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Abstract

Generative models for real-world networks face a fundamental challenge in rec-
onciling the desirable property of exchangeability with the empirical observation
of sparsity. The Caron-Fox framework, which leverages Kallenberg exchangeabil-
ity and Completely Random Measures (CRMs), provides a principled approach
to this problem. However, existing models within this class typically generate
graphs where the number of edges scales super-linearly with the number of nodes
(E o N'7¢). In this work, we present a novel CRM with rapid variation that, when
integrated into the Caron-Fox model, generates graph sequences in an extremely
sparse regime. We also derive a posterior inference method to fit our model to an
observed graph. This workshop paper summarizes the key results of our recent
publication, introducing the model, outlining its theoretical underpinnings, and
presenting the inference procedure.

1 Introduction

The proliferation of large-scale, graph-structured data across diverse scientific fields, from microbiol-
ogy to the social sciences, has revealed a fascinating truth: despite their varied origins, real-world
networks consistently exhibit a set of common structural properties. A key characteristic is sparsity,
where the number of existing edges is a mere fraction of the (]; ) potential connections in a graph
with N nodes. Another is the scale-free phenomenon, in which the network’s degree distribution
presents a heavy tail, signifying the presence of a few highly connected “hub” nodes alongside a
vast majority of nodes with very few links. Additional defining features include the small-world
phenomeno and the formation of distinct community structures.

Developing generative models that can faithfully reproduce these characteristics, especially sparsity,
presents a fundamental statistical dilemma. An intuitive and mathematically convenient property
for such a model is node-exchangeability, which dictates that the graph’s probability distribution
should remain invariant regardless of how its nodes are labeled. However, this very property is
fundamentally at odds with sparsity. The well-known Aldous-Hoover theorem [} 2] formalizes
this conflict, demonstrating that any node-exchangeable graph must fall into one of two extremes:
it is either dense (almost all possible edges exist) or empty, failing to capture the sparse nature of
real-world networks.

To navigate this challenge, the research community has pursued several ideas. One popular approach,
exemplified by preferential attachment models [3| 4], resolves the issue by completely forgoing any
form of exchangeability. A more recent and powerful line of inquiry, initiated by Caron and Fox [J5],
circumvents the limitation in a more nuanced way. Instead of abandoning exchangeability altogether,
this framework adopts a weaker, more flexible notion known as Kallenberg exchangeability (see also

The small-world phenomenon is the observation that, in many real-world networks, any two nodes can be
connected through a short chain of intermediary links.
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[6L 7, 18]). This principled relaxation successfully reconciles the model with sparsity and has spurred
a rich body of work, leading to new models that incorporate other complex features like overlapping
communities [9], clustering [[10], dynamic evolution [11]], and core-periphery organization [12].

Our work is situated within this latter framework, leveraging Bayesian nonparametric methods,
specifically Completely Random Measures (CRMs). Existing models in this class have successfully
generated sparse graph sequences where the number of edges, E, scales as N'*¢ for a given number
of nodes N (where 0 < € < 1). In our recent publication [13], we introduced a novel CRM that
achieves a significantly sparser regime. Our model generates graphs where the edge count scales as
E = ©(N{(N)), with £ being a slowly varying function. We term graph sequences exhibiting this
near-linear scaling extremely sparse.

The statistical properties of our model make it possible to derive a posterior inference method that
can be used to fit our model to an observed graph. The performance of this hierarchical HMC method
is illustrated with experiments on both synthetic and large-scale real datasets.

The purpose of this workshop paper is to present the main results and implications of this new
model as detailed in [13]. The remainder is structured as follows. In Section 2] we introduce
necessary preliminaries on the Caron-Fox model. In Section [3] we present the main contribution
of [13]]—a novel CRM with rapid variation that generates extremely sparse sequences of networks
within the Caron-Fox model, and explain how to sample from them. In Section ] we outline the
inference procedure. The results are illustrated with experiments throughout the paper, which can
be reproduced using the code available at https://anonymous.4open.science/r/rapidly_
varying_crm-7COB/README.md. Detailed proofs and additional details can be found in the main
article [13]].

2 The Caron-Fox model

The Caron-Fox model [5} (7, 8] provides a powerful framework for overcoming the limitations of the
Aldous-Hoover theorem [} 2]. Instead of representing graphs with exchangeable arrays, this model
uses exchangeable measures. In this representation, nodes are embedded at locations 6; € R, and
the set of edges is described by a random measure on the plane:

Z = Z Zi i0(6:,6,)s

4,3

where Z; ; = Z; ; is a binary variable indicating the presence or absence of an edge between nodes
¢; and 6;. A sequence of finite graphs (G;):~o is derived by restricting the point process Z to the
squares [0, ]2 and retaining only the points that have at least one edge. In the following, we denote

N; as the number of nodes in G; and Nt(e) as the number of edges in G;.

This model was introduced in [5]], where it was shown that sparse exchangeable graphs can be obtained
in this framework by treating Z as an exchangeable random measure. In [[7]], the authors introduced
the term graphex processes, which we use here. Simultaneously, [7] and [8] analysed properties of
graphex processes, explaining how graphex processes serve as a good notion of limit for sequences
of sparse graphs, analogous to how graphons serve as a limit for dense graphs. Further properties,
including convergence results for sparse graph sequences and sampling methods, were derived by
[14} 15, [16]] and [I8]. In [10]], the asymptotic properties of graphex processes were investigated.

Following the notation of [10] (which aligns with that of [7], excluding terms corresponding to
stars and isolated edges), we can parameterize the graph with a symmetric measurable function
W : R2 — [0, 1] that dictates how the edges are formed. For each i < j:

Zi,j | (9;@,’19/6);@:172)_“ ~ Bernoulli(W(ﬁi,ﬂj)),

is a unit-rate Poisson process on Ri.

In this framework, the Caron-Fox model is defined by:


https://anonymous.4open.science/r/rapidly_varying_crm-7C0B/README.md
https://anonymous.4open.science/r/rapidly_varying_crm-7C0B/README.md
https://anonymous.4open.science/r/rapidly_varying_crm-7C0B/README.md
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(a) (b)

Figure 1: Point process representation of a random graph. Each node ¢ is embedded in R at some
location 6, and is associated with a sociability parameter W;. An edge between nodes 6; and 6; is
represented by a point at locations (6;,0;) and (6;, 6;) in R%. (Figure 1,3). The corresponding graph
is plotted in (b).

1— e—Qﬁ’l(r)ﬁfl(y) if x £y,
W(z,y) = {1 — e (p (@) ifz =1y,

where p is a Lévy measure such that [, min(1, z)v(dz) < oo and p(z) := [ p(w) dw is the
corresponding tail Lévy intensity. The Lévy measure p controls the properties of the produced
network.

To demonstrate that a sparse regime is achievable within this framework, [5] use a Generalized
Gamma measure (GQG):

1
I(1l-o)

They prove that if ¢ < 0, an increasing sequence of graphs sampled from this model is dense, while
if o > 0and 8 > 0, such a sequence is sparse. They also provide a posterior inference algorithm for
fitting the GG-Caron-Fox model to real data, demonstrating that this model is highly effective. In [10],
further exploration of the graphex model revealed four asymptotic regimes: a dense regime, a sparse
almost-dense regime, a sparse regime exhibiting power-law behaviour, and an almost extremely
sparse regime.

w %P .

p(dw) =

The parameters of the graphex model are easily interpretable. In the Caron-Fox framework, the
quantity W; = p~1(1;) is often interpreted as a measure of sociability. This interpretation arises
from viewing the model as a scenario where potential node 7 enters a room at time #; and attempts to
link with the nodes already present. The greater the sociability of both individuals, the more likely
they are to establish a connection.

3 Mixture of Generalized Gamma Process and extremely sparse graphs

In [13]], we define a Lévy intensity that realizes the extremely sparse regime in the Caron-Fox class
and propose a corresponding approximate sampling method. We achieve this regime using a mixture
of Generalized Gamma (GG) processes with the following Lévy intensity:

S

1
. _ sC —1-s,—Bw/c
m w; P, ¢, - . W € d57 (1)
pmca(w; B, ¢, n) n/o T =)
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The model parameters have the following interpretations:
* 3 is the exponential tilting parameter; if 8 > 0, it tunes the exponential decay of large
weights.

* ¢ is a scaling parameter: if G ~ CRM(pmac(;8,1,1),H), then ¢G ~
CRM(panG(';ﬂ7cvn)7H)'

*n is a rate parameter: if G; ~ CRM(pmac(;8,¢,m),H) and Gy ~
CRM (pmaa (8, ¢,m2), H), then Gy + G2 ~ CRM (pmac (3 8, ¢, + n2), H).

A key advantage of this Lévy measure is that its Laplace exponent admits an analytic expression:

Ymaa(t; B,¢,m) = /0 (1- eitw) pmGa(w)dw = n (Y(B + ct) —(B)), 2
where ¢(t) = {5 for 0 < ¢ < 1, with ¢(0) = 0 and ¥(1) = 1.

As shown in [13| Corollary 7], graphs generated using this Lévy intensity, pn,ga, are extremely
sparse:

Theorem 1. [l/3| Corollary 7] Almost surely as t goes to infinity
N = O(N; log(N})).

We also obtain an interesting result for the degree distribution of these graphs. For 7 € Nand ¢ € R,
let Ny ; denote the number of nodes with degree j in G;. In the following theorem, C represents a
positive constant.

Theorem 2. [I3, Proposition 8] Almost surely as t goes to infinity

s j=1
log(t
NmNE(Nt,j)N{ t2 g()c P> 9
iG-Dilegzm) J =

Let Z\~7t72 = Zkzz Ny i denote the number of nodes with a degree of at least 2. Then, for all j > 2,

we have
Ne 1

Nt,2 t—oo j(j — 1)
This result implies that the degree distribution for nodes with a degree of at least 2 follows a power
law with an exponent of 2.

A key property expected of a tractable statistical model is the ability to sample from it. However,
since CRMs are infinite-dimensional objects that cannot be fully represented on a computer, only
approximate sampling is possible. Several approximation schemes for CRM sampling exist. In [13]],
we propose a size-biased method, which is advantageous due to its straightforward implementation:

Proposition 1. /13| Proposition 3] Let £1,&s, . .. be the ordered points of a unit-rate Poisson process
on (0,00); that is, &1, &2 — &1, €3 — o, ... are iid unit-rate exponential random variable. We have
the following size-biased construction for G ~ CRM(pmca(+; 8,¢,n), H). Forj > 1,

T, =y (f; + w(m) -5,
S [{T; =t} ~ p(slt) o< s(t+ B)*Lisc0,1)}s
Wi{T; =t,5; = s} ~ Gamma(l — s,t + f3),

Wj = CWJ/-,

Each step in this sampling procedure can be performed using only standard functions. The asymptotic
L error of this size-biased approximation is explored in [[13| Proposition 4]. With the result from
Proposition [I] we can generate graphs. In Figure 2] we compare our method to the non-mixture
Generalized Gamma model of Caron and Fox [5] and the Barabasi—Albert model [3]. All three
models are known to produce sparse graph sequences that exhibit power-law degree distributions. The
expected asymptotic behavior of our model is given in Theorem|I]and Theorem[2] For the Generalized
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Gamma model (here with o« = 0.5), the number of edges scales asymptotically as Nt(e) ~ N7, and
its degree distribution follows a power law with an exponent of 1.5. For the Barabdsi—Albert model,
the number of edges is linear in the number of nodes, and its asymptotic degree distribution follows a
power law with an exponent of 3.
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Figure 2: Examination of the mGG graph properties (®) with parameters « = 1,7 = 0,c = 1,
and $ = 1 for various values of 7 ranging from 50 to 6000, resulting in graphs of different sizes.
Comparison with the Generalized Gamma CRM (M) with parameters 7 = 1 and ¢ = 0.5, and with
the Barabasi—Albert model (A). For every configuration we simulate 20 graph samples and plot the
mean of the quantity of interest.

4 Inference Algorithm

Posterior inference is a crucial property of a statistical model, as it allows the model to be fit to
observational data. Here, we briefly describe the MCMC algorithm introduced in [13] to approximate
the posterior density over the model parameters. Assume we have observed a graph G sampled from
our mGG graph model. We aim to infer the sociability parameter W; for each node and the model
parameters ¢ = (3, ¢, ). We consider the following improper priors:

(8) x =, ple) x =, p) ox ~ @)

x = c) x — x —.
p 3’ p o’ bpn 1

We introduce two sets of auxiliary variables. First, as in [3]], we introduce latent count variables g;;
with the conditional distribution, for i < j,

50 lf Zij = 0,
Gij | Z,W ~ { tPoisson (2W,;W;) if Z;; = 1,1 # j, 4
tPoisson (W?) if Z;; = 1,i =3,

where tPoisson(\) is the zero-truncated Poisson distribution, and with dji = ;5. Second, to take
advantage of the mixture representation of the Lévy intensity, we introduce local indices of variations
S; € (0,1) for each node 4, as in the size-biased algorithm. In the following, we also write w, for the
sum of the sociabilities of nodes with no connections in G. The algorithm is presented in Algorithm|T]

Algorithm 1 Posterior inference [13 Algorithm 1]

Step 1: Update the weights w; and the latent space variables s; given the other variables, using a
Hamiltonian Monte Carlo step.

Step 2: Update (¢, w,.) given the other variables, using a Gibbs sampler update.

Step 3: Update the latent counts (g;;) given the other variables using @).

To illustrate the performance of the inference algorithm, [13]] proposes different experiments on both
synthetic and real data. We present the results on one of the real datasets here. We consider the Flickr
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dataset, a crawl of the Flickr social network, a photo and video sharing platform. The dataset contains
all links between users (https://socialnetworks.mpi-sws.org/data-imc2007.html, [17).
This dataset consists of a network with 1,861,232 nodes and 15,555,041 edges; the mean degree is
33.4, while the maximum degree is 54,472.

To train our model, we extracted a subgraph containing approximately 5% of the nodes from the
network using p-sampling [[16]]. For Flickr, we used p = 0.14, resulting in a random subgraph with
85,613 nodes and 299,358 edges, with a mean degree of 13.9 and a maximum degree of 2890.

To assess model fit, we apply p-sampling to split the dataset into a training set (approximately 5% of
the nodes) and a test set (the remaining nodes). We then compare the empirical degree distribution of
the test set with the predictive degree distribution generated by our model, using hyperparameters
inferred from the training data. Specifically, we simulate 200 graphs from the posterior predictive
distribution. Parameters are drawn from the post-burn-in MCMC samples, and we scale 7} by (1—p)/p
to match the expected size of the target graph.

Figure 3] shows the comparison between the empirical and predictive degree distributions. Overall,
the model provides a good fit for this dataset, successfully capturing the heavy-tailed behavior
characteristic of real-world networks.

10° Posterior predictive degree distribution

+ 95% posterior predictive
+ Data
107t +

1073

1074 A

Frequency (log scale)
+

107

1077

100 10! 102 103
Degree (log scale)

Figure 3: Posterior predictive degree distribution for the Flickr dataset. The predictive distribution is
shown in blue, and the empirical distribution of the test set is shown in red.

5 Conclusion

We have seen that [[13] has introduced a novel generative model for the difficult problem of generating
extremely sparse sequences of graphs with good statistical properties. The model presents theoretical
guarantees, a simple size-biased sampling procedure, and an efficient inference algorithm. The new
CRM introduced to produce this model has a wider range of applications and could also be used in
clustering or partition models. For a more detailed discussion, we refer the reader to the final section
of [13].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s actual contributions.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are discussed in our Conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]



262 Justification: Proofs of all results are included in full detail in the main article [13]], which is

263 cited at multiple time in the paper, pointing out the relevant section in the main article.

264 Guidelines:

265 * The answer NA means that the paper does not include theoretical results.

266  All the theorems, formulas, and proofs in the paper should be numbered and cross-
267 referenced.

268 * All assumptions should be clearly stated or referenced in the statement of any theorems.
269 * The proofs can either appear in the main paper or the supplemental material, but if
270 they appear in the supplemental material, the authors are encouraged to provide a short
271 proof sketch to provide intuition.

272 * Inversely, any informal proof provided in the core of the paper should be complemented
273 by formal proofs provided in appendix or supplemental material.

274 * Theorems and Lemmas that the proof relies upon should be properly referenced.

275 4. Experimental result reproducibility

276 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
277 perimental results of the paper to the extent that it affects the main claims and/or conclusions
278 of the paper (regardless of whether the code and data are provided or not)?

279 Answer: [Yes]

280 Justification: As stated in the introduction, all the code used to perform our experiments is
281 available in an anonymous repository.

282 Guidelines:

283 * The answer NA means that the paper does not include experiments.

284 * If the paper includes experiments, a No answer to this question will not be perceived
285 well by the reviewers: Making the paper reproducible is important, regardless of
286 whether the code and data are provided or not.

287 * If the contribution is a dataset and/or model, the authors should describe the steps taken
288 to make their results reproducible or verifiable.

289 * Depending on the contribution, reproducibility can be accomplished in various ways.
290 For example, if the contribution is a novel architecture, describing the architecture fully
291 might suffice, or if the contribution is a specific model and empirical evaluation, it may
292 be necessary to either make it possible for others to replicate the model with the same
293 dataset, or provide access to the model. In general. releasing code and data is often
294 one good way to accomplish this, but reproducibility can also be provided via detailed
295 instructions for how to replicate the results, access to a hosted model (e.g., in the case
296 of a large language model), releasing of a model checkpoint, or other means that are
297 appropriate to the research performed.

298 * While NeurIPS does not require releasing code, the conference does require all submis-
299 sions to provide some reasonable avenue for reproducibility, which may depend on the
300 nature of the contribution. For example

301 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
302 to reproduce that algorithm.

303 (b) If the contribution is primarily a new model architecture, the paper should describe
304 the architecture clearly and fully.

305 (c) If the contribution is a new model (e.g., a large language model), then there should
306 either be a way to access this model for reproducing the results or a way to reproduce
307 the model (e.g., with an open-source dataset or instructions for how to construct
308 the dataset).

309 (d) We recognize that reproducibility may be tricky in some cases, in which case
310 authors are welcome to describe the particular way they provide for reproducibility.
311 In the case of closed-source models, it may be that access to the model is limited in
312 some way (e.g., to registered users), but it should be possible for other researchers
313 to have some path to reproducing or verifying the results.

314 5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As stated in the introduction, all the code used to perform our experiments is
available in an anonymous repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details necessary to understand the results are provided in the main paper
[13].
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For all experiments, results are averaged over several repetitions. Variations
from the mean are negligible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All this information are available in the main paper [13].

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper is mainly theoretical and uses only
publicly available datasets, which do not contain any sensitive information.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work performed is mainly theoretical, and we do not foresee any societal
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work performed is mainly theoretical and doesn’t pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not use any dataset.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release such assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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518 * We recognize that the procedures for this may vary significantly between institutions

519 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
520 guidelines for their institution.

521 * For initial submissions, do not include any information that would break anonymity (if
522 applicable), such as the institution conducting the review.

523 16. Declaration of LLM usage

524 Question: Does the paper describe the usage of LLMs if it is an important, original, or
525 non-standard component of the core methods in this research? Note that if the LLM is used
526 only for writing, editing, or formatting purposes and does not impact the core methodology,
527 scientific rigorousness, or originality of the research, declaration is not required.

528 Answer: [NA]

529 Justification: The core method development in this research does not involve LLMs as any
530 important, original, or non-standard components.

531 Guidelines:

532 * The answer NA means that the core method development in this research does not
533 involve LLMs as any important, original, or non-standard components.

534 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
535 for what should or should not be described.
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