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Abstract

Generative models for real-world networks face a fundamental challenge in rec-1

onciling the desirable property of exchangeability with the empirical observation2

of sparsity. The Caron-Fox framework, which leverages Kallenberg exchangeabil-3

ity and Completely Random Measures (CRMs), provides a principled approach4

to this problem. However, existing models within this class typically generate5

graphs where the number of edges scales super-linearly with the number of nodes6

(E ∝ N1+ϵ). In this work, we present a novel CRM with rapid variation that, when7

integrated into the Caron-Fox model, generates graph sequences in an extremely8

sparse regime. We also derive a posterior inference method to fit our model to an9

observed graph. This workshop paper summarizes the key results of our recent10

publication, introducing the model, outlining its theoretical underpinnings, and11

presenting the inference procedure.12

1 Introduction13

The proliferation of large-scale, graph-structured data across diverse scientific fields, from microbiol-14

ogy to the social sciences, has revealed a fascinating truth: despite their varied origins, real-world15

networks consistently exhibit a set of common structural properties. A key characteristic is sparsity,16

where the number of existing edges is a mere fraction of the
(
N
2

)
potential connections in a graph17

with N nodes. Another is the scale-free phenomenon, in which the network’s degree distribution18

presents a heavy tail, signifying the presence of a few highly connected “hub” nodes alongside a19

vast majority of nodes with very few links. Additional defining features include the small-world20

phenomenon1 and the formation of distinct community structures.21

Developing generative models that can faithfully reproduce these characteristics, especially sparsity,22

presents a fundamental statistical dilemma. An intuitive and mathematically convenient property23

for such a model is node-exchangeability, which dictates that the graph’s probability distribution24

should remain invariant regardless of how its nodes are labeled. However, this very property is25

fundamentally at odds with sparsity. The well-known Aldous-Hoover theorem [1, 2] formalizes26

this conflict, demonstrating that any node-exchangeable graph must fall into one of two extremes:27

it is either dense (almost all possible edges exist) or empty, failing to capture the sparse nature of28

real-world networks.29

To navigate this challenge, the research community has pursued several ideas. One popular approach,30

exemplified by preferential attachment models [3, 4], resolves the issue by completely forgoing any31

form of exchangeability. A more recent and powerful line of inquiry, initiated by Caron and Fox [5],32

circumvents the limitation in a more nuanced way. Instead of abandoning exchangeability altogether,33

this framework adopts a weaker, more flexible notion known as Kallenberg exchangeability (see also34

1The small-world phenomenon is the observation that, in many real-world networks, any two nodes can be
connected through a short chain of intermediary links.



[6, 7, 8]). This principled relaxation successfully reconciles the model with sparsity and has spurred35

a rich body of work, leading to new models that incorporate other complex features like overlapping36

communities [9], clustering [10], dynamic evolution [11], and core-periphery organization [12].37

Our work is situated within this latter framework, leveraging Bayesian nonparametric methods,38

specifically Completely Random Measures (CRMs). Existing models in this class have successfully39

generated sparse graph sequences where the number of edges, E, scales as N1+ϵ for a given number40

of nodes N (where 0 < ϵ < 1). In our recent publication [13], we introduced a novel CRM that41

achieves a significantly sparser regime. Our model generates graphs where the edge count scales as42

E = Θ(Nℓ(N)), with ℓ being a slowly varying function. We term graph sequences exhibiting this43

near-linear scaling extremely sparse.44

The statistical properties of our model make it possible to derive a posterior inference method that45

can be used to fit our model to an observed graph. The performance of this hierarchical HMC method46

is illustrated with experiments on both synthetic and large-scale real datasets.47

The purpose of this workshop paper is to present the main results and implications of this new48

model as detailed in [13]. The remainder is structured as follows. In Section 2, we introduce49

necessary preliminaries on the Caron-Fox model. In Section 3, we present the main contribution50

of [13]—a novel CRM with rapid variation that generates extremely sparse sequences of networks51

within the Caron-Fox model, and explain how to sample from them. In Section 4, we outline the52

inference procedure. The results are illustrated with experiments throughout the paper, which can53

be reproduced using the code available at https://anonymous.4open.science/r/rapidly_54

varying_crm-7C0B/README.md. Detailed proofs and additional details can be found in the main55

article [13].56

2 The Caron-Fox model57

The Caron-Fox model [5, 7, 8] provides a powerful framework for overcoming the limitations of the58

Aldous-Hoover theorem [1, 2]. Instead of representing graphs with exchangeable arrays, this model59

uses exchangeable measures. In this representation, nodes are embedded at locations θi ∈ R, and60

the set of edges is described by a random measure on the plane:61

Z =
∑
i,j

Zi,jδ(θi,θj),

where Zi,j = Zj,i is a binary variable indicating the presence or absence of an edge between nodes62

θi and θj . A sequence of finite graphs (Gt)t>0 is derived by restricting the point process Z to the63

squares [0, t]2 and retaining only the points that have at least one edge. In the following, we denote64

Nt as the number of nodes in Gt and N (e)
t as the number of edges in Gt.65

This model was introduced in [5], where it was shown that sparse exchangeable graphs can be obtained66

in this framework by treating Z as an exchangeable random measure. In [7], the authors introduced67

the term graphex processes, which we use here. Simultaneously, [7] and [8] analysed properties of68

graphex processes, explaining how graphex processes serve as a good notion of limit for sequences69

of sparse graphs, analogous to how graphons serve as a limit for dense graphs. Further properties,70

including convergence results for sparse graph sequences and sampling methods, were derived by71

[14, 15, 16] and [8]. In [10], the asymptotic properties of graphex processes were investigated.72

Following the notation of [10] (which aligns with that of [7], excluding terms corresponding to73

stars and isolated edges), we can parameterize the graph with a symmetric measurable function74

W : R2
+ → [0, 1] that dictates how the edges are formed. For each i < j:75

Zi,j | (θk, ϑk)k=1,2,... ∼ Bernoulli(W (ϑi, ϑj)),

where (θk, ϑk)k=1,2,... is a unit-rate Poisson process on R2
+.76

In this framework, the Caron-Fox model is defined by:77
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Figure 1: Point process representation of a random graph. Each node i is embedded in R+ at some
location θi and is associated with a sociability parameter Wi. An edge between nodes θi and θj is
represented by a point at locations (θi, θj) and (θj , θi) in R2

+ (Figure 1, 5). The corresponding graph
is plotted in (b).

W (x, y) =

{
1− e−2ρ̄−1(x)ρ̄−1(y) if x ̸= y,

1− e−(ρ̄−1(x))2 if x = y,

where ρ is a Lévy measure such that
∫∞
0

min(1, x)ν(dx) < ∞ and ρ̄(x) :=
∫∞
x
ρ(w) dw is the78

corresponding tail Lévy intensity. The Lévy measure ρ controls the properties of the produced79

network.80

To demonstrate that a sparse regime is achievable within this framework, [5] use a Generalized81

Gamma measure (GG):82

ρ(dw) =
1

Γ(1− σ)
w−1−σe−βw dw.

They prove that if σ < 0, an increasing sequence of graphs sampled from this model is dense, while83

if σ ≥ 0 and β > 0, such a sequence is sparse. They also provide a posterior inference algorithm for84

fitting the GG-Caron-Fox model to real data, demonstrating that this model is highly effective. In [10],85

further exploration of the graphex model revealed four asymptotic regimes: a dense regime, a sparse86

almost-dense regime, a sparse regime exhibiting power-law behaviour, and an almost extremely87

sparse regime.88

The parameters of the graphex model are easily interpretable. In the Caron-Fox framework, the89

quantity Wi = ρ−1(ϑi) is often interpreted as a measure of sociability. This interpretation arises90

from viewing the model as a scenario where potential node i enters a room at time θi and attempts to91

link with the nodes already present. The greater the sociability of both individuals, the more likely92

they are to establish a connection.93

3 Mixture of Generalized Gamma Process and extremely sparse graphs94

In [13], we define a Lévy intensity that realizes the extremely sparse regime in the Caron-Fox class95

and propose a corresponding approximate sampling method. We achieve this regime using a mixture96

of Generalized Gamma (GG) processes with the following Lévy intensity:97

ρmGG(w;β, c, η) = η

∫ 1

0

scs

Γ(1− s)
w−1−se−βw/cds, (1)
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The model parameters have the following interpretations:98

• β is the exponential tilting parameter; if β > 0, it tunes the exponential decay of large99

weights.100

• c is a scaling parameter: if G ∼ CRM(ρmGG(·;β, 1, η), H), then cG ∼101

CRM(ρmGG(·;β, c, η), H).102

• η is a rate parameter: if G1 ∼ CRM(ρmGG(·;β, c, η1), H) and G2 ∼103

CRM(ρmGG(·;β, c, η2), H), then G1 +G2 ∼ CRM(ρmGG(·;β, c, η1 + η2), H).104

A key advantage of this Lévy measure is that its Laplace exponent admits an analytic expression:105

ψmGG(t;β, c, η) :=

∫ ∞

0

(1− e−tw) ρmGG(w)dw = η (ψ(β + ct)− ψ(β)) , (2)

where ψ(t) = t−1
log t for 0 < t < 1, with ψ(0) = 0 and ψ(1) = 1.106

As shown in [13, Corollary 7], graphs generated using this Lévy intensity, ρmGG, are extremely107

sparse:108

Theorem 1. [13, Corollary 7] Almost surely as t goes to infinity

N
(e)
t = Θ(Nt log(Nt)).

We also obtain an interesting result for the degree distribution of these graphs. For j ∈ N and t ∈ R,109

let Nt,j denote the number of nodes with degree j in Gt. In the following theorem, C represents a110

positive constant.111

Theorem 2. [13, Proposition 8] Almost surely as t goes to infinity

Nt,j ∼ E(Nt,j) ∼

{
t2 C

log(t) j = 1
t2

j(j−1)
C

log2(t)
j ≥ 2

Let Ñt,2 =
∑

k≥2Nt,k denote the number of nodes with a degree of at least 2. Then, for all j ≥ 2,
we have

Nt,j

Ñt,2

−→
t→∞

1

j(j − 1)
.

This result implies that the degree distribution for nodes with a degree of at least 2 follows a power112

law with an exponent of 2.113

A key property expected of a tractable statistical model is the ability to sample from it. However,114

since CRMs are infinite-dimensional objects that cannot be fully represented on a computer, only115

approximate sampling is possible. Several approximation schemes for CRM sampling exist. In [13],116

we propose a size-biased method, which is advantageous due to its straightforward implementation:117

Proposition 1. [13, Proposition 3] Let ξ1, ξ2, . . . be the ordered points of a unit-rate Poisson process118

on (0,∞); that is, ξ1, ξ2 − ξ1, ξ3 − ξ2, . . . are iid unit-rate exponential random variable. We have119

the following size-biased construction for G ∼ CRM(ρmGG(·;β, c, η), H). For j ≥ 1,120

Tj = ψ−1

(
ξj
η

+ ψ(β)

)
− β,

Sj | {Tj = t} ∼ p(s|t) ∝ s(t+ β)s1{s∈(0,1)},

W ′
j |{Tj = t, Sj = s} ∼ Gamma(1− s, t+ β),

Wj = cW ′
j ,

Each step in this sampling procedure can be performed using only standard functions. The asymptotic121

L1 error of this size-biased approximation is explored in [13, Proposition 4]. With the result from122

Proposition 1, we can generate graphs. In Figure 2, we compare our method to the non-mixture123

Generalized Gamma model of Caron and Fox [5] and the Barabási–Albert model [3]. All three124

models are known to produce sparse graph sequences that exhibit power-law degree distributions. The125

expected asymptotic behavior of our model is given in Theorem 1 and Theorem 2. For the Generalized126
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Gamma model (here with α = 0.5), the number of edges scales asymptotically as N (e)
t ∼ N

4
3
t , and127

its degree distribution follows a power law with an exponent of 1.5. For the Barabási–Albert model,128

the number of edges is linear in the number of nodes, and its asymptotic degree distribution follows a129

power law with an exponent of 3.130

Figure 2: Examination of the mGG graph properties (•) with parameters α = 1, τ = 0, c = 1,
and β = 1 for various values of η ranging from 50 to 6000, resulting in graphs of different sizes.
Comparison with the Generalized Gamma CRM (■) with parameters τ = 1 and σ = 0.5, and with
the Barabási–Albert model (▲). For every configuration we simulate 20 graph samples and plot the
mean of the quantity of interest.

4 Inference Algorithm131

Posterior inference is a crucial property of a statistical model, as it allows the model to be fit to132

observational data. Here, we briefly describe the MCMC algorithm introduced in [13] to approximate133

the posterior density over the model parameters. Assume we have observed a graph G sampled from134

our mGG graph model. We aim to infer the sociability parameter Wi for each node and the model135

parameters ϕ = (β, c, η). We consider the following improper priors:136

p(β) ∝ 1

β
, p(c) ∝ 1

c
, p(η) ∝ 1

η
. (3)

We introduce two sets of auxiliary variables. First, as in [5], we introduce latent count variables q̃ij137

with the conditional distribution, for i < j,138

q̃ij | Z,W ∼


δ0 if Zij = 0,

tPoisson (2WiWj) if Zij = 1, i ̸= j,

tPoisson
(
W 2

i

)
if Zij = 1, i = j,

(4)

where tPoisson(λ) is the zero-truncated Poisson distribution, and with q̃ji = q̃ij . Second, to take139

advantage of the mixture representation of the Lévy intensity, we introduce local indices of variations140

Si ∈ (0, 1) for each node i, as in the size-biased algorithm. In the following, we also write w∗ for the141

sum of the sociabilities of nodes with no connections in G. The algorithm is presented in Algorithm 1.142

Algorithm 1 Posterior inference [13, Algorithm 1]
Step 1: Update the weights wi and the latent space variables si given the other variables, using a
Hamiltonian Monte Carlo step.
Step 2: Update (ϕ,w∗) given the other variables, using a Gibbs sampler update.
Step 3: Update the latent counts (q̃ij) given the other variables using (4).

To illustrate the performance of the inference algorithm, [13] proposes different experiments on both143

synthetic and real data. We present the results on one of the real datasets here. We consider the Flickr144
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dataset, a crawl of the Flickr social network, a photo and video sharing platform. The dataset contains145

all links between users (https://socialnetworks.mpi-sws.org/data-imc2007.html, 17).146

This dataset consists of a network with 1,861,232 nodes and 15,555,041 edges; the mean degree is147

33.4, while the maximum degree is 54,472.148

To train our model, we extracted a subgraph containing approximately 5% of the nodes from the149

network using p-sampling [16]. For Flickr, we used p = 0.14, resulting in a random subgraph with150

85,613 nodes and 299,358 edges, with a mean degree of 13.9 and a maximum degree of 2890.151

To assess model fit, we apply p-sampling to split the dataset into a training set (approximately 5% of152

the nodes) and a test set (the remaining nodes). We then compare the empirical degree distribution of153

the test set with the predictive degree distribution generated by our model, using hyperparameters154

inferred from the training data. Specifically, we simulate 200 graphs from the posterior predictive155

distribution. Parameters are drawn from the post-burn-in MCMC samples, and we scale η̂ by (1−p)/p156

to match the expected size of the target graph.157

Figure 3 shows the comparison between the empirical and predictive degree distributions. Overall,158

the model provides a good fit for this dataset, successfully capturing the heavy-tailed behavior159

characteristic of real-world networks.160

Figure 3: Posterior predictive degree distribution for the Flickr dataset. The predictive distribution is
shown in blue, and the empirical distribution of the test set is shown in red.

5 Conclusion161

We have seen that [13] has introduced a novel generative model for the difficult problem of generating162

extremely sparse sequences of graphs with good statistical properties. The model presents theoretical163

guarantees, a simple size-biased sampling procedure, and an efficient inference algorithm. The new164

CRM introduced to produce this model has a wider range of applications and could also be used in165

clustering or partition models. For a more detailed discussion, we refer the reader to the final section166

of [13].167
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NeurIPS Paper Checklist211

1. Claims212

Question: Do the main claims made in the abstract and introduction accurately reflect the213

paper’s contributions and scope?214

Answer: [Yes]215

Justification: The abstract and introduction accurately reflect the paper’s actual contributions.216

Guidelines:217

• The answer NA means that the abstract and introduction do not include the claims218

made in the paper.219

• The abstract and/or introduction should clearly state the claims made, including the220

contributions made in the paper and important assumptions and limitations. A No or221

NA answer to this question will not be perceived well by the reviewers.222

• The claims made should match theoretical and experimental results, and reflect how223

much the results can be expected to generalize to other settings.224

• It is fine to include aspirational goals as motivation as long as it is clear that these goals225

are not attained by the paper.226

2. Limitations227

Question: Does the paper discuss the limitations of the work performed by the authors?228

Answer: [Yes]229

Justification: The limitations are discussed in our Conclusion section.230

Guidelines:231

• The answer NA means that the paper has no limitation while the answer No means that232

the paper has limitations, but those are not discussed in the paper.233

• The authors are encouraged to create a separate "Limitations" section in their paper.234

• The paper should point out any strong assumptions and how robust the results are to235

violations of these assumptions (e.g., independence assumptions, noiseless settings,236

model well-specification, asymptotic approximations only holding locally). The authors237

should reflect on how these assumptions might be violated in practice and what the238

implications would be.239

• The authors should reflect on the scope of the claims made, e.g., if the approach was240

only tested on a few datasets or with a few runs. In general, empirical results often241

depend on implicit assumptions, which should be articulated.242

• The authors should reflect on the factors that influence the performance of the approach.243

For example, a facial recognition algorithm may perform poorly when image resolution244

is low or images are taken in low lighting. Or a speech-to-text system might not be245

used reliably to provide closed captions for online lectures because it fails to handle246

technical jargon.247

• The authors should discuss the computational efficiency of the proposed algorithms248

and how they scale with dataset size.249

• If applicable, the authors should discuss possible limitations of their approach to250

address problems of privacy and fairness.251

• While the authors might fear that complete honesty about limitations might be used by252

reviewers as grounds for rejection, a worse outcome might be that reviewers discover253

limitations that aren’t acknowledged in the paper. The authors should use their best254

judgment and recognize that individual actions in favor of transparency play an impor-255

tant role in developing norms that preserve the integrity of the community. Reviewers256

will be specifically instructed to not penalize honesty concerning limitations.257

3. Theory assumptions and proofs258

Question: For each theoretical result, does the paper provide the full set of assumptions and259

a complete (and correct) proof?260

Answer: [Yes]261
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Justification: Proofs of all results are included in full detail in the main article [13], which is262

cited at multiple time in the paper, pointing out the relevant section in the main article.263

Guidelines:264

• The answer NA means that the paper does not include theoretical results.265

• All the theorems, formulas, and proofs in the paper should be numbered and cross-266

referenced.267

• All assumptions should be clearly stated or referenced in the statement of any theorems.268

• The proofs can either appear in the main paper or the supplemental material, but if269

they appear in the supplemental material, the authors are encouraged to provide a short270

proof sketch to provide intuition.271

• Inversely, any informal proof provided in the core of the paper should be complemented272

by formal proofs provided in appendix or supplemental material.273

• Theorems and Lemmas that the proof relies upon should be properly referenced.274

4. Experimental result reproducibility275

Question: Does the paper fully disclose all the information needed to reproduce the main ex-276

perimental results of the paper to the extent that it affects the main claims and/or conclusions277

of the paper (regardless of whether the code and data are provided or not)?278

Answer: [Yes]279

Justification: As stated in the introduction, all the code used to perform our experiments is280

available in an anonymous repository.281

Guidelines:282

• The answer NA means that the paper does not include experiments.283

• If the paper includes experiments, a No answer to this question will not be perceived284

well by the reviewers: Making the paper reproducible is important, regardless of285

whether the code and data are provided or not.286

• If the contribution is a dataset and/or model, the authors should describe the steps taken287

to make their results reproducible or verifiable.288

• Depending on the contribution, reproducibility can be accomplished in various ways.289

For example, if the contribution is a novel architecture, describing the architecture fully290

might suffice, or if the contribution is a specific model and empirical evaluation, it may291

be necessary to either make it possible for others to replicate the model with the same292

dataset, or provide access to the model. In general. releasing code and data is often293

one good way to accomplish this, but reproducibility can also be provided via detailed294

instructions for how to replicate the results, access to a hosted model (e.g., in the case295

of a large language model), releasing of a model checkpoint, or other means that are296

appropriate to the research performed.297

• While NeurIPS does not require releasing code, the conference does require all submis-298

sions to provide some reasonable avenue for reproducibility, which may depend on the299

nature of the contribution. For example300

(a) If the contribution is primarily a new algorithm, the paper should make it clear how301

to reproduce that algorithm.302

(b) If the contribution is primarily a new model architecture, the paper should describe303

the architecture clearly and fully.304

(c) If the contribution is a new model (e.g., a large language model), then there should305

either be a way to access this model for reproducing the results or a way to reproduce306

the model (e.g., with an open-source dataset or instructions for how to construct307

the dataset).308

(d) We recognize that reproducibility may be tricky in some cases, in which case309

authors are welcome to describe the particular way they provide for reproducibility.310

In the case of closed-source models, it may be that access to the model is limited in311

some way (e.g., to registered users), but it should be possible for other researchers312

to have some path to reproducing or verifying the results.313

5. Open access to data and code314
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Question: Does the paper provide open access to the data and code, with sufficient instruc-315

tions to faithfully reproduce the main experimental results, as described in supplemental316

material?317

Answer: [Yes]318

Justification: As stated in the introduction, all the code used to perform our experiments is319

available in an anonymous repository.320

Guidelines:321

• The answer NA means that paper does not include experiments requiring code.322

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/323

public/guides/CodeSubmissionPolicy) for more details.324

• While we encourage the release of code and data, we understand that this might not be325

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not326

including code, unless this is central to the contribution (e.g., for a new open-source327

benchmark).328

• The instructions should contain the exact command and environment needed to run to329

reproduce the results. See the NeurIPS code and data submission guidelines (https:330

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.331

• The authors should provide instructions on data access and preparation, including how332

to access the raw data, preprocessed data, intermediate data, and generated data, etc.333

• The authors should provide scripts to reproduce all experimental results for the new334

proposed method and baselines. If only a subset of experiments are reproducible, they335

should state which ones are omitted from the script and why.336

• At submission time, to preserve anonymity, the authors should release anonymized337

versions (if applicable).338

• Providing as much information as possible in supplemental material (appended to the339

paper) is recommended, but including URLs to data and code is permitted.340

6. Experimental setting/details341

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-342

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the343

results?344

Answer: [Yes]345

Justification: All details necessary to understand the results are provided in the main paper346

[13].347

Guidelines:348

• The answer NA means that the paper does not include experiments.349

• The experimental setting should be presented in the core of the paper to a level of detail350

that is necessary to appreciate the results and make sense of them.351

• The full details can be provided either with the code, in appendix, or as supplemental352

material.353

7. Experiment statistical significance354

Question: Does the paper report error bars suitably and correctly defined or other appropriate355

information about the statistical significance of the experiments?356

Answer: [Yes]357

Justification: For all experiments, results are averaged over several repetitions. Variations358

from the mean are negligible.359

Guidelines:360

• The answer NA means that the paper does not include experiments.361

• The authors should answer "Yes" if the results are accompanied by error bars, confi-362

dence intervals, or statistical significance tests, at least for the experiments that support363

the main claims of the paper.364
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• The factors of variability that the error bars are capturing should be clearly stated (for365

example, train/test split, initialization, random drawing of some parameter, or overall366

run with given experimental conditions).367

• The method for calculating the error bars should be explained (closed form formula,368

call to a library function, bootstrap, etc.)369

• The assumptions made should be given (e.g., Normally distributed errors).370

• It should be clear whether the error bar is the standard deviation or the standard error371

of the mean.372

• It is OK to report 1-sigma error bars, but one should state it. The authors should373

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis374

of Normality of errors is not verified.375

• For asymmetric distributions, the authors should be careful not to show in tables or376

figures symmetric error bars that would yield results that are out of range (e.g. negative377

error rates).378

• If error bars are reported in tables or plots, The authors should explain in the text how379

they were calculated and reference the corresponding figures or tables in the text.380

8. Experiments compute resources381

Question: For each experiment, does the paper provide sufficient information on the com-382

puter resources (type of compute workers, memory, time of execution) needed to reproduce383

the experiments?384

Answer: [Yes]385

Justification: All this information are available in the main paper [13].386

• The answer NA means that the paper does not include experiments.387

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,388

or cloud provider, including relevant memory and storage.389

• The paper should provide the amount of compute required for each of the individual390

experimental runs as well as estimate the total compute.391

• The paper should disclose whether the full research project required more compute392

than the experiments reported in the paper (e.g., preliminary or failed experiments that393

didn’t make it into the paper).394

9. Code of ethics395

Question: Does the research conducted in the paper conform, in every respect, with the396

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?397

Answer: [Yes]398

Justification: The research conducted in the paper is mainly theoretical and uses only399

publicly available datasets, which do not contain any sensitive information.400

Guidelines:401

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.402

• If the authors answer No, they should explain the special circumstances that require a403

deviation from the Code of Ethics.404

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-405

eration due to laws or regulations in their jurisdiction).406

10. Broader impacts407

Question: Does the paper discuss both potential positive societal impacts and negative408

societal impacts of the work performed?409

Answer: [NA]410

Justification: The work performed is mainly theoretical, and we do not foresee any societal411

impact.412

Guidelines:413

• The answer NA means that there is no societal impact of the work performed.414
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• If the authors answer NA or No, they should explain why their work has no societal415

impact or why the paper does not address societal impact.416

• Examples of negative societal impacts include potential malicious or unintended uses417

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations418

(e.g., deployment of technologies that could make decisions that unfairly impact specific419

groups), privacy considerations, and security considerations.420

• The conference expects that many papers will be foundational research and not tied421

to particular applications, let alone deployments. However, if there is a direct path to422

any negative applications, the authors should point it out. For example, it is legitimate423

to point out that an improvement in the quality of generative models could be used to424

generate deepfakes for disinformation. On the other hand, it is not needed to point out425

that a generic algorithm for optimizing neural networks could enable people to train426

models that generate Deepfakes faster.427

• The authors should consider possible harms that could arise when the technology is428

being used as intended and functioning correctly, harms that could arise when the429

technology is being used as intended but gives incorrect results, and harms following430

from (intentional or unintentional) misuse of the technology.431

• If there are negative societal impacts, the authors could also discuss possible mitigation432

strategies (e.g., gated release of models, providing defenses in addition to attacks,433

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from434

feedback over time, improving the efficiency and accessibility of ML).435

11. Safeguards436

Question: Does the paper describe safeguards that have been put in place for responsible437

release of data or models that have a high risk for misuse (e.g., pretrained language models,438

image generators, or scraped datasets)?439

Answer: [NA]440

Justification: The work performed is mainly theoretical and doesn’t pose such risks.441

Guidelines:442

• The answer NA means that the paper poses no such risks.443

• Released models that have a high risk for misuse or dual-use should be released with444

necessary safeguards to allow for controlled use of the model, for example by requiring445

that users adhere to usage guidelines or restrictions to access the model or implementing446

safety filters.447

• Datasets that have been scraped from the Internet could pose safety risks. The authors448

should describe how they avoided releasing unsafe images.449

• We recognize that providing effective safeguards is challenging, and many papers do450

not require this, but we encourage authors to take this into account and make a best451

faith effort.452

12. Licenses for existing assets453

Question: Are the creators or original owners of assets (e.g., code, data, models), used in454

the paper, properly credited and are the license and terms of use explicitly mentioned and455

properly respected?456

Answer: [NA]457

Justification: We do not use any dataset.458

Guidelines:459

• The answer NA means that the paper does not use existing assets.460

• The authors should cite the original paper that produced the code package or dataset.461

• The authors should state which version of the asset is used and, if possible, include a462

URL.463

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.464

• For scraped data from a particular source (e.g., website), the copyright and terms of465

service of that source should be provided.466
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• If assets are released, the license, copyright information, and terms of use in the467

package should be provided. For popular datasets, paperswithcode.com/datasets468

has curated licenses for some datasets. Their licensing guide can help determine the469

license of a dataset.470

• For existing datasets that are re-packaged, both the original license and the license of471

the derived asset (if it has changed) should be provided.472

• If this information is not available online, the authors are encouraged to reach out to473

the asset’s creators.474

13. New assets475

Question: Are new assets introduced in the paper well documented and is the documentation476

provided alongside the assets?477

Answer: [NA]478

Justification: We do not release such assets.479

Guidelines:480

• The answer NA means that the paper does not release new assets.481

• Researchers should communicate the details of the dataset/code/model as part of their482

submissions via structured templates. This includes details about training, license,483

limitations, etc.484

• The paper should discuss whether and how consent was obtained from people whose485

asset is used.486

• At submission time, remember to anonymize your assets (if applicable). You can either487

create an anonymized URL or include an anonymized zip file.488

14. Crowdsourcing and research with human subjects489

Question: For crowdsourcing experiments and research with human subjects, does the paper490

include the full text of instructions given to participants and screenshots, if applicable, as491

well as details about compensation (if any)?492

Answer: [NA]493

Justification: The paper does not involve crowdsourcing nor research with human subjects.494

Guidelines:495

• The answer NA means that the paper does not involve crowdsourcing nor research with496

human subjects.497

• Including this information in the supplemental material is fine, but if the main contribu-498

tion of the paper involves human subjects, then as much detail as possible should be499

included in the main paper.500

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,501

or other labor should be paid at least the minimum wage in the country of the data502

collector.503

15. Institutional review board (IRB) approvals or equivalent for research with human504

subjects505

Question: Does the paper describe potential risks incurred by study participants, whether506

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)507

approvals (or an equivalent approval/review based on the requirements of your country or508

institution) were obtained?509

Answer: [NA]510

Justification: The paper does not involve crowdsourcing nor research with human subjects.511

Guidelines:512

• The answer NA means that the paper does not involve crowdsourcing nor research with513

human subjects.514

• Depending on the country in which research is conducted, IRB approval (or equivalent)515

may be required for any human subjects research. If you obtained IRB approval, you516

should clearly state this in the paper.517
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• We recognize that the procedures for this may vary significantly between institutions518

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the519

guidelines for their institution.520

• For initial submissions, do not include any information that would break anonymity (if521

applicable), such as the institution conducting the review.522

16. Declaration of LLM usage523

Question: Does the paper describe the usage of LLMs if it is an important, original, or524

non-standard component of the core methods in this research? Note that if the LLM is used525

only for writing, editing, or formatting purposes and does not impact the core methodology,526

scientific rigorousness, or originality of the research, declaration is not required.527

Answer: [NA]528

Justification: The core method development in this research does not involve LLMs as any529

important, original, or non-standard components.530

Guidelines:531

• The answer NA means that the core method development in this research does not532

involve LLMs as any important, original, or non-standard components.533

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)534

for what should or should not be described.535
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