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Abstract: We propose Parallelised Diffeomorphic Sampling-based Motion Plan-
ning (PDMP). PDMP is a novel parallelised framework that uses bijective and dif-
ferentiable mappings, or diffeomorphisms, to transform sampling distributions of
sampling-based motion planners, in a manner akin to normalising flows. Unlike
normalising flow models which use invertible neural network structures to repres-
ent these diffeomorphisms, we develop them from gradient information of desired
costs, and encode desirable behaviour, such as obstacle avoidance. These trans-
formed sampling distributions can then be used for sampling-based motion plan-
ning. A particular example is when we wish to imbue the sampling distribution
with knowledge of the environment geometry, such that drawn samples are less
prone to be in collisions. To this end, we propose to learn a continuous occupancy
representation from environment occupancy data, such that gradients of the rep-
resentation defines a valid diffeomorphism and is amenable to fast parallel evalu-
ation. We use this to “morph” the sampling distribution to draw far fewer collision-
prone samples. PDMP is able to leverage gradient information of costs, to inject
specifications, in a manner similar to optimisation-based motion planning meth-
ods, but relies on drawing from a sampling distribution, retaining the tendency to
find more global solutions, thereby bridging the gap between trajectory optimisa-
tion and sampling-based planning methods.

Keywords: Sampling-based motion planning, diffeomorphism, flows, Sampling
distribution, RRT, PRM

1 Introduction

This paper addresses the problem of motion planning, and bridges together two motion planning
paradigms: trajectory optimisation approaches and sampling-based approaches. Trajectory optimisa-
tion views robot trajectories as solutions of an optimisation problem. The optimisation problem typ-
ically incorporates the environment occupancy, along with additionally specified requirements into a
cost function. Gradients of the cost function are often assumed to be accessible, allowing for its effi-
cient optimisation. However, trajectory optimisation approaches are known to suffer from local min-
ima, and are generally not anytime. On the other hand, sampling-based planners have a complement-
ary set of benefits. Sampling-based planners are probabilistically complete, and are able to quickly
find a feasible solution and improve upon it. However, unlike trajectory optimisation approaches,
sampling-based planners are unable to utilise gradient information, either from environment occu-
pancy or from user specification.

We propose a novel motion planning framework, Parallelised Diffeomorphic Sampling-based Mo-
tion Planning (PDMP), which combines the benefits of both sampling-based and trajectory optimisa-
tion methods. PDMP is capable of finding globally optimal solutions, while benefiting from gradi-
ent information of cost functions to speed up motion planning. In broad strokes, our method lever-
ages gradient information from specified cost functions, which can be learned from environment data
or user specified, to construct differentiable bijections, or diffeomophisms. Like normalising flows,
PDMP uses diffeomorphisms to shape a simple base sampling distribution into a sampling distribu-
tion that is more informative. However, to learn invertible transformations for normalising flows, one
typically assumes that samples from a desired target distribution are accessible. This is typically not
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the case when learning sampling distributions: generally, we are given information about the occu-
pancy in the environment, as well as designed costs, rather than samples from a “good” sampling
distribution. We demonstrate that with relatively mild assumptions, we can obtain diffeomorphisms,
from provided cost functions, that allows us to deform the sampling distribution. We provide a spe-
cific example of learning a diffeomorphism that conforms to environment occupancy.

The “morphing” of sampling distributions allows sampling-based planners, such as Rapidly-exploring
Random Trees (RRTs) and its variants, to more efficiently create connections, speeding-up the plan-
ning process. Additionally, the transformation of the sampling distribution can be viewed as a paral-
lel process, while building the expanding trees is an inherently sequential process. We integrate CPU
and GPU parallelism: we use GPUs to shape the sampling distribution, which can be processed in par-
allel, while simultaneously using the CPU to build the expanding tree, which is a sequential process.

Concretely, our contributions are as follows: (i) We propose a method of shaping sampling distri-
butions of sampling-based planners, such that gradient information, for example from environment
occupancy gradient or user specified information can be incorporated, allowing for faster motion
planning; (ii) We provide an efficient implementation of our method integrated into an RRT motion-
planner which leverages the parallel capabilities of GPUs. We demonstrate that the shaping of the
sampling distribution can be done efficiently in parallel in a GPU, simultaneously with the sequen-
tial tree-building process resulting in no additional time cost.

We empirically evaluate PDMP on challenging planning scenarios, and find that it is able to consist-
ently find solutions faster than existing sampling-based motion planners.

2 Related Works

Sampling-based Motion Planning: Sampling-based planners are a class of predominant methods
to compute motion trajectories for robots. They pose the motion planning problem in a probabilistic
setting, where the construction of motion plans are formulated as a graph or tree building procedure.
PRM [1] was first proposed to creates a random roadmap of connectivity in the configuration space
to avoid the curse of dimensionality. On the other hand, tree-based RRT [2] follows a similar idea but
uses tree structures to obtaining solution quicker, which inspire a whole new class of motion planning
methods [3, 4, 5, 6, 7]. Since sampling is one of the core component in sampling-based motion
planners, there are a lot of methods that tries to improve the sampling distribution. For example,
formulating a restricted distribution to improve planning time [8, 9]. There are also method to learn
the sampling distribution from experience using neural network methods [10, 11, 12]. However, most
learning-based methods learns a skewed distribution based purely from a subset of successful motion
plans configurations, which requires a mixture with uniform distribution to maintain the probabilistic
completeness guarantee [13].

Gradient-based Cost Optimisation in Motion Planning: Outside of sampling-based motion plan-
ner, many other paradigms of motion planning make use of gradient information of some defined cost
function. Trajectory optimisation approaches, such as CHOMP [14], STOMP[15] and TrajOpt [16],
and potential field approaches [17] are prominent examples of this. Optimisation-based approaches
are also central in controlling robots, to generate trajectories quickly, such as in crowded environ-
ments [18]. These approaches find a single solution by descending in the direction of lower cost,
guided by the negative gradient. Likewise, our approach transform a distribution such that samples
have lower cost by descending based on negative gradients.

Diffeomorphisms and Normalising Flows: The transforming of distributions via invertible and dif-
ferentiable mappings is known as normalising flows [19]. These invertible and differentiable map-
pings are known as “flows” [19] or more generally as “diffeomorphisms” [20, 21, 22]. Normalising
flows are typically learned using invertible structures [23, 24], with data drawn from the desired tar-
get distribution. We take a different approach, and develop invertible mappings from cost gradients,
which can be hand specified or learned from other sources of data, such as occupancy information.

3 Parallelised Diffeomorphic Sampling-based Motion Planning

We shall detail the proposed Parallelised Diffeomorphic Sampling-based Motion Planning (PDMP)
framework. In section 3.1, we begin by introducing neural network representations of occupancy,
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which allows for fast batched querying of coordinates via the GPU. This occupancy representa-
tion will be used to construct diffeomorphisms which transforms a sampling distribution, such that
samples have lower likelihood of being in occupied space. Details on constructing this diffeomorph-
ism, along with those from an arbitrary cost function, are elaborated in section 3.2. Finally, in sec-
tion 3.3, we expand on how we can leverage both the GPU, for the highly parallelisable transforma-
tion of samples, and the CPU, for the inherently sequential tree-building process, to achieve improved
performance with the same time budget, for tree-building sampling-based motion planning methods.

3.1 Learning Continuous Occupancy Representations with Neural Networks

Figure 1: Examples of continuous
occupancy representation learned
by a neural network (corresponds
to Fig. 6).

Occupancy in an environment have traditionally been repres-
ented by occupancy grid maps, which discretise the world into
grid-cells and compute occupancy independently for each cell.
Recent advancements in machine learning have brought con-
tinuous analogues of occupancy maps [25, 26], and continu-
ous distance-based methods [27]. Here we present a straightfor-
ward approach of learning the occupancy via a neural network,
which is fast to query, fast to obtain derivatives with respect to
inputs, and inherently parallelised. These properties are bene-
ficial for querying of large batches of coordinates.

We are assumed to have a dataset of n pairs, containing co-
ordinates and a binary value, which indicates whether the co-
ordinate is occupied, i.e.D = {(xi, yi)}ni=1, where yi ∈ {0, 1}
for i = 1, . . . , n. A dataset of this format can be obtained
from depth sensors. Our aim is now to learn a mapping fmap
between a coordinate of interest x and the probability of being
occupied at x, fmap(x) = p(y = 1|x). We shall model fmap
as a fully-connected neural network, with tanh activation func-
tions between hidden layers, and a sigmoid activation layer at
the output. The resulting setup is a binary classification prob-
lem, which can be learned via a binary cross entropy loss with
gradient descent optimisers. Derivatives of the neural network
can be obtained efficiently, via batched computation on a GPU.

3.2 Cost-informed Diffeomorphisms for Sampling Distributions

In this section we elaborate on building differentiable bijections, or diffeomorphisms, to transform
a base distribution such that the “morphed” target distribution density is concentrated at where a
provided cost function is low. That is, samples from the target distribution are more likely than
the base distribution to be sampled from regions with low cost. Diffeomorphisms ensure that the
transformed sampling distribution will have the same topology as the base distribution. For example,
if the base distribution has infinite support, then the transformed sampling distribution also has
infinite support, and will not have “holes” where there is no probability density.

Constructing Diffeomorphisms via integral curves: Diffeomorphisms can be generated by taking
integral curves on the vector field defined by the negative gradients of the cost function. We consider
an n-dimensional state vector y ∈ Rn to be an initial time, provided a cost fc : Rn → R, an integral
curve for some time t ∈ R, can be written as an initial value problem (IVP):

φ(y) := y −
∫ t

0

∇y(s)fc(y(s))ds = z, y(0) = y, (1)

where z ∈ Rn results from the Picard–Lindelöf theorem [28] (existence and uniqueness of IVPs),
which states that if ∇y(s)fc is Lipschitz continuous with respect to y(s), then the solution of the
IVP exists and is unique. We shall restrict our discussion to cost functions with Lipschitz derivatives,
this includes the continuous occupancy representations introduced in section 3.1. Then, φ(y) is a
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diffeomorphism, and the inverse is given by:

φ−1(z) := z+

∫ t

0

∇z(s)fc(z(s))ds = y, z(0) = z. (2)

Therefore, we can use numerical integration techniques, such as Euler’s method, to solve the IVP to
evaluate the diffeomorphism efficiently.
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Figure 2: Examples of before and after diffeo-
morphism: (top) point robot; (bottom) 2 dof arm.

Bringing Diffeomorphisms into Configuration
Space: Motion-planning in robotics typically re-
quires plans to be made in the configuration space
(C-space) of the robot. On the other hand, costs to
shape robot behaviour can be, and is often, defined
in the Cartesian task space. For example, collision
checking requires information about the task space
geometry of the robot to determine whether it over-
laps with objects in the environment. We assume
that the sampling distribution is defined in the C-
space of the robot, and diffeomorphisms need to
operate in the C-space. We shall in particular dis-
cuss robot manipulators, where the states in the C-
space are joint angles. We denote the C-space as
Q ⊆ Rn, where there are n joints. Joint configur-
ations, q ∈ Q, are elements of the C-space, while
Cartesian coordinates in task space are denoted as
x ∈ R3. We outline how to pull a cost gradient
defined in the task space to the C-space, and con-
struct a diffeomorphism there.

We start by defining b body points on the robot,
each with a forward kinematics function mapping
configurations to the Cartesian coordinates at the body point, ψi : Q → R3, for each i = 1, . . . , b.
This allows us to make use of the Jacobian of the forward kinematics functions with respect to the
joint configurations. The Jacobian of the ith kinematics function is denoted as J iψ(·) =

dψi

dq (·). A
cost potential fc which operates on the body points, such as the occupancy cost potential, can be
pulled into the C-space:

∇qfc =

b∑
i=1

J iψ(q)∇xfc, (3)

we can then define a diffeomorphism, via solving the IVP as in (1), in the C-space of the robot. Fig. 2
illustrates two instances of diffeomorphism, from a (left) base to a (right) morphed distribution.

Drawing Samples from the Morphed Target Distribution: We can draw samples from the
morphed distribution by drawing samples from the known base distribution, then passing the points
through the diffeomorphism φ. Unlike normalising flows for density estimation, which are compu-
tationally burdened by having to compute the determinant of the Jacobian of φ, we only require the
mapping of sampled points, which can be done efficiently, and does not require the Jacobian of φ.
Furthermore, we note that morphing the sampled points from the base distribution to the transformed
distribution can be done in parallel if the cost gradients can be parallelised. In particular, occupancy
gradients as introduced in section 3.1 can be batch computed on a GPU efficiently. In the following
sections, we shall elaborate on how to exploit the parallel nature of the morphing sampled points.

3.3 Parallelised Diffeomorphic Transform of Sampling Distribution

Rapidly-exploring random trees (RRTs), its variants, along with its graph-based counter parts are
some of the most widely-used motion planning algorithms. In this section, we develop the Parallel-
ised Diffeomorphic Sampling-based Motion Planning (PDMP) algorithm to transform the sampling
distribution while constructing trees, efficiently integrating CPU and GPU parallelism. We elaborate
on the diffeomorphic sampler, which can be largely parallelised, and the motion planner main thread,
which consists of sequential operations. An overview flow-diagram is shown in Fig. 3.
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Motion Planner Main Thread: Building random trees is inherently a sequential process—sampling
a random configuration, searching for nearest neighbour in the k-d tree, collision-checking of potential
tree edges, connecting the candidate node , and rewiring of other existing nodes. This process requires
knowledge of nodes that are currently connected by the tree, and valid nodes are connected to the tree
as soon as they are found. Such a sequential process is repeated until the time budget exhausted. We
shall denote this sequential process as the Motion Planner main thread. Similar to existing methods,
we conduct the tree-building on the CPU. However, we proceed with optimising the sampled points
in background threads that are parallelised in GPUs.

When the planning request is first received, the main thread spawns a background boostrap thread
that prepares all necessary house keeping works such as constructing a concurrent queue S. Then,
the main thread will proceed with the rest of the typical tree-building procedures, following the tra-
ditional RRT-variant literature. The main modification in this sequenital process lies in the sampling
step. Typically, RRT samples from some distribution (e.g. uniform distribution qrand ∼ U(0, 1))
within the same thread. Instead, in our PDMP framework we draw samples from the previously con-
structed concurrent queue S, which is one of the only communication contacts in between the main
thread and the diffeomorphic sampler thread, to avoid any other synchronisation overhead (the other
communication happens when the main thread requests the background diffeomorphic sampler to
exits due to time budget being exhausted). This concurrent bucket is filled by our diffeomorphic
sampler thread. In the event the planner attempts to draw from an empty bucket, sample points
are immediately drawn from a simple prior distribution q ∼ Qprior, reverting back to a standard
sampling-based planner. Therefore, the main thread does not need to do a blocking-wait on the back-
ground thread; which implies that, in the rare event of degraded GPUs performance, PDMP will only
be reverting back to the typical planner performance.

Motion Planner Main Thread

Prepare problem setup, 
 and 

Setup -Space sampler

Retrieve next 

Sample from distribution
Checks if 
Search for nearest
neighbour in graph/tree
Call collision checker on
state transistion
Create and add new node
Performs rewire procedure
and house keeping

Check for end point and
terminate condition

Finalise planning problem

spawns

Diffeomorphic Sampler

Concurrent Queue
of Morphed
samples 

Worker Thread 1

Seed random device
Prepare robot model

Sample a mini-batch  
 from

prior distribution where

, collects body
points 
with  and the respective
kinematic jacobian 
Calls vectorised GPU
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concurrent queue 

Terminates thread

no

yes
Exiting?
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Figure 3: Flow diagram of the parallelised operations
in PDMP.

Diffeomorphic Sampler leverages par-
allelism on the GPU to provide more
informed samples. When the bootstrap
thread is created, it first spawns mul-
tiple background threads that are equal
to the target computer’s parallelisation
power (e.g. the number of CPUs or hyper-
threads). Each background thread is in-
charge of generating sample points from
the morphed distribution in a mini-batch
fashion. In contrast to CPUs, we can use
the GPU to sample a large batch from
a prior distribution. These backgroud
threads within diffeomorphic sampler
in Fig. 3 will also collect the necessary
kinematic Jacobians into batches for forward pass in the GPUs. The batch of samples is then passed
through the diffeomorphism to obtain the informed samples. The pass through the diffeomorphism
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can be done efficiently when leveraging the parallel computing capabilities of the GPUs, if the gradi-
ents of the cost potential can be done in batch. This is often the case if the cost gradients can be
expressed analytically. This is particularly the case, if given by the derivative of a neural network.

3.4 Probabilistic Completeness

A particular benefit of morphing the sampling distribution, by a diffeomorphism, is that topology
of the domain is preserved [29]. Intuitively, this means that if there are no “holes” in the original
sampling distribution, there shall be no “holes” in the morphed distribution. The support of a prob-
ability distribution refers to the set of possible values of a random variable having non-zeros prob-
ability density. If the original sampling distribution is defined over an infinite support (such as if the
base distribution is Gaussian), the transformed distribution also retains an infinite support, without
any “holes”. As such, drawing sample points from this transformed distribution shall maintains the
probabilistic-completeness of RRT-based sampling-based methods [30].

In practice, the original sampling distribution is often defined on a finite support. Although there
will be no holes in the transformed distribution, its support may be shifted. Additionally, parts of
the space, where the model predicts to be occupied, can be stretched arbitrarily thin although still
retaining non-zero probability density. Therefore, to maintain probabilistic completeness, one can
deploy a strategy such as sampling with epsilon-bias towards a uniform distribution, as done in many
learning-based sampling motion planning methods [10].

4 Experimental Results

We empirically analyse our proposed Parallel Diffeomorphic Sampling-based Motion Planning
(PDMP) method. In the following sections, we investigate the performance of finding valid motion
plans, with gradients from a cost potential occupancy representations, under time constraints. For
our simulated environments, we construct three challenging environments, as illustrated in Fig. 5.
Divider: consists of a large divider on a cluttered table, planning to reach the other sides of the di-
vider; Cupboard: consists of a cupboard where the arm move in-between different shelves; Lab-
setup: where the arm pickup an object and place it at the bottom of a cluttered scene.

4.1 Qualitative Evaluation on Informed Distribution

We hypothesise that after morphing our sampling distribution with a cost potential from our continu-
ous occupancy representation, we can significantly improve the performance of the sampling-based
planning strategies. In table 1 we evaluate the effect of PDMP on the sampling distribution, both
quantitatively and in terms of feasibility. The results are broken down into samples that are contrib-
uted by the original uninformed prior distribution (top half) and by the informed diffeomorphic dis-
tribution (bottom half). The are no relative differences between the original and PDMP distribution

Table 1: Numerical results on (i) the total number of
samples and (ii) percentage of feasibility on the original
(Ori.) and PDMP distributions. The table illustrates that
PDMP produces more feasible samples in all 3 environ-
ments. In the PDMP section, the (from Prior) and (from
Morphed) breaks down the Total into samples that are
from prior and morphed respectively. (µ± σ)

Environment

Divider Cupboard Lab-setup

O
ri

. Total samples 9543 ± 907 22606 ± 1375 13153 ± 554

Total feasible 52.19 ± 0.41 % 12.77 ± 1.12 % 48.38 ± 0.86 %

PD
M

P

Total samples 10554 ± 751 23536 ± 1067 12985 ± 716
(from Prior) 17 ± 11 5322 ± 1278 294 ± 120

(from Morphed) 10536 ± 748 18214 ± 1190 12692 ± 736

Total feasible 81.52 ± 1.22 % 31.96 ± 2.23 % 72.83 ± 2.10 %
(from Prior) 51.02 ± 0.85 % 12.98 ± 1.92 % 49.12 ± 0.51 %

(from Morphed) 85.17 ± 1.74 % 37.51 ± 2.09 % 73.35 ± 1.82 %

0 2 4 6 8 10
0

0.5

1

2 4 6 8 10
0

2000

4000

6000

Samples from prior
Morphed samples

Time

P
er

ce
nt

ile
 o

f s
am

pl
es

C
um

ul
at

iv
e 

sa
m

pl
es

Figure 4: Percentage and cumulative
counts of sample points drawn from
an uninformed prior, and from a trans-
formed distribution.
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Table 2: Numerical results on various sampling-based mo-
tion planners on each environment. The time-to-solution
refers to the time it took to obtain a solution trajectory (in
seconds); and the success pct. refers to the percentage of
runs that had successfully found a solution. Each SBP has
a corresponding PDMP variant. Results are over 30 runs
and with a time budget of 20 seconds. Results shown are
mean ± one standard deviation (µ± σ).

Planner Environment

Divider Cupboard Lab-setup

Ti
m

e-
to

-s
ol

ut
io

n RRT* 13.83 ± 7.72 18.79 ± 4.53 12.56 ± 7.78
PDMP-RRT* 5.99 ± 3.98 17.01 ± 6.14 9.26 ± 8.37

RRT.C* 2.72 ± 0.91 5.51 ± 7.38 1.60 ± 0.63
PDMP-RRT.C* 1.60 ± 1.26 3.64 ± 5.76 1.29 ± 0.44

L.PRM* 14.98 ± 7.96 N/A 16.57 ± 6.93
PDMP-L.PRM* 13.37 ± 7.44 N/A 14.71 ± 7.07

STOMP 14.83 ± 4.94 14.54 ± 5.90 14.29 ± 6.32

Su
cc

es
s

pc
t.

RRT* 43.33 % 6.67 % 53.33 %
PDMP-RRT* 96.67 % 20.00 % 70.00 %

RRT.C* 100 % 83.33 % 100 %
PDMP-RRT.C* 100 % 93.33 % 100 %

L.PRM* 33.33 % 0 % 20.00 %
PDMP-L.PRM* 43.33 % 0 % 46.67 %

STOMP 63.33 % 53.33 % 53.33 %

Figure 5: Left to right are environments
of divider, cupboard and lab-setup.

Figure 6: Sequence of trajectory in the
real-world experiments with the Jaco arm:
(Top) Divider; (Bottom) Lab-setup.

in total samples, this means that PDMP does not slow down the drawing of random samples. Instead,
the morphed samples are more beneficial to the planning problem as they are more likely to be feas-
ible in free space, as shown by the higher total feasible percentage in the PDMP section.

4.2 Higher Success Rates with Informed Sampling Distributions

We examine our hypothesis by testing various sampling-based motion planners (SBPs) within our
PDMP framework. We investigate three SBPs—RRT* [31], RRT*-connect [32], Lazy-PRM* [33],
and a trajectory optimisation-based planner STOMP [15]. For the SBPs, we compare the effect of
morphing the sampling distribution provided by our approach to standard uninformed sampling.

We provide a time-budget of 20 seconds for each planner, and calculate the percentage of tries, over 30
runs, that result in a successful plan at different times until the budget was entirely used. The morphing
of distribution is implemented under [34]. The results are illustrated in Fig. 7. We see that for each
of the three sampling-based planning methods, incorporation within the PDMP framework to morph
the sampling distribution improves the success rate. This is most evident when using RRTs within
PDMP, since it allows us to produce more successful samples which in-turn speed up the tree-building
process. We replicate the divider and Lab-setup environment (Fig. 6) in the real-world with a 6-DOF
Jaco manipulator. The planning is illustrated by videos included in the supplementary materials.

Table 2 illustrates numerical results of two important attributes in motion planning—the time-to-
solution and the success percentage. Overall, PDMP allows each motion planners to utilise sampled
configurations that are more likely to be feasible (see table 1), which in turn allow PDMP planners
to achieve shorter time-to-solution when compared to their original counterpart in table 2. Therefore,
they are also more likely to successfully obtain a solution trajectory within the allocated time budget.

In the divider environment, we see that the success rate of PDMP-RRT* reaches 80% at around 7
seconds of planning, and almost has a perfect success rate by the end of the 20s budget. On the other
hand, vanilla RRT* with a uniform sampling distribution has a success rate of under 50% when the
time budget is used up. The same trends are observed with the other variants. Overall, the RRT*-
connect within PDMP and with a uniform sampling distribution outperforms the other variants. Even
still, when using RRT*-connect within the PDMP, we observe higher success rates when the planning
time is low (under 3 seconds), indicating that PDMP significantly improves time-to-solution. The
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Figure 7: The success rate of the planning algorithm variants, over 30 runs. We observe that PDMP
enables all flavours of sampling-based motion planning algorithms to have improved success rates,
particularly at lower planning times.

time-to-solution of STOMP tends to spread out among all three environments, which is likely due to
its stochastic nature. The performance of STOMP does not seem to be degraded by the complexity
of the environment, which suggests that the cost information was able to guide STOMP to obtain
a solution trajectory. Our PDMP framework provides clear imporvements to the success rates of
both RRT* and RRT*-connect methods. Additionally, we observe that at the end of the 20s time
budget, PDMP variants outperform their counterparts which sample from an uninformed sampling
distribution. Lastly, Lazy-PRM* performs poorly on most environments as it is a multi-query planner,
and was not able to obtain any valid solution in Cupboard within the allocated time budget.

4.3 Influence of CPU-GPU Parallelisation

Our PDMP method parallelises over the CPU and GPU, by allocating the GPU to filling up a bucket
for which samples are drawn, and dedicating the CPU to the planning process, which typically
involves building a tree. If the bucket is empty when a sample is needed for the sequential planning
process on the CPU, a sample is drawn from an uninformed prior distribution. Therefore, obtaining
informed samples come at almost no additional cost: in the worst-case scenario, if the planning
process faster than drawing samples from the morphed distribution, PDMP falls back to a vanilla
sampling based algorithm, drawing samples from a uninformed distribution.

Intuitively, the more samples obtained from the bucket used in the planning process, the more in-
formed our used samples are. We investigate the number of sample points drawn from the bucket,
which are from the “morphed” distribution, and the percentage of samples from the uninformed prior
as planning time progresses. This is shown in Fig. 4. We observe at the beginning, as the bucket
has not yet been filled with samples from the morphed sampling distribution, samples from the unin-
formed prior are used. However, the GPU is able to quickly fill up the bucket with samples from the
morphed distribution, and the number of uninformed samples beyond 0.2s is largely negligible. By 1
second of sampling time, the cumulative “morphed” sample points significantly exceeds the cumulat-
ive uninformed samples. This indicates that at any reasonable amount of planning time, the process
of drawing samples from an informed distribution is much faster than the main planning process.

5 Conclusions

In this paper a novel method combining cost gradients from optimisation-based motion planning
with probabilistic-complete sampling-base motion planning methods is proposed. Parallelised Dif-
feomorphic Sampling-based Motion Planning is a motion-planning framework which utilises diffeo-
morphisms generated from gradients of defined cost to morph the sampling distribution for sampling-
based motion-planning methods. We demonstrate how such diffeomorphisms can be created from
learned models of environment occupancy to encode obstacle avoidance behaviour, or user specified
biases. Additionally, an implementation which parallelises this process across the GPU and CPU is
provided, showing that sampling from the more informed distribution can be achieved at no addi-
tional run-time cost. We empirically demonstrate that our method is capable of significantly improv-
ing the success rate of finding solutions in challenging planning environments.
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