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ABSTRACT

We present PoseDiff, a conditional diffusion model that unifies robot state esti-
mation and control within a single framework. At its core, PoseDiff maps raw
visual observations into structured robot states—such as 3D keypoints or joint an-
gles—from a single RGB image, eliminating the need for multi-stage pipelines or
auxiliary modalities. Building upon this foundation, PoseDiff extends naturally
to video-to-action inverse dynamics: by conditioning on sparse video keyframes
generated by world models, it produces smooth and continuous long-horizon ac-
tion sequences through an overlap-averaging strategy. This unified design en-
ables scalable and efficient integration of perception and control. On the DREAM
dataset, PoseDiff achieves state-of-the-art accuracy and real-time performance for
pose estimation. On Libero-Object manipulation tasks, it substantially improves
success rates over existing inverse dynamics modules, even under strict offline
settings. Together, these results show that PoseDiff provides a scalable, accurate,
and efficient bridge between perception, planning, and control in embodied AI.

1 INTRODUCTION

Estimating robot pose from a single RGB image is fundamental in robotics, with applications in
human-robot interaction (Yang et al., 2021; Christen et al., 2023; Zhu et al., 2023), multi-robot
collaboration (Rizk et al., 2019; Papadimitriou et al., 2022; Li et al., 2022; Xun et al., 2023), hand-
eye calibration (Taunyazov et al., 2020), and robot navigation (Rana et al., 2022; Bultmann et al.,
2023). The task predicts 3D keypoints or joint angles from an RGB image (Figure 1a), which is
challenging due to high degrees of freedom and variable poses. Existing multi-stage methods like
RoboPose (Labbé et al., 2021), RoboPEPP (Goswami et al., 2025), HoRoPose (Ban et al., 2024),
and RoboKeyGen (Tian et al., 2024b) rely on intermediate modalities, limiting end-to-end accuracy
and speed.

Diffusion models have shown strong performance in robotics (Wang et al., 2024; Ren et al., 2024;
Chandra et al., 2025; Lu et al., 2025; Chi et al., 2023), e.g., Diffusion Policy (Chi et al., 2023).
Building on this, we propose PoseDiff, a conditional diffusion model that estimates 3D robot poses
from a single RGB image using FiLM-modulated Conditional U-Net and DDPM denoising (Perez
et al., 2018; Ho et al., 2020). On the DREAM dataset (Lee et al., 2020), PoseDiff achieves state-of-
the-art accuracy and inference speed.

With embodied world models (Gao et al., 2024; Chi et al., 2024; Chi et al.; Rigter et al., 2024;
Tian et al., 2024a), videos of action sequences are generated from RGB images and instructions
but require inverse dynamics networks for execution, leading to high latency and sparse trajectories.
Crucially, both pose estimation and inverse dynamics share the need to accurately extract robot states
from visual observations—either as 3D poses from single images or as executable action sequences
from video keyframes. This close connection motivates a unified approach.

Leveraging this insight, We extend PoseDiff to inverse dynamics by taking keyframe pairs as input
and outputting continuous action sequences, using an overlap-averaging strategy (Figure 1b). On
the Libero-Object dataset with off-the-shelf world models like AVDC (Ko et al., 2023), PoseDiff
produces smooth, dense action sequences offline, outperforming baseline inverse dynamics methods
and RoboPEPP adaptations.
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Figure 1: Overview of PoseDiff. (a) As a robot pose estimation model, PoseDiff predicts 3D key-
points or joint angles from a single RGB image. (b) As an inverse dynamics model, PoseDiff builds
on the same robot-state-estimation capability to convert sparse keyframe pairs into dense, smooth
action sequences for long-horizon robot control.

In summary, our contributions are:

• We propose PoseDiff, the first end-to-end diffusion model for robot pose estimation from
a single RGB image, achieving SOTA accuracy and real-time speed.

• We are the first to exploit the intrinsic link between pose estimation and inverse dynamics,
unifying them in a single framework that maps sparse keyframe videos to smooth long-
horizon actions, substantially improving task success rates.

2 RELATED WORK

2.1 ROBOT POSE ESTIMATION

Early robot pose estimation relied on fiducial markers such as AuUco (Garrido-Jurado et al., 2014),
AprilTag (Olson, 2011), and Artag (Fiala, 2005), using camera intrinsics and joint feedback for
pose computation. Deep learning methods later improved accuracy and robustness: DREAM (Lee
et al., 2020) combined CNNs with PnP, PoseFusion (Han et al., 2024) used multi-scale feature
fusion, GSAM (Zhong et al., 2023) handled occlusions, CTRNet (Lu et al., 2023) leveraged self-
supervised sim-to-real transfer, and SGTAPose (Tian et al., 2023) exploited temporal attention.
However, most require real-time joint feedback, limiting sensorless applications.

Without joint angles, methods rely on rendering, task decomposition, or multi-stage pipelines.
RoboPose (Labbé et al., 2021) is slow (1.8 FPS), SPDH (Simoni et al., 2022) needs depth maps,
HoRoPose (Ban et al., 2024) and RoboKeyGen (Tian et al., 2024b) use multi-stage networks,
and RoboPEPP (Goswami et al., 2025) employs a two-stage self-supervised framework. These
approaches are computationally heavy and complex. PoseDiff overcomes these limitations with a
single end-to-end diffusion model that estimates robot state directly from one RGB image—without
joint priors, camera intrinsics, task decoupling, or auxiliary inputs—achieving higher accuracy and
real-time inference.
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2.2 EMBODIED WORLD MODEL AND INVERSE DYNAMICS MODEL

World models predict future environment states from current observations and have shown strong
adaptability. Early work focused on low-dimensional dynamics (Lesort et al., 2018; Ferns et al.,
2004), latent-space planning (Nasiriany et al., 2019), and neural-network-based observation/action
prediction (Finn & Levine, 2017). Modern model-based RL approaches (Hafner et al., 2020;
Micheli et al., 2022) integrate dynamics and action generation in latent spaces for more effective
planning. Video prediction is a key instantiation: Seer (Gu et al., 2023) generates future frames,
while large-scale video models (Yang et al., 2023a; Valevski et al., 2024) extend this to interac-
tive settings. In robotics, world models enable embodied planning and control, e.g., RoboDreamer
(Zhou et al., 2024), UniSim (Yang et al., 2023b), EVA (Chi et al., 2024), and FLIP (Gao et al.,
2024).

However, most existing works focus on video generation without translating frames into executable
actions. Some add inverse dynamics models, e.g., UniPi (Du et al., 2023) maps frames to robot
parameters, and FLIP (Gao et al., 2024) uses diffusion policies. These pipelines are iterative, slow,
and produce sparse, discontinuous actions. Importantly, both pose estimation and inverse dynamics
rely on extracting accurate robot states from visual inputs, yet prior methods treat them in isolation.
PoseDiff is the first to exploit this connection, providing a fully offline inverse dynamics model:
given sparse world-model-generated videos, it directly outputs dense, continuous action sequences
executable on real robots, eliminating online inference and improving efficiency and stability.

3 POSEDIFF AS ROBOT POSE ESTIMATION MODEL

3.1 FRAMEWORK COMPARISON BETWEEN POSEDIFF AND OTHER METHODS

As shown in Figure 2, PoseDiff has a much simpler architecture than existing robot pose estimation
methods. Competing approaches rely on intermediate modalities: HoRoPose (Ban et al., 2024)
predicts depth maps then converts them to 3D keypoints; RoboPEPP (Goswami et al., 2025) uses
joint masks with an encoder-decoder; RoboKeyGen (Tian et al., 2024b) generates 2D keypoints then
lifts them to 3D with a diffusion model.

In contrast, PoseDiff directly consumes an RGB image and outputs 3D keypoints end-to-end, avoid-
ing modality conversion or auxiliary supervision. This reduces complexity and improves efficiency:
RoboPEPP (Goswami et al., 2025) needs 23 ms per image, HoRoPose (Ban et al., 2024) 44 ms,
and RoboKeyGen (Tian et al., 2024b) 54 ms, while PoseDiff achieves 14 ms, enabling real-time
deployment.

Figure 2: Framework comparison between PoseDiff and existing robot pose estimation methods.
HoRoPose requires depth prediction followed by keypoint estimation (44 ms per image); RoboPEPP
relies on joint masking and an encoder-decoder predictor (23 ms); RoboKeyGen first estimates 2D
keypoints and then lifts them to 3D via a diffusion model (54 ms). In contrast, PoseDiff directly maps
a single RGB image to 3D robot keypoints in an end-to-end manner, achieving faster inference (14
ms).

3.2 DIFFUSION PROCESS

PoseDiff’s core algorithm is a denoising diffusion probabilistic model (DDPM) that directly models
the robot pose as a D-dimensional vector x0 ∈ RD. The model performs a forward (noising) process

3
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that gradually corrupts x0 with Gaussian noise, followed by a learned reverse (denoising) process
that recovers x0 from a noise sample.

Formally, the forward diffusion is defined as

q(xt | x0) = N
(
xt;
√
ᾱt x0, (1− ᾱt)I

)
, (1)

where ᾱt =
∏t

s=1(1− βs), and βt is a predefined noise schedule, and I denotes the D-dimensional
identity matrix. This formulation allows sampling of xt at any step t without iterating through all
previous steps.

The reverse denoising process is parameterized as

pθ(xt−1 | xt, c) = N
(
xt−1; µθ(xt, t, c), Σθ(t)

)
, (2)

where c denotes image features from a visual encoder. In practice, the network ϵθ(xt, t, c) pre-
dicts the injected Gaussian noise. This prediction can be equivalently used to reconstruct the mean
through

µθ(xt, t, c) =
1
√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t, c)

)
, (3)

so that ϵθ(xt, t, c) and µθ(xt, t, c) are two equivalent parameterizations of the reverse process. Fol-
lowing the standard DDPM setting, we fix the variance as Σθ(t) = βtI, determined by the noise
schedule.

Therefore, PoseDiff is trained by minimizing

L(θ) = Ex0, t, ϵ

[
∥ϵ− ϵθ(xt, t, c)∥22

]
, (4)

where xt is sampled from the forward process in Eq. 1, and ϵ denotes the Gaussian noise added
during this process. This loss encourages accurate prediction of the injected noise at each timestep,
thereby enabling the model to denoise robot poses conditioned on the visual context.

3.3 MODEL DESIGN

PoseDiff adopts a Conditional U-Net architecture as the core noise predictor. The network is respon-
sible for estimating the noise at each denoising step of the diffusion process, conditioned on both
the current noisy state and external information. The overall architecture is illustrated in Figure 3.

Figure 3: PoseDiff architecture. Visual features from a ResNet and timestep embeddings are fused
via a condition encoder with FiLM modulation, guiding the denoising of noisy 3D keypoints into
clean pose estimates.

Specifically, a single RGB image is first passed through a ResNet encoder to extract an image feature
representation. During training, a randomly sampled diffusion timestep t is separately embedded
via a step encoder, producing a timestep embedding. The image feature and timestep embedding
are concatenated to form a condition vector, which is then fed into a dedicated condition encoder.
To ensure that this condition vector effectively guides the prediction of the robot pose, we adopt
Feature-wise Linear Modulation (FiLM). The condition encoder outputs two modulation vectors,
denoted as s (scale) and b (bias).
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In parallel, the noisy 3D keypoint coordinates are input to another encoder that produces a keypoint
feature fkp. FiLM modulation is then applied to fkp using the outputs of the condition encoder:

fFiLM = s⊙ fkp + b, (5)

where ⊙ denotes element-wise multiplication. To further enhance representational capacity, we
incorporate a residual module: the original keypoint feature is processed by a convolutional layer
and then added to fFiLM. Finally, the combined feature is passed through a convolutional network to
predict the denoised 3D keypoints.

For clarity, Figure 3 only depicts the core structure of the model. In practice, the concatenation
branch after the condition encoder extends into multiple layers of the Conditional U-Net, which
jointly form a full encoder-decoder backbone. This hierarchical design allows multi-scale integra-
tion of visual context and diffusion timesteps, enabling robust noise prediction and effective robot
pose estimation.

4 POSEDIFF AS INVERSE DYNAMICS MODEL BUILT ON POSE ESTIMATION

Figure 4 illustrates how PoseDiff operates as an inverse dynamics model in collaboration with an em-
bodied world model to accomplish tasks. Given a third-person init RGB image, which reflects both
the initial robot state and the initial state of the manipulated objects, a textual instruction describing
the target task is sent to the world model. Based on this instruction, the world model generates a
complete video that visually depicts a successful execution of the task.

Figure 4: PoseDiff as an inverse dynamics model: (a) the world model generates sparse video
frames from an initial image and language instruction; (b) PoseDiff fills in dense actions between
frame pairs, averaging overlaps for smooth and consistent trajectories.

It is important to note that such generated videos are typically temporally sparse: frames correspond
to high-level steps of the task, but cannot be directly translated into smooth and executable robot
trajectories. Therefore, an inverse dynamics model is required to interpolate dense action sequences
between consecutive frames. To address this, we adopt a sliding window strategy: the generated
video frames are paired up using a window size of two frames and a stride of one. Each such frame
pair is then batched and fed into a modified version of PoseDiff.
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Specifically, PoseDiff is adapted in two ways: (i) instead of taking a single image as input, it now
accepts an image pair; and (ii) instead of predicting a single robot pose, it outputs a dense sequence
of N continuous actions. Here, N is a hyperparameter that ensures the resulting trajectory is smooth,
temporally consistent, and physically executable.

Since the second frame of a given pair becomes the first frame of the subsequent pair, the last
predicted action from one pair and the first predicted action from the next pair correspond to the
same action step. However, because these predictions arise from different input pairs, they may
differ slightly. To resolve this, we average the overlapping actions across pairs, thereby ensuring
that the final action sequence across the entire episode is complete, stable, and coherent.

The pseudocode of this procedure is given below.

Algorithm 1 PoseDiff as Inverse Dynamics Model

1: Input: Generated video frames {I1, I2, . . . , IT }, hyperparameter N
2: Output: Executable action sequence A = {a1, a2, . . . , aM}
3: Initialize empty action sequence A ← [ ]
4: for t = 1 to T − 1 do
5: Form frame pair (It, It+1)
6: Predict dense actions {a1t , a2t , . . . , aNt } ← PoseDiff(It, It+1)
7: if last action aNt overlaps with first action a1t+1 then
8: Replace with their average
9: end if

10: Append actions {a1t , a2t , . . . , aNt } to A
11: end for
12: return A

5 EXPERIMENTS

5.1 ROBOT POSE ESTIMATION

5.1.1 DATASETS AND EVALUATION METRICS

For the robot pose estimation task, following prior works in this domain, we adopt the DREAM-
REAL dataset (Lee et al., 2020) as the evaluation benchmark. DREAM-REAL (Lee et al., 2020)
consists of four subsets: AK, XK, RS, and ORB. Each subset contains approximately 5,000 images
captured from different viewpoints of real-world scenes, where robots perform diverse actions. For
each subset, we randomly split the data into 80% for training and 20% for testing.

We employ three widely used evaluation metrics:

(1) Average Distance (ADD). This metric computes the average Euclidean distance between the
predicted 3D keypoints and the ground-truth 3D keypoints. Formally,

ADD =
1

N

N∑
i=1

∥pi − gi∥2, (6)

where pi denotes the predicted 3D coordinates of the i-th keypoint, gi denotes the corresponding
ground-truth coordinate, and N is the total number of keypoints.

(2) Area Under the Curve (AUC). For each test sample j, we first compute its ADD value dj
according to Eq. 6. Given a set of thresholds {tk} in the range [0, 100] mm, the accuracy at threshold
tk is defined as

Acc(tk) =
1

M

M∑
j=1

I(dj < tk), (7)
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where M is the number of test samples and I(·) is the indicator function. The AUC value is then
obtained by integrating the accuracy curve:

AUC =
1

T

∫ T

0

Acc(t) dt, (8)

where T = 100 mm is the maximum threshold. This corresponds to the normalized area under the
accuracy-threshold curve.

(3) Frames Per Second (FPS). We further measure inference efficiency in terms of FPS, i.e., the
number of images the model can process per second, including the entire pipeline from input image
to estimated robot state. Specifically, if the model processes F images in total time T seconds, FPS
is given by

FPS =
F

T
. (9)

5.1.2 QUANTITATIVE RESULTS

We compare PoseDiff with two major categories of existing robot pose estimation methods on the
task of estimating 3D robot keypoints: (1) methods that require access to ground-truth joint angle
information, and (2) methods that do not rely on any known joint angles. The first kind of methods
include DREAM-F (Lee et al., 2020), DREAM-Q (Lee et al., 2020), DREAM-H (Lee et al.,
2020), RoboPose* (Labbé et al., 2021), CtRNet (Lu et al., 2023), SGTAPose (Tian et al., 2023),
and HoRoPose* (Ban et al., 2024), where DREAM-F, DREAM-H, and DREAM-Q denote decoder
outputs at full (F), half (H), and quarter (Q) resolution, respectively. The methods that do not rely
on ground truth joint angles include RoboPose (Labbé et al., 2021), HoRoPose (Ban et al., 2024),
and RoboPEPP (Goswami et al., 2025).

Table 1: Comparison of ADD results (measured in millimeters) on four datasets. Methods are
divided into two categories: those requiring ground-truth joint angle information (top) and those
without joint angle supervision (bottom). PoseDiff achieves state-of-the-art performance across all
datasets.

Method Known Joint Angles AK XK RS ORB

DREAM-F Yes 11413.1 491911.4 2077.4 95319.1
DREAM-Q Yes 78089.3 54178.2 27.2 64247.6
DREAM-H Yes 56.5 7381.6 23.6 25685.3
RoboPose* Yes 24.2 14.0 23.1 19.4

CtRNet Yes 13.0 32.0 10.0 21.0
SGTAPose Yes 35.7 157.7 12.8 35.0
HoRoPose* Yes 12.9 19.9 11.0 15.9

RoboPose No 34.3 22.3 26.0 30.1
HoRoPose No 18.9 24.0 24.8 24.8
RoboPEPP No 29.0 22.0 23.0 27.0

Posediff(Ours) No 3.6 5.2 3.4 3.5

Table 1 reports the comparison results in terms of the ADD metric, measured in millimeters. A
smaller ADD indicates that the estimated 3D robot keypoints are closer to the ground truth, corre-
sponding to higher accuracy. Our method consistently achieves millimeter-level accuracy across all
four datasets, outperforming even those approaches that rely on joint angle information. Specifi-
cally, on the AK, XK, RS, and ORB datasets, PoseDiff achieves ADD values of 3.6, 5.2, 3.4, and
3.5, respectively, all of which establish new state-of-the-art performance. Compared with the best
existing methods without joint angle supervision, PoseDiff reduces the error by 15.3, 16.8, 19.6, and
21.3 millimeters, representing a substantial improvement in precision. Moreover, even the strongest
methods leveraging ground-truth joint angles achieve no better than 10.0 mm in ADD, whereas
PoseDiff consistently remains below 5.5 mm across all datasets.

The primary source of this advantage lies in the conditional diffusion model introduced in PoseDiff.
This model provides powerful capacity for high-dimensional probabilistic modeling, enabling it to
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effectively learn the complex mapping from image space to robot pose space. In contrast, existing
approaches often rely on multi-stage pipelines or explicitly designed structures, which limit their
representational power, hinder generalization, and lead to fluctuating accuracy.

The visualization results can be found in Appendix A.

Table 2: Comparison of AUC (%) across four benchmark datasets. Methods are grouped by whether
ground-truth joint angles are available. PoseDiff, without requiring joint-angle annotations, consis-
tently outperforms all prior approaches and even surpasses methods that rely on joint-angle super-
vision.

Method Known Joint Angles AK XK RS ORB

DREAM-F Yes 68.9 24.4 76.1 61.9
DREAM-Q Yes 52.4 37.5 78.0 57.1
DREAM-H Yes 60.5 64.0 78.8 69.1
RoboPose* Yes 76.5 86.0 76.9 80.5

CtRNet Yes 89.9 79.5 90.8 85.3
SGTAPose Yes 67.8 2.1 87.6 72.3
HoRoPose* Yes 90.2 81.2 91.9 87.6

RoboPose No 70.4 77.6 74.3 70.4
HoRoPose No 82.2 76.0 75.2 75.2
RoboPEPP No 75.3 78.5 80.5 77.5

Posediff(Ours) No 96.4 94.8 96.6 96.5

The comparison of PoseDiff with existing approaches in terms of AUC is reported in Table 2. A
higher AUC indicates more accurate pose prediction. Across all four datasets, our method consis-
tently achieves AUC values exceeding 94.0, significantly outperforming prior baselines. Specifi-
cally, PoseDiff attains AUC scores of 96.4, 94.8, 96.6, and 96.5 on the AK, XK, RS, and ORB
datasets, respectively. Relative to the strongest prior method that does not rely on joint-angle anno-
tations, PoseDiff improves performance by 14.2, 16.3, 16.1, and 19.0 points. Remarkably, PoseDiff
even surpasses methods that leverage ground-truth joint angles, highlighting the robustness and ef-
fectiveness of our unified diffusion-based framework.

Table 3: Comparison of inference speed (FPS) on the AK dataset. PoseDiff achieves the highest
real-time performance among all evaluated methods.

DREAM-F RoboPose HoRoPose RoboPEPP Posediff
FPS on AK 15.1 1.8 22.6 43.5 73.5

In addition to evaluating accuracy and prediction performance, we also compared the inference
speed of PoseDiff against existing approaches on the AK dataset. Unlike prior methods that decom-
pose the task into multiple sub-modules or rely on multi-stage predictions, PoseDiff directly maps
input images to robot poses in an end-to-end manner. This design yields a substantial advantage
in efficiency: PoseDiff achieves an inference speed of 73.5 FPS, which is 30 FPS faster than the
best-performing baseline. Such performance comfortably satisfies the requirements for real-time
deployment. The detailed results are reported in Table 3.

5.2 INVERSE DYNAMICS MODEL

5.2.1 DATASET AND EVALUATION METRICS

For the inverse dynamics modeling task, we adopt a relatively aggressive experimental setup. Specif-
ically, we select five distinct tasks from the Libero-Object dataset. For each task, we slightly modify
the AVDC world model (Ko et al., 2023) to increase the density of generated video frames. Subse-
quently, videos are generated from 50 different initial states per task.

PoseDiff and the baseline methods are first trained on the original dataset. The generated videos
are then fed into the models in the form of image pairs to obtain the complete action sequence for
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each episode. This sequence is executed in the simulator to evaluate the success rate. It is important
to emphasize that the success rate is measured conditioned on the world model generating videos
that successfully and plausibly reflect task execution. Videos that fail to depict the task correctly, or
contain ambiguous or physically inconsistent dynamics, are excluded from this evaluation, as our
focus is on assessing the inverse dynamics model rather than the world model.

Formally, let {Vi}Ni=1 denote the set of generated videos, and {ai}Ni=1 the corresponding predicted
action sequences. Let S = {i | VideoValid(Vi)} be the subset of indices corresponding to videos
that plausibly reflect successful task execution. Each ai with i ∈ S is executed in the simulator to
produce a trajectory τi. The conditional success rate of the inverse dynamics model is then defined
as:

Success Rate = P
(
TaskSuccess(τi) | VideoValid(Vi)

)
=

∑
i∈S I

[
TaskSuccess(τi)

]
|S|

, (10)

where I[·] is the indicator function, and TaskSuccess(τi) evaluates whether the trajectory τi achieves
the task successfully in the simulator.

5.2.2 QUANTITATIVE RESULTS

Table 4 reports quantitative comparisons on the Libero-Object dataset. We evaluate five repre-
sentative tasks, each involving manipulation of a different object, denoted as Soup, Cheese, Salad,
Ketchup, and Tomato. As baselines, we consider two inverse dynamics models: (i) the inverse dy-
namics module from Seer (Tian et al., 2024a), and (ii) a modified variant of RoboPEPP (Goswami
et al., 2025), adapted by reformatting its inputs and outputs for inverse dynamics prediction. We
then compare these against our proposed PoseDiff.

Table 4: Success rates of different inverse dynamics models on five Libero-Object tasks. PoseDiff
significantly outperforms Seer and RoboPEPP, achieving robust performance across all object ma-
nipulation tasks.

Method Soup Cheese Salad Ketchup Tomato

Seer 0% 0% 0% 0% 0%
RoboPEPP 0% 0% 0% 0% 0%
PoseDiff 60% 58% 68% 62% 62%

As expected, since all methods are executed entirely offline without access to real-time environment
feedback, even small per-step prediction errors accumulate over time and ultimately lead to task fail-
ures. Consequently, both Seer and the adapted RoboPEPP achieve a 0% success rate across all tasks.
In contrast, PoseDiff demonstrates substantially higher robustness, achieving 60%, 58%, 68%, 62%,
and 62% success rates on the five tasks, respectively. These results highlight that PoseDiff, when
employed as an inverse dynamics model, attains strong accuracy not only in robot pose estimation
but also in downstream action execution. This finding supports our central claim: a model with suf-
ficiently precise robot pose estimation can be effectively repurposed as an inverse dynamics model
for world models, enabling purely offline inference while significantly improving task efficiency.

The visualization results can be found in Appendix A.

6 CONCLUSION

We introduced PoseDiff, a unified diffusion model that bridges robot pose estimation and video-to-
action control by exploiting their intrinsic connection. Viewing both as visual-to-state generation,
PoseDiff achieves SOTA pose accuracy and real-time efficiency on DREAM datasets, and substan-
tially improves task success rates for inverse dynamics on Libero-Object datasets. The framework
streamlines complexity while offering a scalable basis for linking visual perception to robotic control
in embodied AI.
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A APPENDIX

This appendix presents visualization results that compare PoseDiff, evaluated both as a robot pose
estimation model and as an inverse dynamics model, against baseline methods.

A.1 ROBOT POSE ESTIMATION

Figure 5 provides a qualitative comparison between PoseDiff and RoboPEPP (Goswami et al.,
2025) on the DREAM-XK dataset. As shown, PoseDiff accurately reconstructs the robot states
from the RGB images, whereas RoboPEPP exhibits noticeably larger errors.

Figure 5: Qualitative comparison between PoseDiff and RoboPEPP on the DREAM-XK dataset.
The top row shows input RGB observations, the middle rows depict the predicted robot poses by
PoseDiff, and the bottom row illustrates that by RoboPEPP. PoseDiff produces reconstructions that
closely match the ground-truth robot states, while RoboPEPP exhibits noticeably larger deviations.

A.2 INVERSE DYNAMICS MODEL

Figures 6 and 7 illustrate the effectiveness of PoseDiff as an inverse dynamics model for world
models. As a concrete example, we use the Libero-Object task “Pick up the alphabet soup and
place it in the basket”. The first row shows video frames generated by the AVDC world model. In
the second row, we execute actions predicted by a modified RoboPEPP (with adapted input-output)
when used as an inverse dynamics model. The third row corresponds to the inverse dynamics model
in Seer, and the fourth row presents the results of PoseDiff.
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From the comparison, we observe that when provided with sparse offline video frames, both
RoboPEPP and Seer fail to generate action sequences that faithfully capture the robot’s motion
as depicted in the world model, often producing significant deviations. In contrast, PoseDiff is able
to accurately reconstruct the actions shown in the video, closely aligning execution with the world
model’s behavior. Moreover, the action sequences generated by PoseDiff successfully complete the
task.

Figure 6: Results on the Libero-Object task “Pick up the alphabet soup and place it in the basket.”
Rows show AVDC world model Video(1st), RoboPEPP (2nd), Seer (3rd), and PoseDiff (4th). Only
PoseDiff reconstructs the action sequence accurately and completes the task.
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Figure 7: Results on the Libero-Object task “Pick up the alphabet soup and place it in the basket.”
Rows show AVDC world model Video(1st), RoboPEPP (2nd), Seer (3rd), and PoseDiff (4th). Only
PoseDiff reconstructs the action sequence accurately and completes the task.
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B THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, large language models (LLMs) were used solely for
correcting grammar, checking spelling, and improving the fluency of sentences. They did not con-
tribute to idea generation, data analysis, experimental design, or drawing conclusions. All intel-
lectual input—including the development of research questions, methodology, results, and interpre-
tations—remains entirely the work of the authors. The function of LLMs was strictly confined to
linguistic polishing to enhance clarity and readability.
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