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Abstract

Recently, self-supervised learning methods have been pro-
posed to learn a useful representation for visual detection of
anomalous, unhealthy crops while a neural network classifies
augmented images of normal instances, which are relatively
easy-to-obtain. Their pipelines are largely designed within
the one-class classification paradigm, in which training sam-
ples are all of normal (negative) class, considering the severe
scarcity of anomalous (positive) observations in realistic sce-
narios. In this paper, we study whether this “homogeneity”
of training set is necessary to boost up the performance of
learned detector because otherwise “unlabeled” data newly
gathered from the field could simply be utilized during train-
ing without the need of expensive human annotation. To be
specific, we first explore the scenarios treating every unla-
beled instance as a normal one as the proportion of anomalous
samples in the unlabeled set varies. Also, we introduce an
iterative training procedure for “negative-unlabeled” learn-
ing, in which the unlabeled data are incrementally labeled
based on predictions to train an one-class classifier with sam-
ples regarded to potentially be normal. Our experiments use
CH-Rand—a state-of-the-art method for learning useful rep-
resentations for anomaly detection from fruit images—on the
Riseholme-2021 dataset, which includes a number of healthy
and unhealthy strawberry images collected under realistic
conditions. Specifically, the results show that using an un-
labeled set as normal data can lead to the 8.7% performance
improvement without any effort for labeling, though 4% in
the set are of anomalous strawberry. In addition, our iterative
training can benefit trained anomaly detectors by automati-
cally filtering out unlabeled anomalies to reduce the overall
anomaly ratio in the unlabeled data from 6% to 4.3% conse-
quently leading to better detection performance.

Introduction
Automated detection of unhealthy crops is crucial to realize
precision agriculture, in which specialized treatments can
be selectively applied to targeted individuals so as to not
only increase overall productivity but also save available re-
sources and protect the natural environments. Deep learn-
ing methods thus have been actively studied to adapt their
great success in computer vision and field robotics to practi-
cal applications to natural outdoor environments in agricul-
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Figure 1: Hypothetical scenario in which an unlabeled
dataset DU can benefit learning of a representation for clas-
sification between normal and anomalous samples.

ture (Salazar-Gomez et al. 2022; Gao et al. 2021). In par-
ticular, one-class classification has been widely adopted as
a useful approach for building anomaly detectors because of
its realistic assumption that those can be generated only from
observations of normal class (e.g., healthy fruits) while sam-
ples of anomalous class (e.g., unhealthy fruits) are too rare
to be available during training (Choi et al. 2022).

In this paper, we hypothesize that as illustrated in Fig. 1,
such anomaly detectors could be enhanced by involving an
“unlabeled” yet easy-to-obtain dataset in training, although
some anomalous (positive) samples may be contained along
with normal (negative) instances in it. Inspired by (Lee et al.
2022), we first evaluate detection performance under various
levels of anomaly ratio in the unlabeled set to investigate if
simply treating them as normal data would tend to deterio-
rate the models. Also, we propose an iterative algorithm to
systematically select unlabeled samples to utilize for sub-
sequent training based on estimated anomaly scores. A rel-
evant approach is positive-unlabeled (PU) learning in (Mu
et al. 2021; Zhang et al. 2017). However, we adopt an one-
class classifier instead of a binary model, and our task is
called “negative-unlabeled” (NU) learning since labeled ex-
amples included in the training set are of negative class.

Specifically, we use Channel Randomisation (CH-
Rand) (Choi et al. 2022)—a state-of-the-art method for
learning useful representations for anomaly detection from



fruit images—on the Riseholme-2021 dataset, which in-
cludes a number of healthy and unhealthy strawberry im-
ages collected under realistic conditions. To the best of our
knowledge, we are the first demonstrating NU learning for
classification of anomalies with agricultural data. In partic-
ular, our study offers crucial perspectives from empirical re-
sults in order to fully exploit unlabeled datasets:

• Simple combination of unlabeled data into the training
set of normal class can outperform the model not using it
at all, even when the anomaly ratio is non-zero.

• Negative impact from a higher anomaly ratio can be mit-
igated by providing a larger size of unlabeled set.

• Anomaly ratio can be reduced by the NU learning that
repeats choosing samples predicted to be normal with
which a better classifier can finally be obtained.

Preliminary: Channel Randomisation
In this section, we briefly review the CH-Rand technique,
which was proposed to learn useful representations of visual
anomalies in fruits only from normal examples (Choi et al.
2022). Unlike other state-of-the-art methods such as Cut-
Paste (Bergmann et al. 2021) designed to identify structural
normality, CH-Rand is to focus more on patterns of color for
agricultural applications since those generally change dra-
matically depending on the health status of crops.

In particular, Choi et al. (2022) have discovered that in-
formative representations gθ can be obtained within a neural
network fΘ during the pretext task shown in Fig. 2—i.e., it is
to distinguish original images I ∈ RW×H×C from channel-
randomized ones A ∈ RW×H×C , where W and H are the
width and the height, respectively, and C denotes the num-
ber of channels, which is set to 3 in the case of RGB space.

An application of CH-Rand can be regarded as adopting
a random permutation of colour channels with a possibility
of repetition over the entire image I. More formally, for a
new input I, an arbitrary function π : χ → χ′ is drawn
for a random permutation, where χ = {1, 2, ..., C} is the
set of channel indices, and χ′ ∈ P(χ) \ ∅, as P denotes
the powerset of input. The function π then determines each
pixel acw,h in A as follows:

acw,h = i
π(c)
w,h . (1)

Note that the same π is applied for every w, h, and c to
keep the fixed channel arrangement over the image. In fact,
we avoid the result to be A = I by continuing drawing a
new π until ∃c ∈ χ, c ̸= π(c). In other words, 26 possible
channel sequences can be generated by this augmentation
for a typical 3-channel color space, such as RGB. Several
examples of augmentation are visualized in Fig. 3

For representation learning, a classifier is employed to
learn to infer if input images contain any artefacts in color
generated by CH-Rand. As in (Li et al. 2021; Gidaris, Singh,
and Komodakis 2018), the loss function is set up as below to
train a deep neural network fΘ with images I from a train-
ing dataset DN :

L = EI∈DN

[
H(fΘ(I), 0) +H(fΘ(CHR(I)), 1)

]
, (2)

Figure 2: Pretext task, in which a convolutional neural net-
work (CNN) is set to learn classification between original
images in RGB and channel-randomized ones (e.g., GRB).

where CHR returns the output of CH-Rand, and H is the
binary cross entropy function to consider prediction errors.
Choi et al. (2022) suggested taking a random batch D′ ⊆
DN at each iteration applying CH-Rand only to a half of it.

Anomaly Score Prediction
According to (Choi et al. 2022), once a neural network fΘ
has been trained, the outputs of an intermediate layer are em-
ployed as feature representations gθ of input images. Simi-
larly to (Perera and Patel 2019), the anomaly score s for an
input image I ′ can then be estimated using the average Eu-
clidean distance to the k nearest neighborsM⊆ DN on the
space of gθ—i.e., s(I ′) = (1/k)

∑
I∈M δ

(
gθ(I), gθ(I ′)

)
,

where δ is the function of Euclidean distance. Hence, I ′ is
predicted to be either anomalous if s is larger than a certain
threshold τ or normal otherwise.

Problem Description
Instead of one-class classification, we here explore “NU-
learning” (Ding et al. 2022) scenarios, in which an unlabeled
dataset is available along with a labeled set of normal class
(cf. Fig. 1). To be specific, while the data set DN is known
to be of normal class (e.g., healthy crop), we also assume
that a disjoint set DU is available, but samples therein are
not annotated at all. In other words, DU may contain some
instances of anomalous class (e.g., diseased crop), and so,
simply involving it in training of one-class classifier might
cause an unexpected impact on the overall performance. In
this work, we thus investigate the utility of such unlabeled
datasets and the proposed NU learning method to discuss
useful strategies to maximize the positive effect from using
those.

For empirical exploration, we mainly use CH-Rand to
build detectors of anomalous images of soft fruit (i.e., straw-
berry). More formally, our goal is to gain useful repre-
sentations gθ from training data Λ, which is the union
of DN and DU Therefore, our new loss function can be re-



formulated from Equation 2 by replacing DN with Λ:

L = EI∈Λ

[
H(fΘ(I), 0) +H(fΘ(CHR(I)), 1)

]
. (3)

Algorithm 1: Iterative NU Learning
Input: DN , DU ,m
Output: Classifier fΘ

1: D′
N ← DN

2: while |DU | ≥ m do
3: Initialize fΘ
4: Train fΘ on D′

N using CH-Rand
5: Compute anomaly score sj for each Ij ∈ DU

6: D′
U ← {It : st ≤ m-th lowest socre s∗}

7: D′
N ← D′

N ∪ D′
U

8: DU ← DU −D′
U

9: end while
10: return fΘ

In experiments, various conditions on DU are considered
in learning representations gθ while examining the reliability
of anomaly scores computed based on them.

Negative-Unlabeled Learning
Inspired by (Mu et al. 2021), we build an iterative frame-
work to gradually merge some of informative samples from
the unlabeled set DU into the labeled DN . In particular, our
approach is to prioritize the ones that are predicted to be
most likely to be of normal, negative class so that the final
selection of data can be utilized for training a one-class clas-
sifier.

Algorithm 1 shows that initially only the labeled
dataset DN is used for learning a representation in fΘ with
CH-Rand, but at each iteration, m images from DU with the
lowest anomaly scores are offered a pseudo-label as normal
to move from DU to the training set D′

N for the next iter-
ation. This process repeats until less than m images finally
remain in the unlabeled set DU .

An alternative approach could be to use such an iterative
procedure to gather both positive and negative samples from
the unlabeled dataset to learn a binary classifier (Zhang et al.
2017). However, the selection size m′ for the positive class
needs to be carefully chosen because anomaly ratios are usu-
ally unknown. Furthermore, the binary classifier might suf-
fer from the severe class imbalance problem if the ratio is
significantly small, which would motivate to use an one-
class classifier.

Experiments
Here, we first describe technical information of experimen-
tal configurations. To be specific, the following sections of-
fer the details of Riseholme-2021 dataset, which is used
throughout the experiments, as well as the network struc-
tures and hyperparameters for training sessions. Primary re-
sults of each experiment are then discussed.

(a) (b) (c) (d)

Figure 3: Examples of CH-Rand when applied to (a) RGB
image of strawberry: (b) RRR, (c) GRR, and (d) GRG.

Riseholme-2021 Dataset
For experiments, we utilize the Riseholme-2021 dataset1
since it contains several thousands of strawberry images un-
der three normal categories—such as Ripe, Unripe, and
Occluded—and Anomalous in natural environments.
Similar to (Choi et al. 2022), we split the data into Train,
Val, and Test sets, but the Train set consists of a labeled
set DN of normal classes and an unlabeled set DU , where
|DN | is fixed to 300 while |DU | can vary in each experiment.
In addition, the Test set contains 674 images from all nor-
mal categories as well as 99 instances of anomalous class,
and the Val set has 337 normal examples.

Furthermore, general steps for image preprocessing fol-
low, in which each image is resized to 64 × 64 pixels, and
conventional augmentations2 including heuristic color jitters
and horizontal/vertical flips are performed before applica-
tion of CH-Rand. Also, each pixel value is normalized to be
between −1 and 1.

Implementation Details
We adopt the same structure of a deep network as in (Choi
et al. 2022) using the publicly available code3. To be spe-
cific, the network has 5 ConvLayers and 2 DenseLayers,
where the number of 3 × 3 convolutional filters incre-
ments at each layer—i.e., 64, 128, 256, 512, and 512—and
the DenseLayers employ 256 and 1 output nodes, respec-
tively. Also, the output from each ConvLayer is processed
by a BatchNorm layer and a 2× 2 MaxPool layer, and every
activation is computed with the LeakyReLU function except
the sigmoid function at the last DenseLayer.

In particular, the learned representation g is taken from
the outputs at the first DenseLayer, on which anomaly scores
can be estimated with k = 1 nearest neighbor in training
data DN since k = 1 was found to be most effective as all
normal categories are considered (Choi et al. 2022). Note
here that the unlabeled set DU is not considered for dis-
tance calculation to avoid the case in which the distance to
its anomalies may lead to inaccurate prediction.

Evaluation Metrics
For evaluation, we compute the Area Under the
Curve (AUC) of the Precision-Recall (PR) curve to
take into account the highly skewed class distribution in

1https://github.com/ctyeong/Riseholme-2021
2https://pytorch.org/vision/stable/transforms.html
3https://github.com/ctyeong/CH-Rand

https://github.com/ctyeong/Riseholme-2021
https://pytorch.org/vision/stable/transforms.html
https://github.com/ctyeong/CH-Rand


∆ It. 1 It. 2 It. 3 It. 4 It. 5 Total

450 0.3
±0.6

2.0
±1.0

5.3
±1.5

9.7
±2.1

N/A 17.3

900 2.7
±0.6

4.0
±1.0

5.0
±2.6

9.0
±1.0

13.7
±0.6

34.3

Table 1: Numbers of anomalous samples chosen from D′
U

to be in D′
L at each iteration i as initial α was set to 6%.

the Test set (674 normal vs. 99 anomalous) (Davis and
Goadrich 2006). Also, every resulting score here is the
average of three separate runs to mitigate the stochastic
effects from training neural networks. Moreover, each run
saves the model achieving the highest validation accuracy
until either training is performed for 1.2K epochs or a
validation accuracy of > .95 has been achieved in average
for the past five checkpoints while each checkpoint is
examined every 30 epochs.

Results
This section discusses observed impacts on final perfor-
mance of anomaly detector under different settings.

Various Compositions of DU : Here, we examine the im-
pact on the overall performance depending on the configu-
ration of the unlabeled data set DU . To be specific, we here
control two parameters:

• Size of DU : ∆ ∈ {0, 450, 900}
• Ratio of anomalies in DU : α = {0%, 4%, 6%}

In particular, the range of α is based on the anomaly ratio of
4.3% in the whole Riseholme-2021 dataset.

Figure 4a provides average performance for each con-
trolled setting. Specifically, for α = 0%, as expected, more
data in DU can provide improved detection performance
since the neural network can gain a better quality represen-
tation from diverse normal samples and their channel ran-
domisation. In particular, the improvement can be enhanced
due to no interference of anomalies in the set.

On the other hand, any case with some level of anomaly
ratio offers poor performance particularly when ∆ = 450,
which is even worse than the case not using it (∆ = 0).
This implies that even though DU fed more than 422 addi-
tional normal samples to the neural network, those small per-
centages of anomalies significantly hindered it from learn-
ing a useful representation of normal and anomalous images.
Consequently, the 6% ratio led to a worse quality represen-
tation than the case of 4% ratio.

However, a dramatic change has been observed in the per-
formance for those non-zero-ratio models when more data
(i.e., ∆ = 900) were involved. To be specific, 4% and 6% ra-
tios lead to 8.7% and 3.9% performance improvements over
the scenario only using DN (i.e., ∆ = 0). Though those do
not perform as well as the model of α = 0% using the same
amount of data, the 4% ratio can show a 5.5% better result
than the 0%-ratio model with ∆ = 450.

This successful result can be surprising since the number
of involved anomalies increases while ∆ becomes doubled
because of the fixed ratio α. From this observation, we can

(a) (b)

Figure 4: (a): Detection performance under various values of
∆ and α, and (b): Performance comparison of NU learning
with ∆ = 450 and α = 6% against the methods without it.

discover that unlabeled datasets can be highly useful without
any annotation, if the total size of data is sufficiently large.
Though some anomalies are present in proportion to inter-
fere with learning, much more normal samples can compen-
sate for the potential negative effect during training.

NU Learning: We apply the iterative algorithm for NU
learning to the case of 6% anomaly ratio. For ∆ = 450, m =
100 image samples were selected from DU at each iteration
whereas m = 160 instances were considered as ∆ = 900.
That is, the former finally adds 400 images to the training
set while the latter 800 instances. As a result, every case
eventually reduced the number of anomalies in the training
set with the anomaly ratio of around 4.3% (Table 1). Also, in
contrast to the setting without NU learning, the model only
with ∆ = 450 can perform 10% better than the case of not
utilizing any unlabelled dataset (Figure 4b).

Limitations: While NU learning reduces anomaly ratios,
our experiments have revealed that detection performance of
CH-Rand can also depend on the selections in D′

U . For ex-
ample, under ∆ = 450 and α = 6%, NU learning achieved
.36 by reducing a to 4.3%, which unexpectedly outper-
formed the α = 0% model. On the other hand, for ∆ = 900
and α = 6%, it still reduced α to 4.3% but led to the worse
performance of .36 than the α = 4% model. Thus, further
investigation on instance-level effects may be needed.

Conclusion
With real strawberry images, we have shown that unla-
beled datasets can be utilized to improve the performance
of anomaly detectors. Our results imply that if the unlabeled
set is sufficiently large, it can compensate for the negative
impact from anomalous samples in it. Also, we have intro-
duced an iterative algorithm to reduce the ratio of anomaly
with no supervision to achieve better detection performance.
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