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ABSTRACT

Millions of abandoned oil and gas wells are scattered across the world, leaching
methane into the atmosphere and toxic compounds into the groundwater. Many
of these locations are unknown, preventing the wells from being plugged and
their polluting effects averted. Remote sensing is a relatively unexplored tool for
pinpointing abandoned wells at scale. We introduce the first large-scale bench-
mark dataset1 for this problem, leveraging high-resolution multi-spectral satellite
imagery from Planet Labs. Our curated dataset comprises over 213,000 wells
(abandoned, suspended, and active) from Alberta, a region with especially high
well density, sourced from the Alberta Energy Regulator and verified by domain
experts. We evaluate baseline algorithms for well detection and segmentation,
showing the promise of computer vision approaches but also significant room for
improvement.

1 INTRODUCTION

Across the world, there are millions of abandoned oil and gas wells left to degrade by the compa-
nies or individuals that built them. No longer producing usable fossil fuels, these wells nonetheless
have a significant impact on the environment, with many of them leaking significant quantities of
methane, a powerful greenhouse gas, into the atmosphere. In Canada, an estimated 370,000 aban-
doned wells produce methane equivalent to half a million metric tons of CO2 annually (Williams
et al., 2020; ECCC, 2024), while in the U.S. there are an estimated 4 million abandoned wells
(Williams et al., 2020), releasing over five million metric tons of CO2 equivalent emissions per year.
Abandoned wells also pose health and safety concerns, in particular by leaching toxic chemicals
into the groundwater of surrounding communities (Cahill et al., 2019).

It is possible to plug abandoned wells to mitigate the harms associated with them (with so-called
“super-emitter” wells an especially high priority (Riddick et al., 2024; Kang et al., 2016)). However,
a significant fraction of abandoned wells remain unknown. In Pennsylvania, as much as 90% of
abandoned wells are estimated to be unrecorded (Kang et al., 2016). In Canada, abandoned wells
have been described as the most uncertain source of methane emissions nationally due to the poor
quality of data surrounding them (Williams et al., 2020).

With the advent of large-scale remote sensing datasets and powerful machine learning tools to pro-
cess them, it has become possible to label and monitor the built environment as never before (Rolf
et al., 2024). Many such works have focused on opportunities to use remote sensing to accelerate
climate action and environmental protection, and oil and gas infrastructure has increasingly been an
object of scrutiny (see e.g. (Yang et al., 2013; Sheng et al., 2020)).

In this paper, we present the first large-scale machine-learning dataset for pinpointing onshore oil
and gas wells, encompassing abandoned, suspended, and active wells. Our main contributions are
as follows:

• We introduce the Alberta Wells Dataset, which includes information on over 200k aban-
doned, suspended, and active onshore wells with high-resolution satellite imagery.

• We frame the problem of identification of wells as a challenge for object detection and
binary segmentation.

1Dataset available at: https://figshare.com/s/bdb097730714ee82fcb0
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• We evaluate a wide range of deep learning algorithms commonly used for similar tasks,
finding promising performance but opportunities for significant improvement.

We hope that this work will represent a step towards scalable identification of abandoned well sites
and the reduction of their deleterious effects on our climate and environment.

2 PREVIOUS WORK

Hundreds of satellites continuously monitor the Earth’s surface, generating petabyte-scale remote
sensing datasets (Rolf et al., 2024). With advancements in hardware, the quality of remote sensing
images has significantly improved in terms of spatial and temporal resolution. High-quality remote
sensing data are available through state-funded projects like Sentinel and Landsat, and more recently
through private enterprises such as Planet Labs (PBC, 2024). Increasingly, machine learning has
been used to parse such raw data, including in a wide range of applications for tackling climate
change (Yang et al., 2013). Benchmark datasets in this area have included tasks in land use and land
cover (LULC) estimation (Sumbul et al., 2019), crop classification (Sykas et al., 2022; Tseng et al.,
2021), species distribution modeling (Teng et al., 2023), and forest monitoring (Ioannis Bountos
et al., 2023).Some datasets like SpaceNet 7 Etten et al. (2021) include a few cases of study sites
with oil wells, although the dataset was developed for multi-temporal urban monitoring.

Within this area of research, an increasing body of work has considered the problem of detecting
artifacts associated with oil and gas operations. The detection of oil spills using a combination of re-
mote sensing and machine learning has been widely explored (Chen et al., 2017; Wang et al., 2023a;
Yang et al., 2022). Recently, the detection of oil and gas infrastructure has also been investigated
(Sheng et al., 2020; Prajapati et al., 2022), with some studies focusing on the goal of estimating
methane emissions (Zhu et al., 2022; Omara et al., 2023). The dataset by (Sheng et al., 2020) in-
cludes 7,066 aerial images, with 149 images of oil refineries. The METER-ML dataset (Zhu et al.,
2022) comprises 86,599 georeferenced images in the U.S. labeled for methane sources. The OGIM
v1 dataset (Omara et al., 2023) includes 2.6 million point locations of major facilities. A dataset by
(Chang et al., 2023) features 1,388 images of pipelines in the Arctic, while a dataset by (Wang et al.,
2023b) includes 3,266 images of heavy-polluting enterprises with 0.25 m resolution.

The problem of detection of oil and gas wells has also been proposed by a number of authors. Ex-
isting datasets, however, are quite small (500-10,000 samples) and typically are limited to a small
region and contain only active wells, limiting their applicability in the context of identifying aban-
doned or suspended wells as summarized in Table 1. Most of these studies have primarily focused
on basic machine learning algorithms for well detection due to the limited sample size.

Table 1: Previous datasets in which remote sensing algorithms are applied to detect oil and gas wells.
“N/A” is given for datasets which do not indicate the number of individual wells in the dataset.

Dataset O&G Well
Count

Total Well
Images

Resolution
(m/px) Geography Imagery

Source
NEPU-OWOD V1.0
(Wang et al., 2021) 1,192 432 0.41 Daqing City, China

Google
Earth

NEPU-OWOD V3.0
(Zhang et al., 2023) 3,749 722 0.48 China & California

Oil Well Dataset
(Shi et al., 2021) N/A 5,895 0.26 Daqing City, China

O&G Infrastructure
(Guisiano et al., 2024) 630 930 0.15 - 1 Permian Basin, USA

Well Pad Dataset
(Ramachandran et al., 2024) 12,490 10,432 0.3-0.7 Permian and Denver

Basins, USA
NEPU-OWS V1.0
(Wu et al., 2023b) N/A 1,200 10 Russia

Sentinel-2
NEPU-OWSV2.0
(Wu et al., 2023a) N/A 120 10/20/60 Austin, USA

Alberta Well Dataset
(Ours) 213,447 94,343 3 Alberta, Canada Planet

Labs
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(a) Training set (b) Validation set (c) Test set

Figure 1: Distribution of the number of individual wells in positive samples from the dataset. We
also include an equal number of images with no wells at all.

3 ALBERTA WELLS DATASET

In this paper, we introduce the Alberta Wells Dataset for oil and gas well detection. The dataset is
drawn from the province of Alberta, Canada, a region with the third-largest oil reserves in the world
and a substantial number of oil and gas wells, many of which have been present for over a century.
The entire province of Alberta (an area larger than the UK and Germany combined) encompasses a
diverse range of geographical zones and is highly diverse for a landlocked region, including prairies,
lakes, forests, and mountains. The dataset contains over 94,000 patches of satellite imagery acquired
from Planet Labs (PBC, 2024), covering more than 213,000 individual wells. Each patch is anno-
tated with labels for both segmentation and bounding box localization. The annotations are based
on data from the Alberta Energy Regulator, quality-controlled by domain experts.

Our dataset attempts to maximize the amount of data available for learning by including a mixture
of active and suspended wells alongside abandoned wells. These types of wells appear overall
similar in satellite imagery. In contrast to abandoned wells, “suspended” refers to wells that have
merely paused operations temporarily, though this designation can be inaccurate, and some wells
are classified as suspended for long enough that they are truly abandoned. Active wells are those
that are currently in operation.

To simulate real-world conditions, we ensure a varied density of wells per image, as highlighted in
Figure 1. We also include satellite imagery patches with no wells present from areas nearby to areas
with wells, ensuring no overlap between the samples. This balanced dataset maintains an equal
distribution of well and non-well images. Table 2 details the total sample count in each dataset split,
alongside the number of well and non-well patches.

3.1 WELL DATA COLLECTION, QUALITY CONTROL & PATCH CREATION

The Alberta Energy Regulator (AER) oversees the energy industry in the province, ensuring compa-
nies adhere to regulations as they develop oil and gas resources. AER publishes AER ST37 (AER,
2024), a monthly list of all wells reported in Alberta, detailing their geographic location, mode of
operation, license status, and type of product being extracted, among other attributes. This data pro-
vides a metadata (.txt) file and a .shp shape file, where each entry represents a unique geo-location
point per site but often contains duplicates. However, this data cannot be used directly because the
license status or mode of operation does not always correlate with the actual status of the well and
often contains duplicates. Therefore, we work with domain experts to perform quality control on
the dataset as illustrated in Figure 2.

Table 2: Statistics of instances and wells represented across the Alberta Wells Dataset.

Split
Count

Patches
Total

Count
Wells

Patches

Count
Non-Wells

Patches

Count of Well Type in
Wells Patches of Split

Abandoned Suspended Active
Train 167436 83718 83718 46342 47595 100294

Validation 9463 4731 4731 3166 2671 2406
Test 11789 5894 5894 4024 3609 3340

3
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Figure 2: AER ST37 Dataset Cleaning and Quality Control

First, we remove duplicate entries from the well metadata, which often contain multiple instances
of the same well identified by duplicate license numbers. We resolve these duplicates by retaining
the most recent update. A similar approach is applied to the shapefile, where duplicates are resolved
using the license date. Afterward, we merge both datasets and filter the data, categorizing the wells
as active, abandoned, or suspended based on specific criteria developed in consultation with domain
experts, as shown in Table 3. We check for duplicate location coordinates in the dataset and resolve
them by retaining the instance with the latest drill date. Finally, we ensure all the well instances in
the dataset are indeed within the boundaries of Alberta. The raw metadata file has around 637,000
instances, while the surface hole geometry file has around 512,000 instances. After quality control
and filtering, we have around 217,000 instances.

After filtering and performing quality control on the datasets with domain experts, we calculate the
geographical bounds covered by the well instances across the province and divide the region into
non overlapping square image patches, each covering an area of 1.1025 sq km (with sides of 1050m).
These images include various numbers of individual wells (see Fig. 1), and we ensure that an ap-
proximately equal number of patches exist with and without wells. As a result of this process, some
samples were excluded due to being located outside Alberta’s geographical boundaries, leading to a
final total of approximately 213,000 well instances in the dataset patches.

3.2 DATASET SPLITTING

To create a well-distributed dataset that represents various geographical regions and offers a diverse
dataset for evaluation and testing, we developed a splitting algorithm (see Algorithm 1). Our splitting
approach focuses on balancing regions, not individual examples, ensuring that both the training and
test sets reflect a diverse range of regions from Alberta’s varied landscape. This approach preserves
dataset diversity and simulates real-world conditions where imbalances are common.

This method involves forming small clusters k1i of nearby well patches based on their centroids as
illustrated in Figure 3 (a). These small clusters are then grouped into larger, non-intersecting super-
clusters k2i, with each super-cluster representing a city or larger geographical area. The formation
of super-clusters involves calculating a centroid for each k1i cluster based on the centroids of the
well patches it contains as illustrated in Figure 3 (b). By clustering wells in this manner, we ensure
that k1i clusters group wells from nearby localities together, while k2i clusters group wells from the

Table 3: Information on the numbers of wells represented in the dataset across different states (sus-
pended, abandoned, and active). It also includes domain-specific metadata, such as the mode of
operation and the types of fossil fuels extracted, which were used for filtering and quality control.

Well State Count License Status Mode Short Description Fluid Short Description

Suspended 55007
Suspension All

Gas, Crude oil, Crude bitumen,
Liquid petroleum gas,
Coalbed methane-coals and other Lith,
Coalbed methane-coals only,
Shale gas only, Acid gas,
CBM and shale and other sources,
Shale gas and other sources.

Issued SuspendedAmended

Abandoned 54947
Abandoned All
Issued Abandoned, Abandoned Zone,

Junked and Abandoned.Amended

Active 107139
Issued Flowing, Pumping,Gas Lift.Amended
Re-Entered Abandoned and Re-Entered

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Step-1 k1i clusters (b) c2i cluster centroids (c) Step-2 k2i clusters (d) Final Dataset Split

Figure 3: Illustration of the outcome of applying our dataset splitting algorithm: In Figures (a) to
(c), different colors represent various cluster IDs. In Figure (d), blue refers to the training set, orange
to the validation set, and green to the test set.

Algorithm 1 Clustering Algorithm for Dataset Splitting
W : Set of image patches ids containing wells ; NW : Set of image patches ids not containing wells
Input: xi represents the i-th patch with centroid coordinates ci, where i ∈ W or i ∈ NW ;
Output: Ts: Test Set ; Tr: Train Set ; Ev: Eval Set ;
Step 1: Clustering into M Clusters
Perform K-Means Clustering k1(∗) with M clusters using all centroid coordinates ci, where i ∈ W .
Assign each i-th patch into the m-th cluster where m ∈{1,...,M} and i ∈ W : cluster k1i = k1(ci) = m and
update patches (xi, ci, k1i)
for z ∈ {1, . . . ,M} do

Wcz = {j ∈ W | k1j = z}
Calculate cluster centroids c2j based on values of ci and update patch: (xi, ci, k1i, c2j), where i ∈ Wcz .

end for
Step 2: Clustering into N Super Clusters
Let Wcc be the set of unique c2j for j ∈ W
Perform K-Means clustering k2(∗) with N clusters using all c2i ∈ Wcc.
Assign each c2i ∈ Wcc to n-th cluster, where n ∈{1,..,N} & k2i = k2(c2i) = n.
Update patches (xj , cj , k1j , c2j , k2j) where c2j = c2i and j ∈ W .
Step 3: Assigning Patches to Sets
for z ∈ {1, . . . , N} do

Find all j with k2j = z, where j ∈ W as Wfz .
Find unique k1j and count oj associated with it for j in Wfz . The, assign k1j with minimum counts as

min1 and min2.
For each i in Wfz , append i to Ev if k1i = min1, to Ts if k1i = min2, otherwise to Tr .

end for
Step 4: Assigning Non-Well Patches
for each set counter in {Ev , Ts, Tr} do

for each unique k1i as zi ∈ set counter do
Find convex hull radius r(zi) of area occupied by cj , where j ∈ set counter & k1j = zi.
Locate non-well patches f ∈ NW within radius r(zi) not in any other cluster; Assign f to cluster

zi: (xf , cf , k1f ) : k1f = zi .
end for

end for
Step 5: Imbalance Correction
Tw refers to Count of Well Instances & Tnw refers to Count of Non-Well Instances in a Dataset Split
if Tnw ¿ Tw then

Identify clusters k1j in data split contributing to the imbalance of excess non-well patches, assign to Wic

for each i in Wic do
R(i) = (Tnw−Tw)· Count Non Wells(k1i)∑

Count Non Wells(k1l) where l∈Wic
; where R(i) is the no. of Samples to be Removed

from i-th Cluster.
end for

else
Sample non-well patches xj : j ∈ NW & j ̸∈ k1j .

end if
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Figure 4: A sample image patch from our dataset includes examples with no wells, two wells,
and multiple wells. Additionally, we present qualitative results with predictions generated by our
Segmentation U-Net (EfficientNet-B6) and Object Detection FCOS models.

same geographic region as illustrated in Figure 3 (c). Thus, each k2i cluster represents a geographic
distribution, with each k1i cluster within it representing a sample of that distribution.

To ensure a diverse and well-distributed evaluation and testing of our machine learning model, we
select the k1i clusters with the two fewest well instances from each k2i super-cluster for inclusion in
the evaluation and test sets. This approach ensures a diverse representation of the dataset as observed
in Figure 3 (d). Moreover, we maintain an equal distribution of well and non-well patches. In cases
of imbalance in non-well images, we exclude such patches from the contributing k1i clusters as
specified in Algorithm 1. For imbalances in well images, we sample non-well patches that are not
part of any other clusters.

The parameters used in constructing the dataset are M = 300 and N = 30. These were picked
heuristically so as to create a well-distributed dataset. Alberta’s varied landscape offers a rich en-
vironment for creating a comprehensive oil well dataset. Training machine learning models on
this extensive dataset improves their robustness and ability to generalize to similar, less-studied
regions, thereby supporting well detection and efforts to mitigate global warming. By forming non-
overlapping clusters (k1i), each with its own well and non-well patches, we minimize the risk of
data leakage while ensuring diversity. We also balanced non-well images across clusters to better
simulate real-world conditions. This approach helps maintain the diversity of the dataset.

3.3 SATELLITE IMAGERY ACQUISITION & LABEL CREATION

We used PlanetScope-4-Band imagery (PBC, 2024) featuring RGB and Near Infrared bands to repre-
sent satellite images of the region with a medium resolution of about 3 meters per pixel. PlanetScope,
a product of Planet Labs, consists of approximately 130 satellites that can image the entire Earth’s
land surface daily, collecting up to 200 million sq. km of data each day. We obtained Surface Re-
flectance imagery, which is offset-corrected, flat-field-corrected, ortho-rectified, visually processed,
and radio-metrically corrected. These processes ensure consistency across varying atmospheric con-
ditions and minimize uncertainty in spectral response over time and location, making the data ideal
for temporal analysis and monitoring applications.

We choose Planet Labs data over other alternatives since it is updated daily, making it possible to
pick a consistent time for all the images, which is important for training dataset consistency. It
also provides multispectral imagery (4-band: RGB+Near Infrared), and the Near Infrared band is
a useful addition since certain features, like ground depressions indicating well sites, may be more
detectable in this band. Lastly, while other alternatives may be limited in remote regions, Planet’s

6
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global satellite constellation ensures more consistent coverage. All the imagery we use is made
publicly available in the dataset.

To ensure the highest quality, we selected images with no cloud cover. The images were acquired
by Planet satellites within a timeframe that aligns with the well-location data from AER. We ob-
tained satellite images for each sample based on geographical coordinates, ensuring an intersection
between the actual area of interest and the acquired imagery.

We frame the task of identifying wells as both an object detection and segmentation task since
related remote sensing tasks have found both framings to be constructive. For each image patch, as
shown in Figure 4, we generated corresponding segmentation maps and object detection annotations
for all known wells in the image based on the point labels provided in the AER data. For binary
segmentation, we annotated each well site with a circle to match the teardrop shape typical for well
sites. We standardized the diameter of a well site to a value of 90 meters (such sites typically range
from 70 to 120 meters in diameter). We used the same scale to define bounding boxes in the object
detection task, following the COCO (Lin et al., 2014) format for annotations. The overlap in ground
truth bounding boxes for some of the wells in Figure 4 and Figure 9 reflects the clustering of multiple
wells in densely developed oil and gas sites, where the spatial overlap of wells and infrastructure
is common. (Note that this is a characteristic of the data, not a limitation of our quality control
strategy.) Additionally, we created multi-class segmentation maps, where each class represents a
different state of the well (active, suspended, or abandoned), and included this information in the
object detection annotations. (We do not perform multi-class segmentation experiments here, but it
is possible that future researchers may find this task useful.)

4 BENCHMARK EXPERIMENTS

We train benchmark deep learning models for binary segmentation and object detection tasks. Our
focus includes all oil and gas wells, regardless of their operational status, since they exhibit similar
footprints and consistent features, making them detectable in satellite imagery.

For both tasks, all models were trained using RGB and Near-Infrared (NIR) channels of the multi-
spectral satellite imagery. We augment images by randomly resizing images to 256×256, ensuring
all bounding boxes remain intact for object detection. We then apply horizontal and vertical flipping
with a probability of 0.25 each, followed by normalization using channel-wise mean and standard
deviation calculated from the training split of the dataset. The hyperparameters we use in these
various models represent standard performant settings and are not intended to represent the outcome
of hyperparameter optimization.

4.1 BINARY SEGMENTATION

We selected well-known baseline models for binary segmentation, encompassing the deep CNN-
based approaches U-Net (Ronneberger et al., 2015), PAN(Li et al., 2018), and DeepLabV3+ (Chen
et al., 2018) as well as the Transformer-based architectures Segformer (Xie et al., 2021) and UperNet
(Xiao et al., 2018).

U-Net (Ronneberger et al., 2015) was chosen for its widespread use as a baseline, offering an effec-
tive encoder-decoder architecture for multi-scale feature extraction. PAN (Li et al., 2018) improves
multi-scale context with pyramid pooling and attention mechanisms. DeepLabV3+(Chen et al.,
2018) was selected for its popularity in remote sensing tasks with its Atrous Convolution and ASPP
module for capturing contextual information at various scales. SegFormer (Xie et al., 2021) is a
transformer-based architecture designed for semantic segmentation, utilizing self-attention mecha-
nisms for capturing long-range dependencies. UperNet (Xiao et al., 2018) combines UNet (Ron-
neberger et al., 2015) and PSPNet (Zhao et al., 2016) architectures, featuring a UNet-like structure
for multi-scale feature fusion and PSPNet’s pyramid pooling module integrated with a Swin Trans-
former (Liu et al., 2021) backbone for efficient multi-scale processing.

We train all CNN-based models using a ResNet50 (He et al., 2015) backbone, a batch size of 128,
and the BCELogits loss function. To fine-tune the model, a cosine annealing scheduler (Loshchilov
& Hutter, 2016) is used, which adjusts the learning rate smoothly in a cyclical manner by gradually
decreasing it. To evaluate the impact of backbones with larger receptive fields and attention mech-
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anisms, we also experimented with additional backbones with U-Net. This included ResNeXt50
(Xie et al., 2016), which enhances feature learning through grouped convolutions; SE-ResNet50
(Hu et al., 2017), which introduces channel-wise attention with Squeeze-and-Excitation blocks; and
EfficientNetB6 (Tan & Le, 2019), known for its balanced scaling. For transformer-based models,
while both Segformer and UperNet use a Dice loss function and a polynomial learning rate sched-
uler, Segformer utilizes a mit-b0-ade (Xie et al., 2021) backbone with a batch size of 128, and
UperNet employs a Swin Small Transformer with a batch size of 64. All models are optimized
using AdamW (Loshchilov & Hutter, 2017) for 50 epochs.

We evaluate the binary segmentation task with respect to IoU, Precision, Recall, and F1-Score. High
Precision corresponds to reducing false positives, while high Recall corresponds to reducing false
negatives. IoU measures the overlap between predicted and ground truth masks, offering further
insight into segmentation accuracy. F1-Score, the harmonic mean of precision and recall, provides
a balanced measure considering both false positives and false negatives.

4.2 OBJECT DETECTION

For binary object detection, we consider both single-stage, i.e., RetinaNet (Lin et al., 2017), FCOS
and SSD, and two-stage CNN-based architectures, i.e. Faster R-CNN (Ren et al., 2015).

RetinaNet (Lin et al., 2017) is a one-stage architecture trained using focal loss, which helps to ad-
dress class imbalance. It uses a Feature Pyramid Network (FPN) for multi-scale feature extraction
and efficient object detection across different scales. Faster R-CNN (Ren et al., 2015) is a two-stage
model recognized for its high accuracy. It employs a Region Proposal Network (RPN) for generat-
ing region proposals and a separate network for predicting class labels and refining bounding box
coordinates. FCOS (Fully Convolutional One-Stage Object Detection) (Tian et al., 2019) directly
predicts object locations and categories from feature maps, which is effective for small object detec-
tion. SSD (Single Shot MultiBox Detector) (Liu et al., 2015) uses multiple feature maps at different
scales, enhancing its accuracy for small objects.

All object detection models are trained using a ResNet50 backbone, except for SSD Lite, which
is trained with a MobileNet backbone. The batch size is set to 256 for Faster R-CNN and FCOS
and 512 for RetinaNet and SSD Lite. We used a cosine annealing scheduler (Loshchilov & Hutter,
2016) and trained all models for 120 epochs. All models are optimized using the AdamW optimizer
(Loshchilov & Hutter, 2017).

For binary object detection model evaluation, we calculate Intersection over Union (IoU) at various
thresholds (e.g., IoU0.1, IoU0.3, IoU0.5), which measures how well predicted bounding boxes align
with ground truth. IoU is computed by dividing the area of overlap by the area of their union, with
higher values indicating better alignment. IoU thresholds define the minimum overlap required for
a predicted box to match a ground truth box. (For example, an IoU0.5 threshold means a predicted
box must have at least 50% overlap with a ground truth box to be considered a correct detection.)

We also assess Mean Average Precision (mAP), including mAP50 and mAP50:95, measuring the
model’s precision-recall trade-off and detection accuracy at various IoU thresholds. mAP50 mea-
sures precision at an IoU threshold of 0.5, while mAP50:95 averages precision across IoU thresholds
from 0.5 to 0.95. Higher mAP scores reflect better detection accuracy and precision.While higher
IoU values indicate better accuracy for individual predictions, mAP provides a broader measure of
detection performance by capturing precision across different IoU criteria.

4.3 RESULTS & ANALYSIS

Our tasks involve identifying a roughly circular well region with a 90m diameter in real life, which
translates to less than 30 pixels in satellite imagery due to resizing and other augmentations. This
poses a challenge for machine learning models given the heterogeneous nature of the background,
including various similarly shaped and sized features of the natural and built environment. Addi-
tionally, vegetation can occlude wells in RGB channels, highlighting the importance of near-infrared
imagery for guiding the model. The wells themselves also vary somewhat in shape and can be in
various states of disrepair as a result of differing ages and maintenance.
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Table 4: Results for the binary segmentation task for a variety of models evaluated over the test
set.We report the Intersection over Union (IoU), precision, recall, and F1-score.

Architecture Backbone Params GFLOPs IoU F1 Score Precision Recall

U-Net

ResNet50 32.52M 21.42 58±0.5 61.9±0.8 90.2±2.2 62.3±1.6
ResNext50 32M 21.81 58.2±0.2 62.1±0.3 88.2±3.5 63.6±1.7

SE ResNet50 35.06M 20.83 58.9±0.7 62.9±0.7 88.8±1.6 64.4±1.4
EfficientNetB6 43.83M - 60.4±0.3 64.8±0.4 87.8±0.4 66.3±0.3

PAN ResNet50 24.26M 17.47 57.8±0.8 61.5±0.9 89.3±1.2 61.5±0.9
DeepLabV3+ 26.68M 18.44 56.8±0.7 60.6±0.7 89.4±1.3 61.8±1.1

Segformer mit-b0-ade 3.72M 3.52 57.6±0.5 61.3±0.6 82.6±2.9 69.2±2.1
UperNet swin small 81.15M 134.20 59.9±0.7 64.2±0.7 80.6±0.5 73.1±0.1

4.3.1 BINARY SEGMENTATION

For the binary segmentation task framing, we train Models (from scratch) using both CNN-based
and Transformer-based backbones, considering the prevalent imbalance in the image data due to
the small size of wells. Although we did use 3-dimensional, ImageNet initialized weights of the
backbone but modified the initial layers afterwards to support 4-dimensional multispectral images.

Among our models, as shown in Table 4, the traditional U-Net with EfficientNetB6 backbone per-
forms the best, with CNN-based models showing the highest IOU of 60.4 ± 0.3 and F1-Score of
64.8 ± 0.4. While a ResNet50-based backbone achieves the highest Precision of 90.2 ± 2.2, in-
dicating more accurate predictions of well instances compared to other models. Precision, which
reflects the accuracy of our positive detections compared to the ground truth, is crucial. However, a
high recall value ensures the model captures most actual well instances, reducing the risk of missing
important information. Thus, the Uper-Net model with the highest recall value of 73.1± 0.1, which
excels at capturing global context information, appears a good candidate for this task given a decent
precision score. However, taking into account both precision and recall, U-Net with EfficientNetB6
backbone perform well, suggesting the utility of a larger backbone with a bigger receptive field.

4.3.2 BINARY OBJECT DETECTION

Our evaluation, as shown in Table 5, indicates that while all models perform reasonably well in terms
of aligning predicted and actual well locations, performance in the object detection task is overall
lower than for segmentation – indicating that potentially segmentation is simply a better framing for
this task in real-world settings.

The observed gap in performance is likely due to the small size of the wells. It is well-known
that single-stage CNN architectures (such as FCOS and SSD) often demonstrate better performance
on small object detection than two-stage methods (such as Faster R-CNN), and this aligns with
our observations. The exception here is the single-stage method RetinaNet, which, although it has
comparable IoU scores, struggles to detect wells accurately. SSD Lite stands out with the highest
IoU0.5 score of 65.07±0.03 and IoU0.3 score of 50.3±0.08. Whereas all models are quite similar in
terms of IoU0.1, the highest score by FasterRCNN is 36.79± 1.07. Thus, SSD Lite and FCOS excel
in localization, especially at higher IoU thresholds, while Faster R-CNN is adept at detecting objects
with minimal overlap. All models demonstrate low performance in terms of mAP50, which assesses
precision-recall trade-off and detection accuracy at an IoU threshold of 0.5. FCOS achieves the of
9.67 ± 1.47 while SSD Lite achieves a score of 9.76 ± 0.39. This may be due to these models not
producing region proposals confidently enough, especially in instances with a large number of wells.
Whereas over a broader evaluation with mAP50:95 which averages precision across IoU thresholds
from 0.5 to 0.95. All models apart from RetinaNet provide much better results, with FCOS achieving

Table 5: Results for the object detection task for a variety of models evaluated over the test set. We
report the intersection over union (IoU) over thresholds 0.1, 0.3, 0.5 and the mean average precision
(mAP) for both IoU= 0.5 and IoU∈ [0.5, 0.95] thresholds.

Architecture Backbone Params GFLOPs IoU0.1 IoU0.3 IoU0.5 mAP50 mAP50:95

RetinaNet
ResNet50

18.87M 0.93 24.58±0.11 43.07±0.8 59.79±0.36 0.18±0.28 0.72±1.12
FasterRCNN 41.09M 24.7 36.79±1.07 46.95±0.66 61.29±0.35 5.20±1.00 19.12±3.41

FCOS 31.85M 25.81 34.79±0.99 48.51±0.59 62.66±0.43 9.67±1.47 30.46±3.11
SSD Lite MobileNet 3.71M 0.64 33.91±0.18 50.30±0.08 65.07±0.03 9.76±0.39 25.14±0.66
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the highest score of 30.46 ± 3.11, indicating a decent performance in the identification of well
instances.

5 LIMITATIONS

We do not envision any significant negative uses of our work. Localization of wells is primarily
of interest to the climate change mitigation community and is not, for example, a primary means
whereby fossil fuel companies select new locations for drilling. Therefore, we do not believe this
dataset is susceptible to dual use risks.

One potential limitation of our work is that we rely on well locations listed by the Alberta Energy
Regulator. It is likely that some true well locations are missing in this data, leading to the potential
for false negatives in the ground-truth data for this problem. However, it is to be expected that this
will not significantly affect the training of algorithms since these labels represent a small fraction
of the negative locations in the dataset, and deep learning algorithms are known to be robust to
moderate amounts of label noise (see e.g. (Rolnick et al., 2017)). Instead the effect may simply be
that the reported test accuracy is actually lower than the true value (due to certain correctly predicted
well locations being evaluated as false). We hope to investigate such effects further in future work.

Our dataset is focused on Alberta, because (1) it is a very large region with a significant amount of
high-quality labeled data available, (2) it is one of the world’s most important locations for oil and
gas production, so identifying wells in Alberta is of immediate impact. Future works may wish to
assess the capacity for few- or zero-shot transfer learning from Alberta to other regions with a high
expected concentration of abandoned wells, including the Appalachian and Mountain West regions
of the United States, as well as a number of former Soviet states.

6 CONCLUSION

In this paper, we present the first large-scale benchmark dataset aimed at identifying oil and gas
wells, with a focus on abandoned and suspended wells, which are a significant source of greenhouse
gases and other pollutants. We combine high-resolution imagery, an extensive database of well loca-
tions, and expert verification to create the Alberta Wells Dataset. We frame well identification both
in terms of object detection and binary segmentation and evaluate the performance of a wide range
of popular deep learning methods on these tasks. We find that the UNet model (with a Efficient-
NetB6 backbone), in particular, represents the most promising baseline for the binary segmentation
task, while for object detection, all models demonstrate more mixed results, with Single Stage Mod-
els (such as FCOS and SSD) providing a relatively promising baseline. These results show that the
Alberta Wells Dataset represents both a challenging as well as a societally impactful set of tasks.

The value added by the dataset is twofold. First, most global fossil fuel-producing regions do not
have databases of well locations comparable to that provided by AER. Alberta’s varied landscape
provides an ideal setting for developing algorithms for the detection of wells, which can then be
used directly in other locations or fine-tuned. Second, even in Alberta, the list developed by AER
is not comprehensive, and many abandoned wells are believed to be missing. Our work can provide
candidate locations for domain experts to examine so as to determine the true number and locations
of abandoned wells in Alberta.

We hope that our work may be of use to policymakers and other stakeholders involved in climate
action and environmental protection according to the following envisioned steps:

• Use the Alberta Wells Dataset to train algorithms for pinpointing well locations.

• Run these algorithms at scale across a broader region of interest, comparing against any
existing databases to identify those wells that may be undocumented.

• Flag abandoned wells for plugging, prioritizing those identified as super-emitters.

We believe that the scalability of machine learning tools for remote sensing will make them an
invaluable tool in pinpointing and mitigating the global environmental impact of abandoned oil and
gas wells.
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A ADDITIONAL EXPERIMENTS

A.1 IMPACT OF NEAR INFARED MULTI-SPECTRAL IMAGERY BAND (RGB V/S RGB+NIR)

The inclusion of the Near-Infrared (NIR) band significantly improves both object detection and
segmentation performance over the standard RGB modality as illustrated in Tables 6 and 7.

In object detection (Table 7), RGB+NIR achieves higher Intersection over Union (IoU) scores across
all thresholds (0.1, 0.3, and 0.5) and a considerable increase in mAP@50 (9.67±1.47 vs. 5.7±3.65)
and mAP@50:95 (30.46±3.11 vs. 20±10.4). Similarly, in segmentation (Table 6), RGB+NIR
shows superior performance in IoU (58±0.5 vs. 56.6±0.44), F1 Score (61.9±0.8 vs. 60.5±0.35),
and Precision (90.2±2.2 vs. 87±1.4), while maintaining a slightly lower Recall (62.3±1.6 vs.
62.54±0.13).

These improvements can be attributed to the enhanced spectral information provided by the NIR
band, which is particularly effective in detecting features such as ground depressions that may indi-
cate well sites. These features are often more distinguishable in the NIR spectrum, leading to better
performance in both tasks.

Table 6: Results for the binary segmentation task for U-Net Model with ResNet50 backbone eval-
uated over the test set for multiple input modality. We report the Intersection over Union (IoU),
precision, recall, and F1-score.

Modality GFLOPs Params IoU F1 Score Precision Recall
RGB+NIR 21.42 32.52M 58.00±0.50 61.9±0.80 90.20±2.20 62.30±1.60

RGB 21.32 32.52M 56.60±0.44 60.50±0.35 87.00±1.40 62.54±0.13

Table 7: Results for object detection task for the FCOS Model with ResNet50 backbone evaluated
over the test set for multiple input modality. We report the intersection over union (IoU) over thresh-
olds 0.1, 0.3, 0.5 and the mean average precision (mAP) for both IoU= 0.5 and IoU∈ [0.5, 0.95]
thresholds.

Modality GFLOPs Params IoU0.1 IoU0.3 IoU0.5 mAP50 mAP50:95

RGB+NIR 25.81 31.85M 34.79±0.99 48.51±0.59 62.66±0.43 9.67±1.47 30.46±3.11
RGB 25.71 31.85M 32.39±2.88 46.80±2.07 61.23±1.58 5.7±3.65 20.00±10.40

A.2 ADDITIONAL EXPERIMENTS: CONVNEXT BACKBONE

UperNet is a robust semantic segmentation framework that integrates multi-scale features using a
Feature Pyramid Network and a refined decoder to capture both global and local context, making it
effective for complex segmentation tasks. ConvNeXt, a modern convolutional backbone, enhances
feature extraction through advanced architectural refinements inspired by transformer models.

As shown in Table 8, ConvNeXt-Base achieves an IoU of 59.89, F1 score of 64.04, precision of
81.71, and recall of 72.05, making it a competitive choice for remote sensing image analysis. Com-
pared to the architectures presented in Table 4, such as U-Net with EfficientNetB6 (IoU: 60.4, F1
score: 64.8) and UperNet with Swin Small (IoU: 59.9, F1 score: 64.2), ConvNeXt-Base offers a
comparable balance of accuracy and recall, particularly excelling in recall at 72.61, which is critical
for identifying all relevant features in real-world scenarios. Additionally, ConvNeXt Small pro-
vides a trade-off between computational efficiency and model size, requiring fewer GFLOPs and
parameters compared to UperNet with Swin Small while achieving similar performance.

Table 8: Results for the binary segmentation task for UperNet Model with ConvNexT backbones
evaluated over the test set for multiple input modality. We report the Intersection over Union (IoU),
precision, recall, and F1-score.

Backbone GFLOPs Params IoU F1 Score Precision Recall
ConvNexT-Small 128.29 81.76M 59.47 63.60 81.01 71.82
ConvNexT-Base 146.27 121.99M 59.89 64.04 81.71 72.05
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Table 9: Performance comparison of U-Net Model with ResNet50 Backbone for Binary Segmen-
tation trained on active wells only versus all well types over Test Set. The table highlights metrics
(IoU, F1 score, precision, and recall) demonstrating the importance of incorporating all well types
in the training dataset for improved generalization and balanced performance.

Metric Train Set Test Set(Well Type Label Present)

IoU Active (I) 0.502
All (I+II+III) 0.576

F1 Score Active (I) 0.503
All (I+II+III) 0.614

Precision Active (I) 0.998
All (I+II+III) 0.913

Recall Active (I) 0.502
All (I+II+III) 0.614

A.3 BENEFITS OF USING MULTIPLE WELL TYPES

The results in Table 9 emphasize the necessity of including all well types (active, suspended,
and abandoned) in the training dataset to ensure comprehensive detection across diverse scenar-
ios. Training exclusively on active wells significantly underperforms in mixed-type contexts (IoU:
0.502), indicating poor generalization when all well types are present. Conversely, training on all
well types improves the model’s ability to handle real-world heterogeneity, as reflected by a higher
IoU (0.576), F1 score (0.614), and recall (0.614) for the test set. The enhanced recall demonstrates
the model’s capability to identify a broader range of wells, crucial for environmental monitoring,
where missing even a single abandoned well could result in unaddressed methane emissions or
groundwater contamination. Precision for active-only training (0.998) is higher than model trained
on all well types (0.913), but its inability to detect all wells in a image (due to low recall) lim-
its its applicability. Therefore, incorporating all well types in training ensures balanced, reliable
performance, allowing for accurate detection and classification in diverse and realistic contexts.

B DATASET AND CODE

B.1 DATASET

The dataset is currently hosted in Dropbox for anonymity reasons and can be accessed here:
AWD Dataset

• Example visualization of dataset samples, including the spectral bands of each image and
the corresponding labels: Visualizations

• Compressed training set: Train.tar.gz
• Compressed validation set: Validation.tar.gz
• Compressed test set: Test.tar.gz
• Dataset license: License.txt

B.2 CROISSANT METADATA

The Croissant metadata can be accessed from here: Croissant metadata record (AWD)

Our dataset is comprised of Hierarchical Data Format (HDF5) files with a multi-level hierarchy. The
Croissant metadata format does not currently support describing the structure within each HDF5 file,
as noted in a GitHub issue.

Therefore, we provide Croissant dataset metadata that includes only dataset-level information and
resources, excluding RecordSets that require data from HDF5 files. We will update the metadata
once Croissant supports the HDF5 format.

Additionally, we provide another documentation framework, Datasheets for Datasets Gebru et al.
(2021), described in Section G.
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We also describe the dataset structure and the structure of data in Hierarchical Data Format (HDF5)
files in detail in Sections D.1, D.2 and D.3.

B.3 CODE REPOSITORY

The code repository with benchmark experiments and visualizations of samples can be accessed
here: awd benchmark

C HOSTING, LICENSING, AND MAINTENANCE PLAN

C.1 HOSTING & MAINTENANCE

Once the dataset is made public, we plan to host it on Zenodo.

C.2 DATA LICENSING

The AWD Dataset is released under a Creative Commons Attribution-NonCommercial 4.0 Interna-
tional (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/
4.0/).

The satellite imagery for this project was acquired through Planet Labs’ PBC (2024) Education &
Research license, which allows the use of the data in publications and the creation of derivative
products related to those publications. However, the raw imagery cannot be shared publicly. To
adhere to these guidelines, we provide the data in HDF5 format, with the satellite imagery pre-
processed to produce a derived product represented as a numpy array from Raster Vector. This
process removes all geographic metadata.

This data is for academic use only and should not be used commercially. Proper credit to the current
authors, Planet Labs PBC (2024), and the Alberta Energy Regulator AER (2024) is required when
using this data.

D DATASET INFORMATION

The purpose of this dataset is to assist in training deep learning systems to identify oil and gas
wells, including abandoned, suspended, and active ones. This will enable the detection of wells in
a specific area, allowing comparison with government records. If discrepancies are found, experts
can conduct further investigations, which can possibly lead to the discovery of an abandoned or
suspended device that might not be present in government records.

D.1 DATASET STRUCTURE

We provide training, validation, and testing sets, split using our proposed algorithm (as described in
Section 3.2 of the main paper) to create a well-distributed dataset.

The proposed method aims to create smaller regions of well concentration by clustering the centroids
of patches. These regions are designed to be (a) mutually non-intersecting, (b) part of a larger
geographic region by clustering the centroids of the initial clusters, and (c) containing a similar
distribution of non-well patches within the same region.

This approach ensures that the training, validation, and test sets include representations from all
geographic regions, providing a diverse and comprehensive evaluation. Thus, the dataset represents
various geographical regions and offers a diverse benchmark for evaluation and testing.

Each dataset split is saved in an HDF5 format file, structured as described in the following sections,
and then compressed into a .tar.gz file for faster transfer. Details on the number of samples in each
set and the size of the dataset, both original and compressed, are presented in Table 3.
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D.2 DATASET FILE DIRECTORY STRUCTURE

The following directory structure is used for each dataset file being stored in a Hierarchical Data
Format 5 (HDF5) file:

<Train/Test/Val>Set.h5
|---image

|---<sample_name>
|---Satellite Image (Multispectral Rasterio Image Data)
|---Meta Data of <sample_name>

|---label
|---binary_seg_maps

|---<sample_name>
|---Binary Segmentation Map (Rasterio Image Data)

|---multi_class_seg_maps
|---<sample_name>

|---Multiclass Segmentation Map (Rasterio Image Data)
|---bounding_box_annotations

|---<sample_name>
|---Bounding Box JSON Data (COCO Format)

|---author:Anonymous Author(s)
|---description: Alberta Wells Dataset:

Pinpointing Oil and Gas Wells
from Satellite Imagery

D.3 STRUCTURE OF DATASET DIRECTORY

To enhance the efficiency of the data loader, we split the larger .h5 dataset into smaller .h5 files, each
corresponding to a unique sample (image patch). By splitting the dataset in such a manner, we are
able to improve the speed per iteration of the dataloader by over 100%.

This results in the following data structure:

<Sample_Id>.h5
|---image

|---Satellite Image (Multispectral Rasterio Image Data)
|---Meta Data

|---label
|---binary_seg_maps

|---Binary Segmentation Map (Rasterio Image Data)
|---multi_class_seg_maps

|---Multiclass Segmentation Map (Rasterio Image Data)
|---bounding_box_annotations

|---Bounding Box JSON Data (COCO Format)
|---author:Anonymous Author(s)
|---description: Alberta Wells Dataset:

Pinpointing Oil and Gas Wells
from Satellite Imagery

D.4 DATASET SIZE & DISTRIBUTION OF SAMPLES

Our dataset comprises over 94,000 patches of satellite imagery containing wells, with a total of
188,000 patches sourced from Planet Labs (PBC, 2024), covering more than 213,000 individual
wells. Details about the distribution of the number of patches, wells present, and dataset split sizes
are provided in Table 10, with the distribution of the number of wells per sample being described in
Table 11. We also include an equal number of images that contain no wells in each dataset split. The
distribution of wells per sample, along with the corresponding number of wells and the breakdown
of well types, is illustrated in Figure 6 and detailed in Tables 12, 13, and 14 . The geographic
distribution of wells in the dataset can be visualized in Figure 5.
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Figure 5: Density map of wells in the Alberta Wells Dataset.

Table 10: Dataset statistics represented across the various splits of the dataset.

Dataset
Split

No of
Samples

No of Wells
in Split

Original HDF5
File Size (in Gb)

Compressed .tar.gz
File Size (in Gb)

Train 167436 194231 322 100
Validation 9463 8243 19 5.7

Test 11789 10973 24 7.1
Total 188688 213447 365 112.8

Table 11: The distribution of individual wells in positive samples from the dataset. We also include
an equal number of images that contain no wells in each dataset split.

No of Wells
in a Sample

Frequency of Well Instances in a Sample
Training Split Validation Split Test Split

1 44299 3393 4128
2 - 3 25378 979 1242
4 - 5 7899 190 328
6 - 10 4927 123 227
11 - 15 751 23 38
16 - 25 333 11 19
26 - 35 67 10 2
36 - 55 45 3 0
56 - 75 18 0 0
76 - 125 1 0 0
Total 83718 4732 5984
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(b) Validation set
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(c) Test set

Figure 6: Distribution of the number of individual wells and the proportion of well types (active,
suspended, and abandoned) in positive samples from the dataset. We also include an equal number
of images with no wells at all.
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Table 12: Test set statistics showing the distribution of image samples by the number of wells per
image and the breakdown of well types (active, suspended, and abandoned).

No of
Wells in
a Image

Sample (S)

Test Set
Count
(Image

Samples)

Distribution of Well Type in Samples
Total
Wells

Active
Wells

Suspended
Wells

Abandoned
Wells

1 4128 4128 999 1325 1804
2 - 3 1242 2858 1042 844 972
4 - 5 328 1445 495 464 486

6 - 10 227 1662 604 555 503
11 - 15 38 471 144 181 146
16 - 25 19 352 56 184 112
26 - 35 2 57 0 56 1

10973 3340 3609 4024

Table 13: Validation Set statistics showing the distribution of image samples by the number of wells
per image and the breakdown of well types (active, suspended, and abandoned).

No of
Wells in
a Image

Sample (S)

Validation Set
Count
(Image

Samples)

Distribution of Well Type in Samples
Total
Wells

Active
Wells

Suspended
Wells

Abandoned
Wells

1 3393 3393 743 1225 1425
2 - 3 979 2197 833 654 710
4 - 5 190 824 346 248 230
6 - 10 123 910 323 331 256

11 - 15 23 287 67 114 106
16 - 25 11 204 32 63 109
26 - 35 10 300 33 22 245
36 - 55 3 128 29 14 85

8243 2406 2671 3166

Table 14: Train Set statistics showing the distribution of image samples by the number of wells per
image and the breakdown of well types (active, suspended, and abandoned).

No of
Wells in
a Image

Sample (S)

Train Set
Count
(Image

Samples)

Distribution of Well Type in Samples
Total
Wells

Active
Wells

Suspended
Wells

Abandoned
Wells

1 44299 44299 16715 13116 14468
2 - 3 25378 59190 33099 12706 13385
4 - 5 7899 34544 22456 6321 5767
6 - 10 4927 35333 21522 7796 6015

11 - 15 751 9345 4076 3136 2133
16 - 25 333 6381 1781 2544 2056
26 - 35 67 1994 376 791 827
36 - 55 45 1929 172 777 980
56 - 75 18 1129 86 345 698

76 - 125 1 87 11 63 13
83718 194231 100294 47595 46342

D.5 PLANETSCOPE SATELLITE IMAGERY

For our experiments, we selected a 4-band (RGBN) satellite imagery product (ortho analytic 4b sr)
from Planet Labs (PBC, 2024) as illustrated in Figure 7. This product uses Planet’s PSB.SD instru-
ment, which features a telescope with a larger 47-megapixel sensor and is designed to be interoper-
able with Sentinel-2 imagery in several bands. The frequency of each band of image is described in
Table 15. The instrument provides a frame size of 32.5 km x 19.6 km, an image capture capacity
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(a) A sample patch with Bbox annotations and the corresponding imagery in its different spectral bands.

(b) A sample patch with its segmentation labels (binary and multi-class) and bounding box annotations.

Figure 7: A Sample Patch from the Evaluation Set with 2 active wells.

of 200 million km²/day, and an imagery bit depth of 12-bit, with a ground sample distance (nadir)
ranging from 3.7 m to 4.2 m.

The satellite images are corrected for atmospheric conditions and spectral response consistency.
These multispectral products are tailored for monitoring in agriculture and forestry, offering precise
geolocation and cartographic projection. They are ideal for tasks such as land cover classification,
with radiometric corrections ensuring accurate data transformation.

Table 15: The Frequency of Each Spectral Band of a Planetscope PS.SD acquired Image

Band of Image Frequency (in nm) of Spectral Band
Band 1 = Blue 465 - 515

Band 2 = Green 547 - 585
Band 3 = Red 650 - 680

Band 4 = Near-infrared 845 - 885

D.6 META DATA DESCRIPTION

Each dataset sample is accompanied by metadata, including the sample name (sample ID in string
format), the presence of a well in the sample, the number of wells in the sample, and whether a
well of a specific category is present in the sample. Table 16 provides an illustration of metadata
associated with a sample.

Table 16: Sample of Meta-Data Associated with each Instance in the Dataset

Meta-Data Attribute Name Value
Sample Name eval 6934
wells present True
no of wells 10

Abandoned well present True
Active well present True

Suspended well present True

D.7 LABEL DATA DESCRIPTION

For our experiments, we create single-channel segmentation maps, which are binary maps used
to locate instances of wells. We also generate multi-class segmentation maps, where each class
denotes a well in an active, abandoned, or suspended state. Furthermore, we provide COCO format
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object detection labels for wells. In both segmentation and detection labels, we represent various
states with class IDs as ’Active’: 1, ’Suspended’: 2, ’Abandoned’: 3. To maintain consistency,
we standardize the diameter of a well site to 90 meters (typically ranging from 70 to 120 meters)
when annotating, resulting in a 30-pixel diameter in the labels. Figure 7(b) illustrates image patches
with their corresponding labels, Figure 7(a) illustrates various spectral bands present in an image
alongside the original image with bounding box annotations for reference and an example of a
bounding box label in COCO format is shown below.

Sample of Bounding Box Annotation:

[
{

’ id ’ : 0 ,
’ image id ’ : ’ eva l 7028 ’ ,
’ c a t e g o r y i d ’ : 1 ,
’ bbox ’ : [ 4 6 , 145 , 29 , 2 9 ] ,
’ i sc rowd ’ : 0

} ,
{

’ id ’ : 1 ,
’ image id ’ : ’ eva l 7028 ’ ,
’ c a t e g o r y i d ’ : 2 ,
’ bbox ’ : [ 4 5 , 127 , 29 , 2 9 ] ,
’ i sc rowd ’ : 0

}
]

E DATASET SAMPLES ILLUSTRATION

Samples from the dataset, covering various scenarios, are shown in Figures 8 and 9.

F CHALLENGES FOR ML COMMUNITY

The Alberta Wells Dataset presents several intriguing challenges for machine learning. Key issues
include an imbalanced data distribution, with fewer instances of areas with multiple wells compared
to those with single or two wells, and the visual similarity among active, suspended, and abandoned
wells, which can confuse standard models. Additionally, varying spatial relationships in the im-
agery due to varying geography create difficulties for off-the-shelf models. Noise in annotations,
even after data quality control and cleaning—such as misclassified wells—further complicates the
task. Despite these challenges, the dataset’s large scale and geographical diversity, covering over
213,000 wells, offer significant opportunities for developing robust and generalizable ML models
for monitoring oil and gas infrastructure.
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Figure 8: Qualitative results from the dataset illustrate the diverse distribution of wells in dataset
samples, including Bbox annotations and corresponding imagery in different spectral bands.
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Figure 9: The qualitative results from the dataset showcase the varied distribution of wells in dataset
samples, with their corresponding segmentation labels (binary and multi-class) and Bbox annota-
tions.
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G DOCUMENTATION FRAMEWORKS: DATASHEET FOR DATASETS

G.1 MOTIVATION

1. For what purpose was the dataset created? Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please provide a description.
The Alberta Wells Dataset (AWD) was created to identify oil and gas wells—whether aban-
doned, suspended, or active—using high-resolution (3m/px) multi-spectral satellite im-
agery. While the issue of detecting oil and gas wells has been addressed by several authors,
existing datasets are typically small (500-5,000 samples) and limited to specific regions,
often including only active wells. This limitation reduces their effectiveness in identifying
abandoned or suspended wells. The AWD aims to fill this gap in the literature by offering a
comprehensive dataset with over 188,000 samples (including over 94,000 samples contain-
ing wells) from PlanetLabs satellite imagery, encompassing more than 213,000 individual
wells.

2. Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?
The raw data is sourced from the Alberta Energy Regulator (AER), specifically from the
monthly AER ST37 publication. This dataset includes comprehensive details about all
reported wells in Alberta, such as their geographic location, mode of operation, license
status, and the type of product extracted, among other attributes. The data is provided
in shapefile format along with accompanying metadata. However, the dataset cannot be
used directly because the license status or mode of operation often does not reflect the
well’s actual status. Therefore, the authors include domain experts from Anonymous,
who specialize in field measurements of methane and air pollutant emissions from oil, gas,
and urban systems, as well as in the geospatial and statistical data analysis of emissions
and energy infrastructure, to ensure the quality of the dataset.

3. Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.
This project was funded by Anonymous.

G.2 COMPOSITION

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.
We provide a dataset file stored in Hierarchical Data Format 5 (HDF5, i.e., a .h5 file), which
contains multispectral 4-band RGBN satellite images in raster format and data labels with
both identified by unique instance names. These satellite images, acquired from Planet
Labs, have a resolution of 3 meters per pixel and include corresponding metadata. The
metadata contains information about the number and types of wells present in a patch. For
data labels, we offer binary segmentation maps, multi-class segmentation maps (each class
representing a well in an active, abandoned, or suspended state), and COCO format object
detection labels. The images were taken from the province of Alberta, Canada, with each
satellite imagery patch representing a square with a side length of 1050 meters (1.05 km),
covering an area of 1.025 square kilometers. The entire dataset spans over 193,000 square
kilometers.

• How many instances are there in total (of each type, if appropriate)?
The proposed dataset comprises 188,688 instances, of which 94,344 contain one or more
wells, totaling 213,447 well points. Each instance includes corresponding multispectral
satellite imagery, segmentation maps (both binary and multi-class, with classes indicating
active, suspended, or abandoned states), and bounding box annotations with the state of
operations as the object class ID in COCO format. We standardized the diameter of a
well site to 90 meters (typically ranging from 70 to 120 meters) for creating annotations,
resulting in a diameter of 30 pixels in the labels. More details about the distribution of
wells in each split are provided in the supplementary materials as well as the main paper.

• Does the dataset contain all possible instances or is it a sample (not necessarily ran-
dom) of instances from a larger set? If the dataset is a sample, then what is the larger
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set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please
describe how this representativeness was validated/verified. If it is not representative of the
larger set, please describe why not (e.g., to cover a more diverse range of instances because
instances were withheld or unavailable).
The AWD Dataset is based on the AER ST37 monthly status data of wells in the Alberta
region of Canada. It includes wells that are in active, suspended, or abandoned states of
operation. To ensure the dataset’s quality, the authors with appropriate domain expertise
conducted extensive quality control, filtering, and duplicate removal. This process was nec-
essary because the full dataset included cases of well sites being restored and reclaimed, as
well as various duplicates, noise, and data on other types of wells involving different natu-
ral resources. Therefore, the AWD Dataset, which includes multi-spectral satellite imagery,
segmentation, and detection labels, is constructed from a refined subset of the original AER
ST37 data, specifically targeting oil and gas wells that can be precisely identified.

• What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a description.
Each Image instance in our dataset, formatted in HDF5, contains satellite imagery repre-
sented as a numpy array from Raster Vector. We preprocessed this imagery by reprojecting
it to the EPSG 32611 coordinate reference system and removed all geographic metadata,
such as image bounds and coordinates, from the shared data. However, we do provide at-
tributes like Sample Name, wells present, no of wells, Abandoned well present, Active well
present, and Suspended well present. We utilized Planet Labs’ 4-band (RGBN) satellite
imagery product (ortho analytic 4b sr), which incorporates the latest PSB.SD instrument
with a 47-megapixel sensor. Each satellite imagery patch acquired represents a square with
a side length of 1050 meters (1.05 km), covering an area of 1.025 square kilometers. The
entire dataset spans over 193,000 square kilometers.

• Is there a label or target associated with each instance? If so, please provide a descrip-
tion.
There are three types of labeled data for each image: binary segmentation maps (in Rasterio
Image format) indicating the presence or absence of oil and gas wells, multiclass segmenta-
tion maps (also in Rasterio Image format) potentially identifying various classes of objects,
and bounding box annotations (in COCO format) specifying the location and size of ob-
jects, such as wells, within the image. These components together form a comprehensive
dataset suitable for training and evaluating machine learning models for tasks like object
detection and segmentation in satellite imagery, particularly focused on pinpointing oil and
gas wells in Alberta

• Is any information missing from individual instances? If so, please provide a descrip-
tion, explaining why this information is missing (e.g., because it was unavailable). This
does not include intentionally removed information but might include, e.g., redacted text.
The satellite imagery used in this project was obtained under Planet Labs’ (PBC, 2024) Ed-
ucation & Research license, which prohibits sharing raw satellite imagery. We re-projected
the raw data to EPSG:32611 using the nearest resampling method and removed all geo-
graphic metadata, such as image bounds and coordinates, from the shared data imagery to
create a derived product that complies with the license terms.

• Are relationships between individual instances made explicit (e.g., users’ movie rat-
ings, social network links)? If so, please describe how these relationships are made ex-
plicit.
N/A

• Are there recommended data splits (e.g., training, development/validation, testing)?
If so, please provide a description of these splits, explaining the rationale behind them.
The dataset we propose comprises more than 94,000 patches of satellite imagery contain-
ing wells, totaling 188,000 patches sourced from Planet Labs. This dataset covers over
213,000 individual wells. To ensure a balanced dataset, we divided it into training, valida-
tion, and testing sets using our algorithm outlined in Section 3.2 of the main paper. Our
proposed method for splitting the data aims to create smaller, non-overlapping regions of
concentrated wells by clustering patch centroids. These regions are intended to (a) not in-
tersect, (b) be part of a larger geographic area by clustering initial cluster centroids, and
(c) contain a similar distribution of non-well patches. This approach ensures that the train-
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ing, validation, and test sets cover all geographic regions, providing a diverse and thorough
evaluation. The dataset splits represent various geographical areas, making it a comprehen-
sive benchmark for evaluation and testing. Each dataset split is stored in an HDF5 format
file.

• Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.
One limitation of our study is our reliance on well locations provided by the Alberta Energy
Regulator, which may not encompass all sites, leading to potential omissions in the ground-
truth data. This could result in a lower reported validation and test accuracy, with some
correctly predicted well locations being mistakenly categorized as false.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a)
are there guarantees that they will exist and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses,
fees) associated with any of the external resources that might apply to a dataset consumer?
Please provide descriptions of all external resources and any restrictions associated with
them, as well as links or other access points, as appropriate.
The dataset does not rely on the persistence of external resources.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals’ non-public communications)? If so, please provide a description.
No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.
No.

G.3 COLLECTION PROCESS

• How was the data associated with each instance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If the data was indirectly inferred/derived from other data, was the
data validated/verified? If so, please describe how.
The AER publishes AER ST37, a monthly list of wells in Alberta, including location,
operation mode, license status, and product type. However, the data needs rigorous qual-
ity control as license status, or operation mode may not accurately reflect the actual well
status. The authors, with extensive domain expertise, removed duplicate well entries in
the metadata and shapefile, keeping the most recent update. We then merge and filter the
datasets, categorizing wells as active, abandoned, or suspended based on expert criteria.
Duplicate coordinates are resolved by keeping the instance with the latest drill date. We
verify all wells are within Alberta’s boundaries. After thorough quality control by domain
experts, we calculate the geographical bounds covered by wells and divide the region into
non-overlapping square patches. These patches include varying numbers of wells, with an
equal number of patches with and without wells.

• What mechanisms or procedures were used to collect the data (e.g., hardware appa-
ratus or sensors, manual human curation, software programs, software APIs)? How
were these mechanisms or procedures validated?
We acquired multispectral satellite imagery data from Planet Labs, which comprises four
bands (RGBN) with a 3-meter-per-pixel resolution obtained through their proprietary API.
This data was processed using quality-controlled and cleaned well data to generate seg-
mentation and object detection annotations. The annotations were created using custom
Python code, leveraging libraries like Shapely, GeoPandas, and Rasterio, and were vali-
dated through visualization using folium and matplotlib.

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?
No.
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• Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
The dataset was a collaborative effort involving the Alberta Energy Regulator, Planet Labs,
and the authors. Without the contributions from individuals in these three organizations,
this dataset would not have been possible. Proper credit must be given to the authors, Planet
Labs, and the Alberta Energy Regulator when using this data.

• Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news articles)?
If not, please describe the timeframe in which the data associated with the instances was
created.
We acquired the data from the Alberta Energy Regulator, specifically from its monthly
well bulletin AER ST37 (AER, 2024), dated March 2024. Leveraging domain expertise,
we filtered the data to reflect the condition of wells as of September 30, 2023. This decision
was made because imagery acquired from Alberta during the winter months tends to have
high cloud cover. Therefore, we filtered the data to ensure we could collect the best data
for each patch based on satellite data acquired between the summer months of June and
September in the region.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation.
N/A

G.4 PREPROCESSING/CLEANING/LABELING

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting,tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-
stances, processing of missing values)? If so, please provide a description.
In the Dataset section of our submission, we provide a detailed description of the quality
control, cleaning, and labeling processes applied to the data obtained from the Alberta En-
ergy Regulator, which forms the basis of our dataset. The satellite imagery utilized in this
project was acquired under the Education & Research license from Planet Labs. We repro-
jected the raw data to EPSG:32611 using the nearest resampling method. Additionally, we
removed all geographic metadata, such as image bounds and coordinates, from the shared
data imagery to ensure compliance.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point
to the “raw” data.
The raw satellite imagery data has been saved for internal use; however, it cannot be shared
in its current form. Before sharing, the data must undergo preprocessing to remove meta-
data, as stipulated by the agreement mentioned earlier.

• Is the software that was used to preprocess/clean/label the data available? If so, please
provide a link or other access point.
We plan to share the relevant code used for dataset quality control, patch creation, dataset
splitting, data acquisition, and label and HDF5 file creation with the public release of the
dataset in the future.

• Any other comments?
N/A

G.5 USES

• Has the dataset been used for any tasks already? If so, please provide a description.
Currently, there are no public demonstrations of the AWD Dataset in use. In this work,
we showcase its application for Binary Segmentation and Binary Object Detection of Well
Sites to train algorithms for accurately locating well sites. These algorithms can be scaled
across larger regions of interest to compare against existing databases, identifying poten-
tially undocumented wells. Flagging wells not present in databases is crucial, as these
could be abandoned wells that are significant emitters of greenhouse gases, making them
candidates for plugging.
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• Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.
N/A

• What (other) tasks could the dataset be used for?
Additionally, we provide multi-class labels indicating the operational state of the wells for
both cases. These labels can be utilized in future projects for locating wells and classify-
ing their operational status, which will aid in identifying well sites that are not present in
government records.

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?
This dataset focuses on Alberta, Canada, known for its diverse oil reserves and varied
landscapes, providing a representative sample comparable to regions in the Appalachian
and Mountain West areas of the United States and some former Soviet states with oil wells
and unidentified site issues. A limitation of our study is the reliance on well locations
from the Alberta Energy Regulator, which may miss some sites, leading to potential false
negatives in the ground-truth data. However, this should have minimal impact on algorithm
training, as these labels are a minor part of the dataset, and deep learning algorithms can
handle moderate label noise well (see e.g., (Rolnick et al., 2017)). The main effect may be
underreported test accuracy, with some correctly predicted well locations wrongly counted
as false. We plan to investigate this further in future work. Additionally, the use of multi-
spectral optical data in the AWD dataset may limit the models’ applicability in regions with
frequent cloud cover.

• Are there tasks for which the dataset should not be used? If so, please provide a de-
scription.
This dataset is intended for non-commercial use only and should not be utilized in any
application that could negatively impact biodiversity.

• Any other comments?
N/A

G.6 DISTRIBUTION

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
Yes, the dataset will be made public (open-source) in the future.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does
the dataset have a digital object identifier (DOI)?
The data is currently accessible through a Dropbox folder, which will eventually be mi-
grated to Zenodo. The link to access the data will be provided on our project’s GitHub
repository.

• When will the dataset be distributed?
The dataset can be downloaded from Dropbox, with the link specified in the main paper
and mentioned in the README of the shared codebase for benchmark experiments. Once
the submission is made public, the dataset will be hosted on Zenodo, and the link will be
provided in the public GitHub repository.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any rele-
vant licensing terms or ToU, as well as any fees associated with these restrictions.
The AWD Dataset is released under a Creative Commons Attribution-NonCommercial
4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/
licenses/by-nc/4.0/).

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.
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The satellite imagery used in this project was acquired under the Education & Research li-
cense of Planet Labs (PBC, 2024). This license allows for the use of the data in publications
and the creation of derivative products, which can be shared in association with publica-
tions. However, raw imagery cannot be shared publicly. To comply with these guidelines,
we share the data in HDF5 format, with satellite imagery represented as a numpy array
from Raster Vector. We have removed all geographic metadata, such as image bounds and
coordinates, from the shared data. The data is intended for academic use only and should
not be used for commercial purposes. Proper credit must be given to the current authors,
Planet Labs, and the Alberta Energy Regulator when using this data.

• Do any export controls or other regulatory restrictions apply to the dataset or to in-
dividual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.
No

• Any other comments?
N/A

G.7 MAINTENANCE

• Who is supporting/hosting/maintaining the dataset?
We are currently hosting the dataset on Dropbox to ensure anonymity. Once it is made
public, we plan to host it on Zenodo.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
You can reach the authors through the email addresses provided in the paper once it is made
public. Additionally, you can raise any issues on the GitHub repository, which will be made
public in the future.

• Is there an erratum? If so, please provide a link or other access point.
Not to the best of our knowledge.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be commu-
nicated to users (e.g., mailing list, GitHub)?
As our dataset is based on data from a fixed timeframe and consists of satellite imagery
collected during a specific period, we do not currently have plans to update it in the near
future. However, if there are any changes to these plans, updates to the dataset will be
posted on the corresponding GitHub repository once it is made public.

• Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.
If there are newer versions of the dataset, they will maintain the same format. We will
ensure that the code associated with the project on GitHub supports these updates, and we
will update the READMEs to reflect any changes to the dataset.

• If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions be
validated/verified? If so, please describe how. If not, why not? Is there a process for com-
municating/distributing these contributions to users? If so, please provide a description.
We plan to share the relevant code in the future. However, to ensure the ability to compare
against our results, we encourage those who wish to build on the dataset to publish their
work separately rather than adding to our data repository.

• Any other comments?
N/A
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