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Abstract

Finding the mixed Nash equilibria (MNE) of a
two-player zero sum continuous game is an impor-
tant and challenging problem in machine learning.
A canonical algorithm to finding the MNE is the
noisy gradient descent ascent method which in the
infinite particle limit gives rise to the Mean-Field
Gradient Descent Ascent (GDA) dynamics on the
space of probability measures. In this paper, we
first study the convergence of a two-scale Mean-
Field GDA dynamics for finding the MNE of the
entropy-regularized objective. More precisely we
show that for each finite temperature (or regu-
larization parameter), the two-scale Mean-Field
GDA with a suitable finite scale ratio converges
exponentially to the unique MNE without assum-
ing the convexity or concavity of the interaction
potential. The key ingredient of our proof lies
in the construction of new Lyapunov functions
that dissipate exponentially along the Mean-Field
GDA. We further study the simulated annealing
of the Mean-Field GDA dynamics. We show that
with a temperature schedule that decays logarith-
mically in time the annealed Mean-Field GDA
converges to the MNE of the original unregular-
ized objective.

1. Introduction
Minmax learning underpins numerous machine learn-
ing methods including Generative Adversarial Networks
(GANs) (Goodfellow et al., 2020), adversarial training
(Madry et al., 2018) and reinforcement learning (Busoniu
et al., 2008). Minmax learning is often formulated as a zero-
sum game between min and max players and hence can be

1Department of Mathematics and Statistics, University of Mas-
sachusetts, Amherst, Massachusetts, USA . Correspondence to:
Yulong Lu <yulonglu@umass.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

formalized as a minmax optimization problem of the form

min
x∈X

max
y∈Y

K(x, y),

where the function K is the game objective, x and y rep-
resent the player strategies. When K is nonconvex in x or
nonconcave in y, finding the pure Nash (Nash, 1951) equilib-
ria ofK is difficult and sometimes impossible since the pure
Nash equilibrium may not even exist. On the other hand, the
mixed Nash equilibria (MNE) (Glicksberg, 1952) where the
pure strategies are replaced by mixed strategies modeled by
a probability distribution over the set of strategies, do exist
for more general objective functions. Formally the mixed
Nash equilibria consist of pairs of probability distributions
µ and ν that solve

min
µ∈P(X )

max
ν∈P(Y)

E0(µ, ν), where

E0(µ, ν) :=

∫
X

∫
Y
K(x, y)µ(dx)ν(dy).

(1)

Here P(X ) and P(Y) denote the space of probability mea-
sures (or the set of all mixed strategies) on the state spaces
X and Y respectively. Thanks to Glicksberg’s theorem
(Glicksberg, 1952), a MNE exists if X and Y are finite or
if X and Y are compact and K is continuous. While MNE
exist in much generality, it is still difficult to find them.
Several progress have been made recently for finding MNE
of high dimensional game problems with applications in
GANs. For instance, the work (Hsieh et al., 2019) proposed
a mirror-descent algorithm for finding MNE of (1) and ap-
plied the algorithms for Wasserstein GANs with provable
convergence guarantees. The recent work (Domingo-Enrich
et al., 2020; Ma & Ying, 2021) proposed and analyzed an
entropy-regularized version of (1):

min
µ∈P(X )

max
ν∈P(Y)

Eτ (µ, ν), where

Eτ (µ, ν) :=

∫
X

∫
Y
K(x, y)dν(y)dµ(x)− τH(µ) + τH(ν).

(2)
Here H(µ) = −

∫
log dµ

dxdµ is the entropy functional of
the probability measure µ, and the parameter τ > 0 is the
entropy regularization parameter(or temperature). Observe
that the objective functional Eτ is strongly convex in µ
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and strongly concave in ν. As a result of the famous Von
Neumann’s minmax theorem (Von. Neumann, 1928; Sion,
1958; Nikaido & Isoda, 1955; Nikaido, 1954), one has that

min
µ∈P(X )

max
ν∈P(Y)

Eτ (µ, ν) = max
ν∈P(Y)

min
µ∈P(X )

Eτ (µ, ν). (3)

Under very mild assumptions on K, Problem (2) has a
unique MNE (µ∗, ν∗) (see a proof in (Domingo-Enrich
et al., 2020)) in the sense that for any µ ∈ P(X ), ν ∈ P(Y),

Eτ (µ∗, ν) ≤ Eτ (µ∗, ν∗) ≤ Eτ (µ, ν∗).

Furthermore, the MNE (µ∗, ν∗) is given by the unique solu-
tion of the fixed point equations

µ∗(dx) ∝ exp
(
−
∫
Y
τ−1K(x, y)dν∗(y)

)
,

ν∗(dy) ∝ exp
(∫
X
τ−1K(x, y)dµ∗(x))

)
.

(4)

In the setting where both players play finite mixtures of
N strategies, i.e. µ =

∑N
j=1

1
N δXj and ν =

∑N
j=1

1
N δY j ,

the following noisy gradient descent-ascent dynamics is
perhaps one of the most natural algorithms for finding MNE
of (1) and (2):

dXi
t = − 1

N

N∑
j=1

∇xK(Xi
t , Y

j
t )dt+

√
2τdW i

t ,

dY it =
η

N

N∑
j=1

∇yK(Xj
t , Y

i
t )dt+

√
2τηdBit,

(5)

where W i
t , B

i
t, i = 1, · · ·N are independent Brownian mo-

tions. The parameter η > 0 in (5) represents the ratio
of timescales at which the gradient descent and ascent dy-
namics is undergoing. When η = 1, there is no timescale
separation. However, GDA with different time scales is
commonly used in minmax optimization (Jin et al., 2020;
Lin et al., 2020) and sometimes leads to better convergence
property (Heusel et al., 2017).

In the limit of large number of strategies (N→∞), the empir-
ical measures µNt = 1

N

∑N
i=1 δXit and νNt = 1

N

∑N
i=1 δY it

of the interacting particle, with {Xi
0} and {Y i0 } identically

independent sampled from the initial distributions µ0 and
ν0, converge weakly within finite time to the solutions µt
and νt of the Mean-Field GDA (also named the Interact-
ing Wasserstein Gradient Flow in (Domingo-Enrich et al.,
2020)) dynamics:

∂tµt = ∇ · (µt
∫
Y
∇xK(x, y)dνt(y)) + τ∆µt,

∂tνt = η
(
−∇ · (νt

∫
X
∇yK(x, y)dµt(x)) + τ∆νt

)
.

(6)

The dynamics (6) can be viewed as the minmax analogue
of the Mean-Field Langevin (Nitanda et al., 2022; Chizat,
2022; Hu et al., 2021) dynamics that arises naturally from
the mean field analysis of optimization of two-layer neural
networks.

Despite its simplicity and popularity, the long-time con-
vergence of the Mean-Field GDA (6) is still not well un-
derstood, except in the extreme quasi-static (Ma & Ying,
2021) regime where the ascent dynamics is infinitely faster
or slower than the descent dynamics (η = 0 or +∞). This
motivates us to study the first question, which to the best of
our knowledge, remains open:

Question 1: Does the Mean-Field GDA (6) with a finite
scale ratio η > 0 converge to the unique MNE? If so, what
is the rate of convergence?

We provide an affirmative answer to Question 1 and es-
tablish a quantitative exponential convergence of (6) to the
MNE for any fixed τ > 0. Furthermore, motivated by the
simulated annealing results for Langevin dynamics (Holley
et al., 1989; Tang & Zhou, 2021; Raginsky et al., 2017)
in the context of global optimization and the recent results
for Mean-Field Langevin dynamics (Chizat, 2022; Nitanda
et al., 2022) in the setting of training two-layer neural net-
works, it is natural to ask what would happen to the dy-
namics (6) in the annealed regime that τ→0 as t→∞. In
particular, it is natural to ask

Question 2: Does the annealed Mean-Field GDA (6) with a
decreasing temperature τ = τt converge to a MNE of the
unregularized objective E0 defined in (1)?

Summary of contributions

In this work we first address Question 1 by providing the
first convergence analysis of the two-scale continuous-time
Mean-Field GDA dynamics (6) with a finite scale ratio.
This improves substantially the earlier convergence results
by (Ma & Ying, 2021; Domingo-Enrich & Bruna, 2022)
on Mean-Field GDA in the quasistatic setting where the
scale ratio either vanishes or explodes. The key ingredi-
ent of the proof is the construction of a novel Lyapunov
function which decreases exponentially along the dynamics
(6). We then further address Question 2 by proving that the
annealed Mean-Field GDA converges to a global MNE of
the original unregularized objective E0. The latter result, to
the best our knowledge, is the first rigorous justification of
the convergence of GDA to MNE in the mean field regime.

We highlight the major contributions as follows.

• For any fixed temperature τ > 0, we show that in the
fast ascent/descent regime (or the scale ratio η is either
larger or smaller than certain threshold), the Mean-
Field GDA dynamics (6) converges exponentially to
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the MNE of the entropy-regularized objective Eτ with
respect to certain Lyapunov functions; see Theorem
2.4.

• The convergence in Lyapunov functions further implies
the global exponential convergence of the dynamics
with respect to the relative entropy (see Theorem 2.7).
Our (non-asymptotic) convergence results hold for any
positive temperature (regularization parameter) and do
not assume convexity or concavity of the interaction
potential K. The convergence rate is characterized
explicitly in terms of τ , bounds on K and diameters of
the state spaces.

• We also study the simulated annealing of the Mean-
Field GDA dynamics (6). We prove that with the
cooling schedule τt decaying with a logarithimc rate,
the Mean-Field GDA dynamics (6) converges to the
global mixed Nash equilibrium of E0 with respect to
the Nikaidò-Isoda error (defined in (7)). See Theorem
2.8 for the precise statements.

1.1. Related work

MINMAX OPTIMIZATION

Most previous works about minmax optimization focused on
the analysis of discrete-time optimization schemes in finite
dimensional Euclidean spaces under various assumptions on
the objective function. In the convex-concave setting, global
convergence guarantees were obtained for various optimiza-
tion schemes, such as GDA (Daskalakis & Panageas, 2019),
mirror descent (Mertikopoulos et al., 2018) and Hamiltonian
gradient descent (Abernethy et al., 2019). In the non-convex
and/or non-concave setting, local convergence to several
notions of stationary points were studied in (Daskalakis &
Panageas, 2018; Lin et al., 2020). In the special case where
the objective satisfies a two-sided Polyak-Łojasiewicz (PL)
condition, convergence to global Nash equilibria were re-
cently obtained in (Yang et al., 2020; 2022; Doan, 2022) for
two-scale GDA.

MEAN-FIELD ANALYSIS

Our study of the Mean-Field GDA dynamics for minmax
optimization is strongly motivated by a growing amount of
work on mean-field analysis of gradient descent algorithms
for minimizing neural networks. The study of the latter
originates from the work on two-layer networks (Mei et al.,
2018; Sirignano & Spiliopoulos, 2020; Rotskoff & Vanden-
Eijnden, 2022; Chizat & Bach, 2018), to residual networks
(Lu et al., 2020; Wojtowytsch et al., 2020) and general
deep neural networks (Araújo et al., 2019; Sirignano &
Spiliopoulos, 2022; Nguyen, 2019). These results show
that the mean field dynamics can be realized as Wasserstein
gradient flows of certain nonlinear energy functionals on

the space of probability measures. Global convergence of
the Wasserstein gradient flows were obtained for the mean-
field Langevin dynamics in (Mei et al., 2018; Chizat, 2022;
Nitanda et al., 2022; Hu et al., 2021) and for the noiseless
mean-field dynamics in (Chizat & Bach, 2018). We note that
mean-field Langevin dynamics can be viewed as a special
Mckean-Vlasov dynamics whose long-time convergence are
often established by assuming either the small interaction
strength or large noise level; see e.g. (Eberle et al., 2019;
Hu et al., 2021).

Among the existing work on mean field Langevin dynamics,
(Chizat, 2022) is closest to ours where the author proved the
exponential convergence of Mean-Field Langevin dynamics
under a certain uniform log-Sobolev inequality assumption,
and also proved the convergence of the annealed Mean-
Field Langevin to the global minimizers of the objective
function. Our results are parallel to the results of (Chizat,
2022), but require new proof strategies. A key ingredient
of our proof is constructing new Lyapunov functions that
decay exponentially along the Mean-Field GDA (6).

In the context of minmax optimization, (Domingo-Enrich
et al., 2020) first proposed and analyzed the noisy gradient
descent ascent flow (5) without scale separation (η = 1) for
finding the MNE. Specifically, the authors therein proved
the convergence of (5) to the mean field GDA (6) in the
limit of large agent size, and characterized the equilibrium
of (6) as the unique solution of the fixed point equation (4).
However, (Domingo-Enrich et al., 2020) did not provide
a proof of the long-time convergence of (6). In (Ma &
Ying, 2021), the authors obtained convergence guarantees
for the mean field GDA (6) in the quasi-static regime where
the ascent dynamics is infinitely faster or slower than the
descent dynamics (i.e. η = +∞ or 0). One of the major
contributions of the present work goes beyond the quasi-
static regime and provides the first proof for exponential
convergence of (6) with a finite scale ratio.

WASSERSTEIN-FISHER-RAO GRADIENT FLOWS

As an alternative to Wasserstein gradient flows, gradient
flow with respect to the Wasserstein-Fisher-Rao (WFR) met-
ric (Chizat et al., 2018; Kondratyev et al., 2016; Laschos
& Mielke, 2019) has recently sparked a large amount of
research on PDEs (Brenier & Vorotnikov, 2020; Kondratyev
& Vorotnikov, 2019), neural network training (Rotskoff
et al., 2019) and statistical sampling (Lu et al., 2019; 2022).
Especially, WFR gradient flows give rise to birth-death in-
teracting particle dynamics that enables “teleportation” of
mass and locations of particles and hence lead to better
convergence properties than the Langevin dynamics in cer-
tain scenarios (Rotskoff et al., 2019; Lu et al., 2019; 2022).
More recently, (Domingo-Enrich et al., 2020) adopts a WFR-
gradient flow for two-player zero-mean continuous games
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and proves that the time-averaging of the WFR-dynamics
converges to the MNE in the regime where Fisher-Rao dy-
namics dominates the Wasserstein counterpart. In (Wang
& Chizat, 2022), a new particle algorithm motivated by the
implicit time-discretization of WFR-gradient flow was pro-
posed for finding the MNE in the space of atomic measures.
The authors proved a local exponential convergence of the
proposed algorithm under certain non-degeneracy assump-
tions on the game objective and the assumption that the
MNE is unique.

1.2. Notations

For a measurable spaceX , we use P(X ) to denote the space
of probability measures on X . Given a canonical Borel mea-
sure dx onX , such as the uniform measure considered in the
paper, if µ is absolutely continuous with respect to dx, we
denote the Radon-Nikodym derivative by dµ

dx . We define the
shannon entropy of µ byH(µ) = −

∫
X log(dµdx )dµ(x). The

relative entropy (or Kullback-Leibler divergence)H(µ1|µ2)
and the relative Fisher information I(µ1|µ2) between two
probability measures µ1 and µ2 are defined by

H(µ1|µ2) =

∫
log
(dµ1

dµ2

)
dµ1,

I(µ1|µ2) =

∫ ∣∣∣∇ log
(dµ1

dµ2

)∣∣∣2dµ1

if µ1 is absolutely continuous with respect to µ2 and +∞
otherwise. Given an approximate mixed Nash equilibrium
(µ, ν), we define the Nikaidò-Isoda (Nikaido & Isoda, 1955)
error NI(µ, ν) by

NI(µ, ν) := sup
ν′∈P(Y)

E0(µ, ν′)− inf
µ′∈P(X )

E0(µ′, ν). (7)

Note that by definition NI(µ, ν) ≥ 0 for any µ ∈ P(X ) and
ν ∈ P(Y) and NI(µ, ν) = 0 if and only if (µ, ν) is a mixed
Nash equilibrium.

1.3. Organization

The remaining of the paper is organized as follows. In
Section 2 we state the key assumptions and present the main
results of the paper. In Section 3 we discuss applications
of our results in training GANs and adversarial learning of
PDEs. All the proofs are provided in the Appendix. We
finish with several conclusion remarks and future directions
in Section 4.

2. Assumptions and Main Results
Let us first recall the minmax problem of the entropy-
regularized continuous game:

min
µ∈P(X )

max
ν∈P(Y)

Eτ (µ, ν), where

Eτ (µ, ν) :=

∫
X

∫
Y
K(x, y)dν(y)dµ(x)− τH(µ) + τH(ν).

(8)
When the regularization parameter (or temperature) τ = 0,
we write

E0(µ, ν) =

∫
X

∫
Y
K(x, y)dν(y)dµ(x).

We are interested in the global convergence of the Mean-
Field GDA dynamics to the MNE of (8):

∂tµt = ∇ · (µt
∫
Y
∇xK(x, y)dνt(y)) + τ∆µt,

∂tνt = η
(
−∇ · (νt

∫
X
∇yK(x, y)dµt(x)) + τ∆νt

)
.

In what follows, we may suppress the dependence of Eτ on
τ and writeE = Eτ to simplify notations when the τ > 0 is
fixed; we will indicate such dependence in later discussions
on the annealed dynamics where τ = τt shrinks to zero in
time.

2.1. Assumptions

Following (Domingo-Enrich & Bruna, 2022) and (Wang &
Chizat, 2022), we make the following assumptions on the
state spaces X and Y .

Assumption 2.1. The state spaces X and Y are (i) either
smooth compact Riemannian manifolds without boundary
such that the eigenvalues of the Ricci curvature are strictly
positive everywhere or (ii) Euclidean tori (with possibly
unequal dimensions).

We also make the following smoothness assumption on the
potential K.

Assumption 2.2. The function K ∈ C2(X × Y) and there
exists Kxy > 0 such that

‖∇2
xyK‖∞ ≤ Kxy.

It will be very useful to introduce operators K+ :
P(X )→P(Y) and K− : P(Y)→P(X ) where

K+µ(dy) =
1

Z+(µ)
exp

(∫
X
τ−1K(x, y)dµ(x)

)
,

K−ν(dx) =
1

Z−(ν)
exp

(
−
∫
Y
τ−1K(x, y)dν(y)

)
.

(9)
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Here Z−(ν) and Z+(µ) are the corresponding partition
functions defined by

Z−(ν) =

∫
X

exp
(
−
∫
Y
τ−1K(x, y)dν(y)

)
dx,

Z+(µ) =

∫
Y

exp
(∫
X
τ−1K(x, y)dµ(x)

)
dy.

(10)

It is easy to verify by the definition of E(µ, ν) that

arg max
ν∈P(Y)

E(µ, ν) = K+(µ), arg min
µ∈P(X )

E(µ, ν) = K−(ν).

(11)
With the notations above, the MNE (µ∗, ν∗) of (8) is char-
acterized as the unique solution of the following fixed point
equations (see Theorem 1 of (Domingo-Enrich et al., 2020)):

µ∗ = K−(ν∗), ν∗ = K+(µ∗). (12)

The lemma below shows that under the assumptions above
the measures K+(µ) and K−(ν) satisfy the logarithmic
Sobolev inequalities (LSI) uniformly for any µ ∈ P(X ) and
ν ∈ P(Y).

Lemma 2.3. There exists a constant λLS > 0 such that for
any µ ∈ P(X ) and ν ∈ P(Y),

λLSH(µ|K−ν) ≤ I(µ|K−ν), λLSH(ν|K+µ) ≤ I(ν|K+µ).
(13)

Lemma 2.3 follows from the classical Holley-Stroock’s per-
turbation argument and the fact that the uniform measures
on X and Y satisfy the LSI thanks to Assumption 2.1; see
e.g. Proposition 5.2 of (Chizat, 2022) and Proposition 6 of
(Domingo-Enrich & Bruna, 2022)). It is worthwhile to note
that in the regime where τ−1‖K‖∞ � 1, the log-Sobolev
constant λLS = λLS(τ) satisfies that

λLS(τ) = O(exp(−τ−1‖K‖∞)). (14)

2.2. Exponential convergence of Mean-Field GDA with
a fixed temperature

The goal of this section is to present the global convergence
of the GDA dynamics (6) to the MNE (µ∗, ν∗). To this end,
it will be useful to define the following functionals

L1(µ) := max
ν∈P(Y)

E(µ, ν)− min
µ∈P(X )

max
ν∈P(Y)

E(µ, ν),

L2(µ, ν) := max
ν∈P(Y)

E(µ, ν)− E(µ, ν),

L3(ν) := max
ν∈P(Y)

min
µ∈P(X )

E(µ, ν)− min
µ∈P(X )

E(µ, ν),

L4(µ, ν) := E(µ, ν)− min
µ∈P(X )

E(µ, ν).

(15)
Note that by definition the functionals Li, i = 1, · · · , 4
defined above are non-negative. For a fixed constant γ > 0,

we also define the Lyapunov functions

L(µ, ν) = L1(µ) + γL2(µ, ν),

L̃(µ, ν) = L3(µ) + γL4(µ, ν).
(16)

Let κ be the effective condition number defined by κ =
Kxy
τλLS

. Our first main theorem characterizes the exponential
convergence of (6) in terms of the Lyapunov functions L
and L̃.

Theorem 2.4. Let Assumption 2.1 and Assumption 2.2 hold.
For a fixed γ < 1, let (µt, νt) be the solution to the GDA
dynamics (6) with an initial condition (µ0, ν0) satisfying
L(µ0, ν0) <∞ and L̃(µ0, ν0) <∞, and with a finite time-
scale ratio η > 0.

(i) Fast ascent regime: set η = 2λLSκ
2Diam(Y)2
γ . Then for

all t > 0,
L(µt, νt) ≤ e−α1tL(µ0, ν0)

with

α1 = τλLS

(1− γ
2
∧ κ

2Diam(Y)2(1 + 3γ)

γ

)
;

(ii) Fast descent regime: set η = γ
2λLSκ2Diam(X )2(1+3γ) .

Then for all t > 0,

L̃(µt, νt) ≤ e−α2tL̃(µ0, ν0)

with

α2 =
τλLS

2

(
1 ∧ η(1− γ)

)
.

Proof. See Appendix B.2.

Remark 2.5. Theorem 2.4 states that the two-scale GDA
dynamics (6) with a suitable finite scale ratio converges
exponentially to the equilibrium. This improves substan-
tially the earlier result by (Ma & Ying, 2021) on GDA
in the quasistatic setting where the scale ratio η = 0 or
η = ∞. We emphasize that we chose the specific scale
ratios merely for the purpose of simplifying the expression
of the convergence rate α. In fact, by tracking the proof
of Theorem 2.4, one can obtain that the convergence rate
α1 = C1τλLS if η > c1λLSκ

2Diam(Y)2 and the rate
α2 = C2τλ

2
LS if η < c2γ

λLSκ2Diam(Y)2(1+3γ) , where con-
stants Ci, ci > 0, i = 1, 2 are independent of quantities
of interest. Moreover, the dependence of the convergence
rates on the diameters of the state spaces via KxyDiam(Y)
and KxyDiam(X ) can be avoided, and especially the latter
two quantities can be replaced by ‖∇K‖∞; see discussions
around (37).

Observe also that in the low temperature regime (τ � 1),
the log-Sobolev constant λLS = O(exp(−τ−1‖K‖∞)).
Hence Theorem 2.4 requires η = Ω((τ−1Kxy)2/λLS) (and
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η = o(λLSτ
2/K2

xy)) to guarantee an exponential conver-
gence rate α = O(τλLS) (and α = O(λ2LSτ

3)) in the fast
ascent (descent) regime. Notice that the quadratic depen-
dence of the convergence rate α on λLS in the fast descent
regime, in contrast to the linear dependence on λLS in the
fast ascent regime, is due to the fact that the ascent dynamics
itself is running in the slow time-scale η = o(λLSτ

2/K2
xy);

one would recover the same rate of convergence as in the
fast ascent regime if one used the time scales 1/η for the
descent dynamics and 1 the ascent dynamics.

Remark 2.6. Our construction of Lyapunov functions (16)
is strongly motivated by the recent study (Yang et al., 2020;
Doan, 2022) of two-scale GDA for minmax optimization on
Euclidean spaces. In the finite dimensional setting, a two-
sided PL condition is sufficient to guarantee the exponential
convergence of two-scale GDA in both continuous-time
(Doan, 2022) and discrete-time (Yang et al., 2020; 2022)
cases. In our infinite dimensional setting of the Mean-Field
GDA, the uniform log-Sobolev inequality plays the same
role as the two-sided PL condition, which however, needs
to be combined with the entropy sandwich inequalities in
Lemma A.1 to obtain the exponential dissipation of Lya-
punov functions.

The exponential convergence of (6) in the Lyapunov func-
tions further implies exponential convergence of (6) with
respect to the relative entropy as shown in the next theorem.

Theorem 2.7. Let the assumptions of Theorem 2.4 hold.
Let the rates αi, i = 1, 2 be defined as in Theorem 2.4.

(i) Fast ascent regime: set η = 2λLSκ
2Diam(Y)2
γ . Then for

all t > 0,

τH(µt|µ∗) ≤
e−α1t

γ
L(µ0, ν0),

τH(νt|ν∗) ≤
( 2

γ
+

4‖K‖2∞
τ2

)
e−α1tL(µ0, ν0).

(17)

(ii) Fast descent regime: set η = 2λLSκ
2Diam(Y)2
γ . Then for

all t > 0,

τH(µt|µ∗) ≤
e−α2t

γ
L(µ0, ν0),

τH(νt|ν∗) ≤
( 2

γ
+

4‖K‖2∞
τ2

)
e−α2tL(µ0, ν0).

(18)

Proof. See Appendix B.3.

2.3. Convergence of annealed Mean-Field GDA

In this section, we proceed to presenting the convergence of
the “annealed” Mean-Field GDA dynamics

∂tµt = ∇ ·
(
µt

∫
Y
∇xK(x, y)dνt(y)

)
+ τt∆µt,

∂tνt = ηt

(
−∇ ·

(
νt

∫
X
∇yK(x, y)dµt(x)

)
+ τt∆νt

)
,

(19)
where τt > 0 is now a time-dependent temperature which
shrinks in time. Given any initial condition (µ0, ν0) ∈
P(X )× P(Y), the existence and uniqueness of the global
solution to (19) follow directly from the classical well-
posedness of the theory of nonlinear Mckean-Vlasov-type
PDEs (Funaki, 1984; Sznitman, 1991; Wang, 2018; Huang
et al., 2021). Our goal is to show that by carefully choosing
the cooling schedule τt and the time-scale ratio ηt the solu-
tion (µt, νt) to the annealed dynamics (19) converges to the
MNE of E0.

Let (µ∗τ , ν
∗
τ ) be the solution of (12) corresponding to tem-

perature τ . Recall the Nikaidò-Isoda defined by (7).

Theorem 2.8. Let Assumption 2.2 and Assumption 2.1 hold.
Let (µt, νt) be the solution to (19) with an initial condition
(µ0, ν0) ∈ P(X ) × P(Y). Assume that the log-Sobolev
constant λLS = λLS(τ) ≥ C0e

−ξ∗/τ for some ξ∗, C0 > 0.

(i) Fast ascent regime: Assume further that τt is smooth,
decreasing in t and for some ξ > ξ∗, τt = ξ/ log t for large
values of t. Set ηt = M

(log t)2 t
ξ∗/ξ for some large M > 0.

Then for every 0 < ε < 1 − ξ∗/ξ, there exists C,C ′ > 0
such that for t sufficiently large,

H(µt|µ∗τt) ≤ Ct
−(1−ξ∗/ξ−ε),H(νt|ν∗τt) ≤ Ct

−(1−ξ∗/ξ−ε),
(20)

and that

0 ≤ NI(µt, νt) ≤
C ′ log log t

log t
. (21)

(ii) Fast descent regime: Assume further that τt is smooth,
decreasing in t and for some ξ > 2ξ∗, τt = ξ/ log t for
large values of t. Set ηt = log t

Mt for some large M. Then for
every 0 < ε < 1− 2ξ∗/ξ, there exists C,C ′ > 0 such that
for t sufficiently large,

H(µt|µ∗τt) ≤ Ct
−(1−2ξ∗/ξ−ε),H(νt|ν∗τt) ≤ Ct

−(1−2ξ∗/ξ−ε),
(22)

and that

0 ≤ NI(µt, νt) ≤
C ′ log log t

log t
. (23)

Proof. See Appendix C.
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3. Applications
In this section, we discuss briefly applications of our theo-
retical results in training of GANs and adversarial learning
of PDEs.

3.1. Training of GANs

Let µm be the empirical measure associated to the i.i.d.
samples {xi}mi=1 ∈ X from a target measure µ ∈ P(X ).
Let DF be an IPM on the space of probability measures
P(X ) parameterized by a set F of discriminators, i.e.

DF (µ, ν) := sup
f∈F

∫
fdµ−

∫
fdν.

IPM-based GANs learn an optimal µ that minimizes
DF (µ, µm) over P(X ) :

inf
µ∈P(X )

DF (µ, µm) = inf
µ∈P(X )

sup
f∈F

∫
fdµ−

∫
fdµm.

(24)
Consider the witness function class F given by the unit ball
of Barron space B which consists of functions admitting the
representation

f(x) =

∫
Y
aσ(b · x+ c)dν(y),

where y = (a, b, c) ∈ Y and ν is a probability measure on
the parameter space Y . Observe that Barron functions arise
as natural infinite-width limit of two-layer neural networks
with a dimension-free rate (Bach, 2017; Ma et al., 2022;
Barron, 1993). When the activation function satisfies that
supx |aσ(b · x+ c)| ≤ φ(y) for some nonnegative function
φ and for all y ∈ Y , the Barron norm ‖f‖B is defined by

‖f‖B := inf
ν

{∫
Y
φ(y)ν(dy)

∣∣∣
f(x) =

∫
Y
aσ(b · x+ c)dν(y)

}
.

(25)

Setting F = {f ∈ B | ‖f‖B ≤ 1} in (24) leads to

inf
µ∈P(X )

sup
ν∈P(Y)

∫
X

∫
Y
K(x, y)µ(dx)ν(dy), where

K(x, y) = Σ(x, y)−
∫
X

Σ(x, y)µm(dx)− φ(y).

(26)

Here we adopted the short-notation Σ(x, y) = aσ(b · x+ c)
with y = (a, b, c) ∈ Y in the above. Assume that the
activation function σ ∈ C2(R), and the input space X and
the parameter space satisfy the Assumption 2.1. Then it
is straightforward to see that K ∈ C2(X × Y) and there
exists Cσ <∞ such that for any multi-indices i and j with
0 ≤ |i|+ |j| ≤ 2,

‖∇i
x∇j

yK(x, y)‖∞ ≤ 2‖∇i
x∇j

yΣ‖∞ + ‖∇j
yφ‖ ≤ Cσ.

Therefore the convergence results in Theorem 2.4-2.7 for
the Mean-Field GDA hold for the entropy-regularization of
the GAN objective defined in (26). Moreover, Theorem 2.8
implies that the annealed GDA dynamics finds the MNE of
the unregularized GAN objective.

3.2. Adversarial learning of PDEs

We provide another usage of our results in adversarial learn-
ing of PDEs. To demonstrate the idea, we focus on a simple
linear elliptic PDE on a bounded Lipschitz domain Z ⊂ Rd
equipped with the Neumann boundary condition

−∆u(z) + V u(z) = f(z), z ∈ Z,
∂νu(z) = 0, z ∈ ∂Z.

Assume that 0 < Vmin ≤ V ≤ Vmax < ∞ and f ∈
(H1(Z))∗. The weak solution u ∈ H1(Z) satisfies that∫

Z
∇u · ∇v + V uvdz =

∫
Z
fvdz, ∀v ∈ H1(Z). (27)

We seek an approximate solution to (27) in the framework of
Petrov-Galerkin (Petrov, 1940; Mitchell & Griffiths, 1980)
where we choose the spaces of trial functions and test func-
tions as two different Barron functions. More precisely, con-
sider a trial function u(z) ∈ U := {u ∈ B1 | ‖u‖B1

≤ 1}
and a test function v ∈ V := {v ∈ B2 | ‖v‖B2 ≤ 1},
where Bi, i = 1, 2 are Barron spaces defined in Section 3.1
with activation function σi and Barron norm ‖ · ‖Bi defined
in (25) with φ replaced by nonnegative weight functions
φi. We look for a solution u ∈ U parameterized by some
probability measure µ ∈ P(X ),

u(z) =

∫
X
a1σ1(b1 · z + c1)µ(dx)

with x = (a1, b1, c1) ∈ X satisfying equation (27) for any
v ∈ V with ‖v‖B2

≤ 1 parameterized by ν ∈ P(Y) such
that

v(z) =

∫
Y
a2σ2(b2 · z + c2)ν(dy).

Notice that the state spaces X and Y denote the parame-
ter spaces associated to the two Barron functions u and v
respectively. Putting these into the weak formulation (27)
leads to

inf
µ∈P(X )

sup
ν∈P(Y)

∫
X

∫
Y
K(x, y)µ(dx)ν(dy),

where the potential K(x, y) is given for x =
(a1, b1, c1), y = (a2, b2, c2) by

K(x, y) =

∫
Z

(
a1a2b1 · b2σ′1(b1 · z + c1)σ′2(b2 · z + c2)

+ V (z)a1a2σ1(b1 · z + c1)σ2(b2 · z + c2)

− f(z)a2σ2(b2 · z + c2)
)
dz − φ1(x) + φ2(y).
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Assume that the activation functions σi ∈ C2(R) and the
parameter spaces X and Y satisfy Assumption 2.1. Assume
also that φ1 ∈ C2(X ) and φ2 ∈ C2(Y). Then it is easy
to verify that K ∈ C2(X × Y) and that ‖K‖C2 ≤ C for
some constant C > 0 depending on σi, φi,X ,Y, V and f .
Hence the convergence results on Mean-Field GDA and
its annealed version established in Section 2 apply to this
problem.

4. Conclusion and future work
In this paper, we proved the global exponential convergence
of two-scale Mean-Field GDA dynamics for finding the
unique MNE of the entropy-regularized game objective on
the space of probability measures. The obtained conver-
gence rate depends on the uniform log-Sobolev constant
of proximal Gibbs distributions. We also proved that the
convergence of the annealed GDA dynamics to the MNE
of the unregularized game objective with respect to the
Nikaidò-Isoda error. The key ingredient of our proofs are
new Lyapunov functions which are used to capture the dissi-
pation of the two-scale GDA dynamics in different scaling
regimes.

We would like to mention several open problems and fu-
ture research directions. First, although we have proved the
global convergence of the Mean-Field GDA in the fast as-
cent/descent regime (with a finite but large/small time-scale
ratio), it remains an open question to show the convergence
or nonconvergence of the Mean-Field GDA in the intermedi-
ate time-scale regime, including particularly the case where
no time-scale separation occurs (i.e. η = 1 in (6)). Also,
currently our results only hold on bounded state spaces and
the convergence rate depends on the uniform bounds of
the potential function K on the state spaces. It remains an
important question to extend the results to minmax optimiza-
tion on unbounded state spaces. In practice, the Mean-Field
GDA needs to be implemented by a certain interacting par-
ticle algorithm such as (5) with a large number of particles.
Existing results on the mean field limit of (5) (e.g. Theo-
rem 3 of (Domingo-Enrich et al., 2020)) only holds in finite
time interval and the error bound can potentially grow ex-
ponentially in time. To obtain a quantitative error analysis
of the GDA for minmax optimization, it is an interesting
open question to derive a uniform-in-time quantitative error
bound between the particle system and the mean field dy-
namics. Finally, we anticipate our results can be exploited
to prove theoretical convergence guarantees for a variety of
minmax learning problems, including especially the train-
ing of GANs (Goodfellow et al., 2020), adversarial learning
problems (Madry et al., 2018), dual training of energy based
models (Dai et al., 2019; Domingo-Enrich et al., 2021) and
weak adversarial networks for PDEs (Zang et al., 2020).
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A. Proofs of preliminary lemmas
We first state a lemma below summarizing some important properties on the functionals Li, i = 1, · · · , 4. defined in (15).
Lemma A.1. For any µ ∈ P(X ) and ν ∈ P(Y), the following hold

L2(µ, ν) = τH(ν|K+(µ)), (28)

L4(µ, ν) = τH(µ|K−(ν)), (29)

τH(µ|µ∗) ≤ L1(µ) ≤ τH(µ|K−(K+(µ))), (30)

τH(ν|ν∗) ≤ L3(ν) ≤ τH(ν|K+(K−(ν))). (31)

Remark A.2. The sandwich inequalities (30) and (31) play an essential role in controlling terms in the entropy production of
the Mean-Field GDA dynamics via the Lyapunov functions in order to close the Grönwall argument to obtain the dissipation
of the latter along the dynamics. A similar sandwich inequality appeared in Lemma 3.4 of (Chizat, 2022; Nitanda et al.,
2022) in the proof of convergence for the Mean-Field Langevin dynamics.

Proof of Lemma A.1. First we have from the definition of E and (11) that

L2(µ, ν) = max
ν∈P(Y)

E(µ, ν)− E(µ, ν)

= τ logZ+(µ)−
∫
X

∫
Y
K(x, y)µ(dx)ν(dy)− τH(ν)

= τH(ν|K+(µ))

which proves (28). To see (29), notice again from (11) that

L4(µ, ν) = E(µ, ν)− min
µ∈P(X )

E(µ, ν)

=

∫
X

∫
Y
K(x, y)µ(dx)ν(dy)− τH(µ) + τ logZ−(ν)

= τH(µ|K−(ν)).

Next, we prove (30). In fact, replacing ν by K−(µ) in the last display leads to

τH(µ|K−(K+(µ))) = L4(µ,K+(µ))

= E(µ,K+(µ))− min
µ∈P(X )

E(µ,K+(µ))

= max
ν∈P(Y)

E(µ, ν)− min
µ∈P(X )

E(µ,K+(µ))

≥ max
ν∈P(Y)

E(µ, ν)− min
µ∈P(X )

max
ν∈P(Y)

E(µ, ν)

= L1(µ),

which proves the lower bound part of (30). To prove the upper bound part, we first compute the first-variation of the log
partition function logZ+(µ) as

∂

∂µ
logZ+(µ) = τ−1

∫
Y
K(x, y)dK+(µ)(y) = − log(K−(K+(µ)))− logZ−(K+(µ)). (32)

Then an application of the convexity of µ→ logZ+(µ) shown in Lemma A.3 yields

logZ+(µ)− logZ+(µ∗) ≥
∫
X

∂ logZ+(µ)

∂µ

∣∣∣
µ=µ∗

(dµ− dµ∗)

= −
∫
X

log(K−(K+(µ∗)))(dµ− dµ∗)

= −
∫
X

log(µ∗)(dµ− dµ∗).
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Consequently, one obtains that

L1(µ) = E1(µ)− E1(µ∗)

= −τ(H(µ)−H(µ∗)) + τ(logZ+(µ)− logZ+(µ∗))

≥ τ
∫

logµdµ−
∫

logµ∗dµ∗ −
∫
X

log(µ∗)(dµ− dµ∗)

= τH(µ|µ∗).

Finally, the inequality (31) follows from the same reasoning above by exploiting the convexity of ν→ logZ−(ν).

The following lemma establishes the convexity of the log partition functions logZ+(µ) and logZ−(ν). It was proved in
Proposition 3 of (Ma & Ying, 2021), but for completeness we include its proof here.

Lemma A.3. Both the functional µ→ logZ+(µ) and the functional ν→ logZ−(ν) are convex.

Proof. We only present the proof for the convexity of the map µ→ logZ+(µ) since the other case can be proved in the
same manner. For any µ1, µ2 ∈ P(X ) and α ∈ (0, 1),

Z+(αµ1 + (1− α)µ2)

= log
(∫
Y

exp
(∫
X
τ−1K(x, y)(αµ1(dx) + (1− α)µ2(dx))

)
dy
)

= log
(∫
Y

exp
(
α

∫
X
τ−1K(x, y)µ1(dx)

)
· exp

(
(1− α)

∫
X
τ−1K(x, y)µ2(dx)

)
dy
)

≤ log
((∫

Y
exp

(∫
X
τ−1K(x, y)µ1(dx)

)
dy
)α
·
(∫
Y

exp
(∫
X
τ−1K(x, y)µ2(dx)

)
dy
)1−α)

= αZ+(µ1) + (1− α)Z+(µ2).

We restate Theorem 5 of (Domingo-Enrich et al., 2020) in the following lemma which is used to control NI(µ∗τ , ν
∗
τ ).

Lemma A.4. (Theorem 5 of (Domingo-Enrich et al., 2020)) Let ε > 0, δ := ε/(2Lip(K)) and let Vδ be a lower bound on
the volume of a ball of radius of δ in X and Y . Let (µ∗τ , ν

∗
τ ) be the solution of the solution of (12). Then (µ∗τ , ν

∗
τ ) is an

ε-Nash equilibrium of E0 if
τ ≤ ε

4 log
(

2(1−Vδ)
Vδ

(4‖K‖∞/ε− 1)
) .

In particular, when X and Y are Riemannian manifolds or Euclidean tori of dimensions dX and dY respectively so that
Vol(Bδx) ≥ CδdX and Vol(Bδy) ≥ CδdY , the bounds above become

τ ≤ Cε

log ε−1

for some constant C > 0 depending only on K, dX , dY . Alternatively, if τ is sufficiently small, then (µ∗τ , ν
∗
τ ) is an ε-Nash

equilibrium with
ε = βτ(log(1/τ)) for β > dX ∨ dY + 1. (33)

Proof of Lemma A.4. The proof of the lemma can be found in Appendix C.4 of (Domingo-Enrich et al., 2020). We would
like to elaborate on the proof of (33). In fact, by tracking the proof of Theorem 5 in (Domingo-Enrich et al., 2020), one sees
that (µ∗τ , ν

∗
τ ) is an ε-Nash equilibrium provided that

e
ε
2τ

( Vol(Bδx)

1− Vol(Bδx)
∨

Vol(Bδy)

1− Vol(Bδy)

)
≥ 2(4‖K‖∞/ε− 1),

12
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where we recall that δ = ε/(2Lip(K)). Thanks to the lower bound on the volume of small balls in X and Y , the inequality
above holds if

e
ε
2τ ≥ C1ε

−(dX∨dY+1)

for some C1 > 0 depending only on K, dX , dY . Now with the choice (33) for ε with β > dX ∨ dY + 1, one has for τ
sufficiently small that

e
ε
2τ ≥ 1

τβ
>

C1

βdX∨dY+1

( 1

τ log(1/τ)

)dX∨dY+1

= C1ε
−(dX∨dY+1).

B. Proofs of convergence for Mean-Field GDA with a fixed temperature
B.1. Calculations of the time-derivatives of Li along (6)

In the next two propositions we keep track of the time-derivatives of functionals Li along the Mean-Field GDA dynamics
(6). The next proposition concerns L1(µt) and L2(µt, νt).
Proposition B.1. Let (µt, νt) be the solution to the DGA dynamics (6). Then

d

dt
L1(µt) ≤ −

τ2

2
I(µt|K−(K+(µt))) +K2

xyDiam(Y)2 · H(νt|K+(µt)) (34)

and
d

dt
L2(µt, νt) ≤ −τ2ηI(νt|K+(µt)) +

τ2

2
I(µt|K−(K+(µt))) + 3K2

xyDiam(Y)2 · H(νt|K+(µt)). (35)

Proof. First let us compute the functional gradient ∂L1

∂u (µt). In fact, thanks to the fact that L1(µ) = E1(µ)− E1(µ∗) and
(50), one has that

∂L1

∂u

∣∣∣
µ=µt

= −τ ∂
∂u

(
H(µ)− logZ+(µ)

)∣∣∣
µ=µt

= τ
(

logµ+ τ−1
∫
Y
K(x, y)dK+(µ)(y)

)∣∣∣
µ=µt

= τ
(

log
( dµt
dK−(K+(µt))

)
− logZ−(K+(µt))

)
,

where in the second identity we have used (32). Therefore it follows from (6) and the Cauchy-Schwarz inequality that

d

dt
L1(µt) =

∫
X

∂L1

∂u
(µt)d(∂tµt)

= τ2
∫
X

(
log
( dµt
dK−(K+(µt))

)
− logZ−(K−(K+(µt)))

)
∇x ·

(
µt∇x log

( dµt
dK−(νt)

))
dx

= −τ2
∫
X
∇x log

( dµt
dK−(K+(µt))

)
· ∇x log

( dµt
dK−(νt)

)
dµt(x)

= −τ2
∫
X

∣∣∣∇x log
( dµt
dK−(K+(µt))

)∣∣∣2dµt(x)

− τ2
∫
X
∇x log

(dK−(K+(µt))

dK−(νt)

)
· ∇x log

( dµt
dK−(K+(µt))

)
dµt(x)

≤ −τ
2

2
I(µt|K−(K+(µt))) +

τ2

2

∫
X

∣∣∣∇x log
(dK−(K+(µt))

dK−(νt)

)∣∣∣2dµt(x).

Furthermore, using the fact that

K−(K+(µt)) ∝ exp
(
−
∫
Y
τ−1K(x, y)dK+(µt)(y)

)
, K−(νt) ∝ exp

(
−
∫
Y
τ−1K(x, y)dνt(y)

)
,

one derives that

1

2

∫
X

∣∣∣∇x log
(dK−(K+(µt))

dK−(νt)

)∣∣∣2dµt(x) =
1

2τ2

∫
X

∣∣∣ ∫
Y
∇xK(x, y)(dK+(µt)(y)− dνt(y))

∣∣∣2dµt(x). (36)

13
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Moreover, using the mean value theorem, one has for any y0 ∈ Y that

∇xK(x, y)−∇xK(x, y0) =
[ ∫ 1

0

∇2
xyK(x, y0 + s(y − y0))s ds

]
(y − y0).

Inserting the last identity into (36) leads to

1

2

∫
X

∣∣∣∇x log
(dK−(K+(µt))

dK−(νt)

)∣∣∣2dµt(x) ≤
K2
xyDiam(Y)2

2τ2
TV2(K+(µt), νt)

≤
K2
xyDiam(Y)2

τ2
H(νt|K+(µt)),

(37)

where we have used the Pinsker’s inequality in the last inequality above. Combining the last two estimates proves (34).

Next we proceed with the proof of (35). Recall from (28) that

L2(µ, ν) = τH(ν|K+(µ)) = τ

∫
Y

log
( ν

K+(µ)

)
dν.

Hence
d

dt
L2(µt, νt) = τ

(∫
Y

log
( νt
K+(µt)

)
d(∂tνt)−

∫
Y

d

dt
log(K+(µt))dνt

)
. (38)

Using the second equation of (6) that νt solves, one sees that the first term on the right side above becomes

τ
(∫
Y

log
( νt
K+(µt)

)
d(∂tνt) = −ητ2I(νt|K+(µt)). (39)

To compute the second term on the right side of (38), observe that

logK+(µt) = τ−1
∫
X
K(x, y)dµt(x)− log(Z+(µt)).

An a result of above and (32), one obtains that

− τ
∫
Y

d

dt
log(K+(µt))dνt

= −τ
∫
Y

∫
X

(
τ−1K(x, y)− ∂ log(Z+(µ))

∂µ
(µt)

)
d(∂tµt(x))dνt(y)

= −τ
∫
X

(∫
Y
τ−1K(x, y)dνt(y)−

∫
Y
τ−1K(x, y)dK+(µt)(y)

)
d(∂tµt(x))

= −τ
∫
X

(
log(Z−(K+(µt))K−(K+(µt)))− log(Z−(νt)K−(νt))

)
d(∂tµt(x))

= τ2
∫
X
∇x log

(dK−(K+(µt))

dK−(νt)

)
· ∇x log

( dµt
dK−(νt)

)
dµt(x)

= τ2
(∫
X

∣∣∣∇x log
(dK−(K+(µt))

dK−(νt)

)∣∣∣2dµt(x)

+

∫
X
∇x log

(dK−(K+(µt))

dK−(νt)

)
· ∇x log

( dµt
dK−(K+(µt))

)
dµt(x)

)
≤ τ2

2
I(µt|K−(K+(µt))) +

3τ2

2

∫
X

∣∣∣∇x log
(dK−(K+(µt))

dK−(νt)

)∣∣∣2dµt(x)

≤ τ2

2
I(µt|K−(K+(µt))) + 3K2

xyDiam(Y)2H(νt|K+(µt)),

where we have used (37) in the last inequality above. The estimate (35) then follows from above, (39) and (38). This
completes the proof of the proposition.
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The proposition below bounds the time-derivative of L2(νt) and L4(µt, νt).
Proposition B.2. Let (µt, νt) be the solution to the DGA dynamics (6). Then

d

dt
L3(νt) ≤ −

ητ2

2
I(νt|K+(K−(νt))) + ηK2

xyDiam(X )2 · H(µt|K−(νt)) (40)

and
d

dt
L4(µt, νt) ≤ −τ2I(µt|K−(νt)) +

ητ2

2
I(νt|K+(K−(νt))) + 3ηK2

xyDiam(X )2 · H(µt|K−(νt)). (41)

Proof. The proof follows essentially the same reasoning as the proof of Proposition B.1. In fact, it can be shown by a
straightforward calculation that

d

dt
L2(νt) = −ητ2

∫
Y
∇y log

( dνt
dK+(K−(νt))

)
· ∇y log

( dνt
dK+(µt)

)
dνt(y)

≤ −ητ
2

2
I(νt|K+(K−(νt))) +

ητ2

2

∫
Y

∣∣∣∇y log
(dK+(K−(νt))

dK+(µt)

)∣∣∣2dνt(y).

Similar to (37), one can obtain that

ητ2

2

∫
Y

∣∣∣∇y log
(dK+(K−(νt))

dK+(µt)

)∣∣∣2dνt(y) ≤ ηK2
xyDiam(X )2 · H(µt|K−(νt)).

Combining the last two inequalities yield (40).

As for time-derivative of L4(µt, νt), one has that

d

dt
L4(µt, νt) = −τ2I(µt|K−(νt))− ητ2

∫
Y
∇y log

( dK+(µt)

dK+(K−(νt))

)
· ∇y log

( dνt
dK+(µt)

)
dνt(y).

The second term on the right side above is bounded by

ητ2I(νt|K+(K−(νt))) +
3ητ2

2

∫
Y

∣∣∣∇y log
(dK+(K−(νt))

dK+(µt)

)∣∣∣2dνt(y)

≤ ητ2

2
I(νt|K+(K−(νt))) + 3ηK2

xyDiam(X )2 · H(µt|K−(νt)).

The estimate (41) follows directly from the last two inequalities.

B.2. Proof of Theorem 2.4

With Proposition B.1 and Proposition B.2, we are ready to present the proof of Theorem 2.4.

(i) Fast ascent regime. Thanks to Proposition B.1 and identity (28), we have

d

dt
L(µt, νt) ≤ −ητ2γI(νt|K+(µt))−

τ2

2
(1− γ)I(µt|K−(K+(µt)))

+
K2
xyDiam(Y)2(1 + 3γ)

τ
L2(µt, νt).

Observe also from Lemma 2.3 and sandwich inequality (30) that

τI(µt|K−(K+(µt))) ≥ τλLSH(µt|K−(K+(µt)))

≥ λLSL1(µt).

Combining the last two displays leads to

d

dt
L(µt, νt) ≤ −ητ2γI(νt|K+(µt))−

τ

2
(1− γ)λLSL1(µt) +

K2
xyDiam(Y)2(1 + 3γ)

τ
L2(µt, νt)

≤ −ητ2γλLSH(νt|K+(µt))−
τ

2
(1− γ)λLSL1(µt) +

K2
xyDiam(Y)2(1 + 3γ)

τ
L2(µt, νt)

= −τ
2

(1− γ)λLSL1(µt)− τ
(
ηγλLS −

K2
xyDiam(Y)2(1 + 3γ)

τ2

)
L2(µt, νt).
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Now for any fixed γ < 1, we set

η =
2K2

xyDiam(Y)2(1 + 3γ)

τ2γλLS
=

2λLSκ
2Diam(Y)2

γ
.

Then it follows from the last inequality that

d

dt
L(µt, νt) ≤ −αL(µt, νt)

with

α = τλLS

(1− γ
2
∧ κ

2Diam(Y)2(1 + 3γ)

γ

)
.

(ii) Fast descent regime. It follows from Proposition B.2 that

d

dt
L̃(µt, νt) ≤ −

ητ2

2
(1− γ)I(νt|K+(K−(νt)))− γτ2I(µt|K−(νt))

+ ηK2
xyDiam(X )2(1 + 3γ) · H(µt|K−(νt)).

Thanks to Lemma 2.3 and (31),

τI(νt|K+(K−(νt))) ≥ τλLSH(νt|K+(K−(νt)))

≥ λLSL3(νt).

As a result of above and (29),

d

dt
L̃(µt, νt) ≤ −

ητ

2
(1− γ)λLSL3(νt)− τ

(
γλLS − ηK2

xyDiam(X )2(1 + 3γ)
)
L4(µt, νt).

Therefore setting

η =
γτ2λLS

2K2
xyDiam(X )2(1 + 3γ)

and applying the Grönwall’s inequality to above leads to

L̃(µt, νt) ≤ e−αtL̃(µ0, ν0)

with
α =

τλLS
2

(
1 ∧ η(1− γ)

)
.

B.3. Proof of Theorem 2.7

(i) Fast ascent regime. First, thanks to Theorem 2.4, L(µt, νt) ≤ e−αtL(µ0, ν0). In particular, for any t > 0,

L1(µt) ≤ e−αtL(µ0, ν0) (42)

and

τH(νt|K+(µt)) = L2(µt, νt) ≤
e−αt

γ
L(µ0, ν0). (43)

As a result of (42) and (30), one obtains that

τH(µt|µ∗) ≤ e−αtL(µ0, ν0). (44)

Next, to obtain the exponential decay ofH(νt|ν∗), notice first that

τH(νt|ν∗) = τH(νt|K+(µt)) + τ

∫
Y

(log(K+(µt))− log(ν∗))dνt

= τH(νt|K+(µt)) + τ

∫
Y

(log(K+(µt))− log(ν∗))d(νt − ν∗)− τH(ν∗|K+(νt))

≤ τH(νt|K+(µt)) + τ

∫
Y

(log(K+(µt))− log(ν∗))d(νt − ν∗).

16
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Since ν∗ = K+(µ∗), we have

(log(K+(µt))− log(ν∗))(y) = τ−1
∫
X
K(x, y)(µt(dx)− µ∗(dx))− (logZ+(µt)− logZ+(µ∗)).

It follows from the last two displays that

τH(νt|ν∗) ≤ τH(νt|K+(µt)) +

∫
Y

∫
X
K(x, y)(µt(dx)− µ∗(dx))(νt(dy)− ν∗(dy)). (45)

The last term on the right side above can be upper bounded by∫
Y

∫
X
K(x, y)(µt(dx)− µ∗(dx))(νt(dy)− ν∗(dy)) ≤ ‖K‖∞ · TV(µt, µ

∗) · TV(νt, ν
∗)

≤ 2‖K‖∞
√
H(µt|µ∗) ·

√
H(νt|ν∗)

≤ τ

2
H(νt|ν∗) +

2‖K‖2∞
τ

H(µt|µ∗).

(46)

where we have used the Pinsker’s inequality and Young’s inequality in the last two lines above. Finally combining the last
two estimates leads to

τH(νt|ν∗) ≤ 2τH(νt|K+(µt)) +
4‖K‖2∞

τ
H(µt|µ∗)

≤
( 2

γ
+

4‖K‖2∞
τ2

)
e−αtL(µ0, ν0),

where we have used inequalities (43) and (44) in the last inequality above.

(ii) Fast descent regime. Thanks to Part (ii) of Theorem 2.4 and the bound (31), we have that

τH(νt|ν∗) ≤ L̃(µt, νt) ≤ e−α1tL̃(µ0, ν0) (47)

and that

τH(µt|K−(νt)) = L4(µt, νt) ≤
e−α1t

γ
L̃(µ0, ν0). (48)

Next to obtain the exponential decay of τH(µt|µ∗), observe that

τH(µt|µ∗) = τH(µt|K−(νt)) + τ

∫
X

(logK−(νt)− logµ∗)dµt

= τH(µt|K−(νt)) + τ

∫
X

(logK−(νt)− logµ∗)d(µt − µ∗)− τH(µ∗|K−(νt))

≤ τH(µt|K−(νt)) + τ

∫
X

(logK−(νt)− logµ∗)d(µt − µ∗).

(49)

Since µ∗ = K−(ν∗), we can write

logK−(νt)− logµ∗ = −τ−1
∫
Y
K(x, y)(νt − ν∗)(dy)− (logZ−(νt)− logZ−(ν∗)).

Hence the second term on the RHS of the last line of (49) can be bounded by in a similar manner as (46). Namely,

τ

∫
X

(logK−(νt)− logµ∗)d(µt − µ∗) =

∫
X

∫
Y
K(x, y)(νt − ν∗)(dy)(µt − µ∗)(dx)

≤ τ

2
H(µt|µ∗) +

2‖K‖2∞
τ

H(νt|ν∗).

Combining the last inequality with (49) leads to

τH(µt|µ∗) ≤ 2τH(µt|K−(νt)) +
4‖K‖2∞

τ
H(νt|ν∗)

≤
( 2

γ
+

4‖K‖2∞
τ2

)
e−α2tL̃(µ0, ν0),

where we have used (47) and (48) in the last inequality.
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C. Proof of convergence for the annealed dynamics
Recall that the MNE of entropy-regularized objective Eτ is given by (µ∗τ , ν

∗
τ ) characterized by (1). Note that we emphasized

the dependence of the objective and the optimizer on the temperature τ since the later will be time-dependent throughout
this section.

It will be useful to define energies Ei, i = 1, 2 as follows.

E1(µ) := max
ν∈P(Y)

Eτ (µ, ν) = −τH(µ) + τ logZ+(µ),

E2(ν) := min
µ∈P(X )

Eτ (µ, ν) = τH(ν)− τ logZ−(ν).
(50)

It is clear that L1(µ) = E1(µ)− E1(µ∗).

(i) Proof of Theorem 2.8 in the fast ascent regime. The proof of the entropy decays in (20) follows largely the proof of
Theorem 2.4 and is also inspired by the proof of Theorem 4.1 in (Chizat, 2022).

Step 1. BoundingH(µt|µ∗τt) andH(νt|ν∗τt).

First, let us compute the time-derivative d
dtE1(µ∗τt). Note that since

E1(µ) = −τH(µ) + τ logZ+(µ),

we have for τ > 0,

d

dτ
E1(µ∗τ ) = −H(µ∗τ ) + logZ+(µ∗τ )

+ τ
(
〈logµ∗τ , ∂τµ

∗
τ 〉+

∫
X

∫
Y
K+(µ∗τ )(y)K(x, y)

d

dτ
(τ−1µ∗τ (x))dydx

)
.

Moreover,

τ

∫
X

∫
Y
K+(µ∗τ )(y)K(x, y)

d

dτ
(τ−1µ∗τ (x))dydx = −

∫
X

∫
Y
K+(µ∗τ )(y)τ−1K(x, y)dyµ∗τ (x)dx

+ τ

∫
X

∫
Y
K+(µ∗τ )(y)τ−1K(x, y)dy∂τµ

∗
τ (dx)

= −
∫
X

∫
Y
K+(µ∗τ )(y)τ−1K(x, y)dyµ∗τ (x)dx− τ〈logK−(K+(µ∗τ )), ∂τµ

∗
τ 〉.

Combining the last two identities leads to

d

dτ
E1(µ∗τ ) = −H(µ∗τ ) + logZ+(µ∗τ )−

∫
X

∫
Y
K+(µ∗τ )(y)τ−1K(x, y)dyµ∗τ (x)dx

+ τ〈logµ∗τ − logK−(K+(µ∗τ )), ∂τµ
∗
τ 〉︸ ︷︷ ︸

=〈∂uEτ1 (u)|u=µ∗τ , ∂τµ
∗
τ 〉=0

= τ−1E1(µ∗τ )−
∫
X

∫
Y
K+(µ∗τ )(y)τ−1K(x, y)dyµ∗τ (x)dx.

Consequently, we have

d

dt
E1(µ∗τt) = τ ′t

d

dτ
E1(µ∗τ )

∣∣∣
τ=τt

= τ ′t

(
τ−1t E1(µ∗τt)−

∫
X

∫
Y
K+(µ∗τt)(y)τ−1t K(x, y)dyµ∗τt(x)dx

)
.

(51)
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Next, a similar calculation as above applied to E1(µt) gives

d

dt
E1(µt) = τ ′t

(
τ−1t E1(µt)−

∫
X

∫
Y
K+(µt)(y)τ−1t K(x, y)dyµt(x)dx

)
+ τt

∫
X

log
( dµt
dK−(K+(µt))

)
· ∂tµt(dx)

= τ ′t

(
τ−1t E1(µt)−

∫
X

∫
Y
K+(µt)(y)τ−1t K(x, y)dyµt(x)dx

)
− τ2t

∫
X
∇x log

( dµt
dK−(K+(µt))

)
· ∇x log

( dµt
dK−(νt)

)
µt(dx).

(52)

As a result of (52) and (51),

d

dt
L1(µt) =

d

dt
(E1(µt)− E1(µ∗τt))

=
τ ′t
τt

[
L1(µt)−

(∫
X

∫
Y
K+(µt)(y)K(x, y)dyµt(x)dx−

∫
X

∫
Y
K+(µ∗τt)(y)K(x, y)dyµ∗τt(x)dx

)]
− τ2t

∫
X
∇x log

( dµt
dK−(K+(µt))

)
· ∇x log

( dµt
dK−(νt)

)
µt(dx)

≤ τ ′t
τt

(
L1(µt) + 2‖K‖∞

)
− τ2t

2
I(µt|K−(K+(µt))) +K2

xyDiam(Y)2 · H(νt|K+(µt)).

(53)

Next, we have from the ascent dynamics for νt,

d

dt
L2(µt, νt) = τ ′tH(νt|K+(µt)) + τt

∫
Y

log
( dνt
dK+(µt)

)
∂tνt(dy)− τt

∫
Y

d

dt
(logK+(µt))νt(dy)

≤ τ ′tH(νt|K+(µt))− ηtτ2t I(νt|K+(µt))− τt
∫
Y

d

dt
(logK+(µt))νt(dy).

(54)

The third term on the RHS above is

− τt
(∫
Y

∫
X

d

dt
(τ−1t µt(x))K(x, y)dxνt(y)dy − d

dt
log(Z+(µt))

)
= −τt

(∫
Y

∫
X

d

dt
(τ−1t µt(x))K(x, y)dx(νt(y)−K+(µt)(y))dy

)
= −τ

′
t

τt

∫
Y

∫
X
µt(x)K(x, y)dx(νt(y)−K+(µt)(y))dy

−
∫
Y

∫
X
∂tµt(x)K(x, y)dx(νt(y)−K+(µt)(y))dy

= −τ
′
t

τt

∫
Y

∫
X
µt(x)K(x, y)dx(νt(y)−K+(µt)(y))dy

+ τ2t

∫
X
∇x log

(dK−(K+(µt))

dK−(νt)

)
· ∇x log

( dµt
dK−(νt)

)
dµt(x)

≤ 2‖K‖∞|τ ′t |
τt

+
τ2t
2
I(µt|K−(K+(µt))) + 3K2

xyDiam(Y)2 · H(νt|K+(µt)).

Combining the last two displays yields

d

dt
L2(µt, νt) ≤

(
τ ′t + 3K2

xyDiam(Y)2
)
H(νt|K+(µt))− ηtτ2t I(νt|K+(µt))

+
2‖K‖∞|τ ′t |

τt
+
τ2t
2
I(µt|K−(K+(µt))).

(55)
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It then follows from (53) (55) that

d

dt
L(µt, νt) ≤ −

τ2t (1− γ)λLS(τt)

2
H(µt|K−(K+(µt))) +

(
γτ ′t + (1 + 3γ)K2

xyDiam(Y)2
)
H(νt|K+(µt))

+
2(1 + γ)‖K‖∞|τ ′t |

τt
+
τ ′t
τt
L1(µt)− γηtτ2t I(νt|K+(µt))

≤ −
( (1− γ)τtλLS(τt)

2
− τ ′t
τt

)
L1(µt)−

(
γηtτtλLS(τt)−

γτ ′t
τt
−

(1 + 3γ)K2
xyDiam(Y)2

τt

)
L2(µt, νt)

+
2(1 + γ)‖K‖∞|τ ′t |

τt

≤ −αtL(µt, νt) +
2(1 + γ)‖K‖∞

t log t
,

where the time-dependent rate satisfies for large t that

αt =
(( (1− γ)τtλLS(τt)

2
− τ ′t
τt

)
∧
(
ηtτtλLS(τt)−

τ ′t
τt
−

(1 + 3γ)K2
xyDiam(Y)2

γτt

))
≥ ξ

log t

(
C1t
−ξ∗/ξ ∧

(
ηtt
−ξ∗/ξ +

C2

t log t
− C3

(log t)2

))
.

Note that in the above we have used the decreasing of τt for large t. By choosing ηt ≥M tξ
∗/ξ

(log t)2 for some large M > 0, we
have

αt ≥
Ct−ξ

∗/ξ−ε

log t
.

As a result, we have obtained that for any ε′ < 1− ξ∗/ξ and for t large enough,

d

dt
L(µt, νt) ≤ −Ct−ξ

∗/ξ−ε′L(µt, νt) +
C ′

t log t
.

Define Q(t) = L(µt, νt)− C′

C t
−1+ξ∗/ξ+ε′ . Then it is straightforward to show that for t > t∗ large enough,

d

dt
Q(t) ≤ −Ct−ξ

∗/ξ−ε′Q(t),

which implies that

L(µt, νt) ≤ Q(t∗)e
− C

1−ξ∗/ξ−ε (t
1−ξ∗/ξ−ε′−t1−ξ

∗/ξ−ε′
∗ ) +

C ′

C
t−1+ξ

∗/ξ+ε′ ≤ C ′′t−1+ξ
∗/ξ+ε′ (56)

since ξ∗ < ξ and Q(t∗) is finite. By the definition of L and the fact that log t� tε for any ε > 0, the last estimate further
implies that for any 0 < ε < 1− ξ∗/ξ,

H(µt|µ∗τt) ≤ C
′′t−1+ξ

∗/ξ+ε, for t > t∗. (57)

In addition, using the same arguments used in the proof of the second bound in (17) from Theorem 2.7, one can obtain that

H(νt|ν∗τt) ≤ C
′′t−1+ξ

∗/ξ+ε, for t > t∗.

Step 2: Bounding NI(µt, νt). Let us first claim that the difference NI(µt, νt)− NI(µ∗τt , ν
∗
τt) satisfies

NI(µt, νt)− NI(µ∗τt , ν
∗
τt) ≤ Ct

− 1−ξ∗/ξ−ε
2 . (58)

In fact, by definition,

NI(µt, νt)− NI(µ∗τt , ν
∗
τt) = max

ν∈P(X )
E0(µt, ν)− max

ν∈P(X )
E0(µ∗τt , ν) + min

µ∈P(X )
E0(µ, ν∗τt)− min

µ∈P(X )
E0(µ, νt)

= max
y∈Y

∫
X
K(x, y)µt(dx)−max

y∈Y

∫
X
K(x, y)µ∗τt(dx)

+ min
x∈X

∫
Y
K(x, y)ν∗τt(dy)−min

x∈X

∫
Y
K(x, y)νt(dy)

=: J1 + J2.
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To bound J1, let us define yt ∈ arg maxy∈Y
∫
X K(x, y)µt(dx) and y∗t ∈ arg maxy∈Y

∫
X K(x, y)µ∗τt(dx). Then by the

optimality of y∗t and the boundedness of K,

J1 =

∫
X
K(x, yt)µt(dx)−

∫
X
K(x, y∗t )µ∗τt(dx)

≤
∫
X
K(x, yt)µt(dx)−

∫
X
K(x, yt)µ

∗
τt(dx)

≤ ‖K‖∞TV(µt, µ
∗
τt)

≤
√

2‖K‖∞
√
H(µt|µ∗τt)

≤ Ct−
1−ξ∗/ξ−ε

2 .

The same bound holds for J2 after applying a similar argument as above, which completes the proof of (58). Finally,
applying Lemma A.4 with τ = τt = ξ/ log t, we have for t large enough,

NI(µ∗τt , ν
∗
τt) ≤

C log(log t)

log t
. (59)

Hence the estimate (21) follows from (58) and (59).

(ii) Proof of Theorem 2.8 in the fast descent regime. By a direct calculation, one has

d

dt
L3(νt) ≤

τ ′t
τt

(L3(νt) + 2‖K‖∞)− ηtτ
2
t

2
I(νt|K+(K−(νt))) + ηtK

2
xyDiam(X )2H(µt|K−(νt)) (60)

and
d

dt
L4(µt, νt) ≤

τ ′t
τt

(L4(νt) + 2‖K‖∞)− τ2t I(µt|K−(νt)) +
τ2t ηt

2
I(νt|K+(K−(νt)))

+ 3ηtK
2
xyDiam(X )2H(µt|K−(νt)).

(61)

Combining the last two displays, one can obtain the time-derivative of L̃(µt, νt) as follows

d

dt
L̃(µt, νt) ≤

τ ′t
τt
L̃(µt, νt) +

τ ′t
τt

2(1 + γ)‖K‖∞ − γτ2t I(µt|K−(νt))

− (1− γ)ηtτ
2
t

2
I(νt|K+(K−(νt))) + ηt(1 + 3γ)K2

xyDiam(X )2H(µt|K−(νt))

≤ τ ′t
τt
L̃(µt, νt)−

(1− γ)ηtτtλLS(τt)

2
L3(νt)− τt

(
γλLS(τt)

−
ηt(1 + 3γ)K2

xyDiam(X )2

τ2t

)
L4(µt, νt) +

2τ ′t
τt

(1 + γ)‖K‖∞

≤ −α2(t)L̃(µt, νt) +
2τ ′t
τt

(1 + γ)‖K‖∞,

where

α2(t) =
(1− γ)ηtτtλLS(τt)

2
∧ τt

(
λLS(τt)−

ηt(1 + 3γ)K2
xyDiam(X )2

γτ2t
− τ ′t
τt

)
≥ ξ

log t
t−(ξ

∗/ξ)
(
C1ηt ∧

(
t−(ξ

∗/ξ) +
C2

t log t
− C3ηt

log(t)2

))
.

Setting ηt = c log t/t for some c < C2/C3 in the above yields that for every 0 < ε < 1− ξ∗/ξ and t large enough

α2(t) ≥ Ct−2ξ
∗/ξ−ε.

Therefore we have obtained that

d

dt
L̃(µt, νt) ≤ −Ct−2ξ

∗/ξ−εL̃(µt, νt) +
C ′

t log t
.
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Similar to the proof of (56), one can obtain from above that for t large enough

L̃(µt, νt) ≤ C ′′t−1+2ξ∗/ξ+ε.

This directly implies the entropy decay bounds in (22). Finally the estimate (23) follows from (22) and the arguments used
in Step 2 of the proof of Theorem 2.8- Part(i).
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