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Abstract—Low cost wearable and implantable cardiac moni-
toring devices (WCM & ICM), combined with increasingly ac-
curate disease and arrhythmia detection algorithms have proven
effective to help slow the impact of cardiovascular disease, the
worlds leading cause of death in 2022 [1]. Improvements to
server-side detection algorithms along with hardware limitations
of these devices such as slow processor speeds and minimal
battery life has led to a desire to offload data from the devices for
later analysis. Paired with limited storage capacity, this has led
to a push to decrease the necessary storage for electrocardiogram
(EKG) signals without sacrificing disease detection accuracy
and device longevity. A promising recent innovation in EKG
compression has come from Compressed Sensing (CS), which
exposes inherent sparseness in the signal to selectively sample for
eventual server-side reconstruction. Many CS approaches have
been implemented on WCM devices which demonstrate a high
compression ratio (CR) and accurate signal reconstruction, but
quickly become impractical for the stricter hardware constraints
of ICM devices due to the increased computation on the device
and slow reconstruction time. In this paper we propose a CS
approach known as Tailored Sensing (TS) which combines on-
device prior knowledge, a custom transform basis, and optimal
sense location selection to achieve improved CR and reconstruc-
tion accuracy while eliminating on-device computational burden
and slow reconstruction time. Our approach offers equivalent
or better signal reconstruction at previously unfathomable CRs
due to our novel signal segmentation scheme. Additionally, our
approach boasts a zero overhead on-device sensing strategy and
a 93% reduction in signal reconstruction time.

Index Terms—compressed sensing, electrocardiogram, tailored
sensing, signal reconstruction, implantable medical devices

I. INTRODUCTION

With the onset of big data, machine learning, and artificial
intelligence, no industry is immune to the changes necessary
to adapt to this new era. The medical device industry is no
exception to this fact. Wearable medical device technology has
already begun to adjust to this change with easily updated and
continually improving detection algorithms. On the other hand,
implanted devices have been slow (or unable) to capitalize on
these advancements. To the benefit of the patient, ICM devices
must go through intense regulatory bodies such as the Food
and Drug Administration and the European Medicines Agency
before a device can ever reach a patient. With this regulation

comes slower, more deliberate innovation, but promotes pa-
tient safety. Despite this fact ICM devices still remain the
defacto standard for cardiac electrophysiologists because of
the increased signal accuracy that comes with being implanted
directly next to the heart. In pursuit of improved arrhyth-
mia detection and analysis of cardiac degradation overtime,
many on-device algorithms are implemented, but suffer from
an inability to be adjusted once implemented and minimal
knowledge of change over time. The combination of the
aforementioned factors has presented a demand to offload the
highly accurate data that the implanted device is sensing and
analyze it externally for diseases and arrhythmias. This would
circumvent the strict regulation that comes with modifying the
firmware on an existing device and allow for easily deployed
detection algorithm improvements.

The ability to offload data from an ICM device for server
side analysis is almost entirely infeasible at this time. This is
largely due to the memory constraints on these tiny devices.
For example, a single sense vector for voltage difference
across the heart, sampled at a rate of 300 Hz with 12 bits
of resolution generates almost 39 MB of data in a single day.
Considering that these devices can be smaller then a human
thumb and have many other sensors on them (accelerometer,
minute ventilation, temperature) one can see how storing all
of this information can quickly become infeasible. Regardless
of whether an entire days worth of signal could be stored on
a device, methods such as remote patient monitoring for heart
failure [2] and Atrial Fibrillation detection [3] have shown that
even small segments of EKG data collected daily and offloaded
periodically could be used to extract meaningful information.

In this paper, a novel CS approach is proposed as a solution
to reduce the amount of memory necessary to store and trans-
mit EKG signals to help make server-side detection algorithms
feasible for ICM devices. Modern telemetry technology such
as Bluetooth® paired with the increasingly popular bedside
monitors and mobile applications for data offloading, can
allow server based EKG analysis to become a reality.



TABLE I
SYMBOL TABLE

Symbol Description

N Number of Uncompressed Samples
M Number of Compressed Samples
K Sparsity of x in Ψ

x ∈ RN Uncompressed EKG Signal
y ∈ RM Compressed EKG Signal
s ∈ RN Universal Basis Coefficients
a ∈ RM Tailored Basis Coefficients

C ∈ RM×N Measurement Matrix
Ψ ∈ RN×N Universal Transform Basis
Ψr ∈ RN×M Tailored Transform Basis
Θ = C ×Ψ Product of Measurement and Basis

*Adapted from [10]

A. Related Work

Compressed sensing of EKG signals is a well researched
subject with many existing CS approaches both proposed in lit-
erature and deployed in applications. Each of these approaches
offer improvements to one or many of the core aspects of
CS such as compression ratio, signal reconstruction accuracy,
reconstruction time, or on-device computation. The existing
state-of-the-art CS methods often fail to take into account a
holistic practicality of the approach, focusing on improving
one aspect of CS such as reconstruction accuracy at the
expense of another CS aspect such as lengthy reconstruction
times.

Many of these CS approaches present optimizations to
the signal transform basis (Ψ) for generic signal acquisition
and reconstruction. EKG signals have been shown to be
optimally sparse in discrete cosine transform (DCT) basis [4],
[5] as well as the discrete wavelet transform [6], [7] allowing
for generic sampling of the EKG signal, but these methods
suffer from lower compression ratios and higher reconstruction
errors because of the number of samples required to satisfy
the incoherence restrictions between the transform basis (Ψ)
and the measurement matrix (C). Other CS methods aim
to optimize C to reduce the number of necessary samples
or optimize the sampling locations. Measurement matrices
such as a Gaussian normal distribution [5] offer decent signal
reconstruction accuracy, but require an on-device matrix multi-
plication to be performed for each compression window. More
practical binary sampling matrices such as Bernoulli random
matrices [8] or Deterministic Binary Block Diagonal (DDBD)
[6], [9] matrices offer multiplication-less measurement, but
still require summation operations that scale with the signal
density causing unnecessary battery drain on the device.

A learned over-complete dictionary of EKG signals was
used to develop a non-generic transform basis Ψ which was
used in combination with a DDBD based C [6] to offer nearly
equivalent signal reconstruction accuracy to the proposed
method at equivalent CRs. Although equally as accurate as
the proposed method, the DDBD based measurement matrix
lead to a larger computational impact on the device and
still required expensive sparse optimization to reconstruct the
signal.

II. BACKGROUND

A. Compressed Sensing

The theory behind compressed sensing is rooted in the fact
that natural signals are inherently sparse in the appropriate
coordinate system making them highly compressible when
represented by a sparse vector of coefficients. Sparsity in
natural signals, specifically EKG signals, is best illustrated
by understanding the vastness of EKG signal space. To put
this into perspective, consider a 1 second EKG sample with
12 bit resolution sampled at 300 Hz. There are more than
23600 unique signals that can be derived from this signal space,
which exceeds the number of atoms in the known universe.
Selecting a single natural EKG signal from that signal space
demonstrates the sparsity of natural EKG signals within EKG
signal space.

1) Mathematical Formulation for Compressed Sensing::
The uncompressed EKG signal can be represented in it’s
original state as a high dimensional vector x ∈ RN and is
known to be K sparse in a generic transform basis Ψ ∈ RN×N

implying that x can be represented in the basis of Ψ with K
non-zero elements, exposing a sparse representation of x:

x = Ψs (s ∈ RN ) (1)

A compressed measurement of x can be represented by
y ∈ RM where K < M << N . The measurement matrix
C ∈ RM×N is a set of M measurements of x where C is
typically made up of random measurements of x such that C
is incoherent with Ψ and the number of compressed samples
M are sufficiently large (K < M ). A sparse vector s ∈ RN

is able to reconstruct the original high dimensional signal in
Eq. 2.

y = CΨs = Θs (2)

Fig. 1. Compressed sensing of an EKG signal

This is shown visually in Fig. 1 with the compressed
sample of an EKG signal y represented with a sparse random
measurement matrix C and a DCT basis Ψ.

An undetermined system of equations is represented in Eq.
2 whose solution is derived by the sparsest representation of s,
defined by the minimization of the l0 norm of s (∥s∥0) which is
a combinatorial hard (NP-hard) problem to solve. Fortunately,
recent advances in applied mathematics have shown that under
certain conditions of C the constraint on s can be relaxed to
a convex l1 norm optimization [11] shown in Eq. (3).

ŝ = argmin
s

∥s∥1 (3)



Where ŝ can be solved for with sparse optimization tech-
niques such as OMP, IRLS and BP such that y = CΨŝ
Therefore a compressed measurement y with a known mea-
surement matrix C and transform basis Ψ can be used to
determine a sparse vector of coefficients ŝ which can then
be used to reconstruct the original signal into x̂: x̂ = Ψŝ

B. Tailored Sensing

Compressed sensing is based on signal reconstruction in a
generic basis such as a DCT basis or a wavelet basis which
works well if there is no prior knowledge of the signal.
On the other hand, tailored sensing suggests that an even
sparser representation may exist for a given signal if the
general structure of the signal is known prior to sampling. TS
proposes that a signal is optimally sparse in a basis formed
from a library of features built from the decomposition of
that signal via the singular value decomposition (SVD) or
proper orthogonal decomposition (POD). It is thus proposed
that optimal sense locations may exist for a signal represented
in this tailored basis.

1) Mathematical Formulation for Tailored Sensing:: TS is
based on the formation of a tailored library Ψr ∈ RN×M from
the decomposition of existing examples of a particular signal
such that y = CΨra = Θa Where the measurement matrix C
is constructed such that Θ can be inverted to identify a low
rank vector of coefficients a ∈ RM represented visually in
Fig. 2.

Fig. 2. Tailored sensing of an EKG signal

The goal of tailored sensing is to design C to minimize the
condition number of Θ. The condition number of Θ is a
measure of the maximum and minimum singular values which
proves to be indicative of how sensitive Θ is to matrix multi-
plication or inversion [11]. The sensitivity of Θ maps directly
to the signal-to-noise ratio (SNR) of a reconstructed signal
sampled by the measurement matrix C and represented in the
tailored basis Ψr. In simpler terms, sampling the locations of
the signal x which activate the most significant features of the
tailored basis Ψr will allow for the reconstruction of the signal
with an optimally low SNR.

The selection of these optimal sampling locations has been
shown to be easily obtained using greedy optimization proce-
dures such as QR matrix factorization [10]. QR factorization
utilizes column pivoting to decompose a given matrix B into
an upper triangular matrix R, a unitary matrix Q, and a
column permutation matrix CT . This can be represented as
BCT = QR

The QR factorization of the tailored basis Ψ can thus yield
optimal sampling locations by utilizing the pivot locations
from the column permutation matrix CT to construct the
measurement matrix C as the pivot locations of tailored basis
represent the optimal sample of r basis modes of Ψ leading
to Ψr. This can be represented as ΨT

r C
T = QR.

Putting this all together, a compressed measurement of the
original signal x can be formed using the pivot locations
from the QR factorization CT . The compressed measurement
y can then be used directly to solve for low-rank vector
of coefficients a by multiplying by the pseudo-inverse of Θ
shown as Θ+. Finally, a can then be used to reconstruct the
original signal into x̂ thus x̂ = Ψra

III. PROPOSED METHOD

This paper proposes a novel TS based solution for real-time
EKG data acquisition designed for use in lower power medical
devices. Existing CS approaches assume no prior knowledge
of an EKG signal’s variance in time. This means for a contin-
uous EKG signal these CS methods have a limit to how much
they can down-sample the signal while maintaining accurate
reconstruction since they cannot make any assumptions on the
number of heart beats that might occur in a given window of
compression. Furthermore other TS methods which employ a
tailored basis for the signal [6] must sample a sufficiently large
percentage of the signal to account for time shifts in the key
features of the signal (i.e. the location of the beat).

Due to the hardware limitations of implanted medical de-
vices these devices rely heavily on analyzing the EKG signal
in real time and only saving the most pertinent information.
Additionally, devices that are required to deliver therapy, such
as high voltage defibrillation, must be able to accurately
characterize the behavior of the heart in real-time. Because of
these requirements, implanted medical devices already contain
built in EKG analysis tools such as beat detection, heart rate
tracking and signal noise detection.

The method proposed in this paper utilizes the built in
beat detection on these devices to slice the EKG signal into
compressible single beat windows which are optimally sparse
in a tailored basis and have known sample locations which
best characterize the features of the beat.

A. Signal Segmentation & Sampling Scheme

Implanted medical devices require advanced on-device sig-
nal analysis in order to properly treat a patient as well as to
detect when abnormal behavior is occurring in the heart for
episode storage. One of the most important of these on-device
analysis tools is EKG peak detection. The peak of an EKG
signal is known as the R-wave and is the primary indicator of
a heart beat, thus it is very important for these devices to be
able to accurately detect the location of these R-waves. The
method proposed in this paper exploits this functionality to
slice an uncompressed EKG-signal into compressible single-
beat windows.

As a continuous EKG signal is being collected on a device,
the location of the peak is determined in digital hardware and



provided to the firmware in real-time. The firmware is then
able to sample this beat at optimal locations determined from
a distance in time of the location of the peak. A pictorial
example of the segmented beat windows plotted on top of
each other is provided in Fig. 3 where the top figure shows the
original beats and the bottom shows the same beats normalized
for use in the tailored basis generation.

Fig. 3. Original (top) and normalized (bottom) EKG windows sliced and
overlaid.

This eliminates the need for generality in our compressed
sensing scheme, since there is no need to account for the
possibility of multiple beats nor shifts in the beat location
within the sampling window. Additionally, this does not create
any additional computation overhead on the device since beat
detection is built into cardiac monitoring devices.

B. Tailored Basis Generation

A given natural signal has been shown to be optimally
sparse in a basis formed from the decomposition of the signals
own features into what is known as a tailored basis. This
tailored basis can be formed from the decomposition of a
library of these signals via the SVD, POD or other matrix
factorization methods.

Since our method utilizes single-beat windows for compres-
sion, a tailored basis Psir was created based on single-beats.
Tailored bases are built from the decomposition of an over-
complete library of a given signal; to create an over-complete
library of beats, the MIT-BIH [12] database of EKG signals
was used. Utilizing the provided beat annotations, existing
EKG signals were split into 300 sample chunks centered
on the R-Wave which could be represented as vectors such
as X from Fig. 5. These vectors are then combined into a
matrix (B) creating the dictionary of EKG beats. The singular
value decomposition could then be performed on this matrix,
decomposing the beats into a complex unitary matrix U , a
diagonal matrix Σ, and a complex unitary matrix V T such
that B = UΣV T . The columns of U represent the eigen-
beats or modes, hierarchically arranged based on their ability
to describe the variance in the beat library. The eigen-beats

provide a basis from which we can represent the original beats.
The singular value decay is shown in Fig. 4 where the relative
importance of a given eigen-beat is plotted against the mode
number.

Fig. 4. Singular value decay of an over-complete library of heart beats.

The columns of U from the SVD of the over-complete beat
dictionary are selected to form the tailored basis Psir. The
number of columns selected from U to build Psir can be
empirically chosen by the optimal modal truncation value [13]
or by using the Hammersley-Chapman-Robbins (HCR) bound
[14]. In this paper the number of columns selected is instead
determined by a varying CR such that performance of our
method can be compared against other methods as the CR
increases.

C. Sensing Matrix Determination

A study performed on electrophysiologists tracking their
eyesight while analyzing an EKG signal showed that less than
20% of the signal is actually viewed prior to classification of
the beat [15]. It therefore comes as no surprise that particular
portions of the signal are more significant than others which
is translated into particular sampling locations of the signal.
Similarly, optimal sampling locations of a tailored basis Ψr

have been shown to exist such that a measurement matrix
C can be built that minimizes the condition number of Θ.
These optimal sampling locations work to maximize the signal
reconstruction accuracy while also increasing the CR.

Greedy optimization methods such as QR pivoting have
been shown to expose optimal sampling locations of a tailored
basis Ψr. The method proposed in this paper utilizes QR
pivoting to extract a column permutation matrix CT containing
the pivot locations. The first M pivot locations are used to
construct a measurement matrix C where M is chosen based
on the CR (M = N/CR). Fig. 5 depicts the pivot locations
in red against an uncompressed beat x which is sampled by
C to create a compressed measurement y.

Not only do the pivot locations used to form C determine
the locations of x which are sampled, but they also determine
the rows of the tailored basis Ψr which are activated when Θ is
created. This is demonstrated pictorially in Fig. 6 where (left)
depicts the tailored basis as a matrix, with rows activated by
the QR pivot location and (middle & right) shows the tailored
basis plotted as a surface map with a single beat x and its
sample locations C translated into the compressed vector y.



Fig. 5. Subsampled EKG signal using pivot locations from QR pivoting.

D. Signal Reconstruction

A tailored basis Ψr is generated in advance based on
an over-complete library of beats from the device. The QR
factorization is performed on this basis to determine the pivot
locations which are then used to build a measurement matrix
C. The measurement matrix is communicated to the device
such that the optimal sampling locations are known for a
given beat. The device need not know of the tailored basis
nor perform any factorization to determine sampling locations.
As the EKG signal is recorded the hardware will provide beat
detections. These beats will then be used to segment the signal
into compressible, R-Wave centered, windows which will
be sampled via the measurement matrix. These compressed
measurements will be stored on the device and eventually
transmitted off the device to a bed-side monitor or a mobile
application.

Once offloaded the compressed samples can easily be
reconstructed into high-dimensional EKG signals by multi-
plying each sampling window by the pseudo-inverse of Θ
to determine a low-rank vector of coefficients a which can
then be represented in the tailored basis Ψr as a reconstructed
signal x̂. Because Θ is a square matrix, the pseudo-inverse
can be calculated in constant time which scales linearly with
the number of non-zero entries of C determined by the
compression ratio. This eliminates the need for the greedy,
iterative convex solving algorithms needed to solve for ŝ in
traditional compressed sensing.

IV. PERFORMANCE EVALUATION

To evaluate the method proposed in this paper against
other state of the art EKG CS methods, an experiment was
designed to evaluate signal reconstruction accuracy, on-device
computational burden and reconstruction time of each method
as it scaled with increased compression ratios. The compres-
sion ratio (CR) is calculated from the number of compressed
measurements M from the un-compressed measurements N
as in Eq. 4.

CR =
N

M
(4)

Real EKG signal data was used from the MIT-BIH arrhyth-
mia database [12] which not only contain a wide range of
patients, but also include common arrhythmias which an be
particularly difficult to characterize. The database used was
comprised of 47 patients who were sampled for 30 minutes at
a sample rate of 360Hz with 11-bit resolution.

A number of existing CS methods were adapted from
literature for comparison in this paper based on their reported
performance. DDBD measurement matrices paired with a
learned dictionary as a transform basis [6] referred to in this
paper as DDBD-Dict was shown to be the highest performing
of the existing CS methods. The wavelet transform has also
been shown to be an excellent transform basis; Specifically
the RBIO 5.5 transform [7] is used in conjunction with the
DDBD measurement matrix as a CS method of comparison,
referred to as DDBD-Wavelet. Other sampling matrices such
as the Bernoulli binary matrix [8] and the Gaussian normal
measurement matrix [9] were used in conjunction with a DCT
transform basis [4] referenced in this paper is Bernoulli-DCT
and Gaussian-DCT, respectively.

All of the CS methods compared in this paper require
convex optimization to solve for ŝ. OMP, BP and IRLS
were all tested against these methods with BP performing the
best for both reconstruction accuracy and reconstruction time,
confirming findings from other papers [7].

A. Experimental Design

To evaluate the method proposed in this paper, all heart
beats were extracted for the entire 30 minute EKG segment
from each patient in the MIT-BIH arrhythmia database re-
sulting in over 700,000 compressible windows to test against.
10,000 random sub-samples of these beats were taken to elim-
inate bias towards an individual patient or arrhythmia. Each
of these compressible beat windows was then compressed
and reconstructed using the method of choice and evaluated
for signal reconstruction accuracy, computational burden on
the device and time to reconstruct the signal. An example
of a reconstructed EKG signal along with its corresponding
error utilizing our tailored sensing method, the DDBD-Dict
method and Bernoulli-DCT method (abbreviated Bern-DCT)
are shown in Fig. 7.

B. Reconstruction Accuracy

The reconstruction accuracy of a given beat was evaluated
based on the percent root mean square difference (PRD) and
the signal to noise ration (SNR) calculated in Eq. 5 and Eq.
6 where x(n) is the original signal, x̂(n) is the reconstructed
signal and x̄(n) is the mean signal.

PRD =

√∑N
n=1(x(n)− x̂(n))2∑N

n=1 x(n)
2

(5)

SNR = 10 log

(∑N
n=1(x(n)− x̄(n))2∑N
n=1(x(n)− x̂(n))2

)
(6)

PRD is often referred to as the gold standard of measuring
EKG reconstruction accuracy because of its ability to capture



Fig. 6. QR pivot locations (C) plotted against the tailored basis (Ψr). (left) Ψr as a matrix with rows selected by C. (middle/right) Single beat (x) with
sample locations (y) plotted against the Ψr as a surface mesh.

Fig. 7. EKG signal reconstruction comparison. (top) Reconstructed vs original signal. MIT-BIH patient 228 with a CR of 20.

beat characteristics as well as significant amplitude errors.
A PRD between 2-9% has been shown to be sufficient for
both visual and algorithmic analysis [16]. The average PRD
for each method is plotted against a varied CR in Fig. 8
which shows that the dictionary based transform bases both
significantly out perform all other CS methods analyzed in this
paper.

Fig. 8. Mean PRD.

To better visualize the difference between the TS method
and the DDBD-Dict CS method, the mean PRD for each was
isolated and plotted in Fig. 9. The TS method out-performs
DDBD-Dict for CRs below 50 At higher compression ratios
the mean PRD appears similar, but the standard deviation
indicates poor performance for both TS and DDBD-Dict.

Fig. 9. Mean PRD for the Tailored and DDBD-Dict CS methods.

While a low PRD is always desired for EKG signal recon-
struction, this figure does not capture noise in the reconstructed
signal which can lead to poor performance in algorithm based
EKG analysis. A SNR of 20 dB or higher has been shown
to be sufficient for arrhythmia classification based algorithm
analysis of EKG signals [16]. The mean SNR for each CS
method is plotted against a varying CR in Fig. 10.

The SNR for the TS method proposed in this paper sig-
nificantly out-performs other CS methods across increasingly
large CRs. Our methods achieve an average of 8% higher SNR
across all CRs tested.



Fig. 10. Mean SNR.

C. On-Device Sensing Burden

Two extremely important features of ICM devices is size
and longevity meaning efficiency is critical for these devices.
An important aspect of battery drain for any modern micro-
controller application is the ability for the device to enter a
periodic sleep mode with an extremely low clock rate. Cardiac
based micro-controller devices will often enter a sleep mode
in-between heart beats, thus it is critically important that the
amount of computation performed on a per-beat basis (such
as compression) is as small as possible.

To assess the computational burden imposed on a device
by a specific CS method, the battery drain was evaluated
by measuring both the sampling power and transmission
power. The sampling power (PWRsmp) reflects the number
of addition and multiplication operations required to apply the
measurement matrix C to a compressible EKG data window.
Transmission power (PWRtx) was calculated based on the
energy needed for Bluetooth® Low Energy (BLE) transmis-
sion, measured on a per-bit basis. The power consumption in
this study was based on the Microchip PIC32MX470F512L
microcontroller, compiled with XC32 on a MIPS32 instruction
set, and a Texas Instruments CC2540 BLE transceiver. The
PIC32MX470F512L features an addition time (ta) of 60 ns,
a multiplication time (tm) of 90 ns, an active power draw
(Pawake) of 0.198 W, and a sleep power draw (Pasleep) of
0.165 mW. The CC2540 BLE transceiver has a transmission
power of 84 mW and a transmission rate of 8 uS per bit,
resulting in a power-per-bit transmission cost (Pble) of 84 nJ.
PWRsmp was calculated using Eq. 8 where a represents

the number of additions and m represents the number of
multiplications required to apply the measurement matrix C to
the uncompressed signal x. While PWRtx is calculated in Eq.
9 where r represents the resolution of the signal at a nominal
12 bit resolution. The total power (Pt) is the summation of the
sampling and transmission power (PWRtotal = PWRsmp +
PWRtx).

tsmp = ((a× ta) + (m× tm)) [sec] (7)

PWRsmp = (tsmp × Pawake)− (tsmp × Pasleep) [J ] (8)

PWRtx = (M × r)× Pble [J ] (9)

A plot of the sampling power from each CS method is show-
ing in Fig. 11 where clearly the proposed method of tailored
sampling has significantly better power drain characteristics.
This is because our method does not require any addition
or multiplication instructions to sample since each row of C
only has a single pivot location. This implies that the only
power drain comes from the transmission of the signal and
the indexing of the beat. Since each method will have the
same PWRtx for a given CR, it does not add anything of
value to the plot. The DDBD measurement matrix methods
have a constant sampling power draw since the number of
samples per row of C increases as the CR increases meaning
a constant number of additions are performed.

Fig. 11. Sampling power draw logarithmic plot

D. Reconstruction Time

The time to reconstruct a compressed EKG sample into
a full EKG signal is of critical importance in the world of
WCM and ICM devices as the scale of data being offloaded is
massive and any additional server side compute can be costly.
The method proposed in this paper drastically reduces the
reconstruction for a given compressible segment as TS does
not require a costly, iterative, convex optimization solver to
reconstruct the signal. Instead a compressed sample y can be
reconstructed directly in constant-time by multiplying by the
inverted matrix Θ+ and then multiplying by the tailored basis
Psir.

Signal reconstruction time was measured for each CS
method and for every beat compressed. This reconstruction
was performed on an HP ZBook Studio G5 which has an Intel
i9-8950HK processor, 32 GB of RAM and a NIVIDIA Quadro
P1000 GPU. The results in Fig. 12 show how the proposed
method outperforms all other methods in reconstruction time
with an average of 93% lower reconstruction time across all
CR’s.

V. CONCLUSION

A. Summary of Findings

In this paper a novel compressed sensing method is pro-
posed for real-time EKG acquisition on implanted medical
devices. Our method employs a novel signal segmentation
scheme which utilizes existing, on-device beat detections to
segment an EKG signal into beat-based compressible win-
dows. Using a tailored transform basis generated from the



Fig. 12. Mean signal reconstruction time

decomposition of an over-complete library of known beats,
our method selects optimal sampling locations determined
from the QR factorization of the basis to compress each beat-
based window for storage and later transmission. Finally, after
transmission, our method is able to directly solve for the re-
constructed signal without the need for a convex optimization
solver.

The TS method proposed in this paper boasts better signal
reconstruction without any on-device computational burden
and a 93% reduction in signal reconstruction time. Addition-
ally, the signal segmentation proposed on this paper allows for
previously inconceivable compression ratios. The findings in
this paper offer the possibility for a new type of implanted
medical device which can bypass the necessity to develop
expensive, non-updatable, on-device detection algorithms and
instead focus on a sense-store-transmit based device that leaves
the computation to compute-capable hardware. In addition, the
findings in this paper offer an exciting future for edge-based
sensor data acquisition where a limited knowledge of a signal
can be used to significantly compress the signal.

B. Limitations and Future Work

While the findings in this paper offer exciting results for
the compression of EKG signals, there exist a number of
limitations and some exciting future work bulleted below.
Limitations:

• Beat-based signal segmentation has a required size to
cohere to the tailored basis. Extremely high heart rates
would likely need a separate tailored basis to capture their
characteristics.

• The PRD values calculated are biased by our method
since we center on the exact peak location thus never
miss the peak amplitude of the signal.

• The tailored basis created may require adjustments based
on heart signal characteristics sensed from the location
of implant.

Future Work:
• A per-patient, or auto-adjusting tailored basis would be

interesting to experiment with although regulatory bodies

are hesitant to endorse non human-in-the-loop algorithm
updates.

• A tailored basis for different beat types would be inter-
esting as well, but requires on-device beat classification.

• The implementation of this method on real hardware and
analyzed in a noisy environment would be interesting to
test robustness.
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