣g(z(i))−
∫
Sk

p(v)ϕ∞

( 1

r̃x

〈
v, z̃(i)

〉)
dτ(v)

∣∣∣∣ ≤ CkLr̃x
( ∆

Lr̃x

) −2
k+1 ln

( ∆

Lr̃x

)
.

In fact, we have a stronger guarantee on p. Specifically, p(v) is given by

p(v) =
∑
j≥1

λ−1
j rjhj(v),

where r ∈ (0, 1), λj , hj : Sk → R are introduced by (Bach, 2017, Appendix D). In particular,

h(v) = g
( r̃xv1:k

vk+1

)
vk+1,

with the spheircal harmonics decomposition h(v) =
∑
j≥0 hj(v). It is shown in (Bach, 2017,

Appendix D.2) that λj ≤ Ckj
(k+1)/2, and one can prove through spherical harmonics calculations

(omitted here for brevity) that |hj(v)| ≤ Ck supv∈Sk h(v)j
(k−1)/2 ≤ CkLr̃xj

(k−1)/2. As a result,

|p(v)| ≤
∑
j≥0

λ−1
j rj |hj(v)| ≤

∑
j≥1

λ−1
j rj |hj(v)| ≤ CkLr̃x

∑
j≥1

jkrj ≤ CkLr̃x
(1− r)k

.
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Using 1− r =
(
CkLr̃x/∆

)2/(k+1)

as in (Bach, 2017, Appendix D.4) yields

|p(v)| ≤ CkLr̃x

( ∆

Lr̃x

)2k/(k+1)

.

Define p+(v) := p(v) ∨ 0 and p−(v) := (−p(v)) ∨ 0. Then, by positive 1-homogeneity of ReLU,∫
Sk

p(v)ϕ∞

( 1

r̃x
⟨v, z̃⟩

)
dτ(v) =

∫
Sk

p+(v)ϕ∞

( 1

r̃x
⟨v, z̃⟩

)
dτ(v)−

∫
Sk

p−(v)ϕ∞

( 1

r̃x
⟨v, z̃⟩

)
dτ(v)

=

∫
Sk

ϕ∞

(p+(v)
r̃x

⟨v, z̃⟩
)
dτ(v)−

∫
Sk

ϕ∞

(p−(v)
r̃x

〈
v, z̃(i)

〉)
dτ(v)

=

∫
Rk+1

ϕ∞(⟨v, z̃⟩)dµ̃1(v)−
∫
Rk+1

ϕ∞(⟨v, z̃⟩)dµ̃2(v)

=

∫
Rd+1

ϕ∞(⟨w, x̃⟩)dµ1(w)−
∫
Rd+1

ϕ∞(⟨w, x̃⟩)dµ2(w),

where µ̃1 := (·)p+(·)
r̃x

#τ and µ̃2 := (·)p−(·)
r̃x

#τ are the corresponding pushforward measures, µ1 =

TU#µ̃1 and µ2 = TU#µ̃2, where TU (v) = (U⊤vk, vk+1)
⊤ ∈ Rd+1 for v = (v⊤

k , vk+1)
⊤ ∈

Rk+1. In other words, w ∼ µ1 is generated by sampling v ∼ µ̃1 and letting w = (U⊤vk, vk+1)
⊤,

with a similar procedure for w ∼ µ2. Furthermore,

R(µ) =

∫
Rd+1

∥w∥2dµ1(w) +

∫
Rd+1

∥w∥2dµ2(w) =

∫
Rk+1

∥v∥2dµ̃1(v) +

∫
Rk+1

∥v∥2dµ̃2(v)

=

∫
Sk

p(v)2

r̃2x
dτ(v) ≤ ∆2

r̃2x
.

The last step is to replace ϕ∞ with ϕκ,ι. Note that for all i, and almost surely over w ∼ µ1, we

have
∣∣∣〈w, x̃(i)

〉∣∣∣ ≤ p+(v) ≤ CkLr̃x

(
∆
Lr̃x

)2k/(k+1)

, with a similar bound holding for w ∼ µ2. As

a result, by choosing ι ≥ CkLr̃x

(
∆
Lr̃x

)2k/(k+1)

, we have ϕκ,ι

(〈
w, x̃(i)

〉)
= ϕκ

(〈
w, x̃(i)

〉)
for

all i and almost surely over w ∼ µ1 and w ∼ µ2. By the triangle inequality, we have∣∣∣g(Ux(i))− ŷ(x(i);µ)
∣∣∣ ≤∣∣∣∣{∫ ϕκ,ι

(〈
w, x̃(i)

〉)
− ϕ∞

(〈
w, x̃(i)

〉)}
dµ1(w)

∣∣∣∣
+

∣∣∣∣{∫ ϕκ,ι

(〈
w, x̃(i)

〉)
− ϕ∞

(
⟨w, x̃⟩(i)

)}
dµ2(w)

∣∣∣∣
+

∣∣∣∣g(Ux(i))−
∫

ϕ∞

(〈
w, x̃(i)

〉)
(dµ1(w)− dµ2(w))

∣∣∣∣
≤2 ln 2

κ
+ CkLr̃x

( ∆

Lr̃x

) −2
k+1 ln

( ∆

Lr̃x

)
,

which completes the proof.

Next, we control the effect of entropic regularization on the minimum of F̃β,λ via the following
lemma.

Lemma 20. Suppose ρ is Cρ Lipschitz. For every µ∗ ∈ P(R2d+2), we have

min
µ∈Pac(R2d+2)

F̃β,λ(µ) ≤ Ĵ0(µ
∗) +

λ

2
R(µ∗) +

2
√
2Cρ√
πλβ

ESn [∥x̃∥].

Proof. We will smooth µ∗ by convoliving it with γ, i.e. we consider µ = µ∗ ∗ γ. Let u ∼ γ

independent of w ∼ µ∗ and denote u = (u⊤
1 ,u

⊤
2 )

⊤ with u1,u2 ∈ Rd+1. We first bound Ĵ0(µ
∗ ∗γ).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Using the Lipschitzness of the loss and of ϕκ,ι, we have

Ĵ0(µ
∗ ∗ γ)− Ĵ0(µ

∗) =ESn

[
ℓ
(∫

Ψ(x;w)d(µ∗ ∗ γ)(w)− y
)
− ℓ
(∫

Ψ(x;w)dµ∗(w)− y
)]

≤CρESn

[∣∣∣∣∫ Ψ(x;w)d(µ∗ ∗ γ)(w)−
∫

Ψ(x;w)dµ∗(w)

∣∣∣∣]
=CρESn

[∣∣∣∣∫ (Eu[Ψ(x;w + u)]−Ψ(x;w))dµ∗(w)

∣∣∣∣]
≤CρESn

[∫
Eu[|ϕκ,ι(⟨ω1 + u1, x̃⟩)− ϕκ,ι(⟨ω1, x̃⟩)|]dµ∗(w)

]
+ CρESn

[∫
Eu[|ϕκ,ι(⟨ω2 + u2, x̃⟩)− ϕκ,ι(⟨ω2, x̃⟩)|]dµ∗(w)

]
≤CρESn

[∫
{Eu1

[|⟨u1, x̃⟩|] + Eu2
[|⟨u2, x̃⟩|]}dµ∗(ω)

]
=
2
√
2Cρ√
πλβ

ESn
[∥x̃∥].

Next, we bound the KL divergence via its convexity in the first argument,

H(µ∗ ∗ γ | γ) = H
(∫

γ(· −w′)dµ∗(w′) | γ
)

≤
∫

H(γ(· −w′) | γ(·))dµ∗(w′).

Furthermore,

H(γ(· −w′) | γ(·)) =
∫

λβ

2

(
− ∥w −w′∥2 + ∥w∥2

)
γ(dw −w′) =

λβ∥w′∥2

2
.

Consequently,

H(µ∗ ∗ γ | γ) ≤ λβ

2
R(µ∗),

which finishes the proof.

Combining above results, we have the following statement.
Corollary 21. Suppose the event of Lemma 16 holds, ρ is Cρ Lipschitz, and λ ≲ 1. Then,

min
µ∈Pac(R2d+2)

F̃β,λ(µ)− ESn
[ρ(ξ)] ≲ Cρ

r̃x
rx

(
rx∆

r̃x

) −2
k+1

ln

(
rx∆

r̃x

)
+

Cρ
κ

+
λ∆2

r̃2x
+

Cρ(cx + r̃x)√
λβ

,

for all ∆ ≥ Ck, provided that ι ≥ Ck∆
2k/(k+1)(rx/r̃x)

(k−1)/(k+1).

Proof. We will use Lemma 20 with µ∗ ∈ P(R2d+2) constructed in Proposition 19. Then, for all
∆ ≥ Ck,

Ĵ0(µ
∗) = ESn

[ρ(ŷ(x;µ∗)− y)]

= ESn
[ρ(ŷ(x;µ∗)− g(Ux)− ξ)]

≤ ESn [ρ(ξ)] + CρESn [|ŷ(x;µ∗)− g(Ux)|]

≤ ESn
[ρ(ξ)] + CkCρ

r̃x
rx

(
rx∆

r̃x

)− 2
k+1

ln

(
rx∆

r̃x

)
+

Cρ ln 4

κ
.

Furthermore, Proposition 19 guarantees R(µ∗) ≤ ∆2/r̃2x. Combining these bounds with Lemma 20
completes the proof.

A.3 GENERALIZATION ANALYSIS

Let
µ∗
β := argmin

µ∈Pac
2 (R2d+2)

Fβ,λ(µ) = argmin
µ∈Pac

2 (R2d+2)

F̃β,λ(µ).
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Corollary 21 gives an upper bound on Ĵ0(µ
∗). In this section, we transfer the bound to J0(µ

∗) via a
Rademacher complexity analysis. Since Corollary 21 implies a bound on H(µ | γ), we will control
the following quantity,

sup
µ:H(µ | γ)≤∆2

J0(µ)− Ĵ0(µ).

To be able to provide guarantees with high probability, we will prove uniform convergence over a
truncated version of the risk instead, given by

sup
µ:H(µ | γ)≤∆2

J κ
0 (µ)− Ĵ κ

0 (µ),

where
J κ
0 (µ) := E[ρκ(ŷ(x;µ)− y)], Ĵ κ

0 (µ) := ESn
[ρκ(ŷ(x;µ)− y)],

and ρκ(·) := ρ(·) ∧ κ. We will later specify the choice of κ.

We are now ready to present the Rademacher complexity bound.

Lemma 22 ((Chen et al., 2020, Lemma 5.5), (Suzuki et al., 2023b, Lemma 1)). Suppose ρ is either a
Cρ-Lipschitz loss or the squared error loss. Let ϑ :=

√
2κ for the squared error loss and Cρ for the

Lipschitz loss. Recall γ = N (0, Id+1

λβ ). Then,

E

[
sup

{µ∈Pac(R2d+2):H(µ | γ)≤M}
J κ
0 (µ)− Ĵ κ

0 (µ)

]
≤ 4ϑι

√
2M

n
.

Proof. We repeat the proof here for the reader’s convenience. Let (ξi)ni=1 denote i.i.d. Rademacher
random variables. Notice that for the squared error loss, ρκ is

√
2κ Lipschitz. Then, by a standard

symmetrization argument and Talagrand’s contraction lemma, we have

E

[
sup

µ:H(µ | γ)≤M
J0(µ)− Ĵ0(µ)

]
≤ 2E

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiρ(ŷ(x
(i);µ)− y)

]

≤ 2ϑE

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiŷ(x
(i);µ)

]
Next, we proceed to bound the Rademacher complexity. Specifically,

Eξ

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξi

∫
Ψ(x(i);w)dµ(w)

]
= Eξ

[
1

α
sup

µ:H(µ | γ)≤M

∫
α

n

n∑
i=1

ξiΨ(x(i);w)dµ(w)

]

≤ M

α
+

1

α
Eξ

[
ln

∫
exp

(
α

n

n∑
i=1

ξiΨ(x(i);w)

)
dγ(w)

]

≤ M

α
+

1

α
ln

∫
Eξ

[
exp

(
α

n

n∑
i=1

ξiΨ(x(i);w)

)]
dγ(w),

where the first inequality follows from the KL divergence lower bound of Lemma 17. Additionally,
by sub-Gaussianity and independence of (ξi) and Lipschitzness of ϕκ,ι, we have

Eξ

[
exp

(
α

n

n∑
i=1

ξiΨ(x(i);w)

)]
≤ exp

(
α2

2n2

n∑
i=1

Ψ(x(i);w)2

)

≤ exp

(
2α2ι2

n

)
Plugging this back into our original bound, we obtain

Eξ

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiŷ(x;µ)

]
≤ M

α
+

2αι2

n
.
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Choosing α =
√

Mn
2ι2 , we obtain

Eξ

[
sup

µ:H(µ | γ)≤M

1

n

n∑
i=1

ξiŷ(x;µ)

]
≤ 2ι

√
2M

n
,

which completes the proof.

We can convert the above bound in expectation to a high-probability bound as follows.
Lemma 23. In the setting of Lemma 22, for any δ > 0, we have

sup
µ∈Pac(R2d+2):H(µ | γ)≤M

J κ
0 (µ)− Ĵ κ

0 (µ) ≲ ϑι

√
M

n
+ κ

√
ln(1/δ)

n
,

with probability at least 1− δ.

Proof. As the truncated loss is bounded by κ, the result is an immediate consequence of McDiarmid’s
inequality.

Next, we control the effect of truncation by bounding J0(µ) via J κ
0 (µ), which is achieved by the

following lemma.
Lemma 24. Suppose H(µ | γ) ≤ M . Then,

J0(µ)− J κ
0 (µ) ≲

(
ι+ E

[
y2
]1/2)(

e−Ω(κ2) + n−q−1
)
.

Proof. Notice that since the loss is Cρ-Lipschitz and ρ(0) = 0, we have |ρ(ŷ − y)| ≤ Cρ|ŷ − y|.
Recall that we use L for the Lipschitz constant of g, and |ŷ(x;µ)| ≤ 2ι. Then,

J0(µ)− J κ
0 (µ) ≤ E[1(ρ(ŷ(x;µ)− y) ≥ κ)ρ(ŷ(x;µ)− y)]

≤ CρP(ρ(ŷ(x;µ)− y) ≥ κ)1/2 E
[
(ŷ(x;µ)− y)2

]1/2
≤ CρP(2ι+ |y| ≥ κ/Cρ)1/2

(
E
[
ŷ(x;µ)2

]1/2
+ E

[
y2
]1/2)

.

Additionally, by local Lipschitzness of g,

P(2ι+ |y| ≥ κ/Cρ) ≤ P
({

{2ι+ |y| ≥ κ/Cρ} ∩ {∥Ux∥ ≤ r̃x}
}
∪
{
∥Ux∥ ≥ r̃x

})
≤ P(2ι+ |g(0)|+ L∥Ux∥+ |ξ| ≥ κ/Cρ) + P(∥Ux∥ ≥ r̃x)

≤ P(2ι+ |g(0)|+ L∥Ux∥+ |ξ| ≥ κ/Cρ) + n−(q+1).

Furthermore, Let κ/Cρ ≥ 4ι+ 2|g(0)|+ 2Lrx + 2E[|ξ|], and recall that L = O(1/rx). Then, by a
subGaussian concentration bound, we have

P(2ι+ |g(0)|+ L∥Ux∥+ ξ ≥ κ/Cρ)1/2 ≤ e
−Ω
(

κ2

σ2
uC2

ρ

)
.

We conclude the proof by remarking that by our assumptions, σu and Cρ are absolute constants.

Finally, we combine the steps above to give an upper bound on J0(µ
∗
β), stated in the following

lemma.

Lemma 25. Suppose λ = λ̃r2x and β =
deff+r̃

2
x/r

2
x

ε2λ̃
for ε, λ̃ ≲ 1. Let ε̃ := Õ(λ̃

1
k+2 ) + ε + κ−1.

Suppose n ≳ (deff+r̃
2
x/r

2
x)ι

2

λ̃ε4
and ι ≳ λ̃− k

k+2 (r̃x/rx)
2(k+1)
k+2 . Then,

J0(µ
∗
β)− E[ρ(ξ)] ≲ ε̃, and β−1H(µ∗

β | γ) ≲ E[ρ(ξ)] + ε̃ ≲ 1.

Proof. By Corollary 21 and a standard concentration bound on ESn
[ρ(ξ)] with sufficiently large n to

induce neglibile error in comaprison with the rest of the terms in the corollary, we have

Ĵ0(µ
∗
β) + β−1H(µ∗

β | γ)− E[ρ(ξ)] ≲
r̃x
rx

(
rx∆

r̃x

) −2
k+1

ln

(
rx∆

r̃x

)
+

λ∆2

r̃2x
+

(cx + r̃x)√
λβ

+
1

κ
.
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By choosing

∆ =
(r2x
λ

) 1
2 ·

k+1
k+2
( r̃x
rx

) 1
2 ·

3k+5
k+2

,

and assuming cx ≳ r̃x,

β−1H(µ∗
β | γ) ≲ E[ρ(ξ)] +

(
λ

r2x

) 1
k+2
(
r̃x
rx

) k+1
k+2

ln

(
r̃xrx
λ

)
+

cx√
λβ

+
1

κ
.

Note that the above choice on ∆ translates to a lower bound on ι in Corollary 21, given by

ι ≳ λ̃− k
k+2
( r̃x
rx

) 2(k+1)
k+2 .

By choosing λ = λ̃r2x and using the fact that r̃x ≤ Õ(rx) and β =
c2x

r2xλ̃ε
2

, we have the simpification,

β−1H(µ∗
β | γ) ≲ E[ρ(ξ)] + Õ(λ̃

1
k+2 ) + ε+

1

κ
≲ 1,

and,

Ĵ0(µ
∗
β)− E[ρ(ξ)] ≲ Õ(λ̃

1
k+2 ) + ε+

1

κ
=: ε̃.

Note that Ĵ κ
0 (µ∗

β) ≤ Ĵ0(µ
∗
β). Using the generalization bound of Lemma 23 with the choice of

δ = n−q for some constant q > 0, we have with probability 1−O(n−q),

J κ
0 (µ∗

β)− Ĵ κ
0 (µ∗

β) ≲ ι

√
β

n
+ κ

√
lnn

n

≲ ι

√
deff

nλ̃ε2
+ κ

√
lnn

n
. (A.5)

Furthermore, by Lemma 24 we have

J0(µ
∗
β)− J κ

0 (µ∗
β) ≲ ιe−Ω(κ2).

Combining the above with (A.5) and choosing on κ ≍
√
lnn, we have

J0(µ
∗
β)− E[ρ(ξ)] ≲ ε̃+ ι

√
deff

nλ̃ε2
+

√
ln2 n

n
,

which holds with probability at least 1−O(n−q) over the randomness of Sn.

A.4 CONVERGENCE ANALYSIS

So far, our analysis has only proved properties of µ∗
β . In this section, we relate these properties to µml

via propagation of chaos. In particular, Suzuki et al. (2023a) showed that for W ∼ µml , ŷ(x;µml )
converges to ŷ(x;µ∗

β) in a suitable sense characterized shortly, as long as the objective over µml
converges to Fβ,λ(µ∗

β). Notice that µmℓ is a measure on P(R(2d+2)m) instead of P(R2d+2). Thus,
we need to adjust the definition of objective by defining the following

Fm
β,λ(µ

m) := EW∼µm

[
Ĵ0(W ) +

λ

2
R(W )

]
+

1

mβ
H(µm). (A.6)

We can use the same reformulation introduced earlier in (A.1) to define

F̃m
β,λ(µ

m) := EW∼µm

[
Ĵ0(W )

]
+

1

mβ
H(µm | γ⊗m), (A.7)

which is equivalent to Fm
β,λ up to an additive constant. With these definitions, we can now control

EW∼µm
l
[J0(µ

m
l )] via J0(µ

∗
β). The following lemma is based on (Suzuki et al., 2023a, Lemma 4),

with a more careful analysis to obtain sharper constants.
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Lemma 26. Let r̄x := ∥Σ∥1/2 ∨ r̃x, and suppose ρ is Cρ ≲ 1-Lipschitz. Then,

EW∼µm
l
[J0(W )]− J0(µ

∗
β) ≲

√
r̄2xW

2
2

(
µml , µ∗

β
⊗m)+ ι2

m
. (A.8)

In particular, combined with (Suzuki et al., 2023a, Lemma 3), the above implies

EW∼µm
l
[J0(W )]− J0(µ

∗
β) ≲

√
r̄2xβCLSI

m

(
F̃m
β,λ(µ

m
l )− F̃β,λ(µ∗

β)
)
+

ι2

m
. (A.9)

Proof. Notice that

EW∼µm
l
[J0(W )] = EW

[
Ex

[
ρ(ŷ(x;µW )− ŷ(x;µ∗

β) + ŷ(x;µ∗
β)− y)

]]
≤ Ex

[
ρ(ŷ(x;µ∗

β)− y)
]
+ Cρ EW

[
Ex

[∣∣ŷ(x;µW )− ŷ(x;µ∗
β)
∣∣]]

≤ J0(µ
∗
β) + Cρ

√
Ex

[
EW

[
(ŷ(x;µW )− ŷ(x;µ∗

β))
2
]]

Suppose W = (w1, . . . ,wm) ∼ µml and W ′ = (w′
1, . . . ,w

′
m) ∼ µ∗

β
⊗m. Let Γ denote the optimal

W2 coupling between W and W ′, and assume W ,W ′ ∼ Γ. Then,

EW

[
(ŷ(x;µW )− ŷ(x;µ∗))2

]
= EW ,W ′

[
(ŷ(x;µW )− ŷ(x;µW ′) + ŷ(x;µW ′)− ŷ(x;µ∗

β))
2
]

≤ 2EW ,W ′
[
(ŷ(x;µW )− ŷ(x;µW ′)2

]
+ 2EW ′

[
(ŷ(x;µW ′)− ŷ(x;µ∗

β))
2
]

Moreover, by Jensen’s inequality,

EW ,W ′
[
(ŷ(x;µW )− ŷ(x;µW ′)2

]
≤ 1

m

m∑
i=1

EW ,W ′
[
(Ψ(x;wi)−Ψ(x;w′

i))
2
]

≤ 2

m

m∑
i=1

EW ,W ′

[
⟨ωi1 − ω′

i1, x̃⟩
2
]
+

2

m

m∑
i=1

EW ,W ′

[
⟨ωi2 − ω′

i2, x̃⟩
2
]
.

Hence,

Ex

[
EW ,W ′

[
(ŷ(x;µW )− ŷ(x;µW ′))2

]]
≤

2
∥∥∥Σ̃∥∥∥
m

EW ,W ′

[∥∥W −W ′∥∥2
F

]
=

2
∥∥∥Σ̃∥∥∥
m

W 2
2

(
µmt , µ∗

β
⊗m).

For the second term, notice that ŷ(x;µ∗
β) = EW ′ [ŷ(x;µW ′)] = Ew′

i
[Ψ(x;w′

i)] for all 1 ≤ i ≤ m.
By independence of (w′

i) and Jensen’s inequality, we have

EW ′
[
(ŷ(x;µW ′)− ŷ(x;µ∗

β))
2
]
=

1

m
Ew′

[
(Ψ(x;w′)− ŷ(x;µ∗))2

]
=

1

m
Ew′

[(∫
(Ψ(x;w′)−Ψ(x;w))dµ∗

β(w)

)2
]

≲
ι2

m
.

Thus, the rest of this section deals with establishing convergence rates for Fm
β,λ(µ

m
l ) → Fβ,λ(µ∗

β).
To use the one-step decay of optimality gap provided by Suzuki et al. (2023a), we depend on the
following assumption.
Assumption 5. Suppose there exist constants L, CL, and R, such that

1. (Lipschitz gradients of the Gibbs potential) For all µ, µ′ ∈ P2(R2d+2) and w,w′ ∈
R2d+2, ∥∥∥∇Ĵ ′

0[µ](w)−∇Ĵ ′
0[µ

′](w′)
∥∥∥ ≤ L(W2(µ, µ

′) + ∥w −w′∥), (A.10)

where W2 is the 2-Wasserstein distance.
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2. (Bounded gradients of the Gibbs potential) For all µ ∈ P2(R2d+2) and w ∈ R2d+2, we

have
∥∥∥∇Ĵ ′

0[µ](w)
∥∥∥ ≤ R.

3. (Bounded second variation) Denote the second variation of Ĵ0(µ) at w via Ĵ ′′
0 [µ](w,w′),

which is defined as the first variation of µ 7→ Ĵ ′
0[µ](w) (see (2.6) for the definition of first

variation). Then, for all µ ∈ P2(R2d+2) and w,w′ ∈ R2d+2,∣∣∣Ĵ ′′
0 [µ](w,w′)

∣∣∣ ≤ L(1 + CL(∥w∥2 + ∥w′∥2)). (A.11)

We can now state the one-step bound.

Theorem 27. (Suzuki et al., 2023a, Theorem 2) Suppose Ĵ0 satisfies Assumption 5. Assume λ ≲ 1,
β, L,R ≳ 1, and the initialization satisfies E

[∥∥wi
0

∥∥2] ≲ R2 for all 1 ≤ i ≤ m. Then, for all

η ≤ 1/4,

Fm
β,λ(µ

m
l+1)−Fβ,λ(µ∗

β) ≤ exp
( −η

2βCLSI

)(
Fm
β,λ(µ

m
l )−Fβ,λ(µ∗

β)
)
+ ηAm,β,λ,η, (A.12)

where

Am,β,λ,η := C

(
L2
(
d+

R2

λ

)(
η2 +

η

β

)
+

L

mβ

( 1

CLSI
+
(R2

λ2
+

d

λβ

)( CL
CLSI

+
L

β

)))
(A.13)

for some absolute constant C > 0.

We now focus on bounding the constants that appear in Assumption 5.

Lemma 28 (Lipschitzness of ∇Ĵ ′
0). Suppose ρ is either the squared error loss or is Cρ Lipschitz

and has a C ′
ρ Lipschitz derivative. Assume κ ≳ 1. Notice that for the squared error loss, C ′

ρ = 1.
Then, for all µ, ν ∈ P2(R2d+2) and w,w′ ∈ R2d+2, we have∥∥∥∇Ĵ ′

0[µ](w)−∇Ĵ ′
0[µ

′](w′)
∥∥∥ ≲ κCρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥∥w −w′∥+ C ′
ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′),

for the Lipschitz loss, and∥∥∥∇Ĵ ′
0[µ](w)−∇Ĵ ′

0[µ
′](w′)

∥∥∥ ≲ κ
√
Ĵ0(µ)

∥∥ESn

[
x̃⊗4

]∥∥
2→2

∥w −w′∥+
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′),

for the squared error loss, where
∥∥ESn

[
x̃⊗4

]∥∥
2→2

:= sup∥v∥≤1

∥∥∥ESn

[
⟨x̃,v⟩2x̃x̃⊤

]∥∥∥.

Proof. Recall that Ĵ ′
0[µ](w) = ESn

[ρ′(ŷ(x;µ)− y)Ψ(x;w)], where Ψ(x;w) = ϕκ,ι(⟨ω1, x̃⟩)−
ϕκ,ι(⟨ω2, x̃⟩). We start with the triangle inequality,∥∥∥∇Ĵ ′

0[µ](w)−∇Ĵ ′
0[µ

′](w′)
∥∥∥ ≤

∥∥∥∇Ĵ ′
0[µ](w)−∇Ĵ ′

0[µ](w
′)
∥∥∥+∥∥∥∇Ĵ ′

0[µ](w
′)−∇Ĵ ′

0[µ
′](w′)

∥∥∥.
We now focus on the first term. For the Lipschitz loss,∥∥∥∇ω1Ĵ ′

0[µ](w)−∇ω1Ĵ ′
0[µ](w

′)
∥∥∥ =

∥∥ESn

[
ρ′(ŷ(x;µ)− y)(ϕ′

κ,ι(⟨ω1, x̃⟩)− ϕ′
κ,ι(⟨ω′

1, x̃⟩)x̃
]∥∥

≤ CρESn

[
(ϕ′
κ,ι(⟨ω1, x̃⟩)− ϕ′

κ,ι(⟨ω′
1, x̃⟩))2

]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2
≤ CρκESn

[
⟨ω1 − ω′

1, x̃⟩
2
]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2
≤ Cρκ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥∥ω1 − ω′
1∥,
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where the first inequality follows from Lemma 18, and the second inequality follows from the fact
that |ϕ′′

κ| ≤ κ. For the squared error loss, we have∥∥∥∇ω1Ĵ ′
0[µ](w)−∇ω1Ĵ ′

0[µ](w
′)
∥∥∥ =

∥∥ESn

[
(ŷ(x;µ)− y)(ϕ′

κ,ι(⟨w, x̃⟩)− ϕ′
κ,ι(⟨w′, x̃⟩)x̃

]∥∥
= sup

∥v∥≤1

ESn

[
(ŷ(x;µ)− y)(ϕ′

κ,ι(⟨ω1, x̃⟩)− ϕ′
κ,ι(⟨ω′

1, x̃⟩)⟨v, x̃⟩
]

≤ sup
∥v∥≤1

√
ESn [(ŷ(x;µ)− y)2]ESn

[
(ϕ′
κ,ι(⟨ω1, x̃⟩)− ϕ′

κ,ι(⟨ω′
1, x̃⟩))2⟨v, x̃⟩

2
]

≤ κ

√
Ĵ0(µ) sup

∥v∥≤1

〈
v,ESn

[
⟨ω1 − ω′

1, x̃⟩
2
x̃x̃⊤

]
v
〉

≤ κ

√
Ĵ0(µ)

∥∥∥ESn

[
⟨ω1 − ω′

1, x̃⟩
2
x̃x̃⊤

]∥∥∥
≤ κ

√
Ĵ0(µ)

∥∥ESn

[
x̃⊗4

]∥∥
2→2

∥ω1 − ω′
1∥.

Similar bounds apply to the gradient with respect to ω2, which completes the bound on the first term
of the triangle inequality.

We now consider the second term of the triangle inequality. Here we consider Lipschitz losses and
the squared error loss at the same time since both have a Lipschitz derivative.∥∥∥∇ω1

Ĵ ′
0[µ](ω

′)−∇ω1
Ĵ ′
0[µ](ω

′)
∥∥∥ =

∥∥(ρ′(ŷ(x;µ)− y)− ρ′(ŷ(x;µ′)− y)
)
ϕ′
κ,ι(⟨ω′

1, x̃⟩)x̃
∥∥

≤ ESn

[(
ρ′(ŷ(x;µ)− y)− ρ′(ŷ(x;µ′)− y)

)2]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2
≤ C ′

ρESn

[
(ŷ(x;µ)− ŷ(x;µ′))2

]1/2∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2,
(A.14)

where the first inequality follows from Lemma 18. Let γ ∈ P2(R2d+2 × R2d+2) be a coupling of µ
and µ′ (i.e. the first and second marginals of γ are equal to µ and µ′ respectively). Recall that,

ŷ(x;µ)− ŷ(x;µ′) =

∫ (
ϕκ,ι(⟨ω1, x̃⟩)−ϕκ,ι(⟨ω2, x̃⟩)−ϕκ,ι(⟨ω′

1, x̃⟩)+ϕκ,ι(⟨ω′
2, x̃⟩

)
dγ(w,w′).

Therefore by the triangle inequality for the L2 norm ESn

[
(·)2
]1/2

and Jensen’s inequality,

ESn

[
(ŷ(x;µ)− ŷ(x;µ′))2

]1/2 ≤ESn

[∫ (
ϕκ,ι(⟨ω1, x̃⟩)− ϕκ,ι(⟨ω′

1, x̃⟩)
)2
dγ

]1/2
+ ESn

[∫ (
ϕκ,ι(⟨ω2, x̃⟩)− ϕκ,ι(⟨ω′

2, x̃⟩)
)2
dγ

]1/2
≤
∫

ESn

[
⟨ω1 − ω′

1, x̃⟩
2
]1/2

dγ +

∫
ESn

[
⟨ω2 − ω′

2, x̃⟩
2
]1/2

dγ

≤
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2 ∫ (∥ω1 − ω′
1∥+ ∥ω2 − ω′

2∥)dγ(w1,w2)

≤

√
2
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥ ∫ ∥w −w′∥2dγ(w,w′).

By choosing γ whose transport cost attains (or converges to) the optimal cost, we have

ESn

[
(ŷ(x;µ)− ŷ(x;µ′))2

]1/2 ≤
√
2
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′).

Plugging the above result into (A.14), we have∥∥∥∇ω1
Ĵ ′
0[µ](ω

′)−∇ω2
Ĵ ′
0[µ

′](ω′)
∥∥∥ ≤

√
2C ′

ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥W2(µ, µ
′).

Notice that the same bound holds for gradients with respect to ω2. Thus the bound of the second
term in the triangle inequality and the proof is complete.
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Lemma 29 (Boundedness of ∇Ĵ ′
0). In the same setting as Lemma 28, for all µ ∈ P2(R2d+2) and

w ∈ R2d+2, we have ∥∥∥∇Ĵ ′
0[µ](w)

∥∥∥ ≤
√
2C̃ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2,
where C̃ρ = Cρ when ρ is Lipschitz and C̃ρ =

√
2Ĵ0(µ) when ρ is the squared error loss.

Proof. Notice that
∣∣ϕ′
κ,ι

∣∣ ≤ 1. Therefore,∥∥∥∇ω1Ĵ ′
0[µ](w)

∥∥∥ =
∥∥ESn

[
ρ′(ŷ − y)ϕ′

κ,ι(⟨ω1, x̃⟩)x̃
]∥∥

≤
√

ESn [ρ
′(ŷ − y)2]

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥
≤ C̃ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2,
where the first inequality follows from Lemma 18.

Lemma 30 (Boundedness of Ĵ ′′
0 ). In the same setting as Lemma 28, for all µ ∈ P2(R2d+2) and

w,w′ ∈ R2d+2, we have∣∣∣Ĵ ′′
0 [µ](w,w′)

∣∣∣ ≤ C ′
ρ

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥(∥w∥2 + ∥w′∥2
)
,

where we recall that C ′
ρ = 1 for the squared error loss.

Proof. Via the definition given by (2.6), it is straightforward to show that

Ĵ ′′
0 [µ](w,w′) = ESn [ρ

′′(ŷ(x;µ)− y)Ψ(x;w)Ψ(x;w′)].

Then, by the Cauchy-Schwartz inequality,

Ĵ ′′
0 [µ](w,w′) ≤ C ′

ρESn

[
Ψ(x;w)2

]1/2ESn

[
Ψ(x;w′)2

]1/2
.

Moreover, by the Lipschitzness of ϕκ,ι,

ESn

[
Ψ(x;w)2

]1/2 ≤ ESn

[
⟨ω1, x̃⟩2

]1/2
+ ESn

[
⟨ω2, x̃⟩2

]1/2
≤

√
2
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥1/2∥w∥

We can similarly bound the expression for w′, and arrive at the statement of the lemma via Young’s
inequality,

Ĵ ′′
0 [µ](w,w

′) ≤ 2
∥∥∥ESn

[
x̃x̃⊤

]∥∥∥C ′
ρ∥w∥∥w′∥ ≤

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥(∥w∥2 + ∥w′∥2
)
.

We collect the smoothness estimates and simplify them under the event of Lemma 16 in the following
Corollary.

Corollary 31. Suppose ρ and ρ′ are Cρ and C ′
ρ Lipschitz respectively, with Cρ, C

′
ρ ≲ 1. Recall that

Σ := E
[
xx⊤]. On the event of Lemma 16, we have

∥∥∥ESn

[
x̃x̃⊤

]∥∥∥ ≲ ∥Σ∥ ∨ r̃2x, and consequently,

Ĵ ′
0 satisfies Assumption 5 with constants L ≲ κ(∥Σ∥ ∨ r̃2x), R ≲ ∥Σ∥1/2 ∨ r̃x, and CL = κ−1.

Using the estimates above, we can present the following convergence bound Fm
β,λ(µ

∗
β)−Fβ,λ(µ∗

β).

Proposition 32. Let r̄x := ∥Σ∥ ∨ r̃x, and for simplcity assume CLSI ≥ β. For any ε ≲ 1, suppose
the step size satisfies

η ≲
ε

CLSIκ2r̄4x(d+ r̄2x/λ)
,
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the width of the network satisfies,

m ≳
κr̄2x

(
1 +

( r̄2x
λ2 + d

λβ

)(
1
κ +

κr̄2xCLSI

β

))
ε

,

and the number of iterations satisfies

l ≳
βCLSI

η
ln
(Fm

β,λ(µ
m
0 )−F∗

β

ε

)
.

Then, we have Fm
β,λ(µ

m
l )−Fβ,λ(µ∗

β) ≤ ε.

Proof. Throughout the proof, we will assume the event of Lemma 16 holds. Let F∗
β,λ := Fβ,λ(µ∗

β).
Notice that by iterating the bound of Theorem 27, we have

Fm
β,λ(µ

m
l )−F∗

β,λ ≤ exp
( −lη

2βCLSI

)
(Fm

β,λ(µ
m
0 )−F∗

β,λ) +
ηAm,β,λ,η

1− exp
( −η
2βCLSI

)
≤ exp

( −lη

2βCLSI

)
(Fm

β,λ(µ
m
0 )−F∗

β,λ) + 4βCLSIAm,β,λ,η,

where the second inequality holds for η ≤ 2βCLSI since 1 − e−x ≥ x/2 for x ∈ [0, 1]. We now
bound Am,β,λ,η so that the RHS of the above is less than O(ε) by choosing a sufficiently large m
and a sufficiently small η. Recall that given constants L and R from Assumption 5,

Am,β,λ,η ≍ L2
(
d+

R2

λ

)(
η2 +

η

β

)
+

L

mβ

( 1

CLSI
+
(R2

λ2
+

d

λβ

)( CL
CLSI

+
L

β

))
.

From Corollary 31, L ≍ κ(∥Σ∥∨ r̃2x), R ≍ ∥Σ∥1/2∨ r̃x, and CL = κ−1. To avoid notational clutter,
let r̄2x := ∥Σ∥ ∨ r̃2x. Then, to control the terms containing η, it suffices to choose

η ≲
√

ε

βCLSIκ2r̄4x(d+ r̄2x/λ)
∧ ε

CLSIκ2r̄4x(d+ r̄2x/λ)
,

for which we can simply choose

η ≲
ε

CLSIκ2r̄4x(d+ r̄2x/λ)
.

Further, to control the term containing the number of particles m, we need

m ≳
κr̄2x

(
1 +

( r̄2x
λ2 + d

λβ

)(
1
κ +

κr̄2xCLSI

β

))
ε

.

To drive the suboptimality bound below ε, we also need to let the number of iterations l satisfy

l ≳
βCLSI

η
ln
(Fm

β,λ(µ
m
0 )−F∗

β,λ

ε

)
.

With the above conditions, we can guarantee

Fm
β,λ(µ

m
l )−F∗

β,λ ≲ ε,

which finishes the proof.

Further, we now present the proof of the LSI estimate given by Proposition 2.

Proof. [Proof of Proposition 2] Recall that

Ĵ ′
λ[µW l ](w) = Ĵ ′

0[µW l ](w) +
λ

2
∥w∥2.

Thus we have νµ
W l

(w) ∝ γ(w) exp(−βĴ ′
0[µW l ](w)). Since γ satisfies the LSI with constant

1/(βλ), by the Holley-Stroock perturbation argument (Holley & Stroock, 1986), νµ
W l

satifies the
LSI with constant

CLSI ≤
exp(β osc(Ĵ ′

0[µW l ]))

βλ
.
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Additionally, ∣∣∣Ĵ ′
0[µW l ](w)

∣∣∣ = ∣∣∣∣∣ 1n
n∑
i=1

ρ′(ŷ(x;µW l)− y)Ψ(x(i);w)

∣∣∣∣∣ ≤ 2Cρι,

which completes the proof.

Finally, we are ready to present the proof of Theorem.

A.5 PROOF OF THEOREM 3 AND COROLLARY 4

Recall that λ = λ̃r2x, and let β =
deff+r̃

2
x/r

2
x

ε2λ̃
and n ≥ (deff+r̃

2
x/r

2
x)ι

2

λ̃ε4
for some ε ≲ 1, where

ε̃ := Õ(λ̃
1

k+2 +ε+κ−1). Then, as long as ι ≳ r̃2x
λ̃r2x

, from Lemma 25, we have J0(µ
∗
β)−E[ρ(ξ)] ≲ ε̃.

Note that while Lemma 25 only asks for ι ≳ λ̃− k
k+2 (r̃x/rx)

2(k+1)
k+2 , we simplify this expression in the

statement of Theorem 3 so that the choice of ι does not depend on k.

On the other hand, given the step size η, width m, and number of iterations l by Proposition 32, we
have Fm

β,λ(µ
m
l )−Fβ,λ(µ∗

β) ≤ ε. Therefore,

EW∼µm
l
[J0(W )]− J0(µ

∗
β) ≲

√
r̄2xβCLSIε

m
+

ι2

m
.

Additionally, from Lemma 25, we have

β−1H(µ∗
β | γ) ≲ E[ρ(ξ)] + Õ(λ̃

1
k+2 ) + ε+ κ−1 ≲ 1.

Consequently, for m ≥ r̄2x(deff+r̃
2
x/r

2
x)CLSI

λ̃ε3
∨ ι
ε2 , we have EW∼µm

l
[J0(W )]−J0(µ

∗
β) ≤ ε. Therefore,

combining the bounds above, we have

EW∼µm
l
[J0(W )]− E[ρ(ξ)] ≲ Õ(λ̃

1
k+2 ) + ε+ κ−1.

Consequently, we can take λ̃ = on(1), ε = on(1), κ−1 = on(1), which finishes the proof of
Theorem 3.

We finally remark that under the LSI estimate of Proposition 2 and the choice of hyperparameters in
Theorem 3, the sufficient number of neurons and iterations can be bounded by

m ≤ Õ
( r̄4x
c4x

( d

deff
+

r̄2x
r2x

)
eÕ(deff )

)
≤ Õ

( r̄4xdeff
c4x

( d

d2eff
+

r̄2x
c2x

)
eÕ(deff )

)
≤ Õ

(
deÕ(deff )

)
,

and

l ≤ Õ
( r̄4xd
c4x

eÕ(deff )
)
≤ Õ

(
deÕ(deff )

)
,

which completes the proof of Corollary 4.

B PROOFS OF SECTION 4

We begin with the proof of Proposition 8.

Proof. [Proof of Proposition 8] Note that Ĵ0(µ
∗) = 0 by definition. Moreover, the bound on

H(µ∗ | τ) is a simple application of Jensen’s inequality, namely,

H(µ∗ | τ) =
∫

ln
ef∫
efdτ

dµ∗ =

∫
fdµ∗ − ln

∫
efdτ ≤

∫
f(dµ∗ − dτ).

Next, using the Bakry-Émery curvature-dimension condition (Bakry & Émery, 1985), we prove the
following dimension-free LSI bound.
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Proof. [Proof of Proposition 9] By the curvature-dimension condition (Bakry et al., 2014, Section
5.7), the Gibbs measure νµ ∝ exp(−βĴ ′

0[µ]) satisfies the LSI with constant CLSI ≤ α−1 as long as

Ricg + β∇2Ĵ ′
0[η](w) ≥ αg,

for all w ∈ W and some α > 0. By the bound on the Ricci curvature from Assumption 4, it suffices
to show

ϱdg+ β∇2Ĵ ′
0[η](w) ≽ αg.

Recall that

Ĵ0(µ) = ESn

[
ρ

(∫
Ψ(x;w)dµ(w)− y

)]
.

Therefore,
Ĵ ′
0[µ](w) = ESn [ρ

′(ŷ(x;µ)− y)Ψ(x;w)],

and
∇2

wĴ ′
0[µ](w) = ESn

[
ρ′(ŷ(x;µ)− y)∇2

wΨ(x;w)
]
.

Consider the case where ρ is Cρ Lipschitz. Then,

λmin(∇2
wĴ ′

0[µ](w)) = inf
∥v∥g≤1

ESn

[
ρ′(ŷ(x;µ)− y)

〈
v,∇2

wΨ(x;w)w
〉]

≥ −Cρ sup
∥v∥g≤1

ESn

[∣∣〈v,∇2
wΨ(x;w)v

〉∣∣]
= −CρK.

Before stating the proof of Theorem 10, we adapt the generalization analysis of Appendix A.3
to the Riemannian setting of this section. Recall the truncated risk functions J κ

0 (µ) =

E[ρ(ŷ(x;µ)− y) ∧ κ] and Ĵ κ
0 (µ) = ESn

[ρ(ŷ(x;µ)− y) ∧ κ]. Then, we have the following uni-
form convergence bound.
Lemma 33. Under the setting of Example 7, where we recall |φ(0)| ≲ 1 and |φ′(z)| ≲ 1 for all z,
we have

E

[
sup

µ∈Pac(W):H(µ | τ)≤M
J κ
0 (µ)− Ĵ κ

0 (µ)

]
≲ Cρ

√
M

n

(
1 + E

[∥∥∥Σ̂∥∥∥1/2]),
where Σ̂ := 1

n

∑n
i=1 x

(i)x(i)⊤. Combined with McDiarmid’s inequality, the above bound implies

sup
H(µ | τ)≤M

J κ
0 (µ)− Ĵ κ

0 (µ) ≲ Cρ

√
M

n

(
1 + E

[∥∥∥Σ̂∥∥∥1/2])+ κ
√

ln(1/δ)

n
,

with probability at least 1− δ.

Proof. Based on the same argument as Lemma 22, for any α > 0, we have

E

[
sup

H(µ | τ)≤M
J κ
0 (µ)− Ĵ κ

0 (µ)

]
≤ 2Cρ E

[
sup

H(µ | τ)≤M

1

n

n∑
i=1

ξiŷ(x
(i);µ)

]
where (ξi) are i.i.d. Rademacher random variables. Once again following Lemma 22, we have,

Eξ

[
sup

H(µ | τ)≤M

1

n

n∑
i=1

ξiŷ(x
(i);µ)

]
≤ M

α
+

1

α
E

[
ln

∫
exp

(
α2

2n2

n∑
i=1

Ψ(x(i);w)2

)
dτ(w)

]
.

Furthermore,∫
exp

(
α2

2n2

n∑
i=1

Ψ(x(i);w)2

)
dτ(w) ≤ exp

(
α2φ(0)2

n2

)∫
exp

(
α2∥φ′∥2∞

n2

n∑
i=1

〈
w,x(i)

〉2)
dτ(w)

≤ exp

(
α2φ(0)2

n

)∫
exp

(
α2∥φ′∥2∞

n

〈
w, Σ̂w

〉)
dτ(w)

≤ exp

α2
[
φ(0)2 + ∥φ′∥2∞

∥∥∥Σ̂∥∥∥]
n

.
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Therefore,

Eξ

[
sup

H(µ | τ)≤M

1

n

n∑
i=1

ξiŷ(x
(i);µ)

]
≤ M

α
+ α

φ(0)2 + ∥φ′∥2∞
∥∥∥Σ̂∥∥∥

n
.

Using |φ(0)|, ∥φ′∥∞ ≲ 1 and optimizing over α yield

Eξ

[
sup

H(µ | τ)≤M

1

n

n∑
i=1

ξiŷ(x
(i);µ)

]
≲

√
M

n

(
1 +

∥∥∥Σ̂1/2
∥∥∥).

Taking expectation with respect to the training set concludes the proof.

We can also control the effect of truncating similar to that of Lemma 24.

Lemma 34. Under the setting of Example 7, for any µ ∈ P(W), we have

J0(µ)− J κ
0 (µ) ≤ 2C2

ρ ·
2φ(0)2 + 2∥φ′∥2∞∥Σ∥+ E

[
y2
]

κ
.

Proof. Similarly to the arguments in Lemma 24, by using the Cauchy-Schwartz and Markov inequali-
ties, we have

J0(µ)− J κ
0 (µ) ≤ E[1(ρ(ŷ(x;µ)− y) ≥ κ)ρ(ŷ(x;µ− y))]

≤ P(ρ(ŷ(x;µ)− y) ≥ κ)1/2 E
[
ρ(ŷ(x;µ)− y)2

]1/2
≤ CρP(|ŷ(x;µ)− y| ≥ κ/Cρ)1/2 E

[
(ŷ(x;µ)− y)2

]1/2
≤ C2

ρ

E
[
(ŷ(x;µ)− y)2

]
κ

≤ 2C2
ρ

E
[
ŷ(x;µ)2

]
+ E

[
y2
]

κ
.

Moreover, we have

E
[
ŷ(x;µ)2

]
≤ E

[∫
Ψ(x;w)2dµ(w)

]
≤ 2φ(0)2 + 2∥φ′∥2∞ E

[∫
⟨w,x⟩2dµ(w)

]
≤ 2φ(0)2 + 2∥φ′∥2∞∥Σ∥,

concluding the proof of the lemma.

Finally, we can state the proof of the main theorem of this section.

Proof. [Proof of Theorem 10] Note that given β = ∆̄
ε and d ≥ 2CρK∆̄/(ϱε), Proposition 9

guarantees that CLSI ≤ 2/(ϱd) along the trajectory. Consequently, by the convergence guarantee
of (2.10), we have

Fβ(µT ) ≤ Fβ(µ∗
β) + e−

ϱdT
β (Fβ(µ0)−Fβ(µ∗

β)) ≤ Fβ(µ∗
β) + ε.

Further, by µ̄ of Assumption 4, we have

Fβ(µ∗
β) ≤ Fβ(µ̄) ≤ ε̄+ β−1∆̄ ≤ ε̄+ ε.

As a result, Ĵ0(µT ) ≤ Fβ(µT ) ≤ ε̄+ 2ε, and similarly H(µT | τ) ≤ β(ε̄+ 2ε).

Note that Ĵ κ
0 (µT ) ≤ Ĵ0(µT ). Using the fact that Cρ, ∥Σ∥,E

[
|y|2
]
≲ 1, and combining the bounds

of Lemma 33 and Lemma 34, with a porbability of failure δ = O(n−q) for some constant q > 0, we
have

J0(µT )− Ĵ0(µT ) ≲

√
β(ε̄+ ε)

n
+ κ

√
lnn

n
+

1

κ
.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Optimizing over κ implies

J0(µT ) ≲ ε̄+ ε+

√
β(ε̄+ ε)

n
+

(
lnn

n

)1/4

≲ ε̄+ ε+

√
∆̄(1 + ε̄/ε)

n
+

(
lnn

n

)1/4

.

Choosing n according to the statement of the theorem completes the proof.

C COMPARISONS WITH THE FORMULATION OF NITANDA ET AL. (2024)

Here, we provide a number of comparisons with results of Nitanda et al. (2024). In Section C.1, we
show that the statistical model (2.1) is more general than their formulation, even for parity learning
problems. In Section C.2, we provide an informal comparison of their effective dimension to our
setting, exhibiting the improvement in our definition of effective dimension.

C.1 GENERALITY OF THE FORMULATIONS

We begin by pointing out that the formulation of k-index model of (2.1) is strictly more general than
that of Nitanda et al. (2024), even for learning k-sparse parities. Recall that in their setting, they
consider inputs of the type x = Σ1/2z for some positive definite Σ, where z ∼ Unif({±1}d) (their
original formulation uses z ∼ Unif({±1/

√
d}d), but we rescale the input to be consistent with the

notation of this paper). The labels are given by

y = sign
( k∏
i=1

⟨ũi, z⟩
)
= sign

( k∏
i=1

〈
Σ−1/2ũi,x

〉)
, (C.1)

where {ũi}ki=1 are orthonormal vectors. Then, we can define an orthonormal set of vectors {ui}ki=1

such that span(u1, . . . ,uk) = span(Σ−1/2ũ1, . . . ,Σ
−1/2ũk), and define g such that

g

(
⟨u1,x⟩√

k
, . . . ,

⟨uk,x⟩√
k

)
= g


〈
Σ1/2u1, z

〉
√
k

, . . . ,

〈
Σ1/2uk, z

〉
√
k

 = sign
( k∏
i=1

⟨ũi, z⟩
)
,

for all z ∈ {±1}d. Therefore, the parity formulation of (C.1) can be seen as a special case of the
k-index model (2.1). Note that g is only defined on 2d points, and we can extend it to all of Rk such
that g : Rk → R is Lipschitz continuous.

In contrast, the k-index model can represent parity problems that cannot be represented by (C.1).
Starting from an orthonormal set of vectors {ui}ki=1 in Rd, let

y = g

(
⟨u1,x⟩√

k
, . . . ,

⟨uk,x⟩√
k

)
= sign

( k∏
i=1

⟨ui,x⟩
)
. (C.2)

Consider the case where k = 2, then y = sign
(〈

Σ1/2u1, z
〉〈

Σ1/2u2, z
〉)

. To be able to

reformulate this to (C.1), we need to be find orthonromal ũ1, ũ2 ∈ Rd such that

sign
(〈

Σ1/2u1, z
〉〈

Σ1/2u2, z
〉)

= sign(⟨ũ1, z⟩⟨ũ2, z⟩), ∀z ∈ {±1}d.

If Σ has rank less than d such that Σ1/2u1 = Σ1/2u2, then the above implies sign(⟨ũ1, z⟩⟨ũ2, z⟩) ≥
0 for all z ∈ {±1}d. In particular, we must have some z where sign(⟨ũ1, z⟩⟨ũ2, z⟩) > 0, which
implies that

2d∑
i=1

⟨ũ1, zi⟩⟨ũ2, zi⟩ =

〈
ũ1,

2d∑
i=1

ziz
⊤
i ũ2

〉
= 2d⟨ũ1, ũ2⟩ > 0, (C.3)

which is in contradiction with ⟨ũ1, ũ2⟩ = 0. Therefore, for such Σ, we cannot formulate (C.2) as a
special case of (C.1). This argument is robust with respect to small perturbations of Σ which make it
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full-rank. Specifically, suppose Σ1/2u2 = Σ1/2u1 + δ. Notice that we can choose Σ1/2u1 such

that
〈
Σ1/2u1, z

〉2
̸= 0 for all z ∈ {±1}d, e.g. by choosing Σ1/2u1 ∝ e1, i.e. the first standard

basis vector. It is straightforward to construct full-rank Σ, u1, and u2 such that ∥δ∥ is arbitrarily
small, in which case

sign
(〈

Σ1/2u1, z
〉〈

Σ1/2u2, z
〉)

= sign
(〈

Σ1/2u1, z
〉2

+
〈
Σ1/2u1, z

〉
⟨δ, z⟩

)
≥ 0.

Following (C.3), once again the above would be in contradiction with ⟨ũ1, ũ2⟩ = 0. This implies
that the k-index model (2.1) is strictly more general than (C.1) when considering full-rank covariance
matrices.

C.2 COMPARISON WITH THE EFFECTIVE DIMENSION OF NITANDA ET AL. (2024)

A close inspection of the proofs in Nitanda et al. (2024) demonstrates that one can define their

effective dimension in a scale invariant manner as d̃eff := tr(Σ)
∥∥∥∑k

i=1 Σ
−1/2ũi

∥∥∥2. From the

previous section, we observed that to reduce their setting to ours, we need to choose a set {ui}ki=1

of normalized vectors that spans the set of vectors {Σ−1/2ũi}ki=1. In particular, we can choose
ui =

Σ−1/2ũi

∥Σ−1/2ũi∥ , or equivalently write ũi =
Σ1/2ui

∥Σ1/2ui∥ . While {ui}ki=1 are not orthogonal, our

proofs do not strictly rely on the orthogonality assumption and it is only made for simplicity. Hence,
we have

d̃eff = tr(Σ)

∥∥∥∥∥∥
k∑
i=1

ui∥∥∥Σ1/2ui

∥∥∥
∥∥∥∥∥∥
2

≤ k tr(Σ)

k∑
i=1

∥∥∥Σ1/2ui

∥∥∥−2

.

Note that the above upper bound is sharp when k = 1, and is lower bounded by our definition of
effective dimension stated in Definition 1. Therefore, we use the above bound in Table 1.

D EXAMPLES OF TARGET FUNCTIONS IN PROPOSITION 8

In this section, we provide a natural example of a target function of the form given in Proposition
8. Suppose W = Sd−1, and Ψ(x;w) = ⟨w,x⟩2. Define µ∗ = T #τ , where T (v) = A1/2v

∥A1/2v∥ , for

some PSD matrix A to be defined later. Let

y = ŷ(x;µ∗) =
〈
x,Ew∼µ∗

[
ww⊤]x〉 = 〈x,Ev∼τ

[A1/2vv⊤A1/2

∥A1/2v∥2
]
x

〉
.

By defining B = d · Ev∼τ

[
A1/2vv⊤A1/2

∥A1/2v∥2

]
, we have y = 1

d

∥∥∥B1/2x
∥∥∥2. Additionally, note that

ŷ(x; τ) = 1
d∥x∥

2
. Before proceeding further, we remark that the typical ∥x∥ should be of order

√
d

to get Θ(1) output, which is due to choosing the unit sphere as the weight space.

Next, we construct A. Suppose distribution of x is such that with probability 1/2 we have x = e1,
the first standard basis vector. Let A = diag(λ1, 1, . . . , 1). Then,

y = ŷ(e1;µ
∗) = Ev∼τ

[
λ1dv

2
1

1 + (λ1 − 1)v21

]
≤ cλ1,

where c is an absolute constant. On the other hand, ŷ(e1; τ) = 1. Choosing λ1 = 1
d , we observe

that for sufficiently large d, with probability at least 1/2 the distance |ŷ(x;µ∗)− ŷ(x; τ)| ≥ C for
some absolute constant C > 0. This means that µ∗ and τ are meaningfully different, and from an
initialization of τ one needs to train the network (e.g. with MFLD) to recover µ∗. It remains to find
an estimate on H(µ∗ | τ).
Let T : Rd → Sd−1 denote the normalization mapping, i.e. T(v) = v

∥v∥ . Then, note that τ =

T#N (0, Id), and µ∗ = T#N (0,A). Therefore, by the data processing inequality,

H(µ∗ | τ) ≤ H(N (0,A) | N (0, Id)) = −d

2
+

tr(A)

2
− 1

2
ln det(A) ≤ ln d

2
,
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where λ1 = 1
d . Therefore, ∆̄ = ln d

2 = o(d), and we can apply Theorem 10 to obtain polynomial
convergence time, as desired.

E NUMERICAL SIMULATION

In this section, we perform a numerical simulation to verify the intuitions from Theorem 3. Specif-
ically, we train a two-layer neural network with width m = 50 and ReLU activation, where the
first layer weights are initialized uniformly on the sphere, and fix the first half of the second layer
coordinates at +1/m, and the second half at −1/m. The input follows the distribution x ∼ N (0,Σ),
where Σ = diag(σ2) with σ2

1 = 1 and σ2
i = deff−1

d−1 for input dimension d = 50. The labels are
generated by a single-index model of the following form

y = g(⟨e1,x⟩) =
⟨e1,x⟩2 − 1√

2
.

Therefore, the effective dimension from Definition 1 is exactly equal to deff . We train the neural
network using the squared loss with MFLA, with a stepsize of 0.1, weight decay parameter 0.01,
temperature 0.001, and number of iterations 3000.
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Figure 2: Generalization gap measured by variy-
ing the effective dimension.

In Figure 2 we measure the generalization gap at the
end of training, i.e. the loss difference on the training
set of n samples, and a test set of 100000 samples.
We try n = 100, n = 200, and n = 500. As seen
from the figure, deff controls the generalization gap,
with the generalization gap decaying with larger n.
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