
Inference and Generating Method for Extremely Sparse Networks

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Generative models for real-world networks face a fundamental challenge in reconciling the desirable property of exchangeability with the empirical observation
2 of sparsity. The Caron-Fox framework, which leverages Kallenberg exchangeability and Completely Random Measures (CRMs), provides a principled approach
3 to this problem. However, existing models within this class typically generate
4 graphs where the number of edges scales super-linearly with the number of nodes
5 ($E \propto N^{1+\epsilon}$). In this work, we present a novel CRM with rapid variation that, when
6 integrated into the Caron-Fox model, generates graph sequences in an extremely
7 sparse regime. We also derive a posterior inference method to fit our model to an
8 observed graph. This workshop paper summarizes the key results of our recent
9 publication, introducing the model, outlining its theoretical underpinnings, and
10 presenting the inference procedure.
11
12

1 Introduction

14 The proliferation of large-scale, graph-structured data across diverse scientific fields, from microbiology
15 to the social sciences, has revealed a fascinating truth: despite their varied origins, real-world
16 networks consistently exhibit a set of common structural properties. A key characteristic is *sparsity*,
17 where the number of existing edges is a mere fraction of the $\binom{N}{2}$ potential connections in a graph
18 with N nodes. Another is the *scale-free phenomenon*, in which the network's degree distribution
19 presents a heavy tail, signifying the presence of a few highly connected "hub" nodes alongside a
20 vast majority of nodes with very few links. Additional defining features include the *small-world*
21 *phenomenon*¹ and the formation of distinct *community structures*.

22 Developing generative models that can faithfully reproduce these characteristics, especially sparsity,
23 presents a fundamental statistical dilemma. An intuitive and mathematically convenient property
24 for such a model is *node-exchangeability*, which dictates that the graph's probability distribution
25 should remain *invariant* regardless of how its nodes are labeled. However, this very property is
26 fundamentally at odds with sparsity. The well-known Aldous-Hoover theorem [1, 2] formalizes
27 this conflict, demonstrating that any node-exchangeable graph must fall into one of two extremes:
28 it is either dense (almost all possible edges exist) or empty, failing to capture the sparse nature of
29 real-world networks.

30 To navigate this challenge, the research community has pursued several ideas. One popular approach,
31 exemplified by preferential attachment models [3, 4], resolves the issue by completely forgoing any
32 form of exchangeability. A more recent and powerful line of inquiry, initiated by Caron and Fox [5],
33 circumvents the limitation in a more nuanced way. Instead of abandoning exchangeability altogether,
34 this framework adopts a weaker, more flexible notion known as *Kallenberg exchangeability* (see also

¹The small-world phenomenon is the observation that, in many real-world networks, any two nodes can be connected through a short chain of intermediary links.

[6, 7, 8]). This principled relaxation successfully reconciles the model with sparsity and has spurred a rich body of work, leading to new models that incorporate other complex features like overlapping communities [9], clustering [10], dynamic evolution [11], and core-periphery organization [12].

Our work is situated within this latter framework, leveraging Bayesian nonparametric methods, specifically Completely Random Measures (CRMs). Existing models in this class have successfully generated sparse graph sequences where the number of edges, E , scales as $N^{1+\epsilon}$ for a given number of nodes N (where $0 < \epsilon < 1$). In our recent publication [13], we introduced a novel CRM that achieves a significantly sparser regime. Our model generates graphs where the edge count scales as $E = \Theta(N\ell(N))$, with ℓ being a slowly varying function. We term graph sequences exhibiting this near-linear scaling *extremely sparse*.

The statistical properties of our model make it possible to derive a posterior inference method that can be used to fit our model to an observed graph. The performance of this hierarchical HMC method is illustrated with experiments on both synthetic and large-scale real datasets.

The purpose of this workshop paper is to present the main results and implications of this new model as detailed in [13]. The remainder is structured as follows. In Section 2, we introduce necessary preliminaries on the Caron-Fox model. In Section 3, we present the main contribution of [13]—a novel CRM with rapid variation that generates extremely sparse sequences of networks within the Caron-Fox model, and explain how to sample from them. In Section 4, we outline the inference procedure. The results are illustrated with experiments throughout the paper, which can be reproduced using the code available at https://anonymous.4open.science/r/rapidly_varying_crm-7C0B/README.md. Detailed proofs and additional details can be found in the main article [13].

2 The Caron-Fox model

The Caron-Fox model [5, 7, 8] provides a powerful framework for overcoming the limitations of the Aldous-Hoover theorem [1, 2]. Instead of representing graphs with exchangeable arrays, this model uses **exchangeable measures**. In this representation, nodes are embedded at locations $\theta_i \in \mathbb{R}$, and the set of edges is described by a random measure on the plane:

$$Z = \sum_{i,j} Z_{i,j} \delta_{(\theta_i, \theta_j)},$$

where $Z_{i,j} = Z_{j,i}$ is a binary variable indicating the presence or absence of an edge between nodes θ_i and θ_j . A sequence of finite graphs $(\mathcal{G}_t)_{t>0}$ is derived by restricting the point process Z to the squares $[0, t]^2$ and retaining only the points that have at least one edge. In the following, we denote N_t as the number of nodes in \mathcal{G}_t and $N_t^{(e)}$ as the number of edges in \mathcal{G}_t .

This model was introduced in [5], where it was shown that sparse exchangeable graphs can be obtained in this framework by treating Z as an exchangeable random measure. In [7], the authors introduced the term *graphex processes*, which we use here. Simultaneously, [7] and [8] analysed properties of graphex processes, explaining how graphex processes serve as a good notion of limit for sequences of sparse graphs, analogous to how graphons serve as a limit for dense graphs. Further properties, including convergence results for sparse graph sequences and sampling methods, were derived by [14, 15, 16] and [8]. In [10], the asymptotic properties of graphex processes were investigated.

Following the notation of [10] (which aligns with that of [7], excluding terms corresponding to stars and isolated edges), we can parameterize the graph with a symmetric measurable function $W : \mathbb{R}_+^2 \rightarrow [0, 1]$ that dictates how the edges are formed. For each $i < j$:

$$Z_{i,j} \mid (\theta_k, \vartheta_k)_{k=1,2,\dots} \sim \text{Bernoulli}(W(\vartheta_i, \vartheta_j)),$$

where $(\theta_k, \vartheta_k)_{k=1,2,\dots}$ is a unit-rate Poisson process on \mathbb{R}_+^2 .

In this framework, the **Caron-Fox model** is defined by:

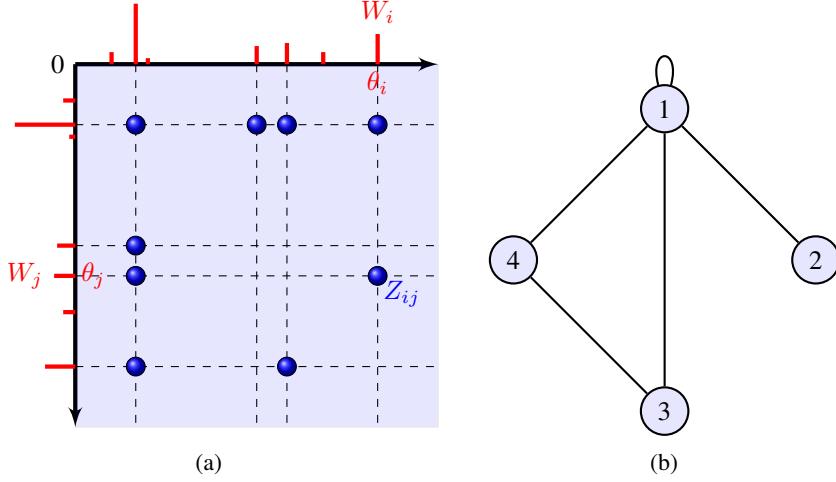


Figure 1: Point process representation of a random graph. Each node i is embedded in \mathbb{R}_+ at some location θ_i and is associated with a sociability parameter W_i . An edge between nodes θ_i and θ_j is represented by a point at locations (θ_i, θ_j) and (θ_j, θ_i) in \mathbb{R}_+^2 (Figure 1, 5). The corresponding graph is plotted in (b).

$$W(x, y) = \begin{cases} 1 - e^{-2\bar{\rho}^{-1}(x)\bar{\rho}^{-1}(y)} & \text{if } x \neq y, \\ 1 - e^{-(\bar{\rho}^{-1}(x))^2} & \text{if } x = y, \end{cases}$$

78 where ρ is a **Lévy measure** such that $\int_0^\infty \min(1, x)\nu(dx) < \infty$ and $\bar{\rho}(x) := \int_x^\infty \rho(w) dw$ is the
79 corresponding tail Lévy intensity. The Lévy measure ρ controls the properties of the produced
80 network.

81 To demonstrate that a sparse regime is achievable within this framework, [5] use a Generalized
82 Gamma measure (GG):

$$\rho(dw) = \frac{1}{\Gamma(1-\sigma)} w^{-1-\sigma} e^{-\beta w} dw.$$

83 They prove that if $\sigma < 0$, an increasing sequence of graphs sampled from this model is dense, while
84 if $\sigma \geq 0$ and $\beta > 0$, such a sequence is sparse. They also provide a posterior inference algorithm for
85 fitting the GG-Caron-Fox model to real data, demonstrating that this model is highly effective. In [10],
86 further exploration of the graphex model revealed four asymptotic regimes: a dense regime, a sparse
87 almost-dense regime, a sparse regime exhibiting power-law behaviour, and an almost extremely
88 sparse regime.

89 The parameters of the graphex model are easily interpretable. In the Caron-Fox framework, the
90 quantity $W_i = \rho^{-1}(\theta_i)$ is often interpreted as a measure of sociability. This interpretation arises
91 from viewing the model as a scenario where potential node i enters a room at time θ_i and attempts to
92 link with the nodes already present. The greater the sociability of both individuals, the more likely
93 they are to establish a connection.

94 3 Mixture of Generalized Gamma Process and extremely sparse graphs

95 In [13], we define a Lévy intensity that realizes the extremely sparse regime in the Caron-Fox class
96 and propose a corresponding approximate sampling method. We achieve this regime using a mixture
97 of Generalized Gamma (GG) processes with the following Lévy intensity:

$$\rho_{\text{mGG}}(w; \beta, c, \eta) = \eta \int_0^1 \frac{sc^s}{\Gamma(1-s)} w^{-1-s} e^{-\beta w/c} ds, \quad (1)$$

98 The model parameters have the following interpretations:

- 99 • β is the exponential tilting parameter; if $\beta > 0$, it tunes the exponential decay of large
100 weights.
- 101 • c is a scaling parameter: if $G \sim \text{CRM}(\rho_{\text{mGG}}(\cdot; \beta, 1, \eta), H)$, then $cG \sim$
102 $\text{CRM}(\rho_{\text{mGG}}(\cdot; \beta, c, \eta), H)$.
- 103 • η is a rate parameter: if $G_1 \sim \text{CRM}(\rho_{\text{mGG}}(\cdot; \beta, c, \eta_1), H)$ and $G_2 \sim$
104 $\text{CRM}(\rho_{\text{mGG}}(\cdot; \beta, c, \eta_2), H)$, then $G_1 + G_2 \sim \text{CRM}(\rho_{\text{mGG}}(\cdot; \beta, c, \eta_1 + \eta_2), H)$.

105 A key advantage of this Lévy measure is that its Laplace exponent admits an analytic expression:

$$\psi_{\text{mGG}}(t; \beta, c, \eta) := \int_0^\infty (1 - e^{-tw}) \rho_{\text{mGG}}(w) dw = \eta (\psi(\beta + ct) - \psi(\beta)), \quad (2)$$

106 where $\psi(t) = \frac{t-1}{\log t}$ for $0 < t < 1$, with $\psi(0) = 0$ and $\psi(1) = 1$.

107 As shown in [13, Corollary 7], graphs generated using this Lévy intensity, ρ_{mGG} , are extremely
108 sparse:

Theorem 1. [13, Corollary 7] *Almost surely as t goes to infinity*

$$N_t^{(e)} = \Theta(N_t \log(N_t)).$$

109 We also obtain an interesting result for the degree distribution of these graphs. For $j \in \mathbb{N}$ and $t \in \mathbb{R}$,
110 let $N_{t,j}$ denote the number of nodes with degree j in \mathcal{G}_t . In the following theorem, C represents a
111 positive constant.

Theorem 2. [13, Proposition 8] *Almost surely as t goes to infinity*

$$N_{t,j} \sim E(N_{t,j}) \sim \begin{cases} t^2 \frac{C}{\log(t)} & j = 1 \\ \frac{t^2}{j(j-1)} \frac{C}{\log^2(t)} & j \geq 2 \end{cases}$$

Let $\tilde{N}_{t,2} = \sum_{k \geq 2} N_{t,k}$ denote the number of nodes with a degree of at least 2. Then, for all $j \geq 2$,
we have

$$\frac{N_{t,j}}{\tilde{N}_{t,2}} \xrightarrow[t \rightarrow \infty]{} \frac{1}{j(j-1)}.$$

112 This result implies that the degree distribution for nodes with a degree of at least 2 follows a power
113 law with an exponent of 2.

114 A key property expected of a tractable statistical model is the ability to sample from it. However,
115 since CRMs are infinite-dimensional objects that cannot be fully represented on a computer, only
116 approximate sampling is possible. Several approximation schemes for CRM sampling exist. In [13],
117 we propose a size-biased method, which is advantageous due to its straightforward implementation:

118 **Proposition 1.** [13, Proposition 3] *Let ξ_1, ξ_2, \dots be the ordered points of a unit-rate Poisson process
119 on $(0, \infty)$; that is, $\xi_1, \xi_2 - \xi_1, \xi_3 - \xi_2, \dots$ are iid unit-rate exponential random variable. We have
120 the following size-biased construction for $G \sim \text{CRM}(\rho_{\text{mGG}}(\cdot; \beta, c, \eta), H)$. For $j \geq 1$,*

$$\begin{aligned} T_j &= \psi^{-1} \left(\frac{\xi_j}{\eta} + \psi(\beta) \right) - \beta, \\ S_j \mid \{T_j = t\} &\sim p(s|t) \propto s(t + \beta)^s \mathbf{1}_{\{s \in (0, 1)\}}, \\ W'_j \mid \{T_j = t, S_j = s\} &\sim \text{Gamma}(1 - s, t + \beta), \\ W_j &= cW'_j, \end{aligned}$$

121 Each step in this sampling procedure can be performed using only standard functions. The asymptotic
122 L_1 error of this size-biased approximation is explored in [13, Proposition 4]. With the result from
123 Proposition 1, we can generate graphs. In Figure 2, we compare our method to the non-mixture
124 Generalized Gamma model of Caron and Fox [5] and the Barabási–Albert model [3]. All three
125 models are known to produce sparse graph sequences that exhibit power-law degree distributions. The
126 expected asymptotic behavior of our model is given in Theorem 1 and Theorem 2. For the Generalized

127 Gamma model (here with $\alpha = 0.5$), the number of edges scales asymptotically as $N_t^{(e)} \sim N_t^{\frac{4}{3}}$, and
 128 its degree distribution follows a power law with an exponent of 1.5. For the Barabási–Albert model,
 129 the number of edges is linear in the number of nodes, and its asymptotic degree distribution follows a
 130 power law with an exponent of 3.

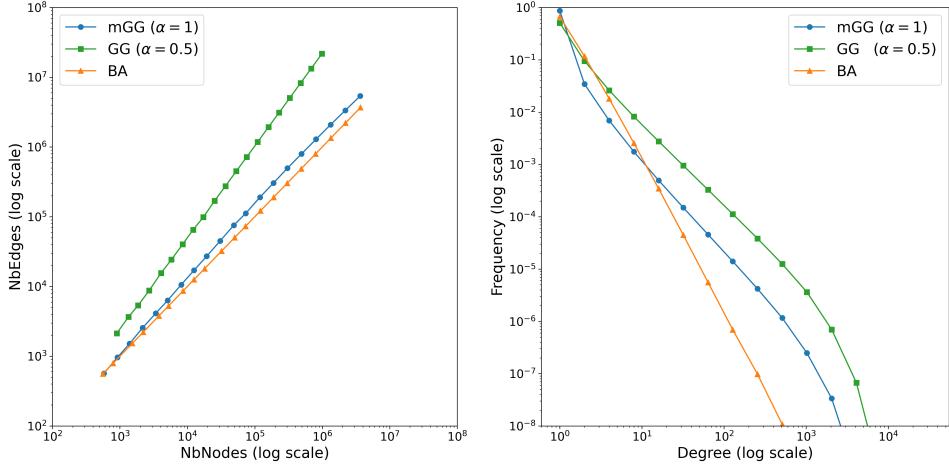


Figure 2: Examination of the mGG graph properties (●) with parameters $\alpha = 1$, $\tau = 0$, $c = 1$, and $\beta = 1$ for various values of η ranging from 50 to 6000, resulting in graphs of different sizes. Comparison with the Generalized Gamma CRM (■) with parameters $\tau = 1$ and $\sigma = 0.5$, and with the Barabási–Albert model (▲). For every configuration we simulate 20 graph samples and plot the mean of the quantity of interest.

131 4 Inference Algorithm

132 Posterior inference is a crucial property of a statistical model, as it allows the model to be fit to
 133 observational data. Here, we briefly describe the MCMC algorithm introduced in [13] to approximate
 134 the posterior density over the model parameters. Assume we have observed a graph \mathcal{G} sampled from
 135 our mGG graph model. We aim to infer the sociability parameter W_i for each node and the model
 136 parameters $\phi = (\beta, c, \eta)$. We consider the following improper priors:

$$p(\beta) \propto \frac{1}{\beta}, \quad p(c) \propto \frac{1}{c}, \quad p(\eta) \propto \frac{1}{\eta}. \quad (3)$$

137 We introduce two sets of auxiliary variables. First, as in [5], we introduce latent count variables \tilde{q}_{ij}
 138 with the conditional distribution, for $i < j$,

$$\tilde{q}_{ij} \mid Z, W \sim \begin{cases} \delta_0 & \text{if } Z_{ij} = 0, \\ \text{tPoisson}(2W_i W_j) & \text{if } Z_{ij} = 1, i \neq j, \\ \text{tPoisson}(W_i^2) & \text{if } Z_{ij} = 1, i = j, \end{cases} \quad (4)$$

139 where tPoisson(λ) is the zero-truncated Poisson distribution, and with $\tilde{q}_{ji} = \tilde{q}_{ij}$. Second, to take
 140 advantage of the mixture representation of the Lévy intensity, we introduce local indices of variations
 141 $S_i \in (0, 1)$ for each node i , as in the size-biased algorithm. In the following, we also write w_* for the
 142 sum of the sociabilities of nodes with no connections in \mathcal{G} . The algorithm is presented in Algorithm 1.

Algorithm 1 Posterior inference [13, Algorithm 1]

Step 1: Update the weights w_i and the latent space variables s_i given the other variables, using a Hamiltonian Monte Carlo step.

Step 2: Update (ϕ, w_*) given the other variables, using a Gibbs sampler update.

Step 3: Update the latent counts (\tilde{q}_{ij}) given the other variables using (4).

143 To illustrate the performance of the inference algorithm, [13] proposes different experiments on both
 144 synthetic and real data. We present the results on one of the real datasets here. We consider the **Flickr**

145 dataset, a crawl of the Flickr social network, a photo and video sharing platform. The dataset contains
 146 all links between users (<https://socialnetworks.mpi-sws.org/data-imc2007.html>, 17).
 147 This dataset consists of a network with 1,861,232 nodes and 15,555,041 edges; the mean degree is
 148 33.4, while the maximum degree is 54,472.
 149 To train our model, we extracted a subgraph containing approximately 5% of the nodes from the
 150 network using p -sampling [16]. For Flickr, we used $p = 0.14$, resulting in a random subgraph with
 151 85,613 nodes and 299,358 edges, with a mean degree of 13.9 and a maximum degree of 2890.
 152 To assess model fit, we apply p -sampling to split the dataset into a training set (approximately 5% of
 153 the nodes) and a test set (the remaining nodes). We then compare the empirical degree distribution of
 154 the test set with the predictive degree distribution generated by our model, using hyperparameters
 155 inferred from the training data. Specifically, we simulate 200 graphs from the posterior predictive
 156 distribution. Parameters are drawn from the post-burn-in MCMC samples, and we scale $\hat{\eta}$ by $(1-p)/p$
 157 to match the expected size of the target graph.
 158 Figure 3 shows the comparison between the empirical and predictive degree distributions. Overall,
 159 the model provides a good fit for this dataset, successfully capturing the heavy-tailed behavior
 160 characteristic of real-world networks.

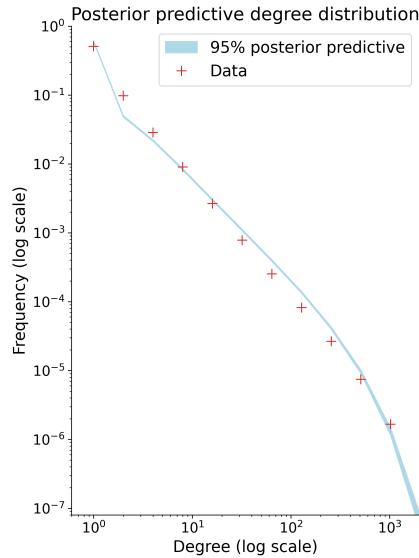


Figure 3: Posterior predictive degree distribution for the Flickr dataset. The predictive distribution is shown in blue, and the empirical distribution of the test set is shown in red.

161 5 Conclusion

162 We have seen that [13] has introduced a novel generative model for the difficult problem of generating
 163 extremely sparse sequences of graphs with good statistical properties. The model presents theoretical
 164 guarantees, a simple size-biased sampling procedure, and an efficient inference algorithm. The new
 165 CRM introduced to produce this model has a wider range of applications and could also be used in
 166 clustering or partition models. For a more detailed discussion, we refer the reader to the final section
 167 of [13].

168 **References**

169 [1] David J. Aldous. Representations for partially exchangeable arrays of random variables.
170 *Journal of Multivariate Analysis*, 11(4):581–598, December 1981. ISSN 0047-259X. doi:
171 10.1016/0047-259X(81)90099-3.

172 [2] Douglas N. Hoover. Relations on Probability Spaces and Arrays of Random Variables, 1979.

173 [3] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *Science*,
174 286(5439):509–512, 1999.

175 [4] Béla Bollobás. *Random Graphs*. Cambridge University Press, August 2001. ISBN 978-0-521-
176 79722-1.

177 [5] François Caron and Emily B. Fox. Sparse graphs using exchangeable random measures. *Journal*
178 *of the Royal Statistical Society. Series B (Statistical Methodology)*, 79:1295–1366, 2017.

179 [6] Olav Kallenberg. *Probabilistic Symmetries and Invariance Principles*. Springer Science &
180 Business Media, December 2005. ISBN 978-0-387-28861-1.

181 [7] Victor Veitch and Daniel M. Roy. The Class of Random Graphs Arising from Exchangeable
182 Random Measures. *arXiv:1512.03099*, December 2015.

183 [8] Christian Borgs, Jennifer T Chayes, Henry Cohn, and Nina Holden. Sparse exchangeable graphs
184 and their limits via graphon processes. *Journal of Machine Learning Research*, 18(210):1–71,
185 2018.

186 [9] Adrien Todeschini, Xenia Misouridou, and François Caron. Exchangeable random measures
187 for sparse and modular graphs with overlapping communities. *Journal of the Royal Statistical*
188 *Society: Series B (Statistical Methodology)*, 82(2):487–520, 2020. ISSN 1467-9868. doi:
189 10.1111/rssb.12363.

190 [10] François Caron, Francesca Panero, and Judith Rousseau. On sparsity, power-law, and clustering
191 properties of graphex processes. *Advances in Applied Probability*, 55(4):1211–1253, December
192 2023. ISSN 0001-8678, 1475-6064. doi: 10.1017/apr.2022.75.

193 [11] Cian Naik, François Caron, Judith Rousseau, Yee Whye Teh, and Konstantina Palla. Bayesian
194 nonparametrics for sparse dynamic networks. *Machine Learning and Knowledge Discovery in*
195 *Databases*, pages 191–206, 2023.

196 [12] Cian Naik, François Caron, and Judith Rousseau. Sparse networks with core-periphery structure.
197 *Electronic Journal of Statistics*, 15(1):1814–1868, January 2021. ISSN 1935-7524, 1935-7524.
198 doi: 10.1214/21-EJS1819.

199 [13] Anonymous. Rapidly Varying Completely Random Measures for Modeling Extremely Sparse
200 Networks. *arXiv:2505.13206*, May 2025.

201 [14] Svante Janson. On convergence for graphexes. *arXiv:1702.06389*, March 2022.

202 [15] Svante Janson. Graphons, cut norm and distance, couplings and rearrangements.
203 *arXiv:1009.2376*, June 2011.

204 [16] Victor Veitch and Daniel M. Roy. Sampling and estimation for (sparse) exchangeable graphs.
205 *The Annals of Statistics*, 47(6):3274 – 3299, December 2019. ISSN 0090-5364. doi: 10.1214/
206 18-AOS1778.

207 [17] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhat-
208 tacharjee. Measurement and analysis of online social networks. In *Proceedings of the 7th ACM*
209 *SIGCOMM Conference on Internet Measurement*, pages 29–42, San Diego California USA,
210 October 2007. ACM. ISBN 978-1-59593-908-1. doi: 10.1145/1298306.1298311.

211 **NeurIPS Paper Checklist**

212 **1. Claims**

213 Question: Do the main claims made in the abstract and introduction accurately reflect the
214 paper's contributions and scope?

215 Answer: [\[Yes\]](#)

216 Justification: The abstract and introduction accurately reflect the paper's actual contributions.

217 Guidelines:

- 218 • The answer NA means that the abstract and introduction do not include the claims
219 made in the paper.
- 220 • The abstract and/or introduction should clearly state the claims made, including the
221 contributions made in the paper and important assumptions and limitations. A No or
222 NA answer to this question will not be perceived well by the reviewers.
- 223 • The claims made should match theoretical and experimental results, and reflect how
224 much the results can be expected to generalize to other settings.
- 225 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
226 are not attained by the paper.

227 **2. Limitations**

228 Question: Does the paper discuss the limitations of the work performed by the authors?

229 Answer: [\[Yes\]](#)

230 Justification: The limitations are discussed in our Conclusion section.

231 Guidelines:

- 232 • The answer NA means that the paper has no limitation while the answer No means that
233 the paper has limitations, but those are not discussed in the paper.
- 234 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 235 • The paper should point out any strong assumptions and how robust the results are to
236 violations of these assumptions (e.g., independence assumptions, noiseless settings,
237 model well-specification, asymptotic approximations only holding locally). The authors
238 should reflect on how these assumptions might be violated in practice and what the
239 implications would be.
- 240 • The authors should reflect on the scope of the claims made, e.g., if the approach was
241 only tested on a few datasets or with a few runs. In general, empirical results often
242 depend on implicit assumptions, which should be articulated.
- 243 • The authors should reflect on the factors that influence the performance of the approach.
244 For example, a facial recognition algorithm may perform poorly when image resolution
245 is low or images are taken in low lighting. Or a speech-to-text system might not be
246 used reliably to provide closed captions for online lectures because it fails to handle
247 technical jargon.
- 248 • The authors should discuss the computational efficiency of the proposed algorithms
249 and how they scale with dataset size.
- 250 • If applicable, the authors should discuss possible limitations of their approach to
251 address problems of privacy and fairness.
- 252 • While the authors might fear that complete honesty about limitations might be used by
253 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
254 limitations that aren't acknowledged in the paper. The authors should use their best
255 judgment and recognize that individual actions in favor of transparency play an impor-
256 tant role in developing norms that preserve the integrity of the community. Reviewers
257 will be specifically instructed to not penalize honesty concerning limitations.

258 **3. Theory assumptions and proofs**

259 Question: For each theoretical result, does the paper provide the full set of assumptions and
260 a complete (and correct) proof?

261 Answer: [\[Yes\]](#)

262 Justification: Proofs of all results are included in full detail in the main article [13], which is
263 cited at multiple time in the paper, pointing out the relevant section in the main article.

264 Guidelines:

265 • The answer NA means that the paper does not include theoretical results.
266 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
267 referenced.
268 • All assumptions should be clearly stated or referenced in the statement of any theorems.
269 • The proofs can either appear in the main paper or the supplemental material, but if
270 they appear in the supplemental material, the authors are encouraged to provide a short
271 proof sketch to provide intuition.
272 • Inversely, any informal proof provided in the core of the paper should be complemented
273 by formal proofs provided in appendix or supplemental material.
274 • Theorems and Lemmas that the proof relies upon should be properly referenced.

275 4. Experimental result reproducibility

276 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
277 perimental results of the paper to the extent that it affects the main claims and/or conclusions
278 of the paper (regardless of whether the code and data are provided or not)?

279 Answer: [\[Yes\]](#)

280 Justification: As stated in the introduction, all the code used to perform our experiments is
281 available in an anonymous repository.

282 Guidelines:

283 • The answer NA means that the paper does not include experiments.
284 • If the paper includes experiments, a No answer to this question will not be perceived
285 well by the reviewers: Making the paper reproducible is important, regardless of
286 whether the code and data are provided or not.
287 • If the contribution is a dataset and/or model, the authors should describe the steps taken
288 to make their results reproducible or verifiable.
289 • Depending on the contribution, reproducibility can be accomplished in various ways.
290 For example, if the contribution is a novel architecture, describing the architecture fully
291 might suffice, or if the contribution is a specific model and empirical evaluation, it may
292 be necessary to either make it possible for others to replicate the model with the same
293 dataset, or provide access to the model. In general, releasing code and data is often
294 one good way to accomplish this, but reproducibility can also be provided via detailed
295 instructions for how to replicate the results, access to a hosted model (e.g., in the case
296 of a large language model), releasing of a model checkpoint, or other means that are
297 appropriate to the research performed.
298 • While NeurIPS does not require releasing code, the conference does require all submis-
299 sions to provide some reasonable avenue for reproducibility, which may depend on the
300 nature of the contribution. For example
301 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
302 to reproduce that algorithm.
303 (b) If the contribution is primarily a new model architecture, the paper should describe
304 the architecture clearly and fully.
305 (c) If the contribution is a new model (e.g., a large language model), then there should
306 either be a way to access this model for reproducing the results or a way to reproduce
307 the model (e.g., with an open-source dataset or instructions for how to construct
308 the dataset).
309 (d) We recognize that reproducibility may be tricky in some cases, in which case
310 authors are welcome to describe the particular way they provide for reproducibility.
311 In the case of closed-source models, it may be that access to the model is limited in
312 some way (e.g., to registered users), but it should be possible for other researchers
313 to have some path to reproducing or verifying the results.

314 5. Open access to data and code

315 Question: Does the paper provide open access to the data and code, with sufficient instruc-
316 tions to faithfully reproduce the main experimental results, as described in supplemental
317 material?

318 Answer: [Yes]

319 Justification: As stated in the introduction, all the code used to perform our experiments is
320 available in an anonymous repository.

321 Guidelines:

- 322 • The answer NA means that paper does not include experiments requiring code.
- 323 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 324 • While we encourage the release of code and data, we understand that this might not be
325 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
326 including code, unless this is central to the contribution (e.g., for a new open-source
327 benchmark).
- 328 • The instructions should contain the exact command and environment needed to run to
329 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 330 • The authors should provide instructions on data access and preparation, including how
331 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 332 • The authors should provide scripts to reproduce all experimental results for the new
333 proposed method and baselines. If only a subset of experiments are reproducible, they
334 should state which ones are omitted from the script and why.
- 335 • At submission time, to preserve anonymity, the authors should release anonymized
336 versions (if applicable).
- 337 • Providing as much information as possible in supplemental material (appended to the
338 paper) is recommended, but including URLs to data and code is permitted.

341 6. Experimental setting/details

342 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
343 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
344 results?

345 Answer: [Yes]

346 Justification: All details necessary to understand the results are provided in the main paper
347 [13].

348 Guidelines:

- 349 • The answer NA means that the paper does not include experiments.
- 350 • The experimental setting should be presented in the core of the paper to a level of detail
351 that is necessary to appreciate the results and make sense of them.
- 352 • The full details can be provided either with the code, in appendix, or as supplemental
353 material.

354 7. Experiment statistical significance

355 Question: Does the paper report error bars suitably and correctly defined or other appropriate
356 information about the statistical significance of the experiments?

357 Answer: [Yes]

358 Justification: For all experiments, results are averaged over several repetitions. Variations
359 from the mean are negligible.

360 Guidelines:

- 361 • The answer NA means that the paper does not include experiments.
- 362 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
363 dence intervals, or statistical significance tests, at least for the experiments that support
364 the main claims of the paper.

365 • The factors of variability that the error bars are capturing should be clearly stated (for
 366 example, train/test split, initialization, random drawing of some parameter, or overall
 367 run with given experimental conditions).
 368 • The method for calculating the error bars should be explained (closed form formula,
 369 call to a library function, bootstrap, etc.)
 370 • The assumptions made should be given (e.g., Normally distributed errors).
 371 • It should be clear whether the error bar is the standard deviation or the standard error
 372 of the mean.
 373 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 374 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 375 of Normality of errors is not verified.
 376 • For asymmetric distributions, the authors should be careful not to show in tables or
 377 figures symmetric error bars that would yield results that are out of range (e.g. negative
 378 error rates).
 379 • If error bars are reported in tables or plots, The authors should explain in the text how
 380 they were calculated and reference the corresponding figures or tables in the text.

381 **8. Experiments compute resources**

382 Question: For each experiment, does the paper provide sufficient information on the com-
 383 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 384 the experiments?

385 Answer: [\[Yes\]](#)

386 Justification: All this information are available in the main paper [13].

387 • The answer NA means that the paper does not include experiments.
 388 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 389 or cloud provider, including relevant memory and storage.
 390 • The paper should provide the amount of compute required for each of the individual
 391 experimental runs as well as estimate the total compute.
 392 • The paper should disclose whether the full research project required more compute
 393 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 394 didn't make it into the paper).

395 **9. Code of ethics**

396 Question: Does the research conducted in the paper conform, in every respect, with the
 397 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

398 Answer: [\[Yes\]](#)

399 Justification: The research conducted in the paper is mainly theoretical and uses only
 400 publicly available datasets, which do not contain any sensitive information.

401 Guidelines:

402 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 403 • If the authors answer No, they should explain the special circumstances that require a
 404 deviation from the Code of Ethics.
 405 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 406 eration due to laws or regulations in their jurisdiction).

407 **10. Broader impacts**

408 Question: Does the paper discuss both potential positive societal impacts and negative
 409 societal impacts of the work performed?

410 Answer: [\[NA\]](#)

411 Justification: The work performed is mainly theoretical, and we do not foresee any societal
 412 impact.

413 Guidelines:

414 • The answer NA means that there is no societal impact of the work performed.

- 415 • If the authors answer NA or No, they should explain why their work has no societal
416 impact or why the paper does not address societal impact.
- 417 • Examples of negative societal impacts include potential malicious or unintended uses
418 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
419 (e.g., deployment of technologies that could make decisions that unfairly impact specific
420 groups), privacy considerations, and security considerations.
- 421 • The conference expects that many papers will be foundational research and not tied
422 to particular applications, let alone deployments. However, if there is a direct path to
423 any negative applications, the authors should point it out. For example, it is legitimate
424 to point out that an improvement in the quality of generative models could be used to
425 generate deepfakes for disinformation. On the other hand, it is not needed to point out
426 that a generic algorithm for optimizing neural networks could enable people to train
427 models that generate Deepfakes faster.
- 428 • The authors should consider possible harms that could arise when the technology is
429 being used as intended and functioning correctly, harms that could arise when the
430 technology is being used as intended but gives incorrect results, and harms following
431 from (intentional or unintentional) misuse of the technology.
- 432 • If there are negative societal impacts, the authors could also discuss possible mitigation
433 strategies (e.g., gated release of models, providing defenses in addition to attacks,
434 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
435 feedback over time, improving the efficiency and accessibility of ML).

436 11. Safeguards

437 Question: Does the paper describe safeguards that have been put in place for responsible
438 release of data or models that have a high risk for misuse (e.g., pretrained language models,
439 image generators, or scraped datasets)?

440 Answer: [NA]

441 Justification: The work performed is mainly theoretical and doesn't pose such risks.

442 Guidelines:

- 443 • The answer NA means that the paper poses no such risks.
- 444 • Released models that have a high risk for misuse or dual-use should be released with
445 necessary safeguards to allow for controlled use of the model, for example by requiring
446 that users adhere to usage guidelines or restrictions to access the model or implementing
447 safety filters.
- 448 • Datasets that have been scraped from the Internet could pose safety risks. The authors
449 should describe how they avoided releasing unsafe images.
- 450 • We recognize that providing effective safeguards is challenging, and many papers do
451 not require this, but we encourage authors to take this into account and make a best
452 faith effort.

453 12. Licenses for existing assets

454 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
455 the paper, properly credited and are the license and terms of use explicitly mentioned and
456 properly respected?

457 Answer: [NA]

458 Justification: We do not use any dataset.

459 Guidelines:

- 460 • The answer NA means that the paper does not use existing assets.
- 461 • The authors should cite the original paper that produced the code package or dataset.
- 462 • The authors should state which version of the asset is used and, if possible, include a
463 URL.
- 464 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 465 • For scraped data from a particular source (e.g., website), the copyright and terms of
466 service of that source should be provided.

467 • If assets are released, the license, copyright information, and terms of use in the
468 package should be provided. For popular datasets, paperswithcode.com/datasets
469 has curated licenses for some datasets. Their licensing guide can help determine the
470 license of a dataset.
471 • For existing datasets that are re-packaged, both the original license and the license of
472 the derived asset (if it has changed) should be provided.
473 • If this information is not available online, the authors are encouraged to reach out to
474 the asset's creators.

475 **13. New assets**

476 Question: Are new assets introduced in the paper well documented and is the documentation
477 provided alongside the assets?

478 Answer: [NA]

479 Justification: We do not release such assets.

480 Guidelines:

481 • The answer NA means that the paper does not release new assets.
482 • Researchers should communicate the details of the dataset/code/model as part of their
483 submissions via structured templates. This includes details about training, license,
484 limitations, etc.
485 • The paper should discuss whether and how consent was obtained from people whose
486 asset is used.
487 • At submission time, remember to anonymize your assets (if applicable). You can either
488 create an anonymized URL or include an anonymized zip file.

489 **14. Crowdsourcing and research with human subjects**

490 Question: For crowdsourcing experiments and research with human subjects, does the paper
491 include the full text of instructions given to participants and screenshots, if applicable, as
492 well as details about compensation (if any)?

493 Answer: [NA]

494 Justification: The paper does not involve crowdsourcing nor research with human subjects.

495 Guidelines:

496 • The answer NA means that the paper does not involve crowdsourcing nor research with
497 human subjects.
498 • Including this information in the supplemental material is fine, but if the main contribu-
499 tion of the paper involves human subjects, then as much detail as possible should be
500 included in the main paper.
501 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
502 or other labor should be paid at least the minimum wage in the country of the data
503 collector.

504 **15. Institutional review board (IRB) approvals or equivalent for research with human
505 subjects**

506 Question: Does the paper describe potential risks incurred by study participants, whether
507 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
508 approvals (or an equivalent approval/review based on the requirements of your country or
509 institution) were obtained?

510 Answer: [NA]

511 Justification: The paper does not involve crowdsourcing nor research with human subjects.

512 Guidelines:

513 • The answer NA means that the paper does not involve crowdsourcing nor research with
514 human subjects.
515 • Depending on the country in which research is conducted, IRB approval (or equivalent)
516 may be required for any human subjects research. If you obtained IRB approval, you
517 should clearly state this in the paper.

518 • We recognize that the procedures for this may vary significantly between institutions
519 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
520 guidelines for their institution.
521 • For initial submissions, do not include any information that would break anonymity (if
522 applicable), such as the institution conducting the review.

523 **16. Declaration of LLM usage**

524 Question: Does the paper describe the usage of LLMs if it is an important, original, or
525 non-standard component of the core methods in this research? Note that if the LLM is used
526 only for writing, editing, or formatting purposes and does not impact the core methodology,
527 scientific rigorousness, or originality of the research, declaration is not required.

528 Answer: [NA]

529 Justification: The core method development in this research does not involve LLMs as any
530 important, original, or non-standard components.

531 Guidelines:

532 • The answer NA means that the core method development in this research does not
533 involve LLMs as any important, original, or non-standard components.
534 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
535 for what should or should not be described.