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Abstract: We introduce ClutterGen, a physically compliant simulation scene generator
capable of producing highly diverse, cluttered, and stable scenes for robot learning.
Generating such scenes is challenging as each object must adhere to physical laws like
gravity and collision. As the number of objects increases, finding valid poses becomes
more difficult, necessitating significant human engineering effort, which limits the
diversity of the scenes. To overcome these challenges, we propose a reinforcement
learning method that can be trained with physics-based reward signals provided by
the simulator. Our experiments demonstrate that ClutterGen can generate cluttered
object layouts with up to ten objects on confined table surfaces. Additionally, our
policy design explicitly encourages the diversity of the generated scenes for open-ended
generation. Our real-world robot results show that ClutterGen can be directly used
for clutter rearrangement and stable placement policy training.
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Fig. 1: (a) The success rate of generating a stable simulation setup. When the number of objects in the environment
increases, the difficulty of creating such a stable setup also increases. The traditional heuristic method cannot create a
simulation scene above 7 objects, while ClutterGen consistently achieves high success rates. (b) Diverse, cluttered,
and stable simulation setups created by ClutterGen.

1 Introduction
Simulation has played an important role in advancing robot learning [1, 2, 3, 4, 5]. Significant advancements
in robot learning have been achieved by randomizing object shapes [4, 6, 7], textures [8, 9, 10, 11], and dy-
namics [12]. Unlike object properties, which can be easily specified within a range without interfering with
other objects, object layout must consider the presence of other objects and physical feasibility. For instance,
arranging objects in a scene requires ensuring that they do not overlap and are placed in stable positions
instead of falling down from the air. Existing efforts often prevent this issue by fixing the object bases
[13, 4, 14, 15], but this strategy is not suitable for many movable objects like bottles or cups. As the number
of objects increases within a limited space, generating a randomized yet stable object layout becomes expo-
nentially difficult. Fig. 1(a) shows the challenge of using the widely adopted approach of random sampling
and rejecting failure trials [16, 17, 18, 19] to generate valid scenes, with even seven objects on a table. Other
methods require human manual specifications of object regions for local randomization [20, 21, 22] or apply
discretization to the possible placement space to avoid collisions [17, 23, 24]. However, navigating and
manipulating cluttered environments are essential challenges to deploying robot learning to the real world.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

http://generalroboticslab.com/ClutterGen


History 
Sequence 
Encoder

Actor

Critic

Points 
Cloud 

Encoder

C

Previous 
Placement

Next 
Placement

Scene 
Feature

Object 
Feature Successful 

Placement

Failed 
Placement

Next Attempt

C

Sample

History 
Feature

Object 
Movement 
Trajectory

Previous 
Placement 

Pose

Queried 
Region

Placement 
Pose

x
y

z
θ at

x
y

z
θ at-1

Attempt 
History

Queried 
Scene

Queried 
Object

Next 
Queried 
Object

Fig. 2: ClutterGen. We con-
catenate the movement trajec-
tory, previous placement poses,
and queried regions and send
them into a history sequence en-
coder to generate a history fea-
ture. This feature, combined
with the perception feature from
the point cloud encoder, is taken
by ClutterGen to output the
placement pose for the queried
object. The simulator evaluates
the placement’s stability, deter-
mining whether to proceed to
the next attempt or the next
queried object placement.

We introduce ClutterGen, an auto-regressive simulation scene generator for creating physically compliant
and highly diverse cluttered scenes. By framing cluttered scene generation as a reinforcement learning prob-
lem, ClutterGen learns a closed-loop policy from 3D observations without requiring pre-existing datasets
or human specifications. Once trained, ClutterGen can be applied to variations of the original environment
without fine-tuning. We further demonstrate the utility of ClutterGen in several downstream tasks including
real-world clutter rearrangement and training robust placement policies for zero-shot sim-to-real transfer.

2 The ClutterGen Framework
Designing a simulation environment for robot training typically involves a human expert observing the scene
and object geometry, deciding on a placement, running simulations to check for collision and unstable pose
issues, and adjusting placements as needed. This iterative process, repeated until object poses are finalized,
is difficult to scale due to its heavy human involvement and time-consuming trial-and-error. We propose
ClutterGen to automate the steps using a single learning agent. Fig. 2 shows an overview of our method.

Observation and Action Space ClutterGen takes in the point cloud of the queried scene and object. If the
current object placement fails, we inform the policy about its past actions and their impacts by providing
a history of the queried object’s movement trajectories. Each movement includes the object’s position,
orientation quaternion, and linear/angular velocity at each step. The concatenation of geometry and history
embedding is the final input to our RL agent. Our policy outputs the object placement 3D translation
and z-axis rotation relative to the queried region.

Policy Design We optimize our RL agent with PPO [25] algorithm. We choose beta distribution as the
policy distribution, which offers several benefits. First, our design requires bounded continuous action
space, and the beta distribution is well-defined among [0,1]. Second, beta distribution can represent more
distribution shapes than normal distribution, which is essential to improve the diversity of our scene
generation. As shown in Sec. 3.1, our results demonstrate that the policy trained with the beta distribution
outperforms the policy trained with the squashed normal distribution in both success rate and scene diversity.

Reward Function For each placement attempt, ClutterGen optimizes the reward function
Ri=−c

∑k
i=0(||vi||2+||ai||2)+n·1stable ·R0 to minimize the accumulated absolute values of the velocity

and accelerate during new object placements. Where c is a scaler to adjust the velocity and acceleration
penalty, vi∈R6 and ai∈R6 represents the velocity and acceleration of the queried object at ith simulation
step, the indicator function 1stable will equal to 1 if the placement pose is stable otherwise will equal to
0, n represents the current queried object is the nth object for the queried scene, and R0 is a scalar reward.

3 Experiments
In this section, we evaluate the scene generation performance and investigate the generalizability of
ClutterGen. We then conduct several real-world experiments to demonstrate the effectiveness of ClutterGen
for downstream robotics tasks such as clutter rearrangement and stable placement policy training.
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Method

Object Group

Group 1 Group 2 Group 3 Group 4 Group 5
Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

Success
Rate ↑

Stable
Steps ↓

RRS 0.005 168.9±202.1 0.00 290.3±379.1 0.00 171.3±188.2 0.02 214.2±275.8 0.005 175.6±198.2
ClutterGen-OL 0.212 139.4±168.2 0.145 206.7±247.5 0.086 170.9±179.4 0.232 164.9±182.1 0.251 135.0±121.1
ClutterGen-SM 0.359 101.8±125.1 0.414 111.3±149.5 0.364 106.6±119.3 0.517 97.62±101.8 0.602 83.47±90.26

ClutterGen-Normal 0.92573.86±57.73 0.833 85.25±91.44 0.951 56.37±61.13 0.969 51.19±56.22 0.98943.86±33.40
ClutterGen 0.912 88.50±95.46 0.87470.82±97.86 0.963 59.70±55.73 0.97349.89±55.55 0.988 45.72±31.21

Tab. 1: Success rate comparison of cluttered scene generation. We report the average success rate and stable steps
across three random seeds of training and five object groups. Our method significantly outperforms the widely adopted
RRS baseline. The long-term attempt history and closed-loop design in our framework deliver the best performance.

ClutterGen
Normal

ClutterGen
Beta

X

Mug

X

Tomato Soup Can

X

Mustard Bottle

X

Gelatin Box

X

Bowl

Y Y Y Y Y

Table area

Object position

Coverage area

X X X X X

Y Y Y Y Y

Table area

Object position

Coverage area

Mug Tomato Soup Can Mustard Bottle Gelatin Box Bowl

Fig. 3: Generation diversity. A pro-
jected view of the queried object’s place-
ments. The black dashed line represents
the supporting surface area. The blue
dots are queried object placement posi-
tions (x,y) across 500 setups. The red
box is the coverage area, bounding all
placement positions. Beta distribution
greatly enhances scene diversity.

3.1 Scene Generation
Dataset We created a dataset consisting of five groups, each containing ten objects. The first four groups
are selected from the PartNet-Mobility [26], Objaverse [27], and YCB [28] datasets. The fifth group,
referred to as the real group, includes our 3D-scanned everyday objects.

Baselines 1) Random Rejection Sampling (RRS): This method, which is widely adopted [16, 17, 18, 19]
in recent literature, heuristically computes the position of the supporting surface in the queried scene and
randomly places objects within the queried region. 2) ClutterGen-OpenLoop (OL): This method uses
the same architecture as ClutterGen, but without previous object movement trajectory and placement
pose information for the next attempt. 3) ClutterGen-ShortMemory (SM): This method uses the same
architecture but only takes the latest attempt history for the next attempt. 4) ClutterGen-Normal: This
method uses the truncated normal distribution instead of the beta distribution.

Metrics Our evaluation metrics include: 1) the success rate of placing all queried objects into the queried
scene, and 2) the average simulation steps (stable steps) required for each object to achieve stability. We
also access setup diversity by using a diversity map to evaluate the variety of the generated scenes.

Evaluation Tab. 1 shows the testing restuls with 1,000 trials. The RRS almost always failed to produce a
valid object layout. This is because RRS cannot learn from active interaction with the environment. While
ClutterGen-OL and CluuterGen-SM can produce some reasonable layouts, the success rate is generated
low with longer simulation steps for the scene to become stable, suggesting long-term close-loop history
is important. Although both ClutterGen and ClutterGen-Normal achieved high success rates in generating
cluttered scenes, we assess their ability to create diverse layouts by visualizing their successful placements
through a 2D projection. Each subplot in Fig. 3 shows the placement distribution for one object across
500 scenes. ClutterGen-Normal tends to place objects in very similar positions resulting in homogeneous
outcomes, while our ClutterGen with beta distribution generates significantly more diverse setups.

Generalization We are interested in evaluating ClutterGen’s generalization capability to generate cluttered
scenes when the queried region varies during test time, even if it was fixed during training. We propose
five test-time changes: 2D translation, z-axis rotation, shrink or expand xy half-extents, and random
combinations of the previous changes. Our evaluation across 500 episodes with the real object group for
each change is shown in Tab. 2. Overall, ClutterGen shows strong zero-shot generalization ability across
all changes. To demonstrate the real-world use cases, we selected 10 furniture tables from our dataset
and directly applied ClutterGen to them with all five object groups. By evaluating 50 episodes for each
table, we achieved an overall 70% success rate. Qualitative examples are shown in Fig. 1. ClutterGen
can naturally generate complex object relationships such as a mug on a book or a fork under a plate.

3



Method Original
Translation Rotation Shrinkage Expansion

Randomly Combinedx:[−15cm,15cm]
y:[−15cm,15cm]

rz:[−π,π]
∆hx:[−10cm,0cm)
∆hy:[−10cm,0cm)

∆hx:(0cm,10cm]
∆hy:(0cm,10cm]

ClutterGen 0.99 0.89 0.92 0.76 0.93 0.85

Tab. 2: Scene-level generalization results. We report the average success rate of cluttered scene generation under
various test-time changes to the queried region. ClutterGen demonstrates strong generalizability.
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Fig. 4: (a) Clutter rearrangement. ClutterGen proposes several different setups for rearrangement. After a user
selects a preferred setup, the Panda arm will rearrange the table accordingly. (b) Stable Object Placement. We generate
a synthetic dataset by replaying the scene generation trajectory created by ClutterGen. This synthetic dataset is then
used to train a stable object placement policy, which is directly deployed on a real robot.

3.2 Real Robotics Tasks
Clutter Rearrangement Given a clutter of objects, humans can easily determine the goal state of
stable poses for each object when tasked with moving them to another location based on their preferred
arrangement (e.g., from one table to another). However, enabling robots to exhibit this behavior with
specific user’s preferences remains challenging. For instance, when the target area is cluttered, robots
must identify a safe and stable pose for new object placements to avoid collisions or simply dropping
objects into the area. We demonstrate ClutterGen’s applicability in this challenging task using a Franka
Panda arm equipped with an RGB-D camera. Fig. 4(a) provides an overview of our approach.

We asked ClutterGen to generate ten possible layouts for the other side of the table, allowing users to
select their preferred setup and obtain the target poses for each object. The robot arm then planned its
motions to move the entire clutter to the target area using MoveIt [29]. Success is counted if all objects
are rearranged to the user-selected setup without any collisions or unstable poses. The overall success
rate was 7/10. Failures were due to arm-object or object-object collisions during motion planning (2/3)
or failed object layout proposals from ClutterGen under the ten-trial limit (1/3).

Stable Object Placement In this experiment, we leverage ClutterGen as a synthetic data generator to train
a robot policy for stable object placement. Fig. 4(b) provides an overview of our approach. Our stable
placement policy takes the point clouds of the queried scene and object and learns to output the stable
placement pose. Specifically, we replayed the scene generation trajectory created by ClutterGen and used a
virtual camera to capture the scene point cloud from different angles. We directly deployed the trained stable
object placement policy to a Franka Panda arm equipped with an RGB-D camera. In each episode, the policy
prediced a stable placement pose for the queried object based on the scene and the queried object points
cloud. The robot arm then used such pose to plan and execute the robot’s actions. Across all 50 episodes
using 5 target objects, our zero-shot sim-to-real policy achieved a 72% success rate. The performance
drop is likely due to significant noise in the real-world point cloud. This could be mitigated by further
randomizing the dataset to simulate real-world noises or using better hardware to capture the point clouds.

4 Conclusion
In this work, we propose ClutterGen, an auto-regressive simulation scene generator for robot learning.
ClutterGen efficiently generates diverse, cluttered, and physically compliant environments without relying
on pre-existing datasets or human specifications. Through both simulation and real robot experiments,
we demonstrate that ClutterGen can help tackle several challenging robotics tasks, such as clutter
rearrangement and stable object placement in cluttered environments. Future work could be training
ClutterGen with a great number of objects in the pool to enhance object-level generalization during testing.
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