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Abstract

Accuracy and speed are critical in image edit-
ing tasks. Pan et al. introduced a drag-based
framework using Generative Adversarial Net-
works, and subsequent studies have leveraged
large-scale diffusion models. However, these
methods often require over a minute per edit and
exhibit low success rates. We present LIGHT-
NINGDRAG, which achieves high-quality drag-
based editing in about one second on general
images. By redefining drag-based editing as
a conditional generation task, we eliminate the
need for time-consuming latent optimization or
gradient-based guidance, achieving high-quality
editing in <1s. Our model is trained on large-
scale paired video frames, capturing diverse mo-
tion (object translations, pose shifts, zooming,
etc.) to significantly improve accuracy and consis-
tency. Despite being trained only on videos, our
model generalizes to local deformations beyond
the training data (e.g., lengthening hair, twist-
ing rainbows). Extensive evaluations confirm
the superiority of our approach. The code and
model are available at https://github.com/magic-
research/LightningDrag.

1. Introduction
Image editing using generative models (Roich et al., 2022;
Endo, 2022; Hertz et al., 2022; Mokady et al., 2023; Kawar
et al., 2023; Parmar et al., 2023) has received considerable at-
tention in recent years. However, many existing approaches
lack the ability to conduct fine-grained spatial control. One
landmark work attempting to achieve precise spatial image

*Equal contribution 1National University of Sin-
gapore 2ByteDance Inc.. Correspondence to: Yu-
jun Shi <shi.yujun@u.nus.edu>, Jun Hao Liew
<junhao.liew@bytedance.com>, Jiashi Feng <jsh-
feng@bytedance.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

editing is DRAGGAN (Pan et al., 2023), which enables
interactive point-based image manipulation on generative
adversarial networks (GANs). Using their method, users
initiate the editing process by selecting pairs of handle and
target points on an image. Subsequently, the model exe-
cutes semantically coherent edits by relocating the contents
of the handle points to their corresponding targets. More-
over, users have the option to delineate editable regions
using masks, preserving the integrity of the rest of the im-
age. Building upon the foundation laid by Pan et al. (2023),
subsequent works (Shi et al., 2023; Mou et al., 2023; Nie
et al., 2023; Ling et al., 2023) have endeavored to extend
this editing framework to large-scale pre-trained diffusion
models (Rombach et al., 2022), aiming to further enhance
its generality.

However, a common drawback among many methods within
this framework is their lack of efficiency. Prior to editing a
real image input by the user, DRAGGAN (Pan et al., 2023)
requires applying a lengthy pivotal-tuning-inversion (Roich
et al., 2022), a process that can consume up to 1 to 2 minutes.
As for diffusion-based approaches such as DRAGDIFFU-
SION (Shi et al., 2023) and DRAGONDIFFUSION (Mou et al.,
2023), they typically entail time-consuming operations such
as latent-optimization or gradient-based guidance during
editing. This inefficiency poses a significant barrier to prac-
tical deployment in real-world scenarios. What undermines
the users’ experiences even more is the low success rate of
these methods. Since they are mostly zero-shot methods
that lack explicit supervision to perform drag-based editing,
they frequently struggle with either accurately moving se-
mantic content from handle to target points or preserving
the appearance and identity of the source image.

In this study, we introduce LIGHTNINGDRAG, a novel
approach that achieves state-of-the-art drag-based editing
while drastically reducing latency to less than 1 second,
thereby making drag-based editing highly practical for de-
ployment. To attain such rapid drag-based editing, we re-
define the task as a specific form of conditional generation,
where the source image and the user’s drag instruction serve
as conditions. Drawing inspiration from previous literature
(Zhang, 2023; Xu et al., 2023; Hu et al., 2023; Chen et al.,
2024; Alzayer et al., 2024), we leverage the reference-only
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architecture to process source images for identity preserva-
tion. Additionally, to incorporate the user’s drag instruction
into the generation process, we encode the handle and target
points into corresponding embeddings via a Point Embed-
ding Network. These embeddings are then injected into
self-attention modules of the backbone diffusion model to
guide the generation process. This approach eliminates the
need for repeatedly computing gradients on diffusion latents
during inference, as had been done in previous methods,
thereby significantly reducing latency to that of generating
an image with diffusion models. As a conditional generation
pipeline, our approach can be further accelerated by integrat-
ing off-the-shelf acceleration modules for diffusion models
(e.g., LCM-Lora (Luo et al., 2023b), PeRFlow (Yan et al.,
2024)), a capability not possible with previous gradient-
based methods.

To train our proposed model, we leverage video frames as
our supervision signals. This choice is motivated by the
fact that video motions inherently encapsulate transforma-
tions relevant to drag-based editing (Fig. 1), such as object
translations, changing poses and orientations, zooming in
and out, etc. Our training data is constructed from paired
video frames. Firstly, we sample pixels that exhibit sig-
nificant optical flow magnitude on the first frame as the
handle points. Next, we employ CoTracker2 (Karaev et al.,
2023) to identify the handle points’ corresponding target
points in the second frame. This procedure allows us to
construct training pairs for our model on a large scale. By
learning from such large-scale video frames, our approach
significantly outperforms previous methods in terms of both
accuracy and consistency.

Through comprehensive evaluation across images of diverse
categories and styles, we showcase the substantial advan-
tages of our approach in terms of both speed and quality.
Our approach adeptly delivers editing results in accordance
to the user’s instructions with an imperceptible latency of
less than 1 second. Furthermore, we delve into two key
techniques, namely source noise prior and point-following
classifier-free guidance, that enhance the accuracy and con-
sistency of our pipeline during inference. Lastly, we explore
two test-time strategies that users can employ to further
refine drag-based editing results—point augmentation and
sequential dragging.

One potential concern regarding our proposed approach
is that certain editing instructions — particularly those in-
volving local or nonrigid deformations (e.g., lengthening
hair, twisting rainbows) — are not explicitly represented
in natural video motions. Intriguingly, however, our model
generalizes remarkably well to such out-of-domain edits.
We hypothesize this stems from the compositional richness
of video-based motion cues, combined with our explicit
point-following control mechanism. We analyze this gener-

alization capability in depth in Sec. 6.

Our contributions are summarized as follows: 1) We pro-
pose LIGHTNINGDRAG, a fast and accurate drag-based im-
age editing framework trained entirely on videos, achieving
sub-second latency without test-time optimization; 2) We
develop test-time techniques, including a noise prior strat-
egy and point-following classifier-free guidance, to further
improve editing quality and control; 3) Our model exhibits
strong out-of-domain generalization, successfully handling
deformation instructions not seen during training. We pro-
vide both empirical evidence and conceptual insights to
explain this behavior.

2. Related Works
Generative image editing. In light of the initial successes
achieved by generative adversarial networks (GANs) in im-
age generation (Goodfellow et al., 2014; Karras et al., 2019;
2020), a plethora of image editing techniques have emerged
based on the GAN framework (Endo, 2022; Pan et al., 2023;
Abdal et al., 2021; Leimkühler & Drettakis, 2021; Patash-
nik et al., 2021; Shen et al., 2020; Shen & Zhou, 2021;
Tewari et al., 2020; Härkönen et al., 2020; Zhu et al., 2016;
2023). However, owing to the limited model capacity of
GANs and the inherent challenges in inverting real images
into GAN latents (Abdal et al., 2019; Creswell & Bharath,
2018; Lipton & Tripathi, 2017; Roich et al., 2022), the ap-
plicability of these methods is inevitably restricted. Recent
advancements in large-scale text-to-image diffusion models
(Rombach et al., 2022; Saharia et al., 2022) have spurred
a surge of diffusion-based image editing methods (Hertz
et al., 2022; Cao et al., 2023; Mao et al., 2023; Kawar et al.,
2023; Parmar et al., 2023; Liew et al., 2022; Mou et al.,
2023; Tumanyan et al., 2023; Brooks et al., 2023; Meng
et al., 2021; Bar-Tal et al., 2022; Epstein et al., 2023). While
many of these methods aim to manipulate images using tex-
tual prompts, conveying editing instructions through text
presents its own set of challenges. Specifically, the prompt-
based paradigms are often limited to alterations in high-level
semantics or styles, lacking the precise spatial control.

Point-based image editing. Point-based image editing is
a challenging task aiming to manipulate images in pixel-
level precision. Traditional literature (Beier & Neely, 2023;
Igarashi et al., 2005; Schaefer et al., 2006) have relied on
non-parametric techniques. However, recent advancements
driven by deep learning-based generative models, such as
GANs, have propelled this field forward, with several no-
table contributions (Pan et al., 2023; Endo, 2022; Wang
et al., 2022; Zhu et al., 2016). One notable work among
these is Pan et al. (2023), which achieves impressive in-
teractive point-based editing by optimizing GAN latent
codes. Nonetheless, the applicability of this framework
is limited by the inherent capacity constraints of GANs.
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Figure 1. Samples of supervision pairs from videos. Video motion contains various transformation cues such as pose change, object
movement and scale change, which are useful for the model to learn how objects change and deform while avoiding appearance change.

In a bid to enhance its versatility, subsequent efforts have
endeavored to extend the framework to large-scale diffu-
sion models (Shi et al., 2023; Mou et al., 2023; Luo et al.,
2023a; Geng & Owens, 2024; Cui et al., 2024; Liu et al.,
2024). However, most of these works still rely on compu-
tationally intensive operations such as latent optimization
or gradient-based guidance, necessitating repeated gradient
computations on diffusion latents and rendering them im-
practical for real-world deployment. Different from these
works, Nie et al. (2023) introduce a paradigm that obvi-
ates the need for gradient computation on diffusion latents.
However, this paradigm still requires repeated diffusion-
denoising operations, resulting in latencies comparable to
gradient-based methods such as Shi et al. (2023). Recent
works (Li et al., 2024; Chen et al., 2024; Shin et al., 2024)
redefine drag-based editing as a generation task, reducing
the editing latency to levels comparable to image genera-
tion with diffusion models. However, these methods remain
domain-specific: Li et al. (2024) handles part-level move-
ments in articulated objects, Chen et al. (2024) focuses on
single-human clothing, and Shin et al. (2024) targets fa-
cial images. While some architectural components of our
method are inspired by these prior efforts, we are the first
to leverage general video data to construct large-scale su-
pervision for drag-based editing. This enables our model to
handle a wide range of motion patterns and deformations
without relying on curated or domain-specific datasets. As a
result, our approach uniquely generalizes to general images,
making it suitable for practical deployment across a broad
range of scenarios.

Learning image editing from videos Previous methods
leveraging videos to aid in learning image editing typically
sample two frames from a video to form a supervision pair.
For example, Chen et al. (2023) utilize image pairs col-
lected from videos for the same object to learn the appear-
ance variations, thus improving their subject-composition
pipeline. Alzayer et al. (2024) use video frames to supervise
their proposed coarse-to-fine warping-based image editing
pipeline. Luo et al. (2023a) train diffusion models on video
data to improve drag-based editing performance. However,
their approach still relies on time-consuming gradient-based

guidance and is trained on a limited dataset comprising only
around 100 supervision pairs. In contrast to these works, we
train a conditional generation pipeline on large-scale videos
to perform fast and accurate drag-based editing.

3. Preliminaries
3.1. Latent Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) demonstrate promising performance in visual syn-
thesis. Rombach et al. (2022) proposed the latent diffu-
sion model (LDM), which first maps a given image x0 into
a lower-dimensional space via a variational auto-encoder
(VAE) (Kingma & Welling, 2013) to produce z0 = E(x0).
Then, a diffusion model with parameters θ is used to ap-
proximate the distribution of q(z0) as the marginal pθ(z0)
of the joint distribution between z0 and a collection of latent
random variables z1:T = (z1, . . . , zT ). Specifically,

pθ(z0) =

∫
pθ(z0:T ) dz1:T , (1)

where pθ(zT ) is a standard normal distribution and the tran-
sition kernels pθ(zt−1|zt) of this Markov chain are all Gaus-
sian conditioned on zt. In our context, z0 corresponds to the
VAE latent of image samples given by users, zt is the latent
after t steps of the diffusion process. Specifically,

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (2)

where ϵ ∼ N (0, I), and ᾱt is the cumulative product of the
noise coefficient αt at each step.

Based on the framework of LDM, several power-
ful pretrained diffusion models have been released
publicly, including the Stable Diffusion (SD) model
(https://huggingface.co/stabilityai). In this work, our pro-
posed pipeline is developed based on SD model.

4. Methodology
In this section, we formally present our LIGHTNINGDRAG
approach. To start, we elaborate on the details of how we
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construct supervision pairs for our model from videos in
Sec. 4.1. Next, we describe the architecture design of our
model in Sec. 4.2. Furthermore, we introduce some tech-
niques we use during test-time to improve the editing results
in Sec. 4.3. Finally, we introduce some strategies that users
can employ to fix failure cases in Sec. 4.4.

4.1. Paired supervision from video data

One of the challenges we encounter is in collecting large-
scale paired data for training the model, as obtaining user-
annotated input-output pair on a large scale is nearly infeasi-
ble. In this work, we redirect our focus towards leveraging
video data. Our key insight lies in the inherent motion cap-
tured within video, which naturally encompasses various
transformations relevant to drag-based editing, including
zooming in and out, changes in pose and orientation, etc.
These dynamics offer valuable cues for the model to learn
how objects undergo changes and deform.

We begin by curating videos with static camera movement,
simulating drag-based editing where only local regions are
manipulated while others remain static. Subsequently, we
randomly sample two frames from these videos to serve as
source Isrc and target images Itgt, respectively. We resam-
ple another pair if the optical flow between the two images
is too small. Next, we sample N handle points Phdl on Isrc
with a probability proportional to the optical flow strength,
ensuring the selection of points with significant movement.
We then employ CoTracker2 (Karaev et al., 2023), a state-of-
the-art point tracking algorithm to extract the corresponding
target points Ptgt in the target image Itgt. Finally, we adopt
a similar approach as in Dai et al. (2023) to extract a binary
mask M highlighting the motion areas, indicating regions to
be edited. Collectively, the tuple (Isrc, Itgt, Phdl, Ptgt,M)
form the sample to train our LIGHTNINGDRAG. Exam-
ples showcasing the versatility of video data for training
drag-based editing can be found in Fig. 1.

4.2. Architecture Design

We formulate the drag-based image editing task as a con-
ditional generation problem, where the generated image
needs to fulfill the following criteria: (1) unmasked area
remains untouched; (2) image identity (e.g., human face, tex-
ture, etc.) should be preserved after dragging; (3) the areas
indicated by handle points should move to the target coor-
dinates. To achieve this, our LIGHTNINGDRAG comprises
three components: (1) an image inpainting backbone to en-
force unmasked region remains identical; (2) an appearance
encoder preserves identity of Isrc, (3) a point embedding net-
work encodes the (handle, target) points pairs, accompanied
by a point-following attention mechanism, which explicitly
enables the model to follow the point instructions. The over-
all framework is depicted in Fig. 2. We next elaborate on
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Figure 2. The pipeline of LIGHTNINGDRAG. Our LIGHTNING-
DRAG consists of three components, including (1) an inpaint-
ing diffusion backbone to enforce unmasked regions remain un-
touched; (2) an Appearance Encoder for preserving the identity
of the reference image; and (3) a Point Embedding Network to
encode the (handle, target) points pairs.

each component in more details.

4.2.1. INPAINTING BACKBONE.

We utilize the Stable Diffusion Inpainting U-Net as our
backbone, which takes concatenation of the following as
input: noise latents zt, a binary mask M , and masked latents
M ⊙ zsrc0 . It is worth noting that the inpainting backbone
typically takes in a text prompt to indicate the inpainted
content. However, in drag-based editing application, a text
prompt is not only redundant as the image content is already
provided by the source image, but also difficult for users to
provide. Instead, we extract the image feature of the source
image using IP-Adapter (Ye et al., 2023) and use an empty
text prompt, freeing the users from this requirement.

4.2.2. APPEARANCE ENCODER.

To maintain the identity of the reference image, we draw
inspiration from recent works on ID-consistent generation,
such as Xu et al. (2023); Hu et al. (2023); Chen et al. (2024).
Specifically, we employ the reference-only architecture
(Zhang, 2023) to process the source image. Unlike CLIP
image encoder (Radford et al., 2021) which can only guaran-
tee the overall colors and semantics, the reference-only ap-
proach has demonstrated efficacy in preserving fine-grained
details of the reference image. Inherited from the weights
of a pre-trained text-to-image U-Net diffusion model, our
Appearance Encoder takes the reference latents zsrc0 as in-
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put. It extracts the reference feature maps from the self-
attention layers, which are subsequently used to guide the
self-attention process in the denoising backbone. The self-
attention in the backbone is thus defined as follows:

Attn(Q,K, V,Kref , Vref) = SM
(Q[K,Kref ]

⊤
√
d

)
[V, Vref ],

(3)
where Kref and Vref denote the keys and values extracted
from the reference features, [·, ·] denotes the concatenation
operator, and SM is the softmax function. Following prior
works (Xu et al., 2023), we use clean reference latents as
inputs to the Appearance Encoder (as opposed to noised
latents used in original reference-only model (Zhang, 2023)).
As a result, unlike backbone UNet that requires multiple
denoising steps, the Apppearance Encoder only needs to
extract features once throughout the entire editing process,
which improves the model inference efficiency.

4.2.3. POINT EMBEDDING ATTENTION.

Given the user-specified handle and target points, we first
convert them into a handle and a target point map that is
of the same resolution of the input image. Specifically,
we randomly assign each pair of handle and target points
with an integer number k ∈ {1, 2, . . . , N}, where N is the
maximum allowed points. Then, we put the integer k to the
pixel location on the point map given coordinates specified
by handle and target points. The rest of the pixel locations
on handle and target point maps are with value 0.

Once obtaining the handle and target point maps, we encode
them into embedding via a point embedding network, which
is composed of 12 layers of convolution and SiLU activation.
This network outputs embedding at four different resolu-
tions, corresponding to the four different resolutions of SD
UNet activation maps. To enable the model to follow point
instructions effectively, we draw inspiration from Chen et al.
(2024) and introduce a point-following mechanism into Eqn.
3, resulting in the following formulation:

Attn(Q,K, V,Kref , Vref , Ehdl, Etgt)

= SM
( (Q+ Etgt)[K + Etgt,Kref + Ehdl]

⊤
√
d

)
[V, Vref ]

(4)
where Ehdl and Etgt are embeddings of handle and tar-
get point maps, respectively. In this way, we explicitly
strengthen the similarity between the target points of the
generated images and the handle points of the user input
image, facilitating learning of drag-based editing.

4.3. Test-time Techniques to Improve Editing Results

4.3.1. NOISE PRIOR

We have observed that directly using randomly initialized
noise latents for generation sometimes yields unstable re-

Noised source 
latentsCopy and paste

Mixed
noise latentsPure noiseUser input

Figure 3. Different strategies for constructing the noise prior.
We find that the “noise source latents” strategy produces the best
results. Image credit (source image): Pexels

sults, as depicted in Fig. 3. This instability may stem from
the discrepancy between the initial noise during training
and testing of diffusion models, as discussed in prior works
(Lin et al., 2024a;b). In contrast to text-to-image generation,
where obtaining a suitable initial noise prior is challenging,
our task allows for a more accurate initialization of the noise
prior by adding noise to the VAE latent of the source im-
age. This technique enables us to narrow the gap between
training and testing, resulting in more stable outcomes.

We ablate three strategies to construct the noise prior:

• Noised source latents directly adds noise on the source
image latent with Eqn. (2) to the terminal diffusion
time-step (t = 999).

• Mixed noise latents re-initializes the mask region of
the noised source latents with pure Gaussian noise for
potentially greater editing flexibility.

• Copy and paste noise latents borrows the “copy and
paste” approach of Nie et al. (2023) along with the
handle and target points to form the initial noise prior.

We report results using two metrics: Mean Distance (MD↓),
which measures how accurately the handle points are moved
to the target positions, and Image Fidelity (IF↑), calculated
as 1-LPIPS, which reflects how well the edited image pre-
serves the original appearance. As shown in Tab. 1, the
“copy and paste” and “noise source latent” strategies yield
the best overall performance, with the latter slightly out-
performing others in IF. However, since “copy and paste”
involves much more complicated implementation, we select
“Noise Source Latents” as our default strategy in the spirit of
simplicity. Moreover, the numerical results presented here
also align well with the visual illustration in Fig. 3.

Pure
Noise

Mixed Noise
Latents

Copy and
Paste

Noise Source
Latents

MD(↓) 19.76 19.01 18.53 18.95

IF(↑) 0.887 0.886 0.887 0.890

Table 1. Quantitative ablation on different noise prior strategies
during inference.
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4.3.2. POINT-FOLLOWING CLASSIFIER-FREE GUIDANCE

To further improve the model’s capability to follow the
point instruction during inference, we implement the follow-
ing point-following classifier-free guidance (PF-CFG) to
strengthen the effects of given (handle, target) points pairs:

ϵ̃θ(zt,cappr, cpoints) = ϵθ(zt, cappr, ∅)
+ ω(t)

(
ϵθ(zt, cappr, cpoints)− ϵθ(zt, cappr, ∅)

)
,
(5)

where ω(t) is the time-dependent CFG scale, cappr denotes
the source image condition encoded by appearance encoder,
and cpoints denotes the condition of handle and target points.
To be more specific, when computing ϵθ(zt, cappr, ∅), we
use Eqn. (3) in all self-attention layers of the main backbone
UNet. When computing ϵθ(zt, cappr, cpoints), we employ
Eqn. (4).

Most previous works involving diffusion models apply a
fixed CFG scale across different denoising time-steps. How-
ever, recent literature (Kynkäänniemi et al., 2024; Wang
et al., 2024) demonstrate the benefits of using a time-
dependent CFG scale during denoising. In this work, we
similarly find that a dynamic time-dependent CFG scale can
help strike an approrpriate balance between the accuracy of
point-following and image quality of the results.

Denoting ωmax as the maximum value of CFG, we explore
the following CFG scale schedules:

• No CFG: ω(t) = 1
• Constant: ω(t) = ωmax.
• Square: ω(t) = ωmax × (1− (1− t/1000)2) + (1−
t/1000)2.

• Linear: ω(t) = ωmax × t/1000 + (1− t/1000).
• Inverse square: ω(t) = (ωmax − 1)× (t/1000)2 + 1.

We compare these schedules in Fig. 4. As can be observed,
without using our CFG, the model struggles to conduct suc-
cessful drag-based editing. On the other hand, using CFG
with a constant scale can successfully drag the handle points
to the target, but the results may suffer from over-saturation.
By using schedules that decay the CFG scale from ωmax

to 1.0 during the denoising process such as Square, Linear,
and Inverse square, we achieve accurate drag-based editing
while markedly improve the image quality. Among these
decaying schedules, we find fast decaying strategy such as
Inverse square achieves the best image quality, while slow
decaying strategy such as Linear and Square still suffer
from slight quality degradation (e.g., over-saturation) on
generated images.

To complement the qualitative observations above, we
present a quantitative comparison of the different CFG
schedules in Tab. 2. The results confirm our findings: con-
stant CFG improves point accuracy (MD) but hurts image
fidelity (IF), while dynamic schedules offer a better trade-

Constantw/o	CFGUser	inputOriginal	image

Inverse	squareLinearSquare

Figure 4. Effects of different CFG scale schedules. Our model
struggles to conduct a successful drag when CFG is not used.
Constant CFG often leads to over-saturation problem. Overall, fast
decaying strategy (Inverse square) attains the best results.

off between control and realism. Among these schedulers,
we select inverse square as our default CFG scale sched-
uler to attain the best overall appearance preservation while
maintaining good point-following.

w/o CFG Constant Square Linear Inv. Square

MD(↓) 22.27 17.76 17.73 18.59 18.95

IF(↑) 0.9071 0.8486 0.8743 0.8829 0.8896

Table 2. Quantitative ablation of different CFG scale schedules.

4.4. “Drag engineering” to improve the editing

Inspired by the use of prompt engineering technique in
Large Language Models (LLM) to obatin ideal answers, we
find that some failure cases produced by our LIGHTNING-
DRAG can also be mitigated by engineering the input drag
instruction. Here, we introduce two strategies, namely Point
augmentation and Sequential dragging, for users to consider
when facing imperfect results with our model.

4.4.1. POINT AUGMENTATION

When the region specified by handle points fail to move to
the target locations, augmenting the drag instruction with
additional pairs of handle and target points has proven ef-
fective in improving results. Examples showcasing this
augmentation are depicted in Fig. 5. It is evident that by
incorporating more pairs of handle and target points, users’
editing intentions can be more explicitly conveyed, resulting
in better outcomes.

4.4.2. SEQUENTIAL DRAGGING

In cases where drag editing results are sub-optimal after
one round of editing, users may opt to break down the
drag instruction into multiple rounds and sequentially move
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ResultsUser Input 2ResultsUser input 1

Figure 5. Point Augmentation. Augmenting with additional pairs
of handle and target points can better convey the user’s editing
intention, which often leads to better performance.

semantic contents from handle points to final targets. Ex-
amples illustrating how such sequential dragging can rectify
certain failure cases are presented in Fig. 6. This strategy is
facilitated by our model’s exceptional ability to maintain the
appearance and identity of the source image during editing.
Without this capability, cumulative appearance shifts might
occur, leading to undesired results. Additionally, given our
model’s negligible latency, employing sequential dragging
does not significantly undermine user experience.

5. Experiments
5.1. Implementation details

Network. The base inpainting U-Net inherits the pre-
trained weights from Stable Diffusion V1.5 inpainting
model, whereas the Appearance Encoder is initialized from
the pre-trained weights of Stable Diffusion V1.5. The Point
Embedding Network is randomly initialized, except for the
last convolution layer which is zero-initialized (Zhang et al.,
2023) to ensure the model starts training as if no modifica-
tion has been made.

Training. We sample 220k training samples from our in-
ternal video dataset to train our model. We set the learning
rate to 5e− 5 with a batch size of 256. We freeze both the
inpainting U-Net and IP-Adapter, training both Appearance
Encoder and Point Embedding Network. During training,
we randomly sample [1, 20] points pairs. We randomly crop
a square patch covering the sampled points and resize to
512× 512.

Inference. We use DDIM (Song et al., 2021) sampling with
25 steps for inference by default. We found that our model
is also compatible with recent diffusion acceleration tech-
niques such as LCM-LoRA (Luo et al., 2023b) and PeRFlow
(Yan et al., 2024) without additional training. When using
LCM-LoRA or PeRFlow, we use 8 steps for sampling. We

Method IF (↑) MD (↓)
DragGAN (Pan et al., 2023) 0.696 57.155
DragDiffusion (Shi et al., 2023) 0.881 33.162
DiffEditor (Mou et al., 2024) 0.856 28.579
Readout Guidance (Luo et al., 2023a) 0.790 52.224
SDEDrag (Nie et al., 2023) 0.921 45.779
LightningDrag (ours) 0.885 18.62
LightningDrag + LCM-LoRA (ours) 0.890 18.95

Table 3. Quantitative comparison on DragBench. IF and MD
denote Image Fidelity (1-LPIPS) and Mean Distance, respectively.

use guidance scale ωmax of 3.0 and adopt an inverse square
decay (Sec. 4.3.2) that gradually reduces the guidance scale
to 1.0 over time to prevent over-saturation issue.

5.2. Evaluation on DragBench

We provide a quantitative assessment of our method on
DragBench (Shi et al., 2023), comprising 205 samples with
pre-defined drag points and masks. As is standard (Shi
et al., 2023; Ling et al., 2023; Cui et al., 2024; Liu et al.,
2024), we use the Image Fidelity (IF) and Mean Distance
(MD) metrics for our analysis. IF is calculated as 1−LPIPS
(Zhang et al., 2018), while MD assesses the accuracy with
which handle points are moved to their designated targets.
An ideal drag-based editing method would achieve a low
MD, indicating effective drag editing, coupled with a high
IF, signifying robust appearance preservation.

Tab. 3 demonstrates the superiority of our LIGHTNING-
DRAG in term of point following, as evidenced by its lowest
MD. We also notice that our LIGHTNINGDRAG outperforms
others in term of IF, except SDEDrag. However, further in-
spection reveals that SDEDrag often results in the undesired
identity mapping (Fig. 7 row 1, 3 and 4), leading to its high
IF. Additional qualitative results supporting this observation
are presented in Fig. 8 in the appendix.

5.3. Time efficiency

Due to the elimination of test-time latent optimization
or gradient-based guidance, our LIGHTNINGDRAG is ex-
tremely fast. We compare the time efficiency of LIGHT-
NINGDRAG against the state-of-the-art methods for drag-
based editing on general images. For fair comparisons, we
extracted a subset of square images from DragBench (Shi
et al., 2023), resulting in 67 images, and perform inference
at a resolution of 512× 512. We report the time cost on an
NVIDIA A100 GPU in Tab. 4. We notice that the execution
time of SDEDrag has a high variance. This is because its
inference speed depends on the distance between the handle
and target points. In contrast, our LIGHTNINGDRAG runs
at a constant speed regardless of the dragging distance. Sec-
ondly, even without LCM-LoRA, our approach is already

7
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Drag	#1 Drag	#2 Drag	#3

Sequential	draggingSingle	dragging

Figure 6. Sequential dragging. In cases when single dragging operation cannot attain the desired outcome, a simple workaround is to
break the operation down into a sequence of shorter dragging trajectories. Image credit (source images): Pexels.

Model Time (s)
DragDiffusion (Shi et al., 2023) 55.05±3.70

DiffEditor (Mou et al., 2024) 9.47±0.20

Readout Guidance (Luo et al., 2023a) 98.13±0.52

SDEDrag (Nie et al., 2023) 61.78±18.84

LightningDrag (ours) 2.06±0.05

LightningDrag + LCM-LoRA (ours) 0.92±0.02

Table 4. Time efficiency. The reported time cost is obtained by
running inference on 512×512 images sampled from DragBench
(Shi et al., 2023) on a single NVIDIA A100 GPU.

an order of magnitude faster than most baselines, making
it suitable for practical applications. Lastly, when com-
bined with recent diffusion acceleration methods such as
LCM-LoRA, our LightningDrag can be further accelerated,
requiring only < 1s for each dragging operation.

5.4. Qualitative results

Comparisons with Prior Methods. We compare our
LIGHTNINGDRAG with prior methods in Fig. 7. We ob-
serve that DiffEditor and Readout Guidance often strug-
gle to preserve reference identity (e.g., 2nd and 3rd row),
while DragDiffusion and SDEDrag sometimes fail to drag
the regions-of-interest to the desired locations. In contrast,
our LIGHTNINGDRAG effectively handles various dragging
needs, such as pose change, object scaling, translation, local
deformation, while preserving the source image appearance.

Multi-round Dragging. Our LIGHTNINGDRAG supports
multi-round dragging, allowing users to iteratively refine
edits based on previous outputs. Examples of multi-round
dragging are shown in Fig. 9 in Appendix.

6. Discussion: Out-of-Domain Generalization
A key strength of LIGHTNINGDRAG lies in its surprising
ability to generalize to out-of-domain editing instructions,
particularly those involving non-rigid deformations (e.g.,

stretching hair, bending structures), even though such trans-
formations are not explicitly observed in training videos.

We attribute this to two factors:

(1) Compositional Generalization from Natural Video
Cues. Although our model is trained solely on videos with-
out explicit dragging instructions, video motion contains
rich non-rigid dynamics. For example, Fig. 1(c) shows
syrup deforming as it accumulates — providing cues for
transformations like stretching or warping. This suggests
that the model learns a general motion prior from such ex-
amples, allowing it to extrapolate to unseen edits. We view
this as a form of compositional generalization: the model
internalizes structural transformations and recombines them
during inference.

(2) Explicit Control via PF-CFG. Our Point-Following
Classifier-Free Guidance (PF-CFG) is critical in guiding
this generalization during inference. By enforcing align-
ment between semantic regions around handle and target
points, PF-CFG improves the model’s control and robust-
ness. As evidenced in both Fig. 4 and our ablation study,
this component enhances the reliability of drag instructions
even under challenging or ambiguous cases.

Together, these insights suggest that our approach not only
achieves speed and accuracy but also establishes a promising
path toward more generalized and controllable image editing
using natural video supervision.

7. Conclusion
We introduced LIGHTNINGDRAG, a practical approach for
high-quality drag-based image editing in ∼ 1s. By lever-
aging large-scale natural videos as a rich source of motion
cues, our model learns how objects change and deform in
diverse scenarios. Extensive experiments confirm Lightning-
Drag surpasses prior methods in both speed and quality. We
hope this work will inspire further research on controllable
and precise image editing.

8
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LightningDrag
(ours)Readout	GuidanceSDEDragDiffEditorDragDiffusionUser	input

Figure 7. Qualitative comparison on DragBench. Our LightningDrag can handle various dragging instructions, such as pose change,
scaling, translation etc. while preserving the object identity.
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Impact Statement
This paper introduces a fast and high-quality drag-based im-
age editing approach, making advanced editing tools more
accessible to a wider audience. Although this democratiza-
tion of image manipulation has many positive applications,
it also raises concerns about the potential misuse of gen-
erated content, such as creating deceptive or fake imagery.
However, such risks are inherent in most research in visual
content synthesis, including image and video generation.

Acknowledgment
The authors would like to thank Zhongcong Xu, Zhijie
Lin, Jianfeng Zhang, Zilong Huang, and the anonymous
reviewers for their helpful discussion and feedback.

References
Abdal, R., Qin, Y., and Wonka, P. Image2stylegan: How

to embed images into the stylegan latent space? In Pro-
ceedings of the IEEE/CVF international conference on
computer vision, pp. 4432–4441, 2019.

Abdal, R., Zhu, P., Mitra, N. J., and Wonka, P. Styleflow:
Attribute-conditioned exploration of stylegan-generated
images using conditional continuous normalizing flows.
ACM Transactions on Graphics (ToG), 40(3):1–21, 2021.

Alzayer, H., Xia, Z., Zhang, X., Shechtman, E., Huang, J.-
B., and Gharbi, M. Magic fixup: Streamlining photo
editing by watching dynamic videos. arXiv preprint
arXiv:2403.13044, 2024.

Bar-Tal, O., Ofri-Amar, D., Fridman, R., Kasten, Y., and
Dekel, T. Text2live: Text-driven layered image and video
editing. In European Conference on Computer Vision, pp.
707–723. Springer, 2022.

Beier, T. and Neely, S. Feature-based image metamorphosis.
In Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pp. 529–536. 2023.

Brooks, T., Holynski, A., and Efros, A. A. Instructpix2pix:
Learning to follow image editing instructions. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18392–18402, 2023.

Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., and Zheng, Y.
Masactrl: Tuning-free mutual self-attention control for
consistent image synthesis and editing. arXiv preprint
arXiv:2304.08465, 2023.

Chen, M., Chen, X., Zhai, Z., Ju, C., Hong, X., Lan, J.,
and Xiao, S. Wear-any-way: Manipulable virtual try-
on via sparse correspondence alignment. arXiv preprint
arXiv:2403.12965, 2024.

Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D., and Zhao,
H. Anydoor: Zero-shot object-level image customization.
arXiv preprint arXiv:2307.09481, 2023.

Creswell, A. and Bharath, A. A. Inverting the generator of
a generative adversarial network. IEEE transactions on
neural networks and learning systems, 30(7):1967–1974,
2018.

Cui, Y., Zhao, X., Zhang, G., Cao, S., Ma, K., and Wang,
L. Stabledrag: Stable dragging for point-based image
editing. arXiv preprint arXiv:2403.04437, 2024.

Dai, Z., Zhang, Z., Yao, Y., Qiu, B., Zhu, S., Qin, L., and
Wang, W. Animateanything: Fine-grained open domain
image animation with motion guidance. arXiv e-prints,
pp. arXiv–2311, 2023.

Endo, Y. User-controllable latent transformer for stylegan
image layout editing. arXiv preprint arXiv:2208.12408,
2022.

Epstein, D., Jabri, A., Poole, B., Efros, A. A., and Holyn-
ski, A. Diffusion self-guidance for controllable image
generation. arXiv preprint arXiv:2306.00986, 2023.

Geng, D. and Owens, A. Motion guidance: Diffusion-
based image editing with differentiable motion estimators.
arXiv preprint arXiv:2401.18085, 2024.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N., and Wein-
berger, K. (eds.), Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.
cc/paper_files/paper/2014/file/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.
pdf.

Härkönen, E., Hertzmann, A., Lehtinen, J., and Paris, S.
Ganspace: Discovering interpretable gan controls. Ad-
vances in neural information processing systems, 33:
9841–9850, 2020.

Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K.,
Pritch, Y., and Cohen-Or, D. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hu, L., Gao, X., Zhang, P., Sun, K., Zhang, B., and Bo, L.
Animate anyone: Consistent and controllable image-to-
video synthesis for character animation. arXiv preprint
arXiv:2311.17117, 2023.

10

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


LightningDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos

Igarashi, T., Moscovich, T., and Hughes, J. F. As-rigid-
as-possible shape manipulation. ACM transactions on
Graphics (TOG), 24(3):1134–1141, 2005.

Karaev, N., Rocco, I., Graham, B., Neverova, N., Vedaldi,
A., and Rupprecht, C. Cotracker: It is better to track
together. arXiv preprint arXiv:2307.07635, 2023.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4401–4410, 2019.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. Analyzing and improving the image quality
of stylegan. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 8110–
8119, 2020.

Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel,
T., Mosseri, I., and Irani, M. Imagic: Text-based real
image editing with diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6007–6017, 2023.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kynkäänniemi, T., Aittala, M., Karras, T., Laine, S., Aila, T.,
and Lehtinen, J. Applying guidance in a limited interval
improves sample and distribution quality in diffusion
models. arXiv preprint arXiv:2404.07724, 2024.

Leimkühler, T. and Drettakis, G. Freestylegan: Free-view
editable portrait rendering with the camera manifold.
arXiv preprint arXiv:2109.09378, 2021.

Li, R., Zheng, C., Rupprecht, C., and Vedaldi, A. Dragapart:
Learning a part-level motion prior for articulated objects.
arXiv preprint arXiv:2403.15382, 2024.

Liew, J. H., Yan, H., Zhou, D., and Feng, J. Magicmix:
Semantic mixing with diffusion models. arXiv preprint
arXiv:2210.16056, 2022.

Lin, S., Liu, B., Li, J., and Yang, X. Common diffusion noise
schedules and sample steps are flawed. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 5404–5411, 2024a.

Lin, S., Wang, A., and Yang, X. Sdxl-lightning: Progres-
sive adversarial diffusion distillation. arXiv preprint
arXiv:2402.13929, 2024b.

Ling, P., Chen, L., Zhang, P., Chen, H., and Jin, Y. Freedrag:
Point tracking is not you need for interactive point-based
image editing. arXiv preprint arXiv:2307.04684, 2023.

Lipton, Z. C. and Tripathi, S. Precise recovery of latent vec-
tors from generative adversarial networks. arXiv preprint
arXiv:1702.04782, 2017.

Liu, H., Xu, C., Yang, Y., Zeng, L., and He, S. Drag
your noise: Interactive point-based editing via diffusion
semantic propagation. arXiv preprint arXiv:2404.01050,
2024.

Luo, G., Darrell, T., Wang, O., Goldman, D. B., and Holyn-
ski, A. Readout guidance: Learning control from diffu-
sion features. arXiv preprint arXiv:2312.02150, 2023a.

Luo, S., Tan, Y., Patil, S., Gu, D., von Platen, P., Passos,
A., Huang, L., Li, J., and Zhao, H. Lcm-lora: A univer-
sal stable-diffusion acceleration module. arXiv preprint
arXiv:2311.05556, 2023b.

Mao, J., Wang, X., and Aizawa, K. Guided image synthesis
via initial image editing in diffusion model. arXiv preprint
arXiv:2305.03382, 2023.

Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.-Y.,
and Ermon, S. Sdedit: Guided image synthesis and edit-
ing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Mokady, R., Hertz, A., Aberman, K., Pritch, Y., and Cohen-
Or, D. Null-text inversion for editing real images us-
ing guided diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6038–6047, 2023.

Mou, C., Wang, X., Song, J., Shan, Y., and Zhang, J. Dragon-
diffusion: Enabling drag-style manipulation on diffusion
models. arXiv preprint arXiv:2307.02421, 2023.

Mou, C., Wang, X., Song, J., Shan, Y., and Zhang, J. Diffed-
itor: Boosting accuracy and flexibility on diffusion-based
image editing. arXiv preprint arXiv:2402.02583, 2024.

Nie, S., Guo, H. A., Lu, C., Zhou, Y., Zheng, C., and
Li, C. The blessing of randomness: Sde beats ode in
general diffusion-based image editing. arXiv preprint
arXiv:2311.01410, 2023.

Pan, X., Tewari, A., Leimkühler, T., Liu, L., Meka, A., and
Theobalt, C. Drag your GAN: Interactive point-based
manipulation on the generative image manifold. arXiv
preprint arXiv:2305.10973, 2023.

Parmar, G., Singh, K. K., Zhang, R., Li, Y., Lu, J., and
Zhu, J.-Y. Zero-shot image-to-image translation. arXiv
preprint arXiv:2302.03027, 2023.

Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., and
Lischinski, D. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 2085–2094,
2021.

11



LightningDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Roich, D., Mokady, R., Bermano, A. H., and Cohen-Or,
D. Pivotal tuning for latent-based editing of real images.
ACM Transactions on Graphics (TOG), 42(1):1–13, 2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022.

Schaefer, S., McPhail, T., and Warren, J. Image deformation
using moving least squares. In ACM SIGGRAPH 2006
Papers, pp. 533–540. 2006.

Shen, Y. and Zhou, B. Closed-form factorization of latent
semantics in gans. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 1532–1540, 2021.

Shen, Y., Gu, J., Tang, X., and Zhou, B. Interpreting the
latent space of gans for semantic face editing. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9243–9252, 2020.

Shi, Y., Xue, C., Pan, J., Zhang, W., Tan, V. Y., and
Bai, S. Dragdiffusion: Harnessing diffusion models for
interactive point-based image editing. arXiv preprint
arXiv:2306.14435, 2023.

Shin, J., Choi, D., and Park, J. InstantDrag: Improving
Interactivity in Drag-based Image Editing. In ACM SIG-
GRAPH Asia 2024 Conference Proceedings, pp. 1–10,
2024.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, J., Meng, C., and Ermon, S. Denoising diffusion
implicit models. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Tewari, A., Elgharib, M., Bharaj, G., Bernard, F., Seidel,
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A. Video Demo
Please see our project website for a video demonstration: https://lightning-drag.github.io/

B. Additional Qualitative Results

Figure 8. Qualiative results of LIGHTNINGDRAG. Image credit (source images): Pexels.

ResultUser	InputResultUser	InputResultUser	input
Figure 9. Multi-round dragging. Image credit (source images): Pexels.
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