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Abstract

The complex nature of artificial neural networks raises concerns on their reliability, trust-
worthiness, and fairness in real-world scenarios. The Shapley value—a solution concept
from game theory—is one of the most popular explanation methods for machine learning
models. More traditionally, from a statistical perspective, feature importance is defined
in terms of conditional independence. So far, these two approaches to interpretability and
feature importance have been considered separate and distinct. In this work, we show that
Shapley-based explanation methods and conditional independence testing are closely related.
We introduce the SHAPley EXplanation Randomization Test (SHAP-XRT), a testing
procedure inspired by the Conditional Randomization Test (CRT) for a specific notion of local
(i.e., on a sample) conditional independence. With it, we prove that for binary classification
problems, the marginal contributions in the Shapley value provide lower and upper bounds
to the expected p-values of their respective tests. Furthermore, we show that the Shapley
value itself provides an upper bound to the p-value of a global (i.e., overall) null hypothesis.
As a result, we further our understanding of Shapley-based explanation methods from a
novel perspective and characterize the conditions under which one can make statistically
valid claims about feature importance via the Shapley value.

1 Introduction

Deep learning models have shown remarkable success in solving a wide range of problems, from computer
vision and natural language processing, to reinforcement learning and scientific research (LeCun et al., 2015).
These exciting results have come hand-in-hand with an increase in the complexity of these models, mostly
based on neural networks. While these systems consistently set the state-of-the-art in many tasks, our
understanding of their specific mechanisms remains intuitive at best. In fact, as neural networks keep getting
deeper and wider, they also become opaque (or unintelligible) to both developers and users. This lack of
transparency is usually referred to as the black-box problem: the predictions of a deep learning model are
not readily interpretable, entailing theoretical, societal, and regulatory issues (Zednik, 2021; Tomsett et al.,
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2018; Shin, 2021). For example, certain regulations may require companies and organizations who rely on
autonomous systems to provide explanations of their decisions (e.g., what lead a model to reject a loan
application) (Casey et al., 2019; Kaminski & Malgieri, 2020; Hacker et al., 2020). Finally, it is still unclear
whether a loss of interpretability is unavoidable to increase performance (Rudin, 2019).

These concerns on the reliability and trustworthiness of machine learning have motivated recent efforts
on explaining predictions. A distinction exists between inherently interpretable models and explanation
methods. The former are designed to provide predictions that can be understood by their users. For example,
rule-based systems and decision trees are considered inherently interpretable because it is possible to trace a
prediction through the specific rules or splits learned by the model. On the other hand, when models are not
explicitly designed in an interpretable fashion (e.g., deep neural networks), we usually rely on a-posteriori
explanation methods to find the most important features towards a prediction. These methods assign an
importance score to every feature (or groups thereof) in the input, and the resulting scores can be presented
to a user as an explanation of the prediction. Explanation methods have been widely adopted given their
easy implementation and their ability to explain any model, i.e. they can be model-agnostic. Since the
introduction of CAM (Zhou et al., 2016), DeepLift (Shrikumar et al., 2017), and LIME (Ribeiro et al., 2016),
the explainability literature has witnessed remarkable growth, and various approaches have been proposed to
identify important features (Selvaraju et al., 2017; Lundberg & Lee, 2017; Chen et al., 2018; Covert et al.,
2021; Kolek et al., 2021; Jiang et al., 2021; Kolek et al., 2022; Teneggi et al., 2022a; Mosca et al., 2022) with
varying degrees of success (Adebayo et al., 2018; Shah et al., 2021).

The SHAP framework (Lundberg & Lee, 2017) unifies several existing methods while providing explanations
that satisfy some desirable theoretical properties. More precisely, it brings the Shapley value (Shapley,
1951)—a solution concept from game theory (Owen, 2013)—to bear in the interpretation of machine learning
predictors. In cooperative game theory, a solution concept is a formal rule that describes the strategy that
each player will use when participating in a game. For Transfer Utility (TU) games, the Shapley value is
the only solution concept that satisfies the properties of additivity, nullity, symmetry, and linearity, and it
can be derived axiomatically.1 In the context of explainability, the SHAP framework considers a TU game
represented by the predictive model, where every feature in the input is a player in the game, and it computes
their Shapley values as a measure of feature importance.2 We remark that the axiomatic characterization of
the Shapley value implies that it is the only explanation method that satisfies these theoretical properties.
The most important limitation of the Shapley value is its exponential computational cost in the number of
players (i.e., the input dimension), which quickly becomes intractable for several applications of interest. Thus,
most Shapley-based methods rely on various strategies to approximate them (Chen et al., 2023), some with
finite-sample, non-asymptotic, and efficiency guarantees (Chen et al., 2018; Lundberg et al., 2020; Teneggi
et al., 2022a). An alternative approach is to relax some of the axioms. This yields several other explanation
methods based on a feature’s marginal contribution, such as semivalues (Dubey et al., 1981) and random
order values (Frye et al., 2020b).

While theoretically appealing, and often useful in practice, this Shapley-based approach to interpretability
remains questionable:

What does it mean for a feature to receive a large Shapley value?

Previous works have explored the connection between feature selection and the Shapley value (Cohen et al.,
2007; Fryer et al., 2021; Rozemberczki et al., 2022) as well as some statistical implications of large (or small)
Shapley values (Owen & Prieur, 2017; Hooker, 2007; Ma & Tourani, 2020; Verdinelli & Wasserman, 2021;
2023). However, a general and precise connection between the Shapley value and statistical importance has
been missing. In particular, it is unclear how to provide false positive rate control (i.e., to control the Type I
error) when feature selection is performed on the basis of Shapley values. This is a fundamental issue as
explanation methods are increasingly used in high-stakes scenarios to inform decision making, especially in
medicine (Zoabi et al., 2021; de Almeida et al., 2022; Liu & Xie, 2020). For example, consider a clinical
setting where a predictor is used to support diagnosis and treatment. Given each feature’s Shapley value,

1In a TU game, players can exchange their utility without incurring in any cost.
2Herein, we will implicitly refer to the Shapley value of a feature according to the definition of SHAP attribution in Lundberg

& Lee (2017).

2



Published in Transactions on Machine Learning Research (12/2023)

which ones should we deem important? If a patient’s age, blood pressure, weight, and height receive Shapley
values of 0.30, 0.15, 0.35, and 0.20, respectively, which should we report? We could decide to report the
most important feature (i.e., weight). This choice will likely underreport findings and potentially mislead
the clinician. Symmetrically, reporting all features with a positive Shapley value would be uninformative
with respect to the decision process of the model. This example shows the lack of a rigorous way to perform
statistically-valid feature selection by means of the Shapley value, and how overlooking this question could
lead to potentially harmful consequences in real-world scenarios.

In this paper, we show how relating the Shapley value to statistical notions of conditional independence
provides a principled way to select important features. Indeed, the statistics literature has a rich history of
studying variable selection problems (Blum & Langley, 1997; James et al., 2013; Guyon & Elisseeff, 2003), for
example, via conditional independence testing and controlled variable selection (Candes et al., 2018). That
is, a feature is unimportant if it is independent of a response once conditioned on the remaining features.
In other words, knowing the value of an unimportant feature does not provide any more information about
the response when the rest of the data is known. The Conditional Randomization Test (CRT) (Candes
et al., 2018) is a conditional independence test that does not make any assumptions on the conditional
distribution of the response given the features, while assuming that the conditional distribution of the features
is known instead. This setting is particularly useful in applications where unlabeled data may be abundant
compared to labeled data (e.g., genomics research, as shown in (Candes et al., 2018; Sesia et al., 2021; Sesia
& Sun, 2022), or imaging data (Nguyen et al., 2019)). While the original CRT procedure is computationally
intractable for large models, fast and efficient alternatives have been recently proposed, such as the the
Holdout Randomization Test (HRT) by Tansey et al. (2022) and the Distilled Conditional Randomization
Test (DCRT) by Liu et al. (2022).

We remark that in this paper we consider feature importance with respect to the response of a fixed
predictive model on an individual sample. This differs from the traditional statistical setting in which one
analyzes features with respect to an observed response at the population level. Nonetheless, this notion of
interpretability is important in many scenarios. For example, one may wish to understand the important
features for a model that computes credit scores (Demajo et al., 2020; Bücker et al., 2022), or one may need to
verify that the important features for the prediction of an existing, complex model agree with prior-knowledge
(Burns et al., 2020; Jiang et al., 2021; Fong & Vedaldi, 2017).

1.1 Related work

Previous works have explored granting the Shapley value with some statistical notion of importance. For
example, Owen & Prieur (2017) and Verdinelli & Wasserman (2021; 2023) study the Shapley value for
correlated variables in the context of ANalysis Of VAriance (ANOVA) (Hooker, 2007) and Leave Out
COvariates (LOCO) (Lei et al., 2018) procedures, respectively. Importantly, Verdinelli & Wasserman (2021)
precisely raise the issue of the lack of statistical meaning for large (or small) Shapley values when features are
correlated. Information-theoretic interpretations of the Shapley value have also been proposed. SAGE (Covert
et al., 2020) translates the Shapley value from local (i.e., on a sample) to global (i.e., over a population)
feature importance, and shows connections to mutual information. Most recently, (Watson et al., 2023)
propose a modified Shapley value with precise information-theoretical properties to study the independence
between the true response and the features. In the context of data attribution methods, Ghorbani et al.
(2020) define the Distributional Shapley value to include information about the underlying data distribution
into the original Shapley value. Finally, and most closely to this work, Ma & Tourani (2020) try and deploy
ideas of conditional independence to the Shapley value for causal inference on data generated by a Bayesian
network. Our work differs from these, as we now summarize.

1.2 Contributions

In this paper, we will show that for machine learning models, computing the Shapley value of a given input
feature amounts to performing a series of conditional independence tests for specific feature importance
definitions. This is different from Watson et al. (2023) in that we do not assume the predictor to be the true
conditional distribution of the response given the features. As we will shortly demonstrate, the computed
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game-theoretic quantities provide upper and lower bounds to the p-values of their respective tests. This
novel connection provides several popular explanation techniques with a well-defined notion of statistical
importance. We demonstrate our results with simulated as well as real imaging data. We stress that we do
not wish to introduce a novel explanation method for model predictions. Our aim is instead to expand our
fundamental understanding of the Shapley value when applied to machine learning models, particularly as its
use for the interpretation of predictive models continues to grow (Moncada-Torres et al., 2021; Zoabi et al.,
2021; Liu et al., 2021). These novel insights should inform the design of explanation methods to guarantee
the responsible use of machine learning models.

2 Background

Before presenting the contribution of this work, we briefly introduce the necessary notation and general
definitions. Herein, we will denote random variables and random vectors with capital letters (e.g., X), their
realizations with lowercase letters (e.g., X = x) and random matrices with bold capital letters (e.g., X).
Let X ,Y be some input and response domains, respectively, such that (X,Y ) ∼ D is a random sample
from an unknown distribution D over X × Y. We set ourselves within the classical binary classification
setting. Given X ⊂ Rn, Y = {0, 1}, the task is to estimate the binary response Y on a sample X by means
of a predictor f : X → Y that approximates the conditional expectation of the response on an input, i.e.
f(x) ≈ E[Y | X = x]. We will not concern ourselves with this learning problem. Instead, we assume we are
given a fixed predictor which we wish to analyze. More precisely, for an input x ∈ Rn, we want to understand
the importance of the features in x, i.e. xi, with respect to the value of f(x). This question will be formalized
by means of the Shapley value, which we now define.

2.1 The Shapley value

In game theory (see, e.g., (Peleg & Sudhölter, 2007)), the tuple ([n], v) represents an n-person cooperative
game with players [n] := {1, . . . , n} and characteristic function v : P(n) → R+, where P(n) is the power
set of [n]. For any subset of players C ⊆ [n], the characteristic function outputs a nonnegative score v(C)
that represents the utility accumulated by the players in C. Furthermore, one typically assumes v(∅) = 0. A
Transfer Utility (TU) game is one where players can exchange their utility without incurring any cost. Given
a TU game ([n], v), a solution concept is a formal rule that assigns to every player in the game a reward that
is commensurate with their contribution. In particular, there exists a unique solution concept that satisfies
the axioms of additivity, nullity, symmetry, and linearity (Shapley, 1951) (see Appendix B for details on the
axioms). This solution concept is the set of Shapley values, φ1([n], v), . . . , φn([n], v), which are defined as
follows.
Definition 1 (Shapley value). Given an n-person TU game ([n], v), the Shapley value of player j ∈ [n] is

φj([n], v) =
∑

C⊆[n]\{j}

wC · [v(C ∪ {j})− v(C)] , (1)

where wC = 1/n ·
(
n−1
|C|
)−1. That is, φj([n], v) is the average marginalized contribution of the jth player over

all subsets (i.e., coalitions) of players.

2.2 Explaining model predictions with the Shapley value

Definition 1 shows how to compute the Shapley value for players in a TU game, and it is not immediately
clear how this would apply to machine learning models. To this end, let f(x) be the prediction of a learned
model on a new sample x ∈ Rn. For any set of features C ⊆ [n], denote xC ∈ R|C| the entries of x in the
subset C (analogously, x−C ∈ Rn−|C| for −C := [n] \ C, the complement of C). We will refer to

X̃C = [xC , X−C ] ∈ Rn (2)

as the random vector that is equal to x in the features in C and that takes a random reference value in its
complement −C. Following Lundberg & Lee (2017), we let X−C be sampled from its conditional distribution
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given xC , i.e. X−C | XC = xC .3 Note that, in this way, X−C is independent of the response f(x) by
construction. For the sake of simplicity, we write X̃C ∼ DXC =xC

. Then, for a predictor f and every subset
C ⊂ [n], f(X̃C) is a random variable whose source of randomness is the random reference value.4 This way,
with abuse of notation, one can define the TU game (x, f), where every feature in the sample x is a player in
the game. Therefore, analogous to Definition 1, the Shapley value of feature j ∈ [n] is

φj(x, f) =
∑

C⊆[n]\{j}

wC · E[f(X̃C∪{j})− f(X̃C)]. (3)

We note that φj(x, f) can be negative, i.e. feature j has an overall negative contribution to the prediction of
the model. This differs from the game-theoretical setting where feature attributions are usually considered
nonnegative. In the context of explainability, we look for a subset C∗ ⊆ [n] (e.g., the smallest subset) such
that xC∗ are the observed features that contributed the most towards f(x).

We remark two main differences between the original definition of the Shapley value from game theory
(Equation (1)) and its translation to machine learning models (Equation (3)) in common settings: (i) the
characteristic function v can predict on sets of players, whereas the predictive model f typically has a fixed
input domain X ⊂ Rn (e.g., for a convolutional neural network);5 and (ii) the characteristic function v is
usually not data-dependent, while in this machine learning setting the model f was trained on samples from
a specific distribution D. As a result, given a subset of features C ⊆ [n], one cannot simply predict on the
partial input vector xC ∈ R|C| because f(xC) is not defined. Instead, the missing features in the complement
of C must be masked with a reference value that does not contain any information about the response in
order to simulate their absence. Furthermore, this reference value must come from the same data distribution
D the model was trained on, hence the need to sample from the conditional distribution X−C | XC = xC
(Frye et al., 2020a; Aas et al., 2021). Both the need to approximate the conditional distribution as well as the
exponential number of summands in Equation (3) make the exact computation of Shapley values intractable
in general.

2.3 The Conditional Randomization Test (CRT)

Before introducing our novel conditional independence testing procedure, we provide a brief summary of
feature importance from the perspective of conditional independence. Given random variables X,Y , and
Z we say that X is independent of Y given Z (succinctly, X ⊥⊥ Y | Z) if (X | Y, Z) d= (X | Z), where d=
indicates equality in distribution. Put into words, knowing Y does not provide any more information about
X in the presence of Z. Recall that for each j ∈ [n], Xj ∈ R is a random variable that corresponds to the
jth feature in X, and X−j ∈ Rn−1, − j := [n] \ {j} is its complement. Then, the CRT procedure by Candes
et al. (2018) implements a conditional independence test for the null hypothesis

HCRT
0,j : Y ⊥⊥ Xj | X−j , (4)

which can be directly rewritten as6

HCRT
0,j : (Y | Xj , X−j)

d= (Y | X−j). (5)

Let X(k)
j ∼ Xj | X−j , k = 1, . . . ,K be K null duplicates of Xj . X(k)

j are called nulls because, by construction,
they are conditionally independent of the response Y given X−j . Under HCRT

0,j , for any choice of test statistic
T (Xj , Y,X−j), the random variables T (Xj , Y,X−j), T (X(1)

j , Y,X−j), . . . , T (X(K)
j , Y,X−j) are i.i.d., hence

exchangeable (Berrett et al., 2020). Then, p̂CRT
j —the p-value returned by the CRT—is valid: under HCRT

0,j ,
P[p̂CRT

j ≤ α] ≤ α, ∀α ∈ [0, 1] (see Candes et al., 2018, Lemma F.1). For completeness, Algorithm C.1
summarizes the CRT procedure.

3Herein, we do not touch upon the discussion on observational vs. interventional Shapley values, and we refer the interested
reader to (Sundararajan & Najmi, 2020; Chen et al., 2020; Merrick & Taly, 2020; Janzing et al., 2020).

4When C = [n], f(X̃C) is simply the prediction f(x), which is not random.
5As noted in Jain et al. (2022); Covert et al. (2022); Teneggi et al. (2022b): Deep Sets (Zaheer et al., 2017) and Transformers

(Vaswani et al., 2017) architectures do not suffer from this limitation.
6Note that Equation (5) is equivalent to HCRT

0,j : (Xj | Y, X−j) d= (Xj | X−j).
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3 Hypothesis testing via the Shapley value

Given the above background, we will now show that the Shapley value for machine learning explainability
(Equation (3)) is tightly connected with conditional independence testing. Formally, we present the SHAPley
EXplanation Randomization Test (SHAP-XRT): a novel modification of the CRT that—differently from
the original motivation in Candes et al. (2018)—evaluates conditional independence of the response of a
deterministic model f on an individual sample X = x, X ∼ DX . That is, SHAP-XRT, akin to the CRT,
provides a permutation-based p-value to test for the conditional independence of two distributions without
making any assumptions on the conditional distribution of the prediction of the model, while requiring
access to the conditional distribution of the data. Differently from the CRT, the distributions considered
by SHAP-XRT are built on top of a single observation x instead of over a population, and the response
is a deterministic function of the input rather than a random variable. As we will present shortly, there
is a fundamental difference between the Shapley value and SHAP-XRT; the former computes the average
marginal contribution of a feature by differences of conditional expectations, whereas the latter provides a
p-value for a test of equality in distribution.

3.1 The Shapley Explanation Randomization Test (SHAP-XRT)

Going back to our motivating example of an automated system in a clinical setting, we would like to deploy
ideas of conditional independence testing to report the most important features for the model’s prediction on
a patient. For example, we might be interested in knowing whether the response of the model on a specific
patient is independent of age when their blood pressure and weight are collected. This way, we could provide
precise statistical guarantees on the generated explanations, such as Type I error control. More precisely,
this is equivalent to testing for the independence of the response of a model f on a feature xj , j ∈ [n] when
the features in xC , C ⊆ [n] \ {j} are observed (e.g., j = age and C = {blood pressure, weight}). We now
formalize this question by means of our novel SHAP-XRT null hypothesis.
Definition 2 (SHAPley EXplanation Randomization Test). Let X ⊂ Rn and f : X → [0, 1] be a fixed
predictor for a binary response Y ∈ {0, 1} on an input X ∈ X such that (X,Y ) ∼ D. Given a new sample
X = x, X ∼ DX , a feature j ∈ [n], and a subset of features C ⊆ [n] \ {j}, denote X̃C = [xC , X−C ] the
corresponding random vector where X−C is sampled from its conditional distribution given XC = xC . Then,
the SHAP-XRT null hypothesis is

HS-XRT
0,j,C : f(X̃C∪{j})

d= f(X̃C). (6)

Recall that X̃C∪{j} and X̃C are random vectors equal to x in the features in C ∪ {j} and C, respectively, and
that take unimportant random reference values in their complements (Equation (2)). Then, the SHAP-XRT
null hypothesis is equivalent to(

f(X̃C∪{j}) | XC∪{j} = xC∪{j}

)
d=
(
f(X̃C) | XC = xC

)
, (7)

which precisely asks whether the distribution of the response of the model changes when feature j is added to
the subset C.

How should one test for this null hypothesis? Denote X̃C∪{j} = (X̃(1)
C∪{j}, . . . , X̃

(L)
C∪{j}) ∈ RL×n and

X̃C = (X̃(1)
C , . . . , X̃

(L)
C ) ∈ RL×n the random matrices containing L duplicates of X̃C∪{j} and X̃C , respectively,

such that ỸC∪{j} = f(X̃C∪{j}) and ỸC = f(X̃C) are the predictions of the model. Algorithm 1 implements
the SHAP-XRT testing procedure and it computes the respective p-value, p̂S-XRT

j,C , for any choice of test
statistic T on the response of the model, e.g. the mean. We now formally state the validity of this test.
Theorem 1 (Validity of p̂S-XRT

j,C ). Under the null hypothesis HS-XRT
0,j,C , p̂S-XRT

j,C —the p-value returned by the
SHAP-XRT procedure—is valid for any choice of test statistic T , i.e. P[p̂S-XRT

j,C ≤ α] ≤ α, ∀α ∈ [0, 1].

We defer the brief proof to Appendix A.1.
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Algorithm 1 Shapley Explanation Randomization Test (SHAP-XRT)
procedure SHAP-XRT(model f : Rn → [0, 1], sample x ∈ Rn, feature j ∈ [n], subset C ⊆ [n] \ {j}, test
statistic T , number of null draws K ∈ N, number of reference samples L ∈ N)

Sample X̃C∪{j} ∼
(
DXC∪{j}=xC∪{j}

)L
ỸC∪{j} ← f(X̃C∪{j})
Compute the test statistic t← T (ỸC∪{j})
for k ← 1, . . . ,K do

Sample X̃
(k)
C ∼ (DXC=xC

)L

Ỹ
(k)
C ← f(X̃

(k)
C )

Compute the null statistic t̃(k) ← T (Ỹ (k)
C )

end for
return A (one-sided) p-value

p̂S-XRT
j,C = 1

K + 1

(
1 +

K∑
k=1

1[t̃(k) ≥ t]
)

end procedure

We remark that the p-value returned by the SHAP-XRT procedure—akin to other conditional independence
tests—is one-sided. Rejecting HS-XRT

0,j,C implies that in the presence of the features in C, the observed value of
feature j is important in the sense that f(X̃C∪{j}) is often larger (i.e., closer to 1), or stochastically greater,
than f(X̃C). If one desires to reject HS-XRT

0,j,C for features whose f(X̃C∪{j}) is often smaller than f(X̃C), it
suffices to use 1− f in lieu of f . Note that the SHAP-XRT procedure encompasses multi-class classification
settings where g : Rn → ∆M predicts one of M classes and f(x) = g(x)m, m ∈ [M ]. Furthermore, HS-XRT

0,j,C
can be generalized to any predictor f : X → Y for arbitrary domains, but we consider binary classification
in this work.

We stress that in contrast with the CRT null hypothesis (Equation (4)), HS-XRT
0,j,C is defined locally on a specific

input x rather than over a population. Differently from the Interpretability Randomization Test (IRT) by
Burns et al. (2020) (i) HS-XRT

0,j,C asks for the conditional independence of the response with respect to a single
feature j ∈ [n] rather than a collection of subsets of features, and (ii) it allows to condition on arbitrary
subsets C ⊆ [n] \ {j} of features instead of restricting to C = −j, i.e. all features but j.

Finally, let us make a remark about the involved distributions. Recall that the SHAP-XRT procedure is
defined locally on a sample x. Intuitively, under the null HS-XRT

0,j,C , the distribution of the response of the
model f is independent of xj (the observed value of the jth feature in x) conditionally on XC = xC . Since
f is a deterministic function of its input, it is natural to ask when the random variable f(X̃C∪{j}) has a
degenerate distribution. Suppose that for each C ⊆ [n] \ {j}, X−C | XC = xC is not degenerate (e.g., it is
not constant), otherwise f(X̃C∪{j}) is trivially degenerate. For C = −j (i.e., all features but the jth one),
X̃C∪{j} = x because C ∪ {j} = [n] by definition of the complement set −(C ∪ {j}) is empty, i.e. no reference
value is sampled. It follows that for this choice of C, f(X̃C∪{j}) is point mass at f(x), and SHAP-XRT
retrieves the IRT procedure (Burns et al., 2020).

3.2 Connecting the Shapley value and the SHAP-XRT conditional independence test

We now draw a precise connection between the SHAP-XRT testing procedure and the Shapley value for
machine learning explainability. This novel relation furthers our fundamental understanding of Shapley-based
explanation methods, and, importantly, it clarifies under which conditions one can (and cannot) make
statistically valid claims about feature importance. We stress that—as we will discuss—this conditional
independence interpretation is not intended to overcome the well-known computational limitations of the
Shapley value nor to replace existing methods. Rather, it offers a previously overlooked perspective, and it
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suggests new strategies to develop more powerful, statistically well-grounded alternatives. To begin with, let
T in the SHAP-XRT procedure be the identity and set L = 1 (we will discuss the effect of L on our results
later). Then, for a sample x, a feature j ∈ [n], and a subset C ⊆ [n] \ {j}, the SHAP-XRT test and null
statistics become t = f(X̃C∪{j}) and t̃ = f(X̃C), respectively. Denote

Γj,C := f(X̃C∪{j})− f(X̃C) (8)

the random marginal contribution of feature j to the subset C such that

pS-XRT
j,C := E[p̂S-XRT

j,C ] and γSHAP
j,C := E[Γj,C ] (9)

are the expected p-value of the SHAP-XRT procedure and the expected marginal contribution, respectively.
Note the expectations are over both X̃C∪{j} and X̃C . This is to take into account the randomness in the
draw of test statistic t. Then, it is easy to see that the Shapley value of feature j can be rewritten as

φj(x, f) =
∑

C⊆[n]\{j}

wC · γSHAP
j,C . (10)

We now show that each summand γSHAP
j,C can be used to construct both upper and lower bounds to pS-XRT

j,C .
Theorem 2. Let X ⊂ Rn, and f : X → [0, 1] be a fixed predictor for a binary response Y ∈ {0, 1} on
an input X ∈ X such that (X,Y ) ∼ D. Given a sample X = x, X ∼ DX , a feature j ∈ [n], and a subset
C ⊆ [n] \ {j}, define Γj,C := f(X̃C∪{j})− f(X̃C) such that pS-XRT

j,C = E[p̂S-XRT
j,C ] and γSHAP

j,C = E[Γj,C ]. Then,

0 ≤ pS-XRT
j,C ≤ 1− K

K + 1γ
SHAP
j,C (11)

and furthermore, if γSHAP
j,C < 0

1
K + 1

(
1 +K(γSHAP

j,C )2) ≤ pS-XRT
j,C ≤ 1, (12)

where K ≥ 1 is the number of draws of null statistic in the SHAP-XRT procedure.

We defer the proof of this result to Appendix A.2. We note that the theorem above is presented in expectation,
and an analogous finite-sample result can be derived by means of concentration inequalities by estimating
γSHAP
j,C with an empirical mean (as long as it is computed over samples independent of f). We now discuss

the meaning of Theorem 2 and its behavior as a function of K and L in the SHAP-XRT procedure, i.e.
the number of draws of null statistic and the number of random reference values sampled at each iteration,
respectively.

Behavior of Equations (11) and (12) as a function of K. As K →∞, i.e. as the number of draws
of null statistic in the SHAP-XRT procedure goes to infinity, K/(K + 1)→ 1, and Equations (11) and (12)
become

0 ≤ pS-XRT
j,C ≤ 1− γSHAP

j,C and (γSHAP
j,C )2 ≤ pS-XRT

j,C ≤ 1, (13)

respectively. Furthermore, we remark that the coefficient K/(K+1) in the bounds above is a mild requirement
in practical scenarios. In particular, in order to expect to reject HS-XRT

0,j,C at level α for γSHAP
j,C = 1, it suffices

for K to grow as (1− α)/α (e.g., α = 0.05 =⇒ K ≥ 19).

Behavior of p̂S-XRT as a function of L. Recall that L is the number of samples of reference values over
which the test and null statistics are computed in the SHAP-XRT procedure. So far, we presented our results
for L = 1 and T being the identity. These choices were instrumental for showcasing the connection between
the SHAP-XRT test and the Shapley value. Here, we discuss the behavior of the SHAP-XRT p-value as L
increases. First note that if L > 1, the test statistic T cannot simply be the identity because T is a function
that maps RL → R. The SHAP-XRT procedure is valid for any choice of test statistic, T , and so for L > 1,
choices of mean, median, quantile, max, etc, are all valid. For example, let T be the mean and in the limit
L→∞, t = E[f(X̃C∪{j})] and t̃ = E[f(X̃C)]. Then, p̂S-XRT = (1/(K + 1))1[γSHAP

j,C >0].
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Figure 1: Pictorial representation of the upper and lower bounds on p̂S-XRT
j,C as a function of γSHAP

j,C described
in Theorem 2 (as K → ∞). For a critical level α (e.g., α = 0.20 in the figure) the bounds indicate under
what conditions one can expect to reject, or to fail to reject, the null hypothesis HS-XRT

0,j,C by means of γSHAP
j,C .

Implications of Theorem 2 The result above provides a novel understanding of the Shapley value from
a conditional independence testing perspective. In particular, it shows that each summand γSHAP

j,C (i.e., the
expected marginal contribution of feature j to subset C) in the Shapley value of feature j provides a lower
and an upper bound to pS-XRT

j,C , the expected p-value of its corresponding SHAP-XRT test (i.e., the test
which asks whether the distribution of the response of the model is conditionally independent of j when
the features in C are present). Until now, it was unclear whether the marginal contributions carried any
statistical meaning. Theorem 2 precisely characterizes under which conditions one can (and cannot) use
them to make statistically valid claims about feature importance. In particular, given a critical level α in the
SHAP-XRT test, we can identify three separate conditions:

1. large positive contributions (i.e., γSHAP
j,C > 1 − α) can provide sufficient evidence against the null

hypothesis HS-XRT
0,j,C , and so one can expect to reject it.

2. large negative contributions (i.e., γSHAP
j,C < −

√
α) cannot provide sufficient evidence against the null

hypothesis HS-XRT
0,j,C , and so one should not expect to be able to reject it.

3. small contributions (i.e., −
√
α ≤ γSHAP

j,C ≤ 1− α) are noninformative, and so one cannot expect to
make any statistically valid claims.

Figure 1 illustrates the bounds (when K →∞) and the three regimes described above.

3.3 The Shapley value as a global hypothesis test

The results presented so far study the statistical meaning of each summand (i.e., contribution) in the Shapley
value. However, the overall Shapley value—and not just its individual summands—is used in practice to
explain model predictions. Since every summand is linked to the p-value of a specific local hypothesis test, a
naive approach would be to compare all p-values to level α, where rejecting at least one hypothesis implies
feature j is important with respect to some subset C ⊆ [n] \ {j}. However, this approach is known to inflate
the Type I error, and corrections are required (i.e., Bonferroni correction (Shaffer, 1995)). Instead, we ask
whether the Shapley value is inherently linked to a global hypothesis test.7 If so, what is the null hypothesis
of this test? and what notion of importance does it convey? We now move onto answering these questions,
for which we first introduce the definition of a global hypothesis test.

Given k null hypotheses H0,1, . . . ,H0,k with their respective p-values p1, . . . , pk, the global null hypothesis
is defined as H0 =

⋂k
i=1 H0,i and it is true if and only if every individual null hypothesis is true (Hommel,

1983). Several classical procedures exist for global hypothesis testing, both based on the ordering of the
p-values of the individual tests (Hommel et al., 2011) and on ways of combining them (Tippett et al., 1931;
Pearson, 1933; Fisher, 1948). More powerful alternatives have been recently proposed to overcome some of the
limitations of these long-established methods, and, importantly, to make no assumptions on the dependency
structure of the individual p-values (Heard & Rubin-Delanchy, 2018; Futschik et al., 2019; Wilson, 2019; Vovk
& Wang, 2020; Liu & Xie, 2020).

7Here, the term global is used according to its meaning in the statistical theory literature, and not in the machine learning
explainability literature.
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With the above background, we now show how to aggregate all SHAP-XRT tests for feature j ∈ [n] into a
global SHAP-XRT null hypothesis test, provide a valid p-value for it, and finally highlight its relation to the
Shapley value of feature j. Recall that there exists a SHAP-XRT test with null hypothesis HS-XRT

0,j,C for each
C ⊆ [n] \ {j}. Using all these tests, we can define the global null hypothesis

H0,j =
⋂

C⊆[n]\{j}

HS-XRT
0,j,C , (14)

which is false as soon as one of the HS-XRT
0,j,C hypotheses is false. Put into words, rejecting H0,j implies that

feature j is important (i.e., it has an effect on the distribution of the response of the model) with respect to
at least one subset C ⊆ [n] \ {j}. This way, H0,j tests for a global notion of importance of feature j over
all possible conditioning subsets. We remark that this is possible precisely because SHAP-XRT—differently
from other conditional independence tests—allows to condition on arbitrary subsets of features. We now
provide a valid p-value for this global test.
Lemma 1. In the setting of Definition 2, and under the global null hypothesis H0,j (Equation (14)) the
random variable

p̂j = 2
∑

C⊆[n]\{j}

wC · p̂S-XRT
j,C (15)

is a valid p-value, i.e. P[p̂j ≤ α] ≤ α, ∀α ∈ [0, 1].

This statement follows directly from (Vovk & Wang, 2020, Proposition 9) and its proof is included in
Appendix A.3. We remark that the choice of weights is not unique as long as they belong to the simplex.
Here, we use the same weights as the Shapley value’s (i.e., uniform distribution over all possible subsets),
as this will allow us to show that overall Shapley value of feature j indeed provides an upper bound to
the expected p-value for the global SHAP-XRT test. Alternative weighting functions—which give rise to
semivalues (Dubey et al., 1981; Wang & Jia, 2023) and random order values (Frye et al., 2020b)—are subject
of current research (Kwon & Zou, 2022) and we consider the study of their statistical meaning as future work.
Corollary 1. Denote pj = E[p̂j ] the expected p-value for the global null H0,j. Then,

pj ≤ 2
(

1− K

K + 1φj(x, f)
)
, (16)

where φj(x, f) is the Shapley value of feature j ∈ [n].

The proof is included in Appendix A.4. This result shows that the Shapley value itself, and not only its
summands, provides an answer to a statistical test. A straightforward implication of this result is that, given
a desired significance level α, one can expect to reject H0,j when φj(x, f) ≥ K+1

K (1− α
2 ). In simple terms,

a large positive Shapley value, φj(x, f) ≈ 1, implies that there exists at least one C ⊆ [n] \ {j} for which
its expected p-value, pS-XRT

0,j,C is small and HS-XRT
0,j,C is expected to be rejected. This result grants the Shapley

value statistical meaning by demonstrating that it is linked to a global hypothesis test.

The natural questions that remain are then: (i) when φj(x, f) ≈ 1 which tests, amongst
⋂
C⊆[n]\{j}H

S-XRT
0,j,C ,

are being rejected? and (ii) similarly, do large negative Shapley values, φj(x, f) ≈ −1, carry any statistical
meaning? We answer these questions with the following corollary in a similar fashion to Theorem 2.
Corollary 2. For a feature j ∈ [n], if φj(x, f) ≥ 1− ε, ε ∈ (0, 1), then ∀C ⊆ [n] \ {j}

pS-XRT
j,C ≤ 1− K

K + 1
w̃ − ε
w̃

, (17)

where w̃ = minC⊆[n]\{j} wC . Furthermore, if φj(x, f) ≤ −1 + ε with ε < w̃, then ∀C ⊆ [n] \ {j}

pS-XRT
j,C ≥ 1

K + 1

(
1 +K

(
ε− w̃
w̃

)2
)
. (18)
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Figure 2: Demonstration of the upper and lower bounds of pS-XRT

j,C for the test HS-XRT
0,j,C : f(X̃C∪{j})

d= f(X̃C)
with j = 1, C = {3, 4, 5, 6} for the known response function experiment. (a) Displays the upper bound with
θ2 = 2 for all samples with γj,C ≥ 0. (b) Displays the lower bound with θ2 = −2 for all samples with γj,C < 0.

The proof is included in Appendix A.5, and we now provide a few remarks. Firstly, Corollary 2 grants large
positive (i.e, φj(x, f) ≈ 1) and large negative (i.e., φj(x, f) ≈ −1) Shapley values with statistical meaning.
Recall from Corollary 1 that one can expect to reject the global null H0,j for large positive values of φj(x, f).
This means that at least one of the SHAP-XRT null hypotheses of feature j is expected to be false. In other
words, there exists at least one subset C ⊆ [n] \ {j} such that j affects the distribution of the response
of the model when the features in C are present. Corollary 2 makes this statement more precise. In fact,
it shows that all SHAP-XRT tests needs to have small p-values, and one should expect to reject all tests.
Symmetrically, it shows that for large negative Shapley values, one cannot expect to reject any SHAP-XRT
null hypothesis for feature j. That is, feature j does not contribute to the distribution of the response of the
model given any subset C ⊆ [n] \ {j}.

Secondly, Corollary 2 offers a statistical interpretation of the exponential cost of the Shapley value. Note
that for the upper bound in Equation (17) not to be vacuous (i.e., less than 1) and for the lower bound in
Equation (18) to hold (i.e., all contributions be negative), ε must be smaller than w̃ (i.e., w̃−ε > 0 =⇒ ε < w̃
for Equation (17), and ε < w̃ for Equation (18) by construction). For n features, the weights wC in the
Shapley value assign a uniform distribution over all possible 2n−1 subsets C ⊆ [n] \ {j}. It follows that w̃ is
the inverse of the central binomial coefficient, i.e. w̃ = 1

n ·
( n−1
bn−1

2 c
)−1 = O(

√
n

n4n/2 ) by Stirling’s approximation.
Then, ε needs to decay exponentially fast with n for the bounds to be informative. This is a well-known
limitation of the Shapley value in practical high-dimensional settings. We remark that studying under which
settings the computational cost of the Shapley value can be reduced is subject of ongoing research that is
orthogonal to the contribution of this paper (Chen et al., 2019; Lundberg et al., 2020; Teneggi et al., 2022a).
Rather, Corollary 2 shows the statistical implications of the exponential number of subsets one needs to
account for when computing the Shapley value of feature j.

Finally, Corollaries 1 and 2 open the door to variations of the Shapley value inspired by more sophisticated
and powerful ways of combining p-values other than averaging, which may provide more effective in practice
while guaranteeing false positive rate control. We consider these potential extensions as part of future work.

4 Experiments

We now present three experiments, of increasing complexity, that showcase how the SHAP-XRT procedure
can be used in practice to explain machine learning predictions, contextualizing the Shapley value from a
statistical viewpoint. All code to reproduce experiments will be made publicly available.

Known response function We first study a case where both the distribution of the data and the ground-
truth function are known. Let d ∈ N such that X ⊆ R2d and denote X = [X1, . . . , Xd] ∈ R2d the concatenation
of d vectors Xi = [Xi,1, Xi,2] ∈ R2. We define the ground-truth function f(X) = S(θTX) where S is the
sigmoid function8 and θ = [θ1, θ2, · · · , θ2d] ∈ R2d. For i ∈ [d], Xi,1 ∼ N (1, 1) and Xi,2 ∼ N (3, 1/4) if Xi,1 > 3
and N (−1, 1) otherwise. We set d = 3 and let θ = 12d with the exception that θ2 = 2. We concern ourselves
with the null hypothesis HS-XRT

0,j,C : f(X̃C∪{j})
d= f(X̃C) with j = (1, 2) and C = {(2, 1), (2, 2), (3, 1), (3, 2)}.

8S(u) = 1/(1 + e−u).
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Figure 3: Estimation of the power of 1− γj,C at level 0.05 for a simple CNN and a simple FCN on a synthetic
dataset of images. (a) Displays power as a function of the number of samples m used for training, with fixed
noise level σ2 = 1/d2, while (b) shows power as a function of the level of the noise in the test dataset while
training on m = 320× 103 samples with fixed noise level σ2 = 1/d2. We set K = 100× 103 and L = 1 in the
SHAP-XRT procedure.

That is, we are aiming to detect when X1,2 (i.e., feature j = (1, 2)) increases the value of f(X̃C∪{j}) relative
to f(X̃C) in the presence of {X2, X3} (i.e., the features in C = {(2, 1), (2, 2), (3, 1), (3, 2)}). Using the
SHAP-XRT procedure with K = 100, we calculate pS-XRT

j,C and γ SHAP
j,C for 1000 samples. In Figure 2a,

for all samples with γ SHAP
j,C ≥ 0, we plot pS-XRT

j,C as a function of γ SHAP
j,C and display the upper bound

pS-XRT
j,C = 1− K

K+1γ
SHAP
j,C . To demonstrate the validity of the lower bound, we keep the experiment the same

except that now θ2 = −2. In Figure 2b, for all samples with γ SHAP
j,C < 0, we plot pS-XRT

j,C as a function of
γ SHAP
j,C and display the lower bound pS-XRT

j,C = 1
K+1

(
1 +K(γ SHAP

j,C )2). Figure F.3 shows the gap between
performing conditional independence testing by means of marginal contributions (γ SHAP

j,C ) or SHAP-XRT
p-values (p̂S-XRT

j,C ) as a function of the significance level α by estimating P[γ SHAP
j,C ≥ 1− α | p̂S-XRT

j,C ≤ α].

Synthetic image data We now present a case where the distribution of the data is known, but we
can only estimate the response through some learned model. Let X ⊆ Rdr×ds, d, r, s ∈ N be images
composed of an r × s grid of non-overlapping patches of d × d pixels, such that Xi,j ∈ Rd×d is the patch
in the ith-row and jth-column. We consider a synthetic dataset of images where the response Y ∈ {0, 1} is
positive if the input image X ∈ Rdr×ds contains at least one instance of a target signal x0 ∈ Rd×d. Denote
images in Rd×d as vectors in RD, D = d2, and let v ∼ N (0, σ2ID) be random noise. Define an important
distribution I = x0 + v for some target signal x0 ∈ RD, and its unimportant complement Ic = v, such
that Xi,j ∼ ai,j · I + (1− ai,j) · Ic and ai,j ∼ Bernoulli(η) are independent Bernoulli random variables with
parameter η. Then, Y (X) = 1 ⇐⇒ ∃(i, j) ∈ [r]× [s] : Xi,j ∼ I. In particular, we let d = 7, r = s = 2 and
x0 be a cross (an example is presented in Figure F.1a). Furthermore, we set η = 1− (1/2)1/(r×s) such that
P[Y = 0] = P[Y = 1] = 1/2. Figure F.1 shows some example images and their respective labels for different
noise levels σ2. We train a Convolutional Neural Network (CNN) and a Fully Connected Network (FCN) to
predict the response Y (see Appendix D.1 for further details). Recalling that the power of a test is defined as
1− β = P[reject H0 | H0 is false], we estimate the power of performing conditional independence testing via
Shapley coefficients at a chosen level α by evaluating P[1− γ(i,j),C ≤ α | HS-XRT

0,(i,j),C is false] on a test dataset of
320 samples. We remark that HS-XRT

0,(i,j),C is false for all patches Xi,j ∼ I such that ∀(i′, j′) ∈ C, X(i′,j′)∈C ∼ Ic.
Figure 3 shows an estimate of the power of 1− γ(i,j),C for both models as a function of number of samples
shown during training (Figure 3a), and noise in the test data (Figure 3b) over 5 independent training
realizations.

Real image data Finally, we revisit an experiment from Teneggi et al. (2022a) on the BBBC041 dataset
(Ljosa et al., 2012), which comprises 1425 images of healthy and infected human blood smears of size
1200× 1600 pixels. The objective of this experiment is to showcase how Theorem 2 translates to a real-world
scenario where the same object of interest receives two different Shapley values, and how this affects the
p-values of the individual SHAP-XRT null hypotheses. Here, the task is to label positively images that
contain at least one trophozoite—an infectious type of cell. We apply transfer-learning to a ResNet18 (He
et al., 2016) pretrained on ImageNet (Deng et al., 2009) (see Appendix D.2 for further details). After training,
our model achieves a validation accuracy greater than 99%. Computing the exact Shapley value for each
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Figure 4: Demonstration of Shapley value (φj) and the p-values of their respective hypothesis tests, pj,C ,
for two images of the BBBC041 dataset. Here, each feature is a quadrant, and important regions are those
containing trophozoites (indicated by ground-truth green bounding box).

pixel is intractable, hence we take an approach similar to that of h-Shap (Teneggi et al., 2022a) and define
features as quadrants in order to compute the p-value of each SHAP-XRT null hypothesis. Since there are 4
quadrants, each Shapley value (φj) comprises only 8 marginal contributions (γj,C) that can be computed
exactly without any need for approximation. We extend the original implementation of h-Shap to return the
SHAP-XRT tests that reject (or fail to reject) their respective nulls, thus assigning a collection of p-values to
every quadrant. We note that in this experiment, we use the unconditional expectation over the training
set to mask features—as it is commonly done in popular Shapley-based explanation methods. Figure F.2
shows the reference value used for masking and some example masked inputs. Figure 4 presents the two
examples. The first, Figure 4a, depicts a case where there exists only 1 cell in the upper right quadrant, i.e.
j = 2. Thus, this quadrant receives a Shapley value φ2 ≈ 1. Naturally, all p-values are approximately zero (as
also guaranteed by Corollary 2). This implies that the quadrant j = 2 is statistically important in the sense
that all SHAP-XRT null hypotheses are rejected. On the other hand, in Figure 4b, there are two quadrants
that contain sick cells, i.e. j = 3, 4, and φ3 ≈ φ4 ≈ 0.5 by symmetry. Based on our theoretical results, φ3
and φ4 can be decomposed in the sum of 8 terms that bound the p-values of their respective SHAP-XRT
tests. As can be seen, j = 4 is indeed statistically important in that half of the null hypotheses are rejected
(i.e., all tests HS-XRT

0,4,C such that 3 /∈ C). However, the bound in Corollary 1 shows that a Shapley value of
φ4 ≈ 0.5 is not large enough to reject the global null H0,4 even if it is clearly false. These results highlight
the suboptimality of the Shapley value from a statistical testing perspective, which motivates future work to
develop more powerful alternatives. We expand on this experiment in Appendix E.

5 Conclusion

The Shapley value and conditional hypothesis testing appear as two unrelated approaches to local (i.e., sample
specific) interpretability of machine learning models. In this work, we have shown that the two are tightly
connected in that the former involves the computation of specific conditional hypothesis tests, and that every
summand in the Shapley value can be used to bound the p-values of such tests. For the first time, this
perspective grants the Shapley value with a precise statistical meaning. We presented numerical experiments
on synthetic and real data of increasing complexity to depict our theoretical results in practice. We hope that
this work will enable the further and precise understanding of the meaning of (very popular) game theoretic
quantities in the context of statistical learning. Restricting the Shapley value to an a-priori subset of null
hypotheses may prove successful in devising useful algorithms in certain scenarios, and alternative ways other
than the weighted arithmetic mean—which is employed by the Shapley value—may yield powerful procedures
to combine SHAP-XRT’s p-values to test for global null hypotheses.
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A Proofs

We briefly summarize the notation used in this section. Recall that f : Rn → [0, 1] is a fixed predictor for a
binary response Y ∈ {0, 1} on some input X ∈ Rn for an unknown distribution D such that (X,Y ) ∼ D. For
a sample X = x, X ∼ DX and each subset C ⊆ [n] denote X̃C = [xC , X−C ] ∈ Rn the random vector that
agrees with x in the features in C and that takes a reference value sampled from its conditional distribution
X−C | XC = xC in its complement −C := [n] \C. For brevity, we write X̃C ∼ DXC =xC

. Finally, for a feature
j ∈ [n], and a subset C ⊆ [n] \ {j} denote

Γj,C := f(X̃C∪{j})− f(X̃C) (19)

the random marginal contribution of feature j to subset C such that

pS-XRT
j,C := E[p̂S-XRT

j,C ] and γSHAP
j,C := E[Γj,C ] (20)

are the expected p-value of the SHAP-XRT procedure and the expected marginal contribution, respectively.

A.1 Proof of Theorem 1

Here, we show that the p-value returned by the SHAP-XRT procedure is valid, i.e. under HS-XRT
0,j,C ,

P[p̂S-XRT
j,C ≤ α] ≤ α, ∀α ∈ [0, 1].

Proof. Recall that given a sample X = x, X ∼ DX , a feature j ∈ [n], and a subset C ⊆ [n] \ {j}, the null
hypothesis of the test is

HS-XRT
0,j,C : f(X̃C∪{j})

d= f(X̃C). (21)

Denote X̃C∪{j}, X̃C the random matrices containing L ≥ 1 duplicates of X̃C∪{j} and X̃C , respectively, such
that ỸC∪{j} = f(X̃C∪{j}) and ỸC = f(X̃C) are the predictions of the model. By definition, under HS-XRT

0,j,C

ỸC∪{j}, Ỹ
(1)
C , . . . , Ỹ

(K)
C , (22)

K ≥ 1, are i.i.d. hence exchangeable. It follows that for any choice of test statistic T , the random variables
T (ỸC∪{j}), T (Ỹ (1)

C ), . . . , T (Ỹ (K)
C ) are also exchangeable. We conclude that P[p̂S-XRT

j,C ≤ α] ≤ α, ∀α ∈ [0, 1].

A.2 Proof of Theorem 2

Here, we prove the bounds on the expected p-value of the SHAP-XRT procedure presented in Theorem 2.

A.2.1 Useful inequalities

We start by including some known inequalities that will become useful in the proof of our theorem.

Proposition A.1 (Paley-Zygmund’s inequality Paley & Zygmund (1932)). If Z is a nonnegative random
variable with finite variance, and 0 ≤ θ ≤ 1, then

P[Z > θE[Z]] ≥ (1− θ)2E[Z]2

Var(Z) + (1− θ)2E[Z]2 . (23)

Proposition A.2 (Bhatia-Davis’ inequality Bhatia & Davis (2000)). If Z is a bounded random variable in
[m,M ], then

Var(Z) ≤ (M − E[Z])(E[Z]−m) (24)
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A.2.2 Lemmas

We present two lemmas that provide upper and lower bounds to the negative tail of Γj,C , respectively. Note
that Γj,C ∈ [−1, 1] because f ∈ [0, 1]. Herein, we define the nonnegative random variable Z := 1− Γj,C such
that

E[Z] = 1− γSHAP
j,C and P[Γj,C ≤ 0] = P[Z ≥ 1]. (25)

Lemma A.1 (Upper bound). By Markov’s inequality, it holds that

P[Γj,C ≤ 0] ≤ 1− γSHAP
j,C . (26)

Proof. Applying Markov’s inequality to Z directly yields

P[Γj,C ≤ 0] = P[Z ≥ 1] ≤ E[Z] = 1− γSHAP
j,C . (27)

Lemma A.2 (Lower bound). If γSHAP
j,C < 0, by the Paley-Zygmund’s and Bhatia-Davis’ inequalities, it holds

that
P[Γj,C ≤ 0] ≥ (γSHAP

j,C )2. (28)

Proof. Note that γSHAP
j,C < 0 =⇒ 1/E[Z] < 1 and let θ = 1/E[Z]. Then, the Paley-Zygmund’s inequality

yields

P[Γj,C ≤ 0] ≥
(γSHAP
j,C )2

Var(1− Γj,C) + (γSHAP
j,C )2 . (29)

Since 1− Γj,C ∈ [0, 2], the Bhatia-Davis’ inequality implies

Var(1− Γj,C) ≤ (2− E[1− Γj,C ])(E[1− Γj,C ]− 0) (30)
= (1 + γSHAP

j,C )(1− γSHAP
j,C ) (31)

= 1− (γSHAP
j,C )2. (32)

Therefore,

P[Γj,C ≤ 0] ≥
(γSHAP
j,C )2

Var(1− Γj,C) + (γSHAP
j,C )2 (33)

≥
(γSHAP
j,C )2

1− (γSHAP
j,C )2 + (γSHAP

j,C )2 = (γSHAP
j,C )2. (34)

A.2.3 Proof of Equation (11)

Here, we show that

0 ≤ pS-XRT
j,C ≤ 1− K

K + 1γ
SHAP
j,C , (35)

where K ≥ 1 is the number of draws of null statistic in the SHAP-XRT procedure.
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Proof. Recall that in the setting of Theorem 2, the test statistic T is the identity and L = 1 in the SHAP-XRT
procedure. Then,

pS-XRT
j,C = E[p̂S-XRT

j,C ] = E

[
1

K + 1

(
1 +

K∑
k=1

1[t̃(k) ≥ t]
)]

(36)

= 1
K + 1

(
1 +

K∑
k=1

E[1[t̃(k) ≥ t]]
)

(37)

= 1
K + 1

(
1 +KP[t̃(k) ≥ t]

)
(38)

= 1
K + 1 (1 +KP[Γj,C ≤ 0]) (t = f(X̃C∪{j}), t̃(k) = f(X̃(k)

C )) (39)

≤ 1
K + 1

(
1 +K(1− γSHAP

j,C )
)

(from Lemma A.1) (40)

= 1− K

K + 1γ
SHAP
j,C (41)

which is the desired result.

A.2.4 Proof of Equation (12)

Here, we show that if γSHAP
j,C < 0

1
K + 1

(
1 +K(γSHAP

j,C )2) ≤ pS-XRT
j,C ≤ 1. (42)

where K ≥ 1 is the number of draws of null statistic in the SHAP-XRT procedure.

Proof. Recall that in the setting of Theorem 2, the test statistic T is the identity and L = 1 in the SHAP-XRT
procedure. Then, similar to above

pS-XRT
j,C = E[p̂S-XRT

j,C ] = 1
K + 1 (1 +KP[Γj,C ≤ 0]) (43)

≥ 1
K + 1

(
1 +K(γSHAP

j,C )2) (from Lemma A.2) (44)

which is the desired result.

A.3 Proof of Lemma 1

Here, we prove that
p̂j = 2

∑
C⊆[n]\{j}

wC · p̂S-XRT
j,C (45)

is a valid p-value for H0,j =
⋂
C⊆[n]\{j}H

S-XRT
0,j,C .

Proof. The proof follows directly from (Vovk & Wang, 2020, Proposition 9). Note that the weights wC =
1/n ·

(
n−1
|C|
)−1 belong to ∆2n−1 (i.e., wC > 0,

∑
C⊆[n]\{j} wC = 1). Furthermore, note that 1/w :=

1/maxC⊆[n]\{j} wC = n. Then, when n ≥ 2 (i.e., for at least 2 features), the result follows by setting r = 1
in (Vovk & Wang, 2020, Proposition 9).

A.4 Proof of Corollary 1

Here, we prove that the Shapley value of feature j can be used to test for a global null hypothesis

H0,j =
⋂

C⊆[n]\{j}

HS-XRT
0,j,C . (46)
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Proof. Given feature j ∈ [n], recall from Lemma 1 that

pj = E[p̂j ] = 2
∑

C⊆[n]\{j}

wC · pS-XRT
j,C (47)

is the expected p-value for the global null H0,j . Then,

φj(x, f) =
∑

C⊆[n]\{j}

wC · γSHAP
j,C (48)

≤ K + 1
K

∑
C⊆[n]\{j}

wC(1− pS-XRT
j,C ) (from Theorem 2) (49)

= K + 1
K

1−
∑

C⊆[n]\{j}

wC · pS-XRT
j,C

 (50)

= K + 1
K

(1− pj
2 ), (51)

from which it follows
pj ≤ 2

(
1− K

K + 1φj(x, f)
)
, (52)

which is the desired result.

A.5 Proof of Corollary 2

Here, we prove the bounds on the expected p-value of the global SHAP-XRT null hypothesis presented in
Corollary 2.

A.5.1 Proof of Equation (17)

Here, we show that if φj(x, f) ≥ 1− ε, ε ∈ (0, 1), then ∀C ⊆ [n] \ {j}

pS-XRT
j,C ≤ 1− K

K + 1
w̃ − ε
w̃

, (53)

where w̃ = minC⊆[n]\{j} wC .

Proof. Suppose φj(x, f) ≥ 1− ε, ε ∈ (0, 1) and fix C∗ ∈ [n] \ {j} such that

φj(x, f) =
∑

C⊆[n]\{j}

wC · γSHAP
j,C = wC∗ · γSHAP

j,C∗ +
∑
C 6=C∗

wC · γSHAP
j,C ≥ 1− ε, (54)

which implies

γSHAP
j,C∗ ≥

1− ε−
∑
C 6=C∗ wC · γSHAP

j,C

wC∗
(55)

≥
1− ε−

∑
C 6=C∗ wC

wC∗
(max γSHAP

j,C = 1) (56)

= 1− ε− (1− wC∗)
wC∗

(
∑

C⊆[n]\{j}

wC = 1) (57)

= wC∗ − ε
wC∗

≥ w̃ − ε
w̃

, w̃ = min
C⊆[n]\{j}

wC . (58)

Note that the last inequality follows from (wC∗ − ε)/wC∗ being an increasing function of wC∗ for ε > 0. Then,

min
C⊆[n]\{j}

γSHAP
j,C ≥ w̃ − ε

w̃
=⇒ pS-XRT

j,C ≤ 1− K

K + 1
w̃ − ε
w̃

. (from Theorem 2) (59)
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A.5.2 Proof of Equation (18)

Here, we show that if φj(x, f) ≤ −1 + ε with ε < w̃, w̃ = minC⊆[n]\{j} wC , then ∀C ⊆ [n] \ {j}

pS-XRT
j,C ≥ 1

K + 1

(
1 +K

(
ε− w̃
w̃

)2
)

(60)

Proof. Similarly to above, suppose φj(x, f) ≤ −1 + ε, ε ∈ (0, 1) and fix C∗ ∈ [n] \ {j} such that

φj(x, f) =
∑

C⊆[n]\{j}

wC · γSHAP
j,C = wC∗ · γSHAP

j,C∗ +
∑
C 6=C∗

wC · γSHAP
j,C ≤ −1 + ε, (61)

which implies
γSHAP
j,C∗ ≤

ε− w̃
w̃

(62)

and γSHAP
j,C∗ < 0 ⇐⇒ ε < w̃. Then,

max
C⊆[n]\{j}

γSHAP
j,C ≤ ε− w̃

w̃
< 0 =⇒ pS-XRT

j,C ≥ 1
K + 1

(
1 +K

(
ε− w̃
w̃

)2
)
. (from Theorem 2) (63)

B Axioms of the Shapley value

Recall that the tuple ([n], v), [n] := {1, . . . , n}, v : P(n)→ R+ is an n-person TU game with characteristic
function v, such that ∀C ⊆ [n], v(C) is the score accumulated by the players in the coalition C. Then, the
Shapley values φ1([n], v), . . . , φn([n], v) of the game ([n], v) (see Definition 1) are the only solution concept
that satisfies the following axioms (Shapley, 1951):
Axiom 1 (Additivity). The Shapley values sum up to the utility accumulated when all players participate
in the game (i.e. the grand coalition of the game)

n∑
j=1

φj([n], v) = v([n]). (64)

Axiom 2 (Nullity). If a player does not contribute to any coalition, its Shapley value is 0

∀C ⊆ [n] \ {j}, v(C ∪ {j}) = v(C) =⇒ φj([n], v) = 0. (65)

Axiom 3 (Symmetry). If the contributions of two players to any coalition are the same, their Shapley values
are the same

∀C ⊆ [n] \ {j, k}, v(C ∪ {j}) = v(C ∪ {k}) =⇒ φj([n], v) = φk([n], v). (66)

Axiom 4 (Linearity). Given ([n], v), ([m], v), the Shapley value of the union of the two games (i.e. φj([n] ∪
[m], v)) is equal to the sum of the Shapley values of the individual games (i.e. φj([n], v) and φj([m], v),
respectively)

φj([n] ∪ [m], v) = φj([n], v) + φj([m], v). (67)

Finally, we note that Axioms 2–4 can be replaced by a fifth one, usually referred to as balanced contribution
(Fryer et al., 2021), although this is not necessary to derive the definition of the Shapley value.

C Algorithms

Algorithm C.1 summarizes the CRT procedure by Candes et al. (2018).
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Algorithm C.1 Conditional Randomization Test
procedure CRT(data X = (x(1), . . . , x(m)) ∈ Rm×n, response Y = (y(1), . . . , y(m)) ∈ Rm, feature j ∈ [n],
test statistic T , number of null draws K ∈ N)

Compute the test statistic, t← T (Xj , Y,X−j)
for k ← 1, . . . ,K do

Sample X(i)
j ∼ Xj | X−j = x

(i)
−j , i = 1, . . . ,m

X
(k)
j ← (X(1)

j , . . . , X
(m)
j )

Compute the null statistic, t̃(k) ← T (X(k)
j , X−j , Y )

end for
return A (one-sided) p-value

p̂CRT
j = 1

K + 1

(
1 +

K∑
k=1

1[t̃(k) ≥ t]
)

end procedure

D Experimental details

Before describing the experimental details, we note that all experiments were run on an NVIDIA Quadro
RTX 5000 with 16 GB of RAM memory on a private server with 96 CPU cores. All scripts were run on
PyTorch 1.11.0, Python 3.8.13, and CUDA 10.2.

D.1 Synthetic image data

Here, we describe the model architectures and the training details for the synthetic image datasets. Recall
that X ⊆ Rdr×ds, d, r, s ∈ N are images composed of an r × s grid of non-overlapping patches of d× d pixels,
such that Xi,j ∈ Rd×d is the patch in the ith-row and jth-column.

We train a CNN with one filter with stride d, and a two-layer FCN with ReLU activation. In particular:

f CNN(X) = S

b0 +
∑

i,j∈[r]×[s]

〈W0, Xi,j〉

 , (68)

and

f FCN(X) = S (b1 + 〈W1,ReLU (b0 + 〈W0, X〉)) , (69)

where S(u) = 1/(1 + e−u) is the sigmoid function, and ReLU(u) = [0, x]+ is the rectified linear unit (Nair
& Hinton, 2010). We train both models for one epoch on m i.i.d. samples and a batch size of 64. We note
that we use Adam (Kingma & Ba, 2014) with learning rate of 0.001, and SGD with learning rate of 0.01 for
f CNN and f FCN, respectively, to achieve optimal validation accuracy.

D.2 Real image data

Here, we present the details of the training process for the experiment on the BBBC041 dataset (Ljosa et al.,
2012) (which is publicly available at https://bbbc.broadinstitute.org/BBBC041). Recall that the dataset
comprises 1425 images of healthy and infected human blood smears. We split the original dataset into a
training and validation split using an 80/20 ratio, respectively. This way, we train our model on 589 positive
and 608 negative images, and validate on 112 positive and 116 negative images.

We apply transfer learning to a ResNet18 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009). We
optimize all parameters of the network for 25 epochs using binary-cross entropy loss and Adam optimizer,
with a learning rate of 0.0001 and learning rate decay of 0.2 every 10 epochs. At training time, we augment
the dataset with random horizontal flips.
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E Supplementary results for real image data experiment

input image
j= 1 j= 2 j= 3 j= 4

j= 5 j= 6 j= 7 j= 8

j= 9 j= 10 j= 11 j= 12

j= 13 j= 14 j= 15 j= 16

(a)

j= 1 j= 2 j= 3 j= 4

j= 5 j= 6 j= 7 j= 8

j= 9 j= 10 j= 11 j= 12

j= 13 j= 14 j= 15 j= 16

SHAP-XRT heatmap for j= 9

(b)

j= 1 j= 2 j= 3 j= 4

j= 5 j= 6 j= 7 j= 8

j= 9 j= 10 j= 11 j= 12

j= 13 j= 14 j= 15 j= 16

SHAP-XRT heatmap for j= 8

(c)

Here, we revisit the real image data experiment presented in Section 4. Instead of using 4 quadrants, we further
subdivide them to obtain 16 features, j = 1, . . . , 16, as displayed in Figure E.1a. The input image contains
6 trophozoites that are highlighted with green bounding boxes. For each feature, we compute the p-values
of all 215 SHAP-XRT null hypotheses. Figures E.1b and E.1c show the SHAP-XRT heatmaps for features
j = 9 (which contains a trophozoite) and j = 8 (which does not contain a trophozoite), respectively. In the
heatmaps, each feature j′ ∈ [16] \ {j} is colored accordingly to the number of SHAP-XRT null hypotheses
HS-XRT
j,C , j′ ∈ C that are rejected. That is, the higher number of tests are rejected such that j′ ∈ C, the

stronger the color of feature j′. Figure E.1b shows that for an important feature (i.e., a feature that does
contain a trophozoite), the heatmap concentrates on features that do not contain any trophozoites. This
agrees with intuition that when C does not contain any trophozoites, adding a feature with a trophozoite will
affect the distribution of the output of the model. Symmetrically, when C already contains some trophozoites,
adding another will not affect the distribution. Figure E.1c shoes that for an unimportant feature (i.e., a
feature that does not contain a trophozoite), the heatmap is empty because no matter whether C contains a
trophozoite, adding an empty feature will not affect the distribution of the response.
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F Figures

Here we include supplementary figures.

(a) Signal x0.
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(d) σ2 = 1/d.

Figure F.1: (a) Target signal x0: a cross of size d× d pixels, d = 7. (b), (c), (d) Examples of positive and
negative images with increasing levels of noise, σ2 = 1/d4, 1/d2, and 1/d, respectively. Note that all images
are normalized to have zero-mean and unit variance.

(a) Reference. (b) Sample x. (c) X̃{1}. (d) X̃{2,3,4}.

Figure F.2: Some examples of masked inputs from the BBBC041 dataset. (a) Shows the unimportant
reference (i.e. the unconditional expectation over the training split) used to mask features. We verify that
the reference image does not contain any signal by checking that the output of f is ≈ 0. (b) Shows the
original sample x; (c) and (d) show some masked versions of x when conditioning on the sets C = {1} and
C = {2, 3, 4}, respectively.
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Figure F.3: Estimation of P[γ SHAP
j,C ≥ 1 − α | p̂S-XRT

j,C ≤ α] as a function of significance level α for
j = 2, C = {(2, 1), (2, 2), (3, 1), (3, 2)} in the known response experiment. This evaluates the gap between
performing conditional independence testing by means of marginal contributions or the SHAP-XRT p-values.
Estimates were computed over 100 independent draws of the SHAP-XRT p-values for a fixed dataset of
N = 5, 000 data points.
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