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Abstract

We propose PROTLLM, a versatile cross-001
modal large language model (LLM) for both002
protein-centric and protein-language tasks.003
PROTLLM features a unique dynamic protein004
mounting mechanism, enabling it to handle005
complex inputs where the natural language006
text is interspersed with an arbitrary number007
of proteins. Besides, we propose the protein-008
as-word language modeling approach to train009
PROTLLM. By developing a specialized pro-010
tein vocabulary, we equip the model with the011
capability to predict not just natural language012
but also proteins from a vast pool of can-013
didates. Additionally, we construct a large-014
scale interleaved protein-text dataset, named015
InterPT, for pre-training. This dataset com-016
prehensively encompasses both (1) structured017
data sources like protein annotations and (2)018
unstructured data sources like biological re-019
search papers, thereby endowing PROTLLM020
with crucial knowledge for understanding pro-021
teins. We evaluate PROTLLM on classic super-022
vised protein-centric tasks and explore its novel023
protein-language applications. Experimental024
results demonstrate that PROTLLM not only025
achieves superior performance against protein-026
specialized baselines on protein-centric tasks027
but also induces zero-shot and in-context learn-028
ing capabilities on protein-language tasks. Our029
data and models will be publicly available.030

1 Introduction031

Understanding proteins is essential for unraveling032

the mysteries of life and enabling artificial intel-033

ligence systems to advance bioscience research034

(Wang et al., 2023a). Thanks to the development of035

deep learning techniques, neural network models036

encompass extensive protein-centric applications,037

such as protein-folding prediction (Jumper et al.,038

2021), protein-protein interaction analysis (Li et al.,039

2018; Su et al., 2023), function prediction (Zhang040

et al., 2023a), etc.041
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Figure 1: Unlike existing protein representation models
that focus on protein-text pairs or protein-only data,
PROTLLM can handle complex inputs with multiple
proteins interleaved with text, thereby learning crucial
knowledge from scientific papers and supporting diverse
downstream tasks.

Protein representation learning methods typi- 042

cally employ large-scale pre-training, which learns 043

unsupervised protein representations on massive 044

protein sequences with masked language model- 045

ing (Rives et al., 2021), or autoregressive lan- 046

guage modeling (Elnaggar et al., 2020). In addi- 047

tion to protein-centric tasks, recent studies have 048

attempted to extend protein models to protein- 049

language scenarios. ProtST (Xu et al., 2023b) inte- 050

grates textual information into the protein encoder 051

through multimodal pre-training on protein-text 052

pairs, achieving zero-shot text-to-protein retrieval. 053

Fang et al. (2023) introduces an instruction dataset 054

tailored for the biomolecular domain and investi- 055

gates how fine-tuned LLM performs on protein- 056

domain instruction-following tasks, such as func- 057

tion description generation. 058

Despite the success of protein representation 059

methods on specific tasks, developing a model that 060

excels in both protein-centric and protein-language 061
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tasks is still under-explored, facing three main062

challenges. Firstly, architectures are designed for063

particular downstream tasks, making it difficult064

to accommodate a wide range of tasks simultane-065

ously. Secondly, current methods primarily derive066

cross-modal supervision from explicitly annotated067

protein-text pairs, which is not scalable to large-068

scale pre-training. Lastly, supporting a variable069

number of proteins in the input sequence intro-070

duces computational uncertainty in each training071

step, leading to inefficiencies during pre-training.072

In this work, we propose PROTLLM, which073

is a versatile LLM for both protein-centric and074

protein-language tasks. Instead of designing for075

specific tasks, PROTLLM supports complex in-076

terleaved protein-text inputs and outputs, which077

enables our model to simultaneously handle di-078

verse downstream tasks without re-designing task-079

specific architecture (see Figure 1 for illustrations).080

Specifically, our dynamic protein mounting mecha-081

nism enables the model to seamlessly process text082

interspersed with an arbitrary number of proteins.083

Besides, we propose protein-as-word language084

modeling to ensure interleaved protein-text out-085

puts. By building a protein vocabulary, PROTLLM086

is trained to autoregressively predict words and087

proteins from their respective vocabularies.088

Additionally, we present a large-scale inter-089

leaved protein-text dataset, named InterPT, for090

PROTLLM pre-training. InterPT is constructed091

from diverse data sources, consisting of both struc-092

tured data such as paired protein annotation data,093

and unstructured data from biological research pa-094

pers, which encourages PROTLLM to harness cru-095

cial knowledge from the scientific articles.096

We conduct extensive experiments on a wide097

range of downstream tasks, ranging from classic098

supervised protein-centric tasks to novel protein-099

language applications. Experimental results100

demonstrate that PROTLLM outperforms special-101

ized baselines on protein-centric tasks. PROTLLM102

also unlocks the in-context learning capability for103

protein-protein interaction prediction, and achieves104

zero-shot text-guided functional protein retrieval.105

Our contributions are as follows:106

• We propose PROTLLM, a versatile cross-107

modal LLM for both protein-centric and108

protein-language tasks. PROTLLM could pro-109

cess complex interleaved protein-text inputs110

and outputs, thereby supporting diverse tasks.111

• We introduce a large-scale pre-training112

dataset, InterPT, interleaving proteins and text 113

from both structured data sources and unstruc- 114

tured multi-protein scientific articles. 115

• We show that PROTLLM achieves superior 116

results on protein-centric tasks against protein- 117

specialized baselines, and induces zero-shot 118

and in-context learning capabilities. 119

2 Related Work 120

2.1 Large Language Models 121

The evolution of LLMs has been a cornerstone in 122

the field of natural language processing , showcas- 123

ing extraordinary capabilities across a broad spec- 124

trum of tasks (Devlin et al., 2018; Raffel et al., 125

2020; Brown et al., 2020; OpenAI, 2023; Tou- 126

vron et al., 2023; Longpre et al., 2023; Chowd- 127

hery et al., 2022). These models, once thought to 128

be limited to text-based tasks, have now crossed 129

boundaries into areas traditionally dominated by 130

human expertise, including mathematical problem- 131

solving (Wei et al., 2022; Imani et al., 2023), drug 132

discovery (Liang et al., 2023; Liu et al., 2023b), and 133

complex decision making (Yu et al., 2023; Ma et al., 134

2023). Recent explorations further extend LLMs’ 135

expertise into the multimodal domain where they 136

demonstrate significant promise in processing and 137

generating content from diverse modalities (Huang 138

et al., 2023; Zhu et al., 2023; Liu et al., 2023a; Zhao 139

et al., 2023; Wu et al., 2023). Most of these works 140

focus on aligning pre-trained encoders from various 141

modalities with LLMs through instruction tuning, 142

thus equipping LLMs to interpret multimodal in- 143

puts. In the realm of scientific research, specialized 144

molecular LLMs have been devised for tasks like 145

molecular property prediction (Liu et al., 2023c), 146

captioning (Fang et al., 2023), and retrieval (Liu 147

et al., 2023d). Despite these advances, the progress 148

in protein understanding with LLMs lags, hindered 149

by the scarcity of comprehensive datasets for align- 150

ment and the absence of efficient architectures to 151

model protein-language sequences. 152

2.2 Protein Representation Learning 153

Current mainstream methods for protein under- 154

standing tasks have focused on protein representa- 155

tion learning. Protein language models (PLMs) (El- 156

naggar et al., 2020; Rives et al., 2021; Meier 157

et al., 2021; Lin et al., 2022) have marked signif- 158

icant progress in the area by training the protein 159

sequence encoders on massive protein sequence 160

data. Protein structure encoding methods aim to 161
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learn coarse-grained amino-acid-level representa-162

tions (Gligorijević et al., 2021; Fan et al., 2022;163

Zhang et al., 2023a; Xu et al., 2023a) or fine-164

grained atom-level representations (Hermosilla165

et al., 2021; Jing et al., 2021; Zhang et al., 2023b).166

Despite the success in protein modeling, protein-167

related text data are left unexplored, which con-168

tains valuable supervision signals crucial for un-169

derstanding proteins. To enhance protein under-170

standing with text supervision, OntoProtein (Zhang171

et al., 2022a) leverages knowledge graphs, utiliz-172

ing gene ontology annotations to implicitly en-173

rich protein representation with textual informa-174

tion. ProtST (Xu et al., 2023b) integrates textual175

information into the protein encoder through multi-176

modal pre-training on protein-text pairs, achieving177

zero-shot text-to-protein retrieval.178

Mol-Instruction (Fang et al., 2023) introduces a179

comprehensive instruction dataset specialized for180

biomolecules and further fine-tunes LLMs on this181

dataset. Similarly, InstructProtein (Wang et al.,182

2023b) improves the quality of instruction datasets183

by sampling protein-text pairs from a structured184

knowledge graph. This line of work focuses on185

aligning protein with human language using LLMs.186

However, a limitation of these approaches lies in187

their direct incorporation of protein sequences into188

LLMs as text, leading to suboptimal protein mod-189

eling due to the LLMs not being pre-trained on190

extensive protein sequence datasets. In contrast,191

PROTLLM provides a versatile framework that ex-192

cels in both classic protein-centric tasks and novel193

protein-text applications.194

3 Methods195

In this section, we elaborate on our proposed196

method, PROTLLM, which is illustrated in Fig-197

ure 2. Initially, we detail the model architecture in198

Section 3.1. Subsequently, the pre-training strategy199

is explained, introducing the concept of protein-200

as-word modeling, as outlined in Section 3.2. We201

then present the uniquely constructed interleaved202

protein-text dataset, InterPT, in Section 3.3. Lastly,203

we explore the application of PROTLLM on a vari-204

ety of tasks in Section 3.4.205

3.1 PROTLLM Framework206

Model architecture PROTLLM consists of an207

LLM for natural language modeling, a protein208

encoder, and cross-modal connectors that con-209

nect the protein encoder and the LLM. We use210

LLaMA-7b (Touvron et al., 2023) as the backbone 211

of PROTLLM, which is an autoregressive Trans- 212

former language model pre-trained on large-scale 213

natural language data. To make PROTLLM under- 214

stand protein sequences (i.e., sequences of amino 215

acid tokens, which are the primary structure of pro- 216

teins), we employ ProtST (Xu et al., 2023b) as 217

the protein encoder. ProtST follows the backbone 218

architecture of ESM-2 (Lin et al., 2022) and intro- 219

duces an additional two-layer MLP projection head. 220

Pre-trained on large-scale protein-text pairs with 221

contrastive learning, ProtST learns protein repre- 222

sentations that are well-aligned with text. Besides, 223

we introduce cross-modal connectors that connect 224

the LLM with the protein encoder, thereby enabling 225

PROTLLM to accept multimodal inputs. Specifi- 226

cally, PROTLLM has two cross-modal connector 227

layers, which are placed at the input layer and the 228

output layer of the LLM, respectively. The input- 229

layer connector is a trainable projection matrix and 230

transforms the output vectors from the protein rep- 231

resentation space to the LLM representation space. 232

Similarly, the output-layer connector transforms 233

the LLM output vectors back to the protein rep- 234

resentation space. Significantly, the output-layer 235

connector also serves as a prediction head, allowing 236

our model to perform protein retrieval and multi- 237

choice protein answering tasks without requiring 238

the LLM to generate complicated protein names. 239

Dynamic protein mounting PROTLLM consid- 240

ers not only structured protein-text paired data but 241

also free-form interleaved protein-text sequences. 242

Although the widely used encoder-decoder archi- 243

tecture can handle paired data, it encounters dif- 244

ficulties when dealing with interleaved protein- 245

text inputs with multiple proteins. Therefore, we 246

propose dynamic protein mounting, which allows 247

PROTLLM to accept an arbitrary number of pro- 248

teins as either input. Specifically, given an input 249

sequence interleaved with proteins and text, 250

...[text1] [protein1] [text2] [protein2] [text3]... 251

we do not directly feed the protein sequence to the 252

LLM, but replace sequences with mount points. 253

...[text1] <PROT> [mount1] </PROT> [text2] ... 254

At each mount point, we mount the protein encoder 255

to the LLM with the cross-modal connector. Ad- 256

ditionally, these mount points are delineated by 257

protein tags, signaling to the LLM that it is receiv- 258

ing protein vector inputs at these positions, rather 259

than text data. 260
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Figure 2: An overview of PROTLLM. The architecture of PROTLLM consists of an autoregressive transformer,
a protein encoder, and cross-modal connectors. With dynamic protein mounting, PROTLLM adeptly handles
free-form interleaved protein-text sequences with an arbitrary number of proteins in the input. PROTLLM is
pre-trained with protein-as-word language modeling that unifies word and protein prediction by constructing a
protein vocabulary.

3.2 PROTLLM Pre-Training261

Protein-as-word language modeling We intro-262

duce the protein-as-word language modeling train-263

ing objective, which unifies protein prediction and264

word prediction as an autoregressive language mod-265

eling task. Consider an input sequence interleaved266

with n tokens [x1, x2, ..., xn], where the i-th token267

xi represents either a natural language token or a268

protein. The protein-as-word language modeling269

object is to maximize the likelihood:270

argmax
θ

n∑
i=1

log p(xi|x<i;θ), (1)271

where p(xi|x<i;θ) is a categorical probability dis-272

tribution over a natural language vocabulary when273

predicting natural words, or a protein vocabulary274

when predicting proteins. The probability is com-275

puted by276

p(xi|x<i;θ) =277 {
softmax(h⊤

i ej)j , j ∈ V if xi is word
softmax(h⊤

i Wvk)k, k ∈ Vp if xi is protein
(2)

278

where hi is the last-layer LLM hidden states of279

xi; ej is the word embedding of the word j from280

the natural language vocabulary V; W stands for 281

the output connector matrix, and vk is the protein 282

embeddings of the protein k from the protein vo- 283

cabulary Vp. To construct the protein vocabulary, 284

we collect all protein sequences in the training data. 285

We then filter out proteins present in the down- 286

stream test sets to prevent data leakage. Finally, we 287

compile a vocabulary consisting of the 1, 076, 781 288

proteins. 289

Pre-training acceleration with protein cache 290

Although our dynamic protein mounting design 291

introduces flexibility for the input format, it also 292

introduces computational uncertainty into the pre- 293

training process, i.e., the computational cost of 294

each step can vary significantly with the number 295

of input proteins. Consequently, the throughput 296

is limited by the worst case, leading to markedly 297

reduced training efficiency. To accelerate the pre- 298

training, we build a protein cache where we store 299

all the pre-computed protein vectors encoded by 300

the protein encoder. With the protein cache, we 301

eliminate the heavy computational cost of the pro- 302

tein encoder, thereby accelerating the pre-training 303

procedure with stable throughput. Besides, we uti- 304

lize LoRA (Hu et al., 2022) for efficient training. 305
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Data Source Data Type Size

PubMed Multi-protein articles 165, 206
UniProt Annotations 64, 634
STRING Annotations 25, 682
Mol-Instructions Instruction-following data 173, 973

Table 1: Category and statistics of InterPT components.

3.3 InterPT: Interleaving Protein-Text Data306

We propose a large-scale interleaved protein-text307

multimodal dataset, named InterPT, to pre-train308

PROTLLM with comprehensive protein-related309

knowledge. This dataset encompasses three types310

of data sources, i.e., multi-protein scientific articles,311

protein-annotation pairs, and protein instruction-312

following data. The statistics of each component313

are listed in Table 1.314

Multi-protein scientific articles Multi-protein315

scientific articles describe complex relationships316

among different proteins found in biological re-317

search, where each sample could contain multi-318

ple proteins. Unlike data presented in structured319

formats such as pairs or knowledge graphs, these320

articles offer detailed insights in unstructured nat-321

ural language. Guided by the recording in the322

STRING database (Mering et al., 2003) of multi-323

protein interactions and the scientific articles sup-324

porting them, we retrieve all involved articles from325

the PubMed database (Canese and Weis, 2013),326

specifically selecting instances where multiple pro-327

teins co-occur within the same paragraph. All pro-328

teins in these paragraphs are linked to the UniProt329

database (Consortium, 2015) for their amino acid330

sequences. Finally, we collect 165K interleaved331

protein-text sequences from PubMed articles.332

Protein-annotation pairs This data maps indi-333

vidual proteins to their textual annotations such334

as function descriptions. We integrate two data335

sources, i.e., the UniProt database (Consortium,336

2015) and the STRING database (Mering et al.,337

2003), adding up to 90K protein-annotation pairs.338

Given such a pair, we utilize it for two tasks, i.e.,339

protein-to-text prediction and text-to-protein pre-340

diction, with the probability of 0.8 and 0.2, respec-341

tively. Besides, during pre-training, we interleave342

the data into longer sequences by concatenating343

multiple pairs into a single sequence, which has two344

advantages: (1) this operation can bridge the data345

length gap across different data sources and reduce346

the number of padding tokens, leading to higher347

training efficiency; (2) training multiple pairs in348

a single sequence encourages the model to obtain 349

in-context learning capabilities (Gu et al., 2023). 350

Protein instruction-following data This data is 351

in the instruction-following style (Ouyang et al., 352

2022), typically requiring the model to generate 353

open-ended text given a protein and an instruction 354

(Fang et al., 2023). We select the data items of 355

proteins from the Mol-Instructions dataset (Fang 356

et al., 2023) and include them into InterPT. Sim- 357

ilar to the processing of protein-annotation pairs, 358

we also concatenate multiple instruction-following 359

data into a single pre-training example, so as to 360

improve training efficiency and acquire in-context 361

learning capabilities. 362

3.4 Applying PROTLLM to Diverse Tasks 363

Supervised fine-tuning The best practice for 364

adapting PROTLLM to downstream tasks is super- 365

vised fine-tuning when training data are available. 366

Since PROTLLM supports flexible input and out- 367

put formats, we can simply transform the down- 368

stream task data into an interleaved format and di- 369

rectly perform protein-as-word language modeling 370

for supervised fine-tuning. The input and output 371

prompt format for each downstream task can be 372

found in the Appendix A. During fine-tuning, we 373

also apply the LoRA adapter to the LLM for effi- 374

cient fine-tuning while preventing the model from 375

overfitting several proteins in the training set. 376

In-context learning In-context learning is a 377

promising capability of LLM, which can adapt the 378

LLM to specific tasks with a few examples with- 379

out training the model. PROTLLM can achieve 380

in-context learning by pretending a few demon- 381

stration examples. To the best of our knowledge, 382

PROTLLM is the first protein-language LLM that 383

is capable of in-context learning. 384

Instruction-following protein retrieval For an- 385

other interesting application, PROTLLM can be 386

programmed to execute protein retrieval with cus- 387

tomized requirements by following instructions. In 388

Section 4.3, we show that PROTLLM can well re- 389

trieve functional proteins based only on function 390

descriptions, and it can be further improved by 391

prepending a one-shot demonstration. 392

4 Experiments 393

We evaluate PROTLLM on three types of down- 394

stream tasks: (1) protein-centric tasks, which 395

include supervised fine-tuning on conventional 396

5



Model
Pre-training EC GO-BP GO-MF GO-CC PPI

Protein Text AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax ACC

DeepFRI ! % 0.546 0.631 0.282 0.399 0.462 0.465 0.363 0.460 -
GearNet ! % 0.892 0.874 0.292 0.490 0.596 0.650 0.226 0.486 73.86
ProtBert ! % 0.859 0.838 0.188 0.279 0.464 0.456 0.234 0.408 77.32
ESM-1b ! % 0.884 0.869 0.332 0.452 0.630 0.659 0.324 0.477 82.22
ESM-2 ! % 0.888 0.874 0.340 0.472 0.643 0.662 0.350 0.472 86.90
OntoProtein ! ! 0.854 0.841 0.284 0.436 0.603 0.631 0.300 0.441 70.42
ProtST ! ! 0.898 0.878 0.342 0.482 0.647 0.668 0.364 0.487 88.19
PROTLLM ! ! 0.874 0.860 0.349 0.503 0.652 0.668 0.469 0.596 89.87

Table 2: Comparative benchmark results on protein-centric tasks. We use AUPR and Fmax on EC and GO prediction
and accuracy (%) on PPI prediction. Bold figures denote the best performance. ‘-’ indicates not applicable.

benchmarks for protein understanding; (2) protein-397

text in-context learning, where we show the unique398

ability of PROTLLM by in-context learning on399

protein-protein interaction prediction; (3) text-400

guided functional protein retrieval, where we con-401

duct a real-world enzyme mining task as a proof-402

of-concept study to validate the retrieval capability403

of PROTLLM. We present detailed hyperparam-404

eters, and prompt templates for pre-training and405

fine-tuning in Appendix A.406

4.1 Protein-Centric Tasks407

Setup Following the settings in PEER bench-408

mark (Xu et al., 2022), we adopt three standard409

tasks in protein understanding to validate our410

method. Enzyme Commission (EC) number pre-411

diction (Gligorijević et al., 2021) aims to predict412

all possible EC numbers of a protein simultane-413

ously, reflecting the chemical reactions it catalyzes.414

Gene Ontology (GO) term prediction (Gligori-415

jević et al., 2021) extends as a multi-label classi-416

fication task, seeking to predict whether a protein417

belongs to specific GO terms. The GO benchmark418

is categorized into three branches, namely biolog-419

ical process (BP), molecular function (MF), and420

cellular component (CC). Protein-Protein Inter-421

action (PPI) prediction aims to determine whether422

two given proteins interact or not. We adopt the hu-423

man PPI dataset (Pan et al., 2010) for experiments.424

To evaluate performances on multi-label clas-425

sification tasks including EC and GO prediction,426

we report pair-centric area under precision-recall427

curve (AUPR) values and Fmax, a widely used met-428

ric in the CAFA challenges (Radivojac et al., 2013).429

PPI prediction results are evaluated by mean accu-430

racy. These metrics require the soft probability of431

each target label. To achieve this, we initially ex- 432

tract the probabilities of “Yes” for the positive label 433

and “No” for the negative label, respectively. Then, 434

these probabilities are normalized via the softmax 435

function to get the final predicted probabilities. 436

Baselines We compare PROTLLM with seven 437

existing protein representation learning methods. 438

As shown in Table 2, these methods can be catego- 439

rized into two distinct categories: protein-only ap- 440

proaches and protein-text learning approaches. 441

The former encompasses sequence-based models 442

including ProtBert (Elnaggar et al., 2020), ESM- 443

1b (Rives et al., 2021), and ESM-2 (Lin et al., 444

2022), which are pre-trained using extensive col- 445

lections of protein sequences, alongside structure- 446

based models, such as DeepFRI (Gligorijević et al., 447

2021), and GearNet (Zhang et al., 2022b). The 448

latter, protein-text learning approaches, includes 449

OntoProtein (Zhang et al., 2022a), and ProtST (Xu 450

et al., 2023b). 451

Note that Mol-Instructions (Fang et al., 2023) 452

and InstructProtein (Wang et al., 2023b) also be- 453

long to the protein-text learning approaches. How- 454

ever, their methods directly take protein sequences 455

as human language and tokenize the data using 456

byte-pair encoding. Contrasting with the protein- 457

as-word strategy in PROTLLM, this exponentially 458

increases the context length, rendering the evalua- 459

tion on tasks with extensive label sets, like EC and 460

GO prediction, or those requiring multiple protein 461

inputs, such as PPI prediction, impractical for their 462

approaches. 463

Results The results are shown in Table 2. 464

PROTLLM consistently shows competitive or even 465

superior performance compared to both protein- 466
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Figure 3: In-context learning results on human PPI.

only and protein-text approaches across all bench-467

marks, indicating the effectiveness of our proposed468

framework on conventional close-ended protein un-469

derstanding tasks. Remarkably, PROTLLM obtain470

0.596 Fmax and 0.469 AUPR on GO-CC, which471

outperforms ProtST by a large margin. As depicted472

in Section 3.1, PROTLLM directly uses pre-trained473

ProtST as the protein encoder, with the key differ-474

ence lying in our LLM decoder and pre-training475

stage for alignment. By comparing PROTLLM476

with ProtST, the overall improvements strongly477

highlight the potential benefits of incorporating478

richer protein-text information and scaling the size479

of the language model.480

Moreover, PROTLLM also outperforms two481

structure-based models on GO and PPI prediction482

despite we only leverage sequence information dur-483

ing training. Protein structures encode rich infor-484

mation and have direct relations to their functions.485

This opens up a promising direction to further incor-486

porate protein structure into our framework, which487

we leave for future work.488

4.2 Unlocking In-Context Learning489

In-context learning is the capability that rapidly490

adapts the model to specific tasks using only a491

few annotated demonstration examples, which is492

originally found in autoregressive language mod-493

els (Brown et al., 2020) and then is extended to494

visual language models (Alayrac et al., 2022). In495

this section, we investigate whether PROTLLM can496

achieve in-context learning on the human protein-497

protein interaction (PPI) prediction task.498

Setup We directly evaluate the pre-trained499

PROTLLM model on the human PPI task without500

updating any parameters. For the k-shot in-context501

learning, we randomly sample k examples from the502

validation set as the demonstrations and prepend503

Reactant Method
Pool Size: 500 Pool Size: 1000

Top-10 Top-20 Top-50 Top-10 Top-20 Top-50

IsoC5
Zero-shot 0.40 0.40 0.40 0.33 0.33 0.33
In-context 0.60 0.80 0.80 0.50 0.67 0.67

C3
Zero-shot 1.0 1.0 1.0 1.0 1.0 1.0
In-context 1.0 1.0 1.0 0.67 0.67 0.67

C5
Zero-shot 0.40 0.40 0.40 0.25 0.25 0.25
In-context 0.60 0.80 0.80 0.38 0.50 0.50

C8
Zero-shot 0.33 0.33 0.50 0.22 0.22 0.33
In-context 0.83 0.83 0.83 0.56 0.56 0.56

Table 3: Performance comparisons between zero-shot
retrieval and in-context learning on enzyme mining.
Top-10, 20 and 50 Recall are reported.

them to each test sequence. Both the demonstration 504

example and test example are prompted with the 505

same template. For example, a one-shot prompted 506

input is as follows: 507

508
Do <PROT> [mount1] </PROT> and <PROT> [mount2] </PROT>
interact with each other? Yes\n Do <PROT> [mount3]
</PROT> and <PROT> [mount4] </PROT> interact with each
other?

509

The protein sequences of demonstration and test 510

examples are first encoded by the protein encoder 511

and then fed to the language model at each mount 512

point. The final answer is predicted by selecting the 513

verbalizer, i.e., “Yes” or “No”, with the higher prob- 514

ability. Besides, to understand how multi-protein 515

pre-training data from scientific articles improves 516

PROTLLM, we also evaluate a variant of our model 517

by removing the multi-protein scientific articles 518

from the pre-training corpora. 519

Results Figure 3 presents the in-context learn- 520

ing performance on human PPI with varying num- 521

bers of demonstration examples. Our model consis- 522

tently achieves higher PPI accuracy with an increas- 523

ing number of demonstration examples, demon- 524

strating its effective in-context learning capabil- 525

ity for protein-centric tasks. In comparison, the 526

model performs drastically worse upon removing 527

the multi-protein scientific articles, and fails to 528

learn in context with the 2, 6, and 12 demonstra- 529

tions. We believe that the in-context learning ca- 530

pability of our model could empower biologists 531

to apply it to specialized tasks that lack annotated 532

data, using minimal examples. Our experiments on 533

enzyme mining illustrate a tangible application of 534

in-context learning, as detailed in Section 4.3. 535

4.3 Text-Guided Functional Protein Retrieval 536

Setup This experiment aims to study the capa- 537

bility of PROTLLM to retrieve functional proteins 538
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(a) Lead Enzyme for IsoC5: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 1300 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 7.8 (s%&)
• Vina Energy: -7.8 (kcal/mol)

(b) Lead Enzyme for C3: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 8200 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 46.7 (s%&)
• Vina Energy: -6.8 (kcal/mol)

(c) Lead Enzyme for C5: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 1700 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 4.7 (s%&)
• Vina Energy: -7.3 (kcal/mol)

(d) Lead Enzyme for C8: 
• 𝑲𝒄𝒂𝒕/𝑲𝑴: 17000 (mol%&s%&)
• 𝑲𝒄𝒂𝒕: 10.1 (s%&)
• Vina Energy: -7.0 (kcal/mol)

Figure 4: Top-1 enzyme mining results based on PROTLLM retrieval and AutoDock Vina post-screening. Kcat/KM

and Kcat measure enzyme activity (higher the better). Vina energy measures binding affinity (lower the better).

based on text prompts and demonstrations. For this539

purpose, we apply PROTLLM to enzyme mining,540

which is a critical stage in enzyme and metabolic541

engineering pipelines. In this experiment, we eval-542

uate our model on mining carboxylate reductases543

that transform various ketoacids into their corre-544

sponding aldehydes. Four ketoacid reactants, i.e.,545

2-ketoisovaleric acid (IsoC5), pyruvic acid (C3),546

2-ketovaleric acid (C5), and 2-ketooctanoic acid547

(C8), studied in Mak et al. (2015) are employed for548

evaluation.549

Using a reported enzyme for IsoC5, ketoiso-550

valerate decarboxylase (KIVD) (De La Plaza et al.,551

2004), as the query, we first search for a pool of552

enzyme candidates by BLASTp (McGinnis and553

Madden, 2004), where the pools with the size of554

500 and 1000 are respectively tested. We then lever-555

age PROTLLM to retrieve active enzymes from the556

pool for each reactant in two modes. In the zero-557

shot retrieval setting, given the prompt:558

559

Identify the enzymes: {Reactant} → Isobutanal. <PROT>560

describing the reaction from reactant (IsoC5, C3,561

C5 or C8) to product, PROTLLM generates a pro-562

tein embedding at the token <PROT>. Then, we en-563

code all the candidate enzymes as embeddings with564

the protein encoder. Finally, we utilize this embed-565

ding to rank all enzyme candidates by comparing566

embedding similarity. For in-context learning, we567

further add a one-shot demonstration of carboxy-568

late reductase before the prompt above to facilitate569

enzyme mining. The demonstration is:570

571
Indentify the enzymes: Oxidizes aldehydes to the
corresponding carboxylic acids with a preference for
aromatic aldehydes. <PROT> [mount] </PROT>

572

where the “[mount]” token is represented by the573

protein embedding of PaoC (Neumann et al., 2009),574

a typical carboxylate reductase.575

Results In Table 3, we report the recall of ac- 576

tive enzymes found in Mak et al. (2015) at top 577

10, 20, and 50 ranked candidates. It is observed 578

that in-context learning outperforms zero-shot re- 579

trieval on 18 out of 24 metrics, which verifies that 580

PROTLLM can learn from a few demonstrations 581

and improve its enzyme mining performance based 582

on such knowledge. To study the top-ranked en- 583

zymes by PROTLLM more in depth, we employ 584

AutoDock Vina (Trott and Olson, 2010) to further 585

screen the top-20 enzymes found by in-context 586

learning and pick the one with the lowest Vina 587

energy for visualization. As shown in Figure 4, the 588

lead enzymes selected in this way are all with good 589

properties, possessing high enzyme activity (i.e., 590

high Kcat/KM and Kcat values measured by Mak 591

et al. (2015)) and low binding energy measured by 592

AutoDock Vina. These results altogether prove the 593

effectiveness of PROTLLM on enzyme mining. 594

5 Conclusion 595

In this paper, we present PROTLLM, a versa- 596

tile LLM designed to tackle both protein-centric 597

and protein-language tasks. Through dynamic 598

protein mounting and protein-as-word modeling, 599

PROTLLM adeptly handles complex interleaved 600

protein-text data, seamlessly unifying a wide array 601

of protein tasks via a natural language interface. Be- 602

sides, we construct a large-scale protein-language 603

pre-training dataset, called InterPT, which en- 604

courages the model to learn from diverse data 605

sources ranging from structured paired data to un- 606

structured multi-protein scientific articles. Exten- 607

sive experiments demonstrate that PROTLLM not 608

only achieves competitive performance against spe- 609

cialized baselines across standard protein-centric 610

benchmarks but also paves the way for exploring 611

novel protein-language applications. 612
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Limitations613

In this paper, we primarily focus on sequence614

modeling for protein understanding. Nonetheless,615

PROTLLM is a general interface for the inputs in616

other modalities. Future research could further ex-617

tend PROTLLM to additional modalities, such as618

protein structures and molecular graphs, by incor-619

porating modality-specific encoders. Besides, we620

would like to explore more novel applications of621

PROTLLM such as scientific discovery.622

Ethics Statement623

This work complies with the ACL Code of Ethics.624

We declare that there are no ethical issues in this625

paper, to the best of our knowledge.626

References627

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,628
Antoine Miech, Iain Barr, Yana Hasson, Karel629
Lenc, Arthur Mensch, Katherine Millican, Malcolm630
Reynolds, et al. 2022. Flamingo: a visual language631
model for few-shot learning. Advances in Neural632
Information Processing Systems, 35:23716–23736.633

Tom Brown, Benjamin Mann, Nick Ryder, Melanie634
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind635
Neelakantan, Pranav Shyam, Girish Sastry, Amanda636
Askell, et al. 2020. Language models are few-shot637
learners. Advances in Neural Information Processing638
Systems, 33:1877–1901.639

Kathi Canese and Sarah Weis. 2013. Pubmed: the bibli-640
ographic database. The NCBI handbook, 2(1).641

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,642
Maarten Bosma, Gaurav Mishra, Adam Roberts,643
Paul Barham, Hyung Won Chung, Charles Sutton,644
Sebastian Gehrmann, Parker Schuh, Kensen Shi,645
Sasha Tsvyashchenko, Joshua Maynez, Abhishek646
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-647
odkumar Prabhakaran, Emily Reif, Nan Du, Ben648
Hutchinson, Reiner Pope, James Bradbury, Jacob649
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,650
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,651
Sunipa Dev, Henryk Michalewski, Xavier Garcia,652
Vedant Misra, Kevin Robinson, Liam Fedus, Denny653
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,654
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,655
David Dohan, Shivani Agrawal, Mark Omernick,656
Andrew M. Dai, Thanumalayan Sankaranarayana657
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Mor-658
eira, Rewon Child, Oleksandr Polozov, Katherine659
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,660
Mark Diaz, Orhan Firat, Michele Catasta, Jason661
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,662
Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling663
language modeling with pathways. arXiv preprint664
arXiv:2204.02311.665

UniProt Consortium. 2015. Uniprot: a hub for protein 666
information. Nucleic acids research, 43(D1):D204– 667
D212. 668

Marta De La Plaza, Pilar Fernández de Palencia, Car- 669
men Peláez, and Teresa Requena. 2004. Biochemical 670
and molecular characterization of α-ketoisovalerate 671
decarboxylase, an enzyme involved in the formation 672
of aldehydes from amino acids by lactococcus lactis. 673
FEMS microbiology letters, 238(2):367–374. 674

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 675
Kristina Toutanova. 2018. BERT: Pre-training of 676
deep bidirectional transformers for language under- 677
standing. arXiv preprint arXiv:1810.04805. 678

Ahmed Elnaggar, Michael Heinzinger, Christian Dal- 679
lago, Ghalia Rihawi, Yu Wang, Llion Jones, Tom 680
Gibbs, Tamas Feher, Christoph Angerer, Martin 681
Steinegger, et al. 2020. Prottrans: towards cracking 682
the language of life’s code through self-supervised 683
deep learning and high performance computing. 684
arXiv preprint arXiv:2007.06225. 685

Hehe Fan, Zhangyang Wang, Yi Yang, and Mohan 686
Kankanhalli. 2022. Continuous-discrete convolution 687
for geometry-sequence modeling in proteins. In The 688
Eleventh International Conference on Learning Rep- 689
resentations. 690

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei 691
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua- 692
jun Chen. 2023. Mol-instructions: A large-scale 693
biomolecular instruction dataset for large language 694
models. arXiv preprint arXiv:2306.08018. 695
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A Experimental Details925

Hyperparameter

Batch size 256
Sequence length 512
Training steps 10K
Optimizer AdamW
Adam β (0.9, 0.999)
Adam ϵ 1× 10−6

Learning rate 2× 10−4

Learning rate schedule Cosine decay
Warmup ratio 0.03
Weight decay 0
LoRA r 32
LoRA a 64
LoRA dropout 0.1
LoRA modules All linear modules

Table 4: Pre-training hyperparameters of PROTLLM.

Pre-training We list the detailed pre-training926

hyperparameters of PROTLLM in Table 4.927

PROTLLM is pre-trained on 4 NVIDIA A100928

GPUs for 10, 000 steps with batch size 256 on the929

InterPT dataset described in Table 1. We adopt930

LoRA for efficient training, applying LoRA to all931

linear models of LLaMA, including [down_proj,932

up_proj, q_proj, v_proj, k_proj, o_proj,933

gate_proj]. Notice that only the LoRA weights934

and the cross-modal connector modules are up-935

dated during training.936

Fine-tuning PROTLLM is further fine-tuned on937

various downstream tasks including EC number938

prediction, GO term prediction, and PPI prediction.939

Table 5 presents the fine-tuning hyperparameters.940

We apply LoRA for efficient tuning of the language941

model weights. The weights of the protein en-942

coder are frozen for the PPI task, and updated for943

the other tasks, with a learning rate of 2 × 10−5.944

The handcrafted prompt templates for each task are945

shown in Table 6. At each [mount] position, we en-946

code the protein sequences with the protein encoder947

and feed the resulting protein embedding to the lan-948

guage model. For multilabel classification tasks,949

i.e., GO and EC, we convert the tasks to binary950

classification tasks for each label. We fill [name]951

with the label name, and fill [description] with952

text descriptions associated with this label. Besides,953

we utilize a resampling strategy during fine-tuning954

to ensure a uniform distribution of positive and955

negative labels.956
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Hyperparameter EC GO-BP GO-MF GO-CC PPI

Batch size 128 128 128 128 16
Training steps 50K 50K 50K 10K 10K
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning rate 2× 10−4 2× 10−4 2× 10−4 2× 10−4 2× 10−4

Learning rate schedule Cosine decay Cosine decay Cosine decay Cosine decay Cosine decay
Warmup ratio 0.03 0.03 0.03 0.03 0
Weight decay 0 0 0 0 0
LoRA r 128 128 128 128 32
LoRA a 256 256 256 256 64
LoRA dropout 0.1 0.1 0.1 0.1 0.1
LoRA modules All linear All linear All linear All linear All linear
Update protein encoder Yes Yes Yes Yes No

Table 5: Fine-tuning hyperparameters of PROTLLM on various downstream tasks.

Task Prompt template Verbalizer

GO <PROT> [mount] </PROT> Does the protein belong to [name], which is [description]? Yes/No
EC <PROT> [mount] </PROT> Does the protein catalyze [name], which is [description]? Yes/No
PPI Do <PROT> [mount1] </PROT> and <PROT> [mount2] </PROT> interact with each other? Yes/No

Table 6: Prompt templates for each task.
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