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ABSTRACT

Neural network weights are typically initialized at random from univariate
distributions, controlling just the variance of individual weights even in highly-
structured operations like convolutions. Recent ViT-inspired convolutional
networks such as ConvMixer and ConvNeXt use large-kernel depthwise convolu-
tions whose learned filters have notable structure; this presents an opportunity to
study their empirical covariances. In this work, we first observe that such learned
filters have highly-structured covariance matrices, and moreover, we find that
covariances calculated from a small network may be used to effectively initialize
a variety of larger networks of different depths, widths, patch sizes, and kernel
sizes, indicating a degree of model-independence to the covariance structure. Mo-
tivated by this finding, we then propose a learning-free multivariate initialization
scheme for convolutional filters using a simple, closed-form construction of their
covariance. Models using our initialization outperform those using traditional
univariate initializations, and typically meet or exceed the performance of those
initialized from the covariances of learned filters; in some cases, this improvement
can be achieved without training the depthwise convolutional filters at all. Our
code is available at https://github.com/locuslab/convcov.

1 INTRODUCTION

Early work in deep learning for vision demonstrated that the convolutional filters in trained neural
networks are often highly-structured, in some cases being qualitatively similar to filters known from
classical computer vision (Krizhevsky et al., 2017). However, for many years it became standard
to replace large-filter convolutions with stacked small-filter convolutions, which have less room
for any notable amount of structure. But in the past year, this trend has changed with inspiration
from the long-range spatial mixing abilities of vision transformers. Some of the most prominent
new convolutional neural networks, such as ConvNeXt and ConvMixer, once again use large-filter
convolutions. These new models also completely separate the processing of the channel and spatial
dimensions, meaning that the now-single-channel filters are, in some sense, more independent from
each other than in previous models such as ResNets. This presents an opportunity to investigate the
structure of convolutional filters.

In particular, we seek to understand the statistical structure of convolutional filters, with the goal of
more effectively initializing them. Most initialization strategies for neural networks focus simply on
controlling the variance of weights, as in Kaiming (He et al., 2015) and Xavier (Glorot & Bengio,
2010) initialization, which neglect the fact that many layers in neural networks are highly-structured,
with interdependencies between weights, particularly after training. Consequently, we study the
covariance matrices of the parameters of convolutional filters, which we find to have a large degree
of perhaps-interpretable structure. We observe that the covariance of filters calculated from pre-
trained models can be used to effectively initialize new convolutions by sampling filters from the
corresponding multivariate Gaussian distribution.

We then propose a closed-form and completely learning-free construction of covariance matrices for
randomly initializing convolutional filters from Gaussian distributions. Our initialization is highly
effective, especially for larger filters, deeper models, and shorter training times; it usually outper-
forms both standard uniform initialization techniques and our baseline technique of initializing by
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sampling from the distributions of pre-trained filters, both in terms of final accuracy and time-to-
convergence. Models using our initialization often see gains of over 1% accuracy on CIFAR-10 and
short-training ImageNet classification; it also leads to small but significant performance gains on
full-scale, ≈ 80%-accuracy ImageNet training. Indeed, in some cases our initialization works so
well that it outperforms uniform initialization even when the filters aren’t trained at all. And our
initialization is almost completely free to compute.

Related work Saxe et al. (2013) proposed to replace random i.i.d. Gaussian weights with random
orthogonal matrices, a constraint in which weights depend on each other and are thus, in some
sense, “multivariate”; Xiao et al. (2018) also proposed an orthogonal initialization for convolutions.
Similarly to these works, our initialization greatly improves the trainability of deep (depthwise)
convolutional networks, but is much simpler and constraint-free, being just a random sample from
a multivariate Gaussian distribution. Zhang et al. (2022) suggests that the main purpose of pre-
training may be to find a good initialization, and crafts a mimicking initialization based on observed,
desirable information transfer patterns. We similarly initialize convolutional filters to be closer to
those found in pre-trained models, but do so in a completely random and simpler manner. Romero
et al. (2021) proposes an analytic parameterization of variable-size convolutions, based in part on
Gaussian filters; while our covariance construction is also analytic and built upon Gaussian filters,
we use them to specify the distribution of filters.

Our contribution is most advantageous for large-filter convolutions, which have become prevalent
in recent work: ConvNeXt (Liu et al., 2022b) uses 7 × 7 convolutions, and ConvMixer (Trock-
man & Kolter, 2022) uses 9 × 9; taking the trend a step further, Ding et al. (2022) uses 31 × 31,
and Liu et al. (2022a) uses 51 × 51 sparse convolutions. Many other works argue for large-filter
convolutions (Wang et al., 2022; Chen et al., 2022; Han et al., 2021).

Preliminaries This work is concerned with depthwise convolutional filters, each of which is
parametrized by a k × k matrix, where k (generally odd) denotes the filter’s size. Our aim is to
study distributions that arise from convolutional filters in pretrained networks, and to explore prop-
erties of distributions whose samples produce strong initial parameters for convolutional layers.
More specifically, we hope to understand the covariance among pairs of filter parameters for fixed
filter size k. This is intuitively expressed as a covariance matrix Σ ∈ Rk

2×k2 with block structure:
Σ has k × k blocks, where each block [Σi,j ] ∈ Rk×k corresponds to the covariance between filter
pixel i, j and all other k2 − 1 filter pixels. That is, [Σi,j ]`,m = [Σ`,m]i,j gives the covariance of
pixels i, j and `,m.

In practice, we restrict our study to multivariate Gaussian distributions, which by convention are
considered as distributions over n-dimensional vectors rather than matrices, where the distribution
N (µ,Σ′) has a covariance matrix Σ′ ∈ Sn+ where Σ′i,j = Σ′j,i represents the covariance between
vector elements i and j. To align with this convention when sampling filters, we convert from our
original block covariance matrix representation to the representation above by simple reassignment
of matrix entries, given by

Σ′ki+j,k`+m := [Σi,j ]`,m for 1 ≤ i, j, `,m ≤ k. (1)

In this form, we may now easily generate a filter F ∈ Rk×k by drawing a sample f ∈ Rk
2

from
N (µ,Σ′) and assigning Fi,j := fki+j . In this paper, we assume covariance matrices are in the block
form unless we are sampling from a distribution, where the conversion between forms is assumed.

Scope We restricted our study to the large-filter depthwise convolutions found in new ViT-style
CNNs, namely the popular ConvMixer and ConvNeXt architectures. These networks consist of a
patch embedding layer followed by alternating spatial- and channel-mixing steps. Both use depth-
wise convolution for spatial mixing, but ConvMixer uses pointwise convolution (equivalently, linear
layers) for spatial mixing while ConvNeXt uses MLPs. ConvMixer uses no internal downsampling,
while ConvNeXt includes several downsampling stages. Unlike normal convolutions, the filters
in depthwise convolutions act on each input channel separately rather than summing features over
input channels. The depth of networks throughout the paper is synonymous with the number of
depthwise convolutional layers. All networks investigated use a fixed filter size throughout the net-
work, though the methods we present could easily be extended to the non-uniform case. Further, all
methods presented do not concern the biases of convolutional layers.
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Figure 1: In pre-trained mod-
els, the covariance matrices of
convolutional filters are highly-
structured. Filters in earlier lay-
ers tend to be focused, becoming
more diffuse as depth increases.
Observing the structure of each
block, we note that there is often
a static, centered negative com-
ponent and a dynamic positive
component that moves according
to the block’s position. Often,
covariances are higher towards
the center of the filters.
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2 THE COVARIANCES OF TRAINED CONVOLUTIONAL FILTERS AND THEIR
TRANSFERABILITY ACROSS ARCHITECTURES

In this section, we propose a simple starting point in our investigation of convolutional filter covari-
ance structure: using the distribution of filters from pre-trained models to initialize filters in new
models, a process we term covariance transfer. In the simplest case, we use a pre-trained model
with exactly the same architecture as the model to be initialized; we then show that we can actually
transfer filter covariances across very different models.

Basic method. We use i ∈ 1, . . . , D to denote the ith depthwise convolutional layer of a model
with D layers. We denote the j ∈ 1, . . . ,H filters of the ith pre-trained layer of the model by Fij
for a model with H convolutional filters in a particular layer (i.e., hidden dimension H) and F ′ to
denote the filters of a new, untrained model. Then the empirical covariance of the filters in layer i is

Σi = Cov[vec(Fi1), . . . , vec(FiH)], (2)

with the mean µi computed similarly. Then the new model can be initialized by drawing filters from
the multivariate Gaussian distribution with parameters µi,Σi:

F ′ij ∼ N (µi,Σi) for j ∈ 1, . . . ,H, i ∈ 1, . . . , D (3)

Note that in this section, we use the means of the filters in addition to the covariances to define the
distributions from which to initialize. However, we found that the mean can be assumed to be zero
with little change in performance, and we focus solely on the covariance in later sections.

Experiment design. We test our initialization methods primarily on ConvMixer since it is simple
and exceptionally easy to train on CIFAR-10. We use FFCV (Leclerc et al., 2022) for fast data
loading using our own implementations of fast depthwise convolution and RandAugment (Cubuk
et al., 2020). To demonstrate the performance of our methods across a variety of training times,
we train for 20, 50, or 200 epochs with a batch size of 512, and we repeat all experiments with
three random seeds. For all experiments, we use a simple triangular learning rate schedule (see
Appendix A.1) with the AdamW optimizer, a learning rate of .01, and weight decay of .01 as in
Trockman & Kolter (2022).

Most of our CIFAR experiments use a ConvMixer-256/8 with either patch size 1 or 2; a ConvMixer-
H/D has precisely D depthwise convolutional layers with H filters each, ideal for testing our initial
covariance transfer techniques. We train ConvMixers using popular filter sizes 3, 7, and 9, as well as
15. We also test our methods on ConvNeXt (Liu et al., 2022b), which includes downsampling unlike
ConvMixer; we use a patch size of 1 or 2 with ConvNeXt rather than the default 4 to accomodate
relatively small CIFAR-10 images, and the default 7× 7 filters.
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For most experiments, we provide two baselines for comparison: standard uniform initialization,
the standard in PyTorch (He et al., 2015), as well as directly transferring the learned filters from a
pre-trained model to the new model. In most cases, we expect new random initializations to fall
between the performance of uniform and direct transfer initializations. For our covariance transfer
experiments, we trained a variety of reference models from which to compute covariances; these are
all trained for the full 200 epochs using the same settings as above.

Frozen filters. Cazenavette et al. noticed that ConvMixers with 3 × 3 filters perform well
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Figure 2: The backward pass
is faster with frozen filters.

even when the filters are frozen; that is, the filter weights remain un-
changed over the course of training, receiving no gradient updates.
As we are initializing filters from the distribution of trained filters,
we suspect that additional training may not be completely neces-
sary. Consequently, in all experiments we investigate both models
with thawed filters as well as their frozen counterparts. Freezing
filters removes one of the two gradient calculations from depthwise
convolution, resulting in substantial training speedups as kernel size
increases (see Figure 2). ConvMixer-512/12 with kernel size 9× 9
is around 20% faster, while 15 × 15 is around 40% faster. Fur-
ther, good performance in the frozen filter setting suggests that an
initialization technique is highly effective.

2.1 RESULTS

The simplest case of covariance transfer (from exactly the same architecture) is a fairly effective ini-
tialization scheme for convolutional filters. In Fig. 3, note that this case of covariance transfer (group
B) results in somewhat higher accuracies than uniform initialization (group A), particularly for 20-
epoch training; it also substantially improves the case for frozen filters. Across all trials, the effect of
using this initialization is higher for larger kernel sizes. In Fig. 8, we show that covariance transfer
(gold) initially increases convergence, but the advantange over uniform initialization quickly fades.
As expected, covariance transfer tends to fall between the performance of direct transfer, where we
directly initialize using the filters of the pre-trained model, and default uniform initialization (see
group D in Fig. 3 and the green curves in Fig. 8).

However, we acknowledge that it is not appealing to pre-train models just for an initialization tech-
nique with rather marginal gains, so we explore the feasibility of covariance transfer from smaller
models, both in terms of width and depth.

Narrower models. We first see if it’s possible to train a narrower reference model to calculate
filter covariances to initialize a wider model; for example, using a ConvMixer-32/8 to initialize a
ConvMixer-256/8. In Figure 4, we show that the optimal performance surprisingly comes from
the covariances of a smaller model. For filter sizes sizes greater than 3, the covariance transfer
performance increases with width until width 32, and then decreases for width 256 for both the
thawed and frozen cases. We plot this method in Fig. 3 (group C), and note that it almost uniformly
exceeds the performance of covariance transfer from the same-sized model. Note that the method
does not change; the covariances are simply calculated from a smaller sample of filters.

Shallower models. Covariance transfer from a shallow model to a deeper model is somewhat
more complicated, as there is no longer a one-to-one mapping between layers. Instead, we linearly
interpolate the covariance matrices to the desired depth (see Appendix A.1 for more details).
Surprisingly, we find that this technique is also highly effective: for example, for a 32-layer-deep
ConvMixer, the optimal covariance transfer result is from an 8-layer-deep ConvMixer, and 4-deep
models are also quite effective (see Figure 4).

Different patch sizes. Similarly, it is straightforward to transfer covariances between models with
different patch sizes. We find that initializing ConvMixers with 1×1 patches from filter covariances
of ConvMixers with 2 × 2 patches leads to a decrease in performance relative to using a reference
model of the correct patch size; however, using the filters of a 1×1 patch-size ConvMixer to initialize
a 2 × 2 patch size ConvMixer increases performance (see group b vs. group B in Fig. 9). Yet, in
both cases, the performance is better than uniform initialization.
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Figure 3: CIFAR-10 accuracy for uniform initialization (A), baseline covariance transfer (B-D), and
our custom initialization results (E).
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Figure 4: CIFAR-10 experimental results from initializing via covariances from narrower (top) and
shallower (bottom) models. The numeric annotations represent the width (top) and depth (bottom)
of the pre-trained model we use to initialize. U represents uniform initialization.

Different filter sizes. Covariance transfer between models with different filter sizes is more chal-
lenging, as the covariance matrices have different sizes. In the block form, we mean-pad or clip each
block to the target filter size, and then bilinearly interpolate over the blocks to reach a correctly-sized
covariance matrix. This technique is still better than uniform initialization for filter sizes larger than
3 (which naturally has very little structure to transfer), especially in the frozen case (see Fig. 9)

Discussion. We have demonstrated that it is possible to initialize filters from the covariances of
pre-trained models of different widths, depths, patch sizes, and kernel sizes; while some of these
techniques perform better than others, they are almost all better than uniform initialization. Our ob-
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servations indicate that the optimal choice of reference model is narrower or shallower, and perhaps
with a smaller patch size or kernel size. We also found that covariance transfer from ConvMixers
trained on ImageNet led to greater performance still (Appendix A). This suggests that the best co-
variances for filter initialization may be quite unrelated to the target model, i.e., model independent.

3 D.I.Y. FILTER COVARIANCES

Ultimately, the above methods for initializing convolutional filters via transfer are limited by the
necessity of a trained network from which to form a filter distribution, which must be accessible at
initialization. We thus use observations on the structure of filter covariance matrices to construct our
own covariance matrices from scratch. Using our construction, we propose a depth-dependent but
simple initialization strategy for convolutional filters that greatly outperforms previous techniques.

Visual observations. Filter covariance matrices in pre-trained ConvMixers and ConvNeXts have a
great deal of structure, which we observe across models with different patch sizes, architectures, and
data sets; see Fig. 1 and 32 for examples. In both the block and rearranged forms of the covariance
matrices, we noticed clear repetitive structure, which led to an initial investigation on modeling
covariances via Kronecker factorizations; see Appendix A for experimental results. Beyond this,
we first note that the overall variance of filters tends to increase with depth, until breaking down
towards the last layer. Second, we note that the blocks of the covariances often have a static negative
component in the center, with a dynamic positive component whose position mirrors that of the block
itself. Finally, the covariance of filter parameters is greater in their center, i.e., covariance matrices
are at first centrally-focused and become more diffuse with depth. These observations agree with
intuition about the structure of convolutional filters: most filters have the greatest weight towards
their center, and their parameters are correlated with their neighbors.

Constructing covariances. With these observations in mind, we propose a construction of covari-
ance matrices. We fix the (odd) filter size k ∈ N+, let 1 ∈ Rk×k be the all-ones matrix, and, as a
building block for our initialization, use unnormalized Gaussian-like filters Zσ ∈ Rk×k with a single
variance parameter σ, defined elementwise by

(Zσ)i,j := exp

(
−

(i− dk2 e)
2 + (j − dk2 e)

2

2σ

)
for 1 ≤ i, j,≤ k. (4)

Such a construction produces filters similar to those observed in the blocks of the Layer #5 covari-
ance matrix in Fig. 1.

To capture the dynamic component that moves according to the position of its block, we define the
block matrix C ∈ Rk

2×k2 with k × k blocks by

[Ci,j ] = Shift(Zσ, i, j) (5)

where the Shift operation translates each element of the matrix i and j positions forward in their
respective dimensions; see Appendix E for details. We then define two additional components, both
constructed from Gaussian filters: a static component S = 1⊗Zσ ∈ Rk

2×k2 and a blockwise mask
component M = Zσ ⊗1 ∈ Rk

2×k2 , which encodes higher variance as pixels approach the center of
the filter.

Using these components and our intuition, we first consider Σ̂ = M � (C − 1
2S), where � is an

elementwise product. While this adequately represents what we view to be the important structural
components of filter covariance matrices, it does not satisfy the property [Σi,j ]`,m = [Σ`,m]i,j (i.e.,
covariance matrices must be symmetric, accounting for our block representation). Consequently, we
instead calculate its symmetric part, using the notation as follows to denote a “block-transpose”:

ΣB = Σ′ ⇐⇒ [Σi,j ]`,m =
[
Σ′`,m

]
i,j

for 1 ≤ i, j, `,m ≤ k. (6)

Equivalently, this is the perfect shuffle permutation such that (X⊗Y )B = Y ⊗X withX,Y ∈ Rk×k.
First, we note that CB = C due to the definition of the shift operation used in Eq. 5 (see Ap-
pendix E). Then, noting that SB = M andMB = S by the previous rule, we define our construction

6



Published as a conference paper at ICLR 2023

Σ

=
1

2


M

�

( C

−

S )
+

C

�

S 
Figure 5: Our convolutional covariance matrix construction with σ = π/2.

0.0 0.2 0.4 0.6 0.8 1.0
Depth

0

1

2

Va
ria

nc
e

Variance Schedule

Figure 6: How our initialization
changes with depth. Variance
increases quadratically with
depth according to a schedule
which can be chosen through
visual inspection of pre-trained
models or through grid search.
Here we use the parameters
σ0 = .5, vσ = .5, aσ = 3.

of Σ to be the symmetric part of Σ̂ (where C, S,M are implicitly parameterized by the σ of Zσ):

Σ = 1
2 (Σ̂ + Σ̂T ) = 1

2

[
M � (C − 1

2S) + (M � (C − 1
2S))B

]
(7)

= 1
2

[
M � (C − 1

2S) + (MB � (CB − 1
2S

B))
]

= M � (C − 1
2S) + S � (C − 1

2M) (8)

= 1
2 [M � (C − S) + S � C] . (9)

While Σ is now symmetric (in the rearranged form of Eq. 1), it is not positive semi-definite, but can
easily be projected to Sk

2

+ , as is often done automatically by multivariate Gaussian procedures. We
illustrate our construction in Fig. 5, and provide an implementation in Fig. 30.

Completing the initialization. As explained in Fig. 1, we observed that in pre-trained models, the
filters become more “diffuse” as depth increases; we capture this fact in our construction by increas-
ing the parameter σ with depth according to a simple quadratic schedule; let d be the percentage
depth, i.e., d = i−1

D−1 for the ith convolutional layer of a model with D total such layers. Then for
layer i, we parameterize our covariance construction by a variance schedule:

σ(d) = σ0 + vσd+ 1
2aσd

2 (10)

where σ0, vσ, aσ jointly describe how the covariance evolves with depth. Then, for each layer i ∈
1, . . . , D, we compute d = i−1

D−1 and initialize the filters as Fi,j ∼ N (0,Σ′σ(d)) for j ∈ 1, . . . ,H .
We illustrate our complete initialization scheme in Figure 6.

4 RESULTS

In this section, we present the performance of our initialization within ConvMixer and ConvNeXt on
CIFAR-10 and ImageNet classification, finding it to be highly effective, particularly for deep models
with large filters. Our new initialization overshadows our previous covariance transfer results.

Settings of initialization hyperparameters σ0, vσ , and aσ were found and fixed for CIFAR-10
experiments, while two such settings were used for ImageNet experiments. Appendix C.1 contains
full details on our (relatively small) hyperparameter searches and experimental setups, as well
as empirical evidence that our method is robust to a large swath of hyperparameter settings.
Additional experiments on more datasets and baseline initializations may be found in Appendix B.

4.1 CIFAR-10 RESULTS

Thawed filters. In Fig. 3, we show that large-kernel models using our initialization (group E)
outperform those using uniform initialization (group A), covariance transfer (groups B, C), and
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even those directly initializing via learned filters (group D). For 2 × 2-patch models (200 epochs),
relative to uniform, our initialization causes up to a 1.1% increase in accuracy for ConvMixer-256/8,
and up to 1.6% for ConvMixer-256/24. The effect size increases with the the filter size, and is
often more prominent for shorter training times. Results are similar for 1 × 1-patch models, but
with a smaller increase for 7 × 7 filters (0.15% vs. 0.5%). Our initialization has the same effects
for ConvNeXt (Fig. 7). However, our method works poorly for 3 × 3 filters, which we believe
have fundamentally different structure than larger filters; this setting is better-served by our original
covariance transfer techniques.

In addition to improving the final accuracy, our initialization also drastically speeds up convergence
of models with thawed filters (see Fig. 8), particularly for deeper models. A ConvMixer-256/16 with
2×2 patches using our initialization reaches 90% accuracy in approximately 50% fewer epochs than
uniform initialization, and around 25% fewer than direct learned filter transfer. The same occurs,
albeit to a lesser extent, for 1 × 1 patches—but note that for this experiment we used the same
initialization parameters for both patch sizes to demonstrate robustness to parameter choices.
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Figure 7: Our init also improves ConvNeXt’s ac-
curacy on CIFAR-10 (group E vs. A).

Frozen filters. Our initialization leads to
even more surprising effects in models with
frozen filters. In Fig. 3, we see that frozen-
filter 2×2-patch models using our initialization
often exceed the performance of their uniform,
thawed-filter counterparts by a significant mar-
gin of 0.4% – 2.0% for 200 epochs, and an even
larger margin of 0.6% – 5.0% for 20 epochs (for
large filters). That is, group E (frozen) consis-
tently outperforms groups A-D (thawed), and in
some cases even group E (thawed), especially for the deeper 24-layer ConvMixer. While this effect
breaks down for 1× 1 patch models, such frozen-filter models still see accuracy increases of 0.6%–
3.5%. However, the effect can still be seen for 1×1-patch ConvNeXts (Fig. 7). Also note that frozen-
filter models can be up to 40% faster to train (see Fig. 2), and may be more robust (Cazenavette et al.).
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Figure 8: Convergence plots: each data point runs through a full cycle of the LR schedule, and all
points are averaged over three trials with shaded standard deviation.

4.2 IMAGENET EXPERIMENTS

Our initialization performs extremely well on CIFAR-10 for large-kernel models, almost always
helping and rarely hurting. Here, we explore if the performance gains transfer to larger-scale Ima-
geNet models. We observe in Fig. 32, Appendix F that filter covariances for such models have finer-
grained structure than models trained on CIFAR-10, perhaps due to using larger patches. Nonethe-
less, our initialization leads to quite encouraging improvements in this setting.

Experiment design. We used the “A1” training recipe from Wightman et al. (2021), with cross-
entropy loss, fewer epochs, and a triangular LR schedule as in Trockman & Kolter (2022). We pri-
marily demonstrate our initialization for 50-epoch training, as the difference between initializations
is most pronounced for lower training times. We also present two full, practical-scale 150-epoch
experiments on large models. We also included covariance transfer experiments in Appendix F.
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Table 1: ImageNet-1k accuracy from various architectures and initializations. “Ours” denotes our
proposed initialization. Bold indicates best within architecture and category (frozen or thawed).

Model THAWED FROZEN

Architecture Filter
Size

Patch
Size

#
Epochs

Uniform
Ours

.15 .5 .25
Ours

.15 .25 1.0
Uniform

Ours
.15 .5 .25

Ours
.15 .25 1.0

ConvMixer-512/12 9 14 50 67.03 67.41 67.34 60.47 64.43 64.12
ConvMixer-512/24 9 14 50 67.76 69.60 69.52 62.50 66.57 66.38
ConvMixer-512/32 9 14 50 65.00 68.78 68.84 55.79 66.59 66.32
ConvMixer-1024/12 9 14 50 73.55 73.62 73.75 68.96 71.48 71.30
ConvMixer-1024/24 9 14 50 74.19 75.33 75.50 69.65 73.42 74.31
ConvMixer-1024/32 9 14 50 72.18 74.98 74.95 64.94 73.00 73.12
ConvMixer-512/12 9 7 50 72.05 71.92 72.32 67.25 68.91 68.92
ConvNeXt-Atto 7 4 50 69.96 67.84 68.06 51.43 64.52 64.43
ConvNeXt-Tiny 7 4 50 75.99 76.08 77.11 64.17 74.62 75.21
ConvMixer-1536/24 9 14 150 80.11 80.28
ConvNeXt-Tiny 7 4 150 79.74 79.81

Thawed filters. On models trained for 50 epochs with thawed filters, our initialization improves
the final accuracy by 0.4% − 3.8% (see Table 1). For the relatively-shallow ConvMixer-512/12 on
which we tuned the initialization parameters, we see a gain of just 0.4%; however, when increasing
the depth to 24 or 32, we see larger gains of 1.8% and 3.8%, respectively, and a similar trend
among the wider ConvMixer-1024 models. Our initialization also boosts the accuracy of the 18-
layer ConvNeXt-Tiny from 76.0% to 77.1%; however, it decreased the accuracy of the smaller,
12-layer ConvNeXt-Atto. This is perhaps unsurprising, seeing as our initialization seems to be more
helpful for deep models, and we used hyperparameters optimized for a model with a substantially
different patch and filter size.

Our initialization is also beneficial for more-practical 150-epoch training, boosting accuracy by
around 0.1% on both ConvMixer-1536/24 and ConvNeXt-Tiny (see Table 1, bottom rows). While
the effect is small, this demonstrates that our initialization is still helpful even for longer training
times and very wide models. We expect that within deeper models and with slightly more parameter
tuning, our initialization could lead to still larger gains in full-scale ImageNet training.

Frozen filters. Our initialization is extremely helpful for models with frozen filters. Using our ini-
tialization, the difference between thawed and frozen-filter models decreases with increasing depth,
i.e., it leads to 2 − 11% improvements over models with frozen, uniformly-initialized filters. For
ConvMixer-1024/32, the accuracy improves from 64.9% to 73.1%, which is over 1% better than the
corresponding thawed, uniformly-initialized model, and only 2% from the best result using our ini-
tialization. This mirrors the effects we saw for deeper models on our earlier CIFAR-10 experiments.
We see a similar effect for ConvNeXt-Tiny, with the frozen version using our initialization achiev-
ing 75.2% accuracy vs. the thawed 76.0%. In other words, our initialization so effectively captures
the structure of convolutional filters that it is hardly necessary to train them after initialization; one
benefit of this is that it substantially speeds up training for large-filter convolutions.

5 CONCLUSION

In this paper, we proposed a simple, closed-form, and learning-free initialization scheme for large
depthwise convolutional filters. Models using our initialization typically reach higher accuracies
more quickly than uniformly-initialized models. We also demonstrated that our random initializa-
tion of convolutional filters is so effective, that in many cases, networks perform nearly as well
(or even better) if the resulting filters do not receive gradient updates during training. Moreover,
like the standard uniform initializations generally used in neural networks, our technique merely
samples from a particular statistical distribution, and it is thus almost completely computationally
free. In summary, our initialization technique for the increasingly-popular large-kernel depthwise
convolution operation almost always helps, rarely hurts, and is also free.
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A ADDITIONAL CIFAR RESULTS
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Figure 9: Initializing via covariances from models with different patch (left) and filter sizes (right).
Left: Lowercase denotes initializing from patch size 1× 1, and uppercase 2× 2. Right: Annotations
denote the reference filter size, U is uniform.
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Figure 10: Using filter distributions from pre-trained ImageNet models to initialize models trained
on CIFAR-10 is also effective (represented by groups E and F, with hatch marks).
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Figure 11: Convergence plots: each data point runs through a full cycle of the LR schedule, and all
points are averaged over three trials with shaded standard deviation.
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Covariance structure. As a first step towards modeling the struc-
ture of filter covariances, we replaced covariances with their Kronecker-
factorized counterparts using the rearranged form of the covariance ma-
trix defined in Eq. (1), i.e., Σ = A ⊗ A where A ∈ Sk+. Surprisingly,
this slightly improved performance over unfactorized covariance transfer
(see Fig. 12), suggesting that filter covariances are not only eminently
transferrable for initialization, but that their core structure may be sim-
pler than meets the eye. Kronecker factorizations were computed via
gradient descent minimizing the mean squared error.
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Empirical Covariance Our Covariance

Layer #1 of 8

Learned Filters
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Layer #4 of 8
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Figure 13: Filters learned or generated for ConvMixer-256/8 with 2 × 2 patches and 9 × 9 filters
trained on CIFAR-10: learned filters (left), filters sampled from the Gaussian defined by the empiri-
cal covariance matrix of learned filters (center), and filters from our initialization technique (right).
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A.1 ADDITIONAL EXPERIMENT DETAILS

1 epochs = 100
2 lr_max = 0.01
3 lr_sched = lambda t: np.interp([t], \
4 [0, epochs*2//5, epochs*4//5, epochs], \
5 [0, lr_max, lr_max/20.0, 0])[0]
6 for epoch in range(epochs):
7 for i, (X, y) in enumerate(loader):
8 # ...
9 lr = lr_sched(epoch + (i + 1)/len(loader))

10 opt.param_groups[0].update(lr=lr)
11 # ...
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Figure 14: Implementation and visualization of the piecewise triangular learning rate schedule we
used for all experiments. We used the implementation from Trockman & Kolter (2022).

1 def linear_interpolation(covs, from_depth, to_depth):
2 # covs: list of covariance matrices (np.array)
3 # from_depth: depth of model from which we are transferring
4 # to_depth: depth of model we are transferring to
5 from_knots = np.arange(0, from_depth)/(from_depth - 1)
6 to_knots = np.arange(0, to_depth)/(to_depth - 1)
7 ret = []
8 for knot in to_knots:
9 for i in range(len(from_knots)-1):

10 if knot >= from_knots[i] and knot <= from_knots[i+1]:
11 a_weight = (knot - from_knots[i+1]) / (from_knots[i] - from_knots[i + 1])
12 b_weight = (knot - from_knots[i]) / (from_knots[i+1] - from_knots[i])
13 ret.append(a_weight * covs[i] + b_weight * covs[i+1])
14 break
15 return ret

Figure 15: Implementation of linear interpolation used for transferring covariances from shallower
to deeper models. We treat the depth of a layer as a percent of the full depth of the network, i.e., our
notion of depth is always in the interval [0, 1].
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B ADDITIONAL BASELINES AND DATASETS

3x3 7x7 9x9 15x15
Filter Size

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y 
(\%

)

A B C D E A

B C

D E A B C D E

A

B C

D E A B C D E

A

B C

D
E

A B C D
E

A

B C

D
E

ConvMixer-256/8 Patch Size 2x2

Epochs: 20 50 200
A Uniform
B Dirac

C Zeros
D Orthogonal

E Ours
Thawed FrozenThawed Frozen

Figure 16: Our initialization technique outperforms alternatives (uniform, dirac, all-zero, and or-
thogonal initialization) for filter sizes larger than 3, especially for short-duration training. Note that
for dirac and all-zero initialization (B, C) in the frozen case, accuracies are ≈ 60% and thus are not
on the graph. Results on CIFAR-10.
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Figure 17: Our initialization also generally outperforms or matches baselines on the Street View
House Numbers (SVHN) dataset. Since this task is relatively easy, we used a much smaller
ConvMixer-64/4. The advantage of our method is most noticeable for short-duration (20 epoch)
training and the frozen-filter setting.
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Figure 18: Our initialization is again competitive with baselines on the EuroSAT dataset, where we
used a random 75/25 train/test split. We found our models converged quickly on this task, and thus
used fewer epochs for all experiments (10, 20, and 50). Our initialization approximately matches
uniform initialization and outperforms other methods in the 50-epoch setting, but performs better in
the 10- and 20- epoch settings. It is also particularly effective for frozen filters.
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Figure 19: Our initialization is particularly advantageous on the more-difficult CIFAR-100 dataset,
with 50-epoch training meeting or even surpassing 200-epoch uniformly-initialized training.
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Figure 20: Our initialization is also helpful on Tiny ImageNet. Here we increased the patch size to
4x4 to accomodate the increased input size of 64x64 (for computational efficiency).
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Figure 21: Compared to other initialization techniques, ours results in faster convergence when
training a ConvMixer-256/16 on CIFAR-10 and CIFAR-100. That is, one can often train models for
fewer epochs when using our initialization to achieve results comparable to those from using other
initialization techniques.

200 400 600 800 1000
# Training Points

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

Dataset: CIFAR 10
ConvMixer-256/8  Patch Size: 2x2, Filter Size: 7x7

Filter Initialization
Uniform
Ours

(a)

0 5000 10000 15000 20000 25000 30000
# Training Points

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

Dataset: CIFAR 10
ConvMixer-256/8  Patch Size: 2x2, Filter Size: 7x7

Filter Initialization
Uniform
Ours

(b)

Figure 22: We investigated how our initialization affects data efficiency by training on random
(smaller) subsets of CIFAR-10. Each trial is averaged over 3 such subsets. In the very low-data
setting (a), we trained for 300 epochs to compensate for the smaller number of iterations overall. In
(b), we trained for 100 epochs. In some cases, using our initialization is comparable to doubling the
number of training points.
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C HYPERPARAMETER GRID SEARCHES & EXPERIMENTAL SETUP

CIFAR-10 hyperparameter search. We chose an initial setting of our method’s three hyperpa-
rameters via visual inspection, and then refined them via small-scale grid searches. For CIFAR-10
experiments, we searched over parameters for ConvMixer-256/8 with frozen 9 × 9 filters trained
for 20 epochs, and chose σ0 = .08, vσ = .37, aσ = 2.9 for 2 × 2-patch models, and found the
optimal parameters for 1 × 1-patch models to be approximately doubled. However, note that our
initialization is quite robust to different parameter settings, with the difference from our doubling
choice being less than 0.1% (see Figure 23). We used the same parameters across all kernel sizes,
as well as for ConvNeXt, a choice which is likely sub-optimal; our search only serves as a rough
heuristic.

ImageNet-1k hyperparameter search. We did a small grid search using a ConvMixer-512/12
with 14 × 14 patches and 9 × 9 filters trained for 10 epochs on ImageNet-1k (see Appendix F),
from which we chose two candidate settings: σ0 = .15, vσ = .5, aσ = .25 for frozen-filter models
and σ0 = .15, vσ = 0.25, aσ = 1.0 for thawed models. We use these parameters for all the
ImageNet experiments, even for models with different patch and kernel sizes (e.g., ConvNeXt).
This demonstrates that hyperparameter tuning is optional for our technique; its transferability is
not surprising given our results in Sec. 2.

C.1 CIFAR-10 GRID SEARCHES
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Figure 23: Grid search over initialization parameters σ0, vσ, aσ for ConvMixer-258/8 with 9 × 9
frozen filters and 2 × 2 patches trained for 20 epochs on CIFAR-10. Note that the performance of
uniform initialization is only ≈85%, i.e., almost all choices result in some improvement.
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Figure 24: Grid search over initialization parameters σ0, vσ, aσ for ConvMixer-258/8 with 9 × 9
frozen filters and 1 × 1 patches trained for 20 epochs on CIFAR-10. Note that the performance of
uniform initialization is only ≈88%, i.e., almost all choices result in some improvement.
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Figure 25: Grid search over initialiation parameters σ0, vσ, aσ for ConvNeXt-atto on CIFAR-10 with
frozen filters and 1× 1 patches trained for 20 epochs on CIFAR-10. Note the baseline performance
with uniform initialization is around 80%, i.e., compared to ConvMixer there are more potentially
disadvantageous parameter combinations.
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Figure 26: Grid search over initialiation parameters σ0, vσ, aσ for ConvNeXt-atto on CIFAR-10
with frozen filters and 1 × 1 patches trained for 20 epochs, using the “sawtooth” variance schedule
(see Fig 27) to account for downsampling layers. While this perhaps shows better robustness to
parameter changes than Fig. 26, the effect could also be due to effectively dividing the parameters
by two.
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Figure 27: Proposed stepwise variance schedule for ConvNeXt, i.e., a model including downsam-
pling layers. In our experiments, we saw no advantage to using this scheme.
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C.2 IMAGENET GRID SEARCHES
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Figure 28: Frozen filters: Grid search over initialization parameters for ConvMixer-512/12 with
14× 14 patches and 9× 9 filters, 10 epochs.
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Figure 29: Thawed filters: Grid search over initialization parameters for ConvMixer-512/12 with
14× 14 patches and 9× 9 filters, 10 epochs.
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D IMPLEMENTATIONS

D.1 TERSE IMPLEMENTATION

1 def ConvCov(k, s):
2 C = np.zeros((k**2,)*2)
3 for i, j in np.ndindex(k,k):
4 C[k*i:k*i+k,k*j:k*j+k] = Gauss(k,j,i,s)
5 Z,l = Gauss(k,k//2,k//2,s),np.ones((k,k))
6 S, M = np.kron(l, Z),np.kron(Z, l)
7 return 0.5 * (M * (C - S) + C * S)

1 def Gauss(k, mx, my, s):
2 res = np.zeros((k, k))
3 for i, j in np.ndindex(k,k):
4 cx,cy = (j-mx-k//2-1)%k,(i-my-k//2-1)%k
5 z = ((cx-k//2)**2+(cy-k//2)**2)/s
6 res[i, j] = np.exp(-0.5*z)
7 return res.reshape(k, k)

Figure 30: Implementation of our convolution covariance construction in NumPy.

1 def Initialize(wconv, d, s0, sv, sa):
2 c, _, ks, _ = wconv.shape
3 s = s0 + sv * d + 0.5 * sa * d**2
4 cov = ConvCov(ks, s).reshape((ks,)*4).transpose(0,2,1,3).reshape((ks**2,)*2)
5 filters = np.random.multivariate_normal(np.zeros(ks**2), cov, size=(c,))
6 wconv.data = torch.tensor(filters.reshape(c,1,ks,ks),dtype=wconv.dtype,device=wconv.device)
7
8 # Find depthwise convolutional layers
9 convs = [x for x in model.modules() if isinstance(x, nn.Conv2d) \

10 and len(x.weight.shape) == 4 and x.weight.shape[1] == 1]
11
12 # Initialize them according to variance schedule
13 for i, conv in enumerate(convs):
14 Initialize(conv.weight, i / (len(convs) - 1), 0.16, 0.32, 2.88)

Figure 31: Code to use our covariance construction and variance schedule to initalize depth-
wise convolutional layers in PyTorch. wconv is the weight of a depthwise convolutional layer
(nn.Conv2d), and d ∈ [0, 1] is its depth as a fraction of the total depth.

E SHIFT FUNCTION DEFINITION & PROOF

For a given matrix Z ∈ Rk×k (say, a Gaussian kernel centered at 0, 0—the top left of the filter), we
assume the shift operator is defined as follows:

Shift(Z, δx, δy)i,j = Z(i+δx) mod k,(j+δy) mod k. (11)

Then, if
[Ci,j ] = Shift(Zσ, i, j) (12)

and the operation (.)B is defined by

ΣB = Σ′ ⇐⇒ [Σi,j ]`,m =
[
Σ′`,m

]
i,j
, (13)

and

[Ci,j ]`,m = Shift(Z, i, j)`,m = Z(i+`) mod k,(j+m) mod k (14)

[C`,m]i,j = Shift(Z, `,m)i,j = Z(`+i) mod k,(m+j) mod k, (15)

this shows that [Ci,j ]`,m = [C`,m]i,j for all 1 ≤ i, j, `,m ≤ k (i.e., C is “block-symmetric”), which
shows C = CB .
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F ADDITIONAL IMAGENET EXPERIMENTS

Figure 32: Covariance matrices
from a ConvMixer trained on Im-
ageNet exhibit similar structure
to those of ConvMixers trained
on CIFAR-10; however, later
layers tend to have more struc-
ture, including a “checkerboard”
pattern in each block.
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F.1 10-EPOCH IMAGENET RESULTS

ConvMixer-512/12: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 54.5 47.4
Stats from CM-512/12 55.5 53.4
Stats from CM-64/12 55.2 52.7
Filters transferred from CM-512/12 55.1 54.4
Our init (.15, .3, .5) 55.4 52.2
Our init (.15, .5, .25) 55.5 52.4

Table 2: ConvMixer performance on ImageNet-1k training with 10 epochs. Our initialization
performs comparably to loading covariance matrices from previously-trained models (which were
trained for 150 epochs).

ConvMixer-512/12: Patch Size 7, Kernel Size 9 Thawed Frozen
Uniform init 61.87 56.73
Stats from CM-512/12 62.56 60.79
Stats from CM-64/12 62.72 60.86
Filters transferred from CM-512/12 62.81 61.83
Our init (.15, .3, .5) 62.49 58.94
Our init (.15, .5, .25) 62.59 59.31

Table 3: ImageNet 10-epoch training

ConvMixer-512/24: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 50.40 43.00
Stats from CM-512/12 53.03 51.45
Stats from CM-64/12 53.16 51.25
Filters transferred from CM-512/12 52.87 52.12
Our init (.15, .3, .5) 53.80 51.16
Our init (.15, .5, .25) 53.76 50.81

Table 4: ImageNet 10-epoch training

ConvNeXt-Atto Thawed Frozen
Uniform init 31.37 23.63
Stats from the same arch 33.44 40.41
Stats from 1/8th-width arch 29.81 31.47
Filters transferred from same arch 31.68 40.48
Our init (.15, .3, .5) 37.64 34.59
Our init (.15, .5, .25) 31.34 34.23
Our init (.15, .25, 1.0) 38.01 33.98

Table 5: ImageNet 10-epoch training
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ConvNeXt-Tiny Thawed Frozen
Uniform init 32.51 25.94
Stats from the same arch 42.78 41.54
Stats from 1/8th-width arch 44.60 42.86
Filters transferred from same arch 31.01 45.32
Our init (.15, .3, .5) 35.64 35.04
Our init (.15, .5, .25) 40.17 38.91
Our init (.15, .25, 1.0) 40.78 36.62

Table 6: ImageNet 10-epoch training
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F.2 50-EPOCH IMAGENET RESULTS

ConvNeXt-Atto Thawed Frozen
Uniform init 69.96 51.43
Stats from the same arch 68.83 66.71
Stats from 1/8th-width arch 68.69 66.31
Filters transferred from same arch 68.01 67.29
Our init (.15, .3, .5) 65.55 63.48
Our init (.15, .5, .25) 67.84 64.52
Our init (.15, .25, 1.0) 68.06 63.43

Table 7: ImageNet 50-epoch training

ConvMixer-512/12: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 67.03 60.47
Stats from the same arch 67.13 65.08
Stats from 1/8th-width arch 66.75 64.94
Filters transferred from same arch 67.28 66.11
Our init (.15, .3, .5) 66.12 64.39
Our init (.15, .5, .25) 67.41 64.43
Our init (.15, .25, 1.0) 67.34 64.12

Table 8: ImageNet 50-epoch training

ConvMixer-512/24: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 67.76 62.50
Stats from the same arch 68.92 67.91
Stats from 1/8th-width arch 68.78 67.36
Filters transferred from same arch 69.42 68.66
Our init (.15, .3, .5) 69.05 66.20
Our init (.15, .5, .25) 69.60 66.57
Our init (.15, .25, 1.0) 69.52 66.38

Table 9: ImageNet 50-epoch training
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G ADDITIONAL CIFAR-10 TABLES
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