

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ACHIEVING BETTER UTILITY BEYOND LDP-FL BY INDEPENDENT TWO-PHASE PROTECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

The Local Differential Privacy Federated Learning (LDP-FL) framework provides privacy protection by injecting noise at the client level. However, the noise accumulates in the model through the two-phase indivisible sequential process of LDP, thereby bringing the well-recognized privacy-utility trade-off challenge. In this paper, we propose an ideal interaction mode, Ideal Differential Privacy Federated Learning (IDP-FL), which allows for independent protection in the uplink and downlink phases. Through a comparative analysis of noise accumulation in IDP-FL and LDP-FL, we discover and theoretically prove that LDP-FL suffers from inherent *noise redundancy*, i.e. noise accumulation in uplink exceeds privacy requirements in downlink. To avoid this defect, we propose a novel framework, Noise Annihilation Differential Privacy Federated Learning (NADP-FL), which can be regarded as an instantiation of IDP-FL. In this framework, a portion of noises are distributedly generated in pairs, thereby mutually canceling each other out during aggregation and not appearing in the downlink phase. As a result, NADP realizes independent protection for both phases, eliminating unnecessary noise accumulation, achieving a more favorable privacy-utility trade-off and enhance protection in a way that incurs no further utility loss. We validate the superior utility, scalability and robustness of our framework through extensive experiments.

1 INTRODUCTION

With the rapid expansion of distributed databases and the ever-growing volume of data across domains such as smart homes (Li et al., 2023), transportation (Tahaei et al., 2020), and healthcare (Tang et al., 2019), ensuring secure and reliable data mining in decentralized environments has become increasingly critical. Federated Learning (FL) (McMahan et al., 2017) has emerged as a promising paradigm for privacy-preserving machine learning by allowing clients to collaboratively train models without exposing raw data. However, despite its decentralized nature, FL typically relies on a central server for model aggregation and distribution. In practice, assuming this server to be fully honest and trustworthy is often unrealistic—such trusted third parties are rare, and their compromise can lead to significant privacy breaches. Furthermore, FL remains vulnerable to privacy threats such as model inversion (Zhu et al., 2019) and membership inference attacks (Shokri et al., 2017), which can reveal sensitive information from seemingly innocuous model updates.

To address these threats, Local Differential Privacy (LDP) (Wei et al., 2020; 2021) has been widely integrated into FL by injecting noise directly on the client side. This ensures that individual data remains protected even when the central server is untrusted. Nevertheless, LDP introduces a fundamental challenge: the noise injected in the early stage (uplink) persists throughout the FL process and irreversibly propagates into the global model during aggregation. This results in a well-known trade-off between privacy and utility (Kim et al., 2021; Zhang et al., 2023).

In particular, the two-phase interaction in LDP-FL involves: (1) clients uploading perturbed local updates (uplink), and then (2) receiving the aggregated model from the server (downlink). Since noise is added only during uplink, it simultaneously protects downlink phase by propagating through aggregation. It is worth noting that the two phases remain tightly coupled, the amount of noise in each phase is inherently determined by the aggregation structure, rather than the actual privacy needs of each phase. Consequently, we are naturally led to ask: **Does this coupling lead to a mismatch**

054 **between the minimal noise required for each phase, resulting in excessive perturbation and**
 055 **degraded model performance?**

056
 057 In this work, we answer this question positively. We identify and formalize an inherent flaw in LDP,
 058 which we term **noise redundancy**. This redundancy arises from the structural dependency between
 059 the two phases in LDP-FL: the noise injected in the uplink often exceeds the privacy requirement
 060 for the downlink, leading to inefficient noise allocation and unnecessary utility loss. To the best of
 061 our knowledge, this is the first work to formally define and analyze this problem.

062 To resolve this issue, we propose a new DP-FL interaction mode that decouples the uplink and down-
 063 link phases, and build upon it a novel framework, Noise Annihilation Differential Privacy Federated
 064 Learning (NADP-FL). Unlike traditional LDP, NADP enables independent privacy protection for
 065 both uplink and downlink phases. It introduced a part of structured noise pairs that cancel out each
 066 other during aggregation, effectively eliminating unnecessary perturbation. As a result, NADP can
 067 avoid noise redundancy and enhance protection in a way that incurs no further utility loss, with both
 068 theoretical privacy guarantees and experimental results showing superior privacy-utility trade-offs.
 069 Our contributions are as follows:

- 070 • We revisit the two-phase process of LDP (uplink and downlink) and theoretically prove that
 071 the LDP framework inevitably suffers from noise redundancy. To the best of our knowl-
 072 edge, this systemic defect in the LDP framework is raised for the first time.
- 073 • We construct a novel framework, NADP-FL, to avoid noise redundancy. Additionally, we
 074 theoretically prove that this framework satisfies (ϵ, δ) -DP and can enhance protection in a
 075 way that incurs no further utility loss.
- 076 • We conduct extensive experiments to validate our framework. It shows that, compared to
 077 LDP, NADP exhibits a better privacy-utility trade-off, offers better scalability, and inher-
 078 ently maintains a certain degree of robustness in dropout scenarios.

080 2 RELATED WORK

082
 083 To mitigate the utility loss of LDP-FL, various strategies have been explored. Adaptive gradient
 084 clipping (Andrew et al., 2021; Fu et al., 2022) techniques dynamically adjust clipping thresholds
 085 based on data distribution to better fit different clients and training rounds. Dynamic noise scal-
 086 ing (Phan et al., 2017; Talaei & Izadi, 2024) allocates privacy budgets adaptively across training
 087 rounds, calibrating noise to changing model sensitivity. Per-layer budgeting (Errounda & Liu, 2023;
 088 Chen et al., 2023) approaches assign differentiated noise weights to model components based on
 089 their empirical contributions. More recently, shuffle-based methods (Balle et al., 2019; Chen et al.,
 090 2024) have been proposed to amplify privacy through trusted intermediaries that anonymize clients.

091 However, these approaches suffer from fundamental limitations: (1) Heuristic-based methods (adap-
 092 tive clipping, noise scaling, per-layer budgeting) rely on task-specific assumptions and neural inter-
 093 pretability, raising transferability concerns; (2) Shuffling introduces new trust dependencies and
 094 communication overhead; (3) Most critically, all existing techniques ignore the structural coupling
 095 between phases, failing to address noise interdependence or inherent sequential defects of LDP.

096 Our work is the first to formally analyze this structural issue and avoid unnecessary utility loss
 097 through a novel framework, providing a principled solution beyond heuristic optimizations.

099 3 PRELIMINARIES

101 3.1 FEDERATED LEARNING

102
 103 A basic FL system consists of one server and N clients. Each interaction comprises two phases:
 104 uplink and downlink. In the uplink phase of the t -th interaction, client i trains the model locally and
 105 then uploads the result \mathbf{w}_i^t to the central server, which aggregates them as follows:

$$106 \quad \mathbf{w}^t = \sum_{i=1}^N p_i \mathbf{w}_i^t, \quad (1)$$

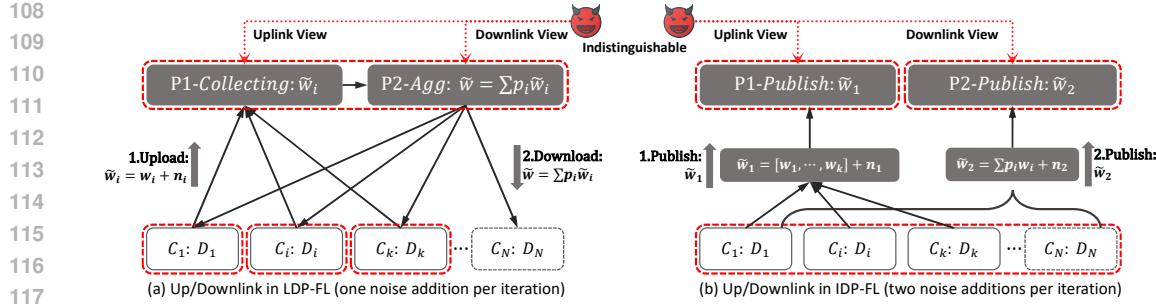


Figure 1: Interaction Modes of LDP & IDP. In LDP (a), datasets are distributed, the server selects k clients to perform training with clients adding noise once. In IDP (b), all datasets are aggregated through a protocol, conducting two independent publishing to mimic uplink and downlink, where 2 kinds of noise are added separately, ensuring the privacy of both phases independently.

where $p_i = \frac{|D_i|}{\sum |D_i|}$ is the aggregation weight of client i , and D_i denotes the dataset of the i -th client. In the downlink phase, the server sends w^t back for the next round of training.

3.2 DIFFERENTIAL PRIVACY IN FL

Under the semi-honest setting, by measuring the maximum change rate of the query function, (ϵ, δ) -DP provides a strong criterion for privacy protection in FL.

Definition 1 $((\epsilon, \delta)\text{-DP}$ (Dwork, 2006)). *A randomized mechanism $\mathcal{M} : \mathcal{X} \rightarrow \mathcal{R}$ with domain \mathcal{X} and range \mathcal{R} satisfies (ϵ, δ) -DP, if for all measurable sets $\mathcal{S} \subseteq \mathcal{R}$,*

$$\Pr[\mathcal{M}(D) \in \mathcal{S}] < e^\epsilon \Pr[\mathcal{M}(D') \in \mathcal{S}] + \delta,$$

where $D, D' \in \mathcal{X}$ are any pair of adjacent datasets, which differ by only one record.

Definition 2 (Global Sensitivity (Dwork, 2006)). *: Given any dataset D and query $f : D \rightarrow \mathcal{R}$, the global sensitivity Δ_f is defined as the maximum change in the query result,*

$$\Delta_f = \max_{D, D'} \|f(D) - f(D')\|_l,$$

where D, D' are any two adjacent datasets, differed by only one record, and $\|\cdot\|_l$ denotes the l -norm.

Adding Gaussian noise $\mathbf{n} \sim \mathcal{N}(0, \sigma^2)$ to each dimension of all the queries can ensure (ϵ, δ) -DP, where the noise intensity $\sigma \geq \Delta \cdot s$, and $s = s(\epsilon, \delta, T)$ can be provided by the commonly used moment accountant (MA) (Wei et al., 2020).

3.3 TREAT MODEL

In this paper, we inherit the general assumptions of LDP-FL: the server and clients are honest and will follow the protocol exactly. In addition, there exists an adversary who can infer clients' privacy by eavesdropping on the intermediate parameters $\{\mathbf{w}_i^t\}_{i=1}^N$ and \mathbf{w}^t during FL procedure.

4 REVISITING UP & DOWLINK OF DP-FL

In this section, we revisit the two phases of LDP and propose a new interaction mode, Ideal Differential Privacy (IDP). By proving that IDP accumulates less noise than LDP under the same privacy guarantees (Thm.1), we quantitatively present the inherent flaw of LDP, termed noise redundancy. In later sections, we present an instantiation framework (Alg.1) to demonstrate the feasibility of IDP.

4.1 IDEAL VS TRADITIONAL INTERACTION MODES

In LDP, as shown in Fig.1(a), clients add noise \mathbf{n}_i to local models \mathbf{w}_i before uploading them:

$$\begin{cases} \tilde{\mathbf{w}}_i = \mathbf{w}_i + \mathbf{n}_i^{local} \\ \mathbf{n}_i^{local} \sim \mathcal{N}(0, \sigma_{local,i}^2). \end{cases}$$

162 After aggregation, the final model consists of two parts (model component and noise component):
 163

$$164 \tilde{\mathbf{w}} = \sum_{i=1}^N p_i \tilde{\mathbf{w}}_i = \sum_{i=1}^N p_i \mathbf{w}_i + \sum_{i=1}^N p_i \mathbf{n}_i = \mathbf{w} + \mathbf{n}_{server},$$

$$165$$

$$166$$

167 where \mathbf{n}_{server} also follows a Gaussian distribution. It is worth noting that in LDP, the noise in
 168 downlink is entirely determined by the noise injection in uplink: $\mathbf{n}_{server} = \sum_{i=1}^N p_i \mathbf{n}_i^{local}$. However,
 169 this coupling may lead to an inherent defect: when the noise accumulation in uplink phase exceeds
 170 the protection requirement of downlink phase, $\sigma_{server} > \sigma_{server}^{required}$, noise redundancy occurs.

171 Our intuition is straightforward: if there exists an interaction mode that decouples the inherently
 172 sequential two phases in DP-FL and provides independent privacy protection for each, then the
 173 potential mismatch can be avoided. Accordingly, we propose a new interaction mode, IDP (Def.3).
 174 As illustrated in Fig.1(b), we assume the existence of an ideal mechanism that can regard the server
 175 and all clients as a collective entity to perform a two-phase independent model publishing by adding
 176 noise twice. Specifically, we can independently adjust the noises $\mathbf{n}_1, \mathbf{n}_2$ for both phases and make
 177 it indistinguishable for an external adversary to differentiate between IDP and LDP based on the
 178 collected information.

179 **Definition 3** (Interaction Modes of LDP & IDP). *DP-FL interaction mode is defined as a quintuple:*

$$180 \quad \mathcal{I} \triangleq \{\mathcal{P}, \mathcal{D}, \theta, \mathcal{O}, \mathcal{M}\},$$

$$181$$

182 where $\mathcal{P} = \{\{C_1, \dots, C_k\}, S\}$ represents the set of participants in one iteration, including k se-
 183 lected clients and a server; $\mathcal{D} = \{D_1, \dots, D_k\}$ denotes their datasets; $\theta \in \{\text{uplink, downlink}\}$
 184 serves as the indicator to distinguish between the uplink and downlink phases; $\mathcal{O} : D_i \rightarrow \mathbf{w}_i$ is the
 185 training optimizer; $\mathcal{M} = \{\mathcal{M}_{LDP}^\theta, \mathcal{M}_{IDP}^\theta\}$ represents the DP noise injectors for different modes.

186 The interaction mode in LDP can be formally defined as the following two indivisible sequential
 187 processes. In contrast, the IDP interaction mode can be formally defined by utilizing a trusted
 188 third-party server and then proceeding through independent uplink and downlink phases:

Federated Interaction Mode of LDP-FL	Federated Interaction Mode of IDP-FL
if $\theta = \text{uplink}$ then	Joint: $C_1, \dots, C_k, S \rightarrow [C_1, \dots, C_k, S] = S'$
P1-Upload: $\forall i \in [k]$	Joint: $D_1, \dots, D_k \rightarrow [D_1, \dots, D_k] = D$
$\tilde{\mathbf{w}}_i^{LDP} = \mathcal{M}_{LDP}^{uplink}(\mathcal{O}(D_i)) \rightarrow S$	if $\theta = \text{uplink}$ then
if $\theta = \text{downlink}$ then	P1-Publish: $\tilde{\mathbf{w}}_{1,i}^{IDP} = \mathcal{M}_{IDP}^{uplink}(\mathcal{O}(D_i)), \forall i \in [k]$
P2-Download: $\forall i \in [k]$	if $\theta = \text{downlink}$ then
$\tilde{\mathbf{w}}^{LDP} = \sum_{j \in [k]} \frac{ D_j }{ D } \tilde{\mathbf{w}}_j^{LDP} \rightarrow C_i$	P2-Publish: $\tilde{\mathbf{w}}_2^{IDP} = \mathcal{M}_{IDP}^{downlink}(\sum_{i \in [k]} \frac{ D_i }{ D } \mathcal{O}(D_i))$
	Such that: $\tilde{\mathbf{w}}_2^{IDP} = \sum_{i \in [k]} \tilde{\mathbf{w}}_{1,i}^{IDP}$

201 Intuitively, in IDP, the independent addition of noise in the two phases is more likely to match their
 202 respective protection requirements than in LDP.

204 4.2 NOISE REDUNDANCY IN LDP-FL

206 To quantitatively reveal the inherent noise redundancy in LDP, we compare the noise magnitudes in
 207 uplink and downlink phases of LDP and IDP. We first present several lemmas, the proofs of which
 208 are provided in the appendix, and the final comparison results are presented in Thm.1.

209 Let D_i be the dataset of i , D_{min} and D denote the smallest and total dataset in the current sam-
 210 pling round, respectively, C is the clipping threshold such that the clipped gradient \mathbf{g} satisfies
 211 $\|\text{clip}(\mathbf{g}, C)\|_2 = \|\mathbf{g}\|_2 \cdot \min\{1, C/\|\mathbf{g}\|_2\} \leq C$.

212 **Lemma 1** (sensitivity of LDP-FL & IDP-FL). *In the traditional LDP-FL interaction mode, the
 213 sensitivity corresponding to the local client i is:*

$$214 \quad \Delta_i^{local} = \frac{2C}{|D_i|}.$$

$$215$$

216 In IDP-FL interaction mode, the sensitivities corresponding to the uplink and downlink phases are:
 217

$$218 \quad \Delta_{up} = \frac{2C}{|D_{min}|}, \quad \Delta_{down} = \frac{2C}{|D|}.$$

220 **Lemma 2** (combined properties (Wei et al., 2020)). For T different queries f_t with sensitivity Δ_t , to
 221 ensure satisfying (ϵ, δ) -DP, the intensity of the noise σ_t from the Gaussian mechanism should satisfy:
 222

$$223 \quad \sigma_t = \frac{\Delta_t \sqrt{2T \ln(1/\delta)}}{\epsilon}. \quad (2)$$

226 In IDP, performing federated aggregation T times is equivalent to alternately conducting T uplink
 227 and downlink publishing, resulting in a total of $2T$ queries. Therefore, we have:
 228

$$229 \quad \sigma_t = \frac{\Delta_t \sqrt{4T \ln(1/\delta)}}{\epsilon}, \quad \Delta_t = \begin{cases} \Delta_{up}, & 2 \nmid t \\ \Delta_{down}, & 2 \mid t \end{cases}, \quad t \in [1, 2T]$$

231 In DP-FL, fairness is typically ensured by having all clients agree on the same privacy parameters.
 232 However, slight deviations are sometimes allowed. Our approach is to fix a commonly used δ and
 233 reflect the difference in ϵ . By Lemma.2, for any set of privacy parameters (ϵ_1, δ_1) , it can be trans-
 234 formed into equivalent parameters $(\epsilon_1 \sqrt{\frac{\ln(1/\delta)}{\ln(1/\delta_1)}}, \delta)$ while keeping the noise intensity unchanged.
 235 Furthermore, Lemma.3 presents the equivalent noise intensity in downlink phase of LDP.
 236

237 **Lemma 3** (equivalent noise intensity of server in LDP). In LDP, suppose that k clients are sampled
 238 and each client i satisfies (ϵ_i, δ) -DP with sensitivity $\Delta_i^{local} = \frac{2C}{|D_i|}$. Without loss of generality,
 239 assume that $(1 - \kappa)\epsilon = \epsilon_1 \leq \dots \leq \epsilon_k = \epsilon$, $\kappa \ll 1$. Then LDP satisfies (ϵ, δ) -DP, and the
 240 equivalent noise intensity in downlink phase satisfies:
 241

$$\frac{8C^2 q T k \ln(1/\delta)}{\epsilon^2 |D|^2} \leq \sigma_{server}^2 \leq \frac{8C^2 q T k \ln(1/\delta)}{(1 - \kappa)^2 \epsilon^2 |D|^2},$$

243 where κ measures the variance of $\{\epsilon_i\}_{i \in [k]}$. For the sake of fairness, κ is set to a very small value.
 244

245 With this series of preparations, we can compare the noise required by LDP and IDP. As a result,
 246 the following theorem quantitatively demonstrates that LDP suffers noise redundancy.
 247

248 **Theorem 1** (noise redundancy). Suppose a FL system with N clients undergoes T iterations. In each
 249 iteration, clients are sampled at a rate $q > \sqrt{2/N}$. To ensure (ϵ, δ) -DP, in IDP, clients add Gaussian
 250 noise with $\sigma_{up} = \frac{2C \sqrt{4T \ln(1/\delta)}}{\epsilon |D_{min}|}$ in uplink, while $\sigma_{down} = \frac{2C \sqrt{4T \ln(1/\delta)}}{\epsilon |D|}$ in downlink. Moreover,
 251 compared to LDP, IDP requires larger noise intensity in uplink, while smaller in downlink.
 252

253 *Proof.* In IDP mode, we abstract the two-stage process into two query functions, f_{up} and f_{down} ,
 254 with sensitivities Δ_{up} and Δ_{down} respectively. From Lemma.1, we have:
 255

$$\Delta_{up} = \frac{2C}{|D_{min}|}, \quad \Delta_{down} = \frac{2C}{|D|}.$$

256 According to Lemma.2, to ensure (ϵ, δ) -DP over a total $2T$ queries, the noise intensities correspond-
 257 ing to the two phases should be satisfied as follows:
 258

$$259 \quad \sigma_{up} = \frac{2C \sqrt{4T \ln(1/\delta)}}{\epsilon |D_{min}|}, \quad \sigma_{down} = \frac{2C \sqrt{4T \ln(1/\delta)}}{\epsilon |D|}. \quad (3)$$

261 Comparing the equivalent intensities in two phases under LDP mode, combining Lemma.3, we have:
 262

$$263 \quad \frac{\sigma_{server}^2}{\sigma_{down}^2} \geq \frac{8C^2 q T k \ln(1/\delta)}{\epsilon^2 |D|^2} \cdot \frac{\epsilon^2 |D|^2}{16C^2 T \ln(1/\delta)} = \frac{q^2 N}{2} > 1.$$

265 As for the noise intensity $\sigma_{local,i}^2$ added by client i under LDP mode, from Lemma 2, we have:
 266

$$267 \quad \frac{\sigma_{local,i}^2}{\sigma_{up}^2} = \frac{8C^2 q T \ln(1/\delta)}{\epsilon_i^2 |D_i|^2} \cdot \frac{\epsilon^2 |D_{min}|^2}{16C^2 T \ln(1/\delta)} \leq \frac{q}{2(1 - \kappa)^2} < 1.$$

268 \square

270 According to Thm.1, in LDP, the noise in downlink
 271 exceeds the noise requirement in an ideal scenario. If
 272 there exists a framework that can provide indepen-
 273 dent privacy protection for both phases to simulate
 274 IDP, it would avoid noise redundancy caused by the
 275 sequential coupling of the two phases in LDP.

277 5 NOISE-ANNIHILATION DP-FL

279 In this section, we present Noise Annihilation Dif-
 280 ferentially Private Federated Learning (NADP-FL),
 281 to instantiate IDP. Conceptually, we are inspired by
 282 theoretical physics: during annihilation, the mass
 283 of particles disappears and is converted into energy,
 284 with the total energy remaining unchanged. Similarly,
 285 in the model by allowing a portion of the noise to “annihilate” each other while maintaining the same
 286 level of protection, which can make the noise in uplink and downlink phases mutually independent,
 287 thereby avoiding the issue of noise redundancy.

288 Algorithm 1 NADP-FL

289 **Parties:** Clients $1, \dots, N$ with datasets D_i , Server.
 290 **Public Parameters:** model vector length l , input domain \mathcal{X}^l , standard Gaussian sequence sampler:
 $GS(seed) \mapsto \mathcal{X}^l \sim \mathcal{N}(0, 1)$, public clipping threshold C_t , privacy parameters (ϵ, δ) , sampling rate q .
 291 **Input:** D_i (by each client i).
 292 **Output:** $\mathbf{w}^T \in \mathcal{X}^l$ (by the server).

293 **1: Preparation Phase:**
 294 2: Initialize: $t = 0$ and \mathbf{w}^0 .
 295 3: Each client i generates secret key s_i , and uses Diffie-Hellman protocol to establish a shared key
 296 s_{ij} with each client $j \neq i$, which serve as seeds.
 297 4: **while** $t < T$ **do**
 298 5: Sample clients with probability q , obtaining k clients. Sampled client set is denoted as \mathcal{K}_t .
 299 6: **Local Training Phase:**
 300 7: Broadcast \mathbf{w}^t to all clients.
 301 8: **for** each client $i \in \mathcal{K}_t$ **do**
 302 9: Perform local training and clip gradients using C_t , obtain the local model \mathbf{w}_i^{t+1} .
 303 10: **Noise Adding Phase:**
 304 11: Allocate noise intensities with Alg.2, yielding $\{\sigma_i^{t+1}, \sigma_{ij}^{t+1}\}_{i \neq j \in [k]}$.
 305 12: Update secret values:
 306 $s_{ij}^{t+1} \leftarrow (s_{ij} || t)$, $s_i^{t+1} \leftarrow (s_i || t)$, $\forall j \in \mathcal{K}_t / \{i\}$.
 307 13: Sample noise set:
 308 $\mathbf{n}_{ij}^{t+1} \leftarrow \sigma_{ij}^{t+1} \cdot GS(s_{ij}^{t+1})$, $\forall j \in \mathcal{K}_t / \{i\}$,
 309 $\mathbf{n}_i^{t+1} \leftarrow \sigma_i^{t+1} \cdot GS(s_i^{t+1})$.
 310 14: Set noise compensation factor λ .
 311 15: Add noise:
 312 $p_i^{t+1} \leftarrow \frac{|D_i|}{\sum_{k \in \mathcal{K}_t} |D_k|}$,
 313 $\tilde{\mathbf{w}}_i^{t+1} \leftarrow \mathbf{w}_i^{t+1} + \frac{1}{p_i} (\mathbf{n}_i^{t+1} + \lambda (\sum_{j > i} \mathbf{n}_{ij}^{t+1} - \sum_{j < i} \mathbf{n}_{ij}^{t+1}))$.
 314 16: Upload model parameters to the server.
 315 17: **Model Aggregating Phase:**
 316 18: $\mathbf{w}^{t+1} \leftarrow \sum_{k \in \mathcal{K}_t} p_k^{t+1} \tilde{\mathbf{w}}_k^{t+1}$.
 317 19: $t \leftarrow t + 1$.
 318 20: **return** \mathbf{w}^T

320 To implement this, we artificially decompose the noise added on client i into two parts: $\mathbf{n}_i^{local} =$
 321 $\mathbf{n}_i^{residual} + \mathbf{n}_i^{counteract}$. $\mathbf{n}_i^{residual}$ is retained in the aggregated model to provide protection for
 322 downlink phase, while $\mathbf{n}_i^{counteract}$ is negotiated with the remaining $k - 1$ clients, ensuring mu-
 323 tual cancellation during aggregation, thereby solely protecting the privacy in uplink phase, i.e.,
 $\sum p_i \mathbf{n}_i^{counteract} = 0$.

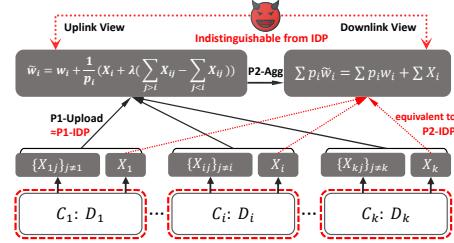


Figure 2: NADP simulates IDP. Each client generates two sets of independent random variables to produce counteracting and residual noises. The NADP framework is indistinguishable from IDP interaction mode.

we aim to reduce the accumulation of noise in the model by allowing a portion of the noise to “annihilate” each other while maintaining the same level of protection, which can make the noise in uplink and downlink phases mutually independent, thereby avoiding the issue of noise redundancy.

324 Specifically, on the one hand, any two clients
 325 i, j employ the Diffie-Hellman protocol (Diffie
 326 & Hellman, 2022) to negotiate shared secret
 327 keys $s_{ij} = s_{ji}$, which can be used as seeds
 328 to sample paired noise sequences $\mathbf{n}_{ij} = \mathbf{n}_{ji}$.
 329 Further, client i scales each of $\{\mathbf{n}_{ij}\}_{j \neq i}$ to
 330 serve as local counteracting noise: $\mathbf{n}_i^{\text{counteract}} =$
 331 $\frac{1}{p_i} \sum_{j>i} \mathbf{n}_{ij} - \sum_{j< i} \mathbf{n}_{ij}$. The aggregation can-
 332 cancellation is ensured by (1) and the following
 333 identity:

$$\sum_{i=1}^k \left(\sum_{j>i} \mathbf{n}_{ij} - \sum_{j< i} \mathbf{n}_{ij} \right) = \mathbf{0}. \quad (4)$$

334 On the other hand, each client i generates a lo-
 335 cal seed s_i to sample the local residual noise:
 336 $\mathbf{n}_i^{\text{residual}} = \frac{1}{p_i} \mathbf{n}_i$. Moreover, the variance of
 337 the noises n_i and n_{ij} needs to be finely allocated to match the distribution of dataset sizes (see
 338 Section.6). In addition, we deploy a noise compensation coefficient λ on local counteracting noise
 339 to enhance privacy at client level without further utility loss. Our framework is presented in Alg.1,
 340 which consists of four steps:

- 341 • **Preparation Phase:** Each client i pairs up with others to negotiate common secrets
 342 $\{s_{ij}\}_{j \neq i}$, which serves as the seeds for generating synchronized counteracting noise. Addi-
 343 tionally, each client generates another secret s_i to serve as the seed for generating residual
 344 noise. The server then broadcasts the initial model $\tilde{\mathbf{w}}^0$.
- 345 • **Local Training Phase:** Sampled clients perform local training and apply gradient clipping.
- 346 • **Noise Adding Phase:** By performing noise intensity allocation (Alg.2, see Section.6),
 347 each client obtains the corresponding noise intensities for both counteracting and residual
 348 noise. Further, the clients link the iteration indicator t to the secret values as updated
 349 seeds, from which $k-1$ counteracting noises and one residual noise are sampled. Then,
 350 counteracting noises are amplified using the noise compensation coefficient λ to enhance
 351 protection. Finally, all the noises are added, and the model is uploaded to the server.
- 352 • **Model Aggregating Phase:** The server weights the models and aggregates them.

353 As shown in Fig.2, in NADP, client i generates $k-1$ counteracting random variables $\{X_{ij}\}_{j \neq i}$ and
 354 generates a residual random variable X_i , where $\{X_{ij}\}_{j \neq i}$ and X_i are independent of each other,
 355 which sample Gaussian sequences with different variances separately. The independence of the
 356 noise allows for separate privacy protection in the uplink and downlink phases. Specifically, let
 357 $Z_i^{\text{up}}, Z_i^{\text{down}}$ be the total noise variable added by client i in uplink phase and the aggregated noise
 358 variable in downlink phase, respectively:

$$Z_i^{\text{up}} = \frac{1}{p_i} (X_i + \lambda \left(\sum_{j>i} X_{ij} - \sum_{j< i} X_{ij} \right)) \sim \mathcal{N}(0, \sigma_1^2),$$

$$Z_i^{\text{down}} = \sum_{i=1}^k p_i Z_i^{\text{up}} = \sum_{i=1}^k X_i \sim \mathcal{N}(0, \sigma_2^2).$$

359 Here, $\sigma_1^2 = \text{Var}(Z_i^{\text{up}})$, $\sigma_2^2 = \text{Var}(Z_i^{\text{down}})$, which can be independently controlled by adjusting
 360 $\text{Var}(X_i)$, $\{\text{Var}(X_{ij})\}_{i \neq j}$ separately. This indicates that NADP simulates IDP interaction mode,
 361 thereby avoiding the issue of noise redundancy. It is worth noting that we introduce a noise com-
 362 pensation coefficient λ , which allows us to independently enhance the protection in the uplink phase.
 363 The additional noise introduced by this enhancement will also cancel out during aggregation (as
 364 shown in (4)), and thus will not incur further utility loss.

365 6 NOISE INTENSITY ALLOCATION

366 In this section, we explore the intensities of these noises to ensure (ϵ, δ) -DP. By setting $\lambda = 1$, we
 367 consider the standard intensity allocation required to defend against bystanders.

378 We assume an eavesdropper comprises both bystanders and the server, which can obtain both the
 379 gradients uploaded by all clients and the aggregated gradients distributed by the server.
 380

381 In each iteration of NADP, we assume k clients are sampled. Let the random variable $Z_i =$
 382 $\frac{1}{p_i}(\sum_{j>i} X_{ij} - \sum_{j<i} X_{ij} + X_i)$ represent the noise added by client i (without λ). To ensure
 383 (ϵ, δ) -DP, the following conditions must be satisfied:

$$\begin{cases} p_i Z_i = \sum_{j>i} X_{ij} - \sum_{j<i} X_{ij} + X_i, \quad i = 1, 2, \dots, k \\ Z_i \sim \mathcal{N}(0, \sigma_{up}^2), \quad \sum_{i=1}^k X_i \sim \mathcal{N}(0, \sigma_{down}^2) \\ X_{ij} = X_{ji}, \quad p_i = |D_i|/|D|, \end{cases}$$

390 where σ_{up} and σ_{down} represent the noise requirements for uplink and downlink phases in IDP,
 391 respectively (defined in (3)). Examining the variances of each term and employing a variable sub-
 392 stitution: $Var(X_{ij}) = x_{ij} \cdot \frac{16C^2T \ln(1/\delta)}{\epsilon^2 |D|^2} = x_{ij} \cdot \sigma_{down}^2$ and $Var(X_i) = x_i \cdot \sigma_{down}^2$, we can obtain
 393 its simplified form:
 394

$$\begin{cases} \sum_{j=1, j \neq i}^k x_{ij} + x_i = \frac{|D_i|^2}{|D_{min}|^2} \geq 1, \quad i = 1, 2, \dots, k \\ \sum_{i=1}^k x_i = 1, \quad x_{ij} = x_{ji} \geq 0, \quad x_i \geq 0. \end{cases} \quad (5)$$

401 The noise intensity distribution induced by the solution of (5) provides a reasonable allocation for
 402 NADP to satisfy (ϵ, δ) -DP, from the perspective of bystanders. However, under certain extreme
 403 cases, finding a non-negative solution becomes challenging. To address this, we propose a method
 404 based on mathematical induction to obtain an approximate solution without introducing excessive
 405 noise.

406 **Theorem 2** (reasonableness of intensity allocation). *There exists an approximate solution $\theta^k =$
 407 $\{x_i, x_{ij}\}_{i \neq j \in [k]}$, where **only one** variable may violate the non-negativity condition in (5). Further,
 408 from this solution, a reasonable noise intensity allocation $\Sigma^k = \{\sigma_i^2, \sigma_{ij}^2\}_{i \neq j \in [k]}$ can be derived.*

409 We formally present Thm.2 in Alg.2, which provides an effective method for calculating a reasonable
 410 allocation. The proof is available in Appendix C. For Alg.2, on one hand, we set the only
 411 possible negative value β_{k-1} equal to $\beta_k \geq 0$, which effectively increases the actual noise intensity
 412 for a single client but still ensures privacy. On the other hand, under this configuration, all allo-
 413 cations are made in pairs, allowing the counteracting noise to cancel out during aggregation and
 414 thereby preventing the introduction of excessive noise.

415 7 SIMULATION RESULTS

416 To most intuitively demonstrate the effectiveness of NADP-FL, we deploy the classic CNN on
 417 three representative CV datasets, MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), FEM-
 418 NIST (Caldas et al., 2018) for image classification tasks, and deploy the GRU-RNN (Cho et al.,
 419 2014) on IMDb (Maas et al., 2011) for NLP task. We examine the utility superiority of NADP under
 420 different scales and privacy parameters, and also evaluate its performance in terms of scalability,
 421 reliability and privacy (presented in Appendix F, due to space constraints). In terms of the FL setup,
 422 we consider three scales of client numbers: large($N = 100$), medium($N = 50$), and small($N = 10$
 423 or 25). Additionally, we set $\frac{|D_{max}|}{|D_{min}|} \leq 2$ (prevent excessive interference caused by large differences
 424 in data distribution) and ensure that under each scale, we randomly sample the same distribution of
 425 client dataset sizes. We set the total number of rounds $T = 200$, $\delta = 10^{-5}$, and $C = 10$, with one
 426 local training iteration per round. For the optimizer, we use SGD with a learning rate of 0.1 and
 427 a decay rate of 0.995. For all experiments, our primary comparison target is LDP with commonly
 428 used MA composition mechanism.

429 As shown in Table.1, our framework NADP outperforms LDP across different ϵ . Under stronger pri-
 430 vacy protection (smaller ϵ), LDP-FL fails as the level of protection increases, however, NADP still

Table 1: Acc(%) of Different Frameworks under Different Scales with $q = 0.8$

N	No-DP	$\epsilon = 3$		$\epsilon = 2$		$\epsilon = 1$		$\epsilon = 0.5$		
		LDP	NADP	LDP	NADP	LDP	NADP	LDP	NADP	
MNIST	10	92.94	81.76	82.20 (0.44 \uparrow)	80.27	82.05 (1.78 \uparrow)	77.23	81.65 (4.42 \uparrow)	67.44	78.41 (10.97\uparrow)
	50	93.30	83.94	85.55 (1.61 \uparrow)	81.52	85.58 (4.06 \uparrow)	65.47	85.19 (19.72 \uparrow)	29.97	80.39 (50.42\uparrow)
	100	92.91	85.09	87.37 (2.28 \uparrow)	76.69	87.33 (10.64 \uparrow)	46.97	86.84 (39.87 \uparrow)	10.44	80.58 (70.14\uparrow)
FMNIST	10	80.46	80.02	80.84 (0.82 \uparrow)	79.08	80.48 (1.40 \uparrow)	76.34	79.29 (2.95 \uparrow)	70.76	76.88 (6.12\uparrow)
	50	82.44	78.90	81.61 (2.71 \uparrow)	77.12	81.36 (4.24 \uparrow)	71.16	80.17 (9.01 \uparrow)	60.21	77.19 (16.98\uparrow)
	100	83.23	77.97	82.33 (4.36 \uparrow)	74.88	82.02 (7.14 \uparrow)	67.41	81.08 (13.67 \uparrow)	52.81	77.71 (24.90\uparrow)
FEMNIST	10	88.68	78.57	78.56 (0.01 \downarrow)	78.01	78.65 (0.64 \uparrow)	75.57	77.78 (2.21 \uparrow)	67.30	74.94 (7.64\uparrow)
	50	88.65	76.35	78.68 (2.33 \uparrow)	74.18	78.49 (4.31 \uparrow)	63.49	77.47 (13.98 \uparrow)	44.45	74.32 (29.87\uparrow)
	100	88.61	75.51	78.67 (3.16 \uparrow)	70.68	78.63 (7.95 \uparrow)	54.30	77.98 (23.68 \uparrow)	31.05	75.07 (44.02\uparrow)
IMDb	10	89.71	85.32	87.24 (1.92 \uparrow)	82.93	85.29 (2.36 \uparrow)	79.46	83.79 (4.33 \uparrow)	59.32	78.22 (18.9\uparrow)
	50	88.56	84.97	86.68 (1.71 \uparrow)	79.86	84.80 (4.94 \uparrow)	68.37	84.61 (16.24 \uparrow)	50.68	80.29 (29.61\uparrow)
	100	90.87	84.25	87.09 (2.84 \uparrow)	78.19	84.14 (5.95 \uparrow)	61.89	83.98 (22.09 \uparrow)	49.19	79.63 (30.44\uparrow)

maintains a high utility. It is worth noting that, as N increases, NADP experiences almost no performance degradation, whereas the accuracy of LDP drops rapidly. This highlights the greater potential of our framework in large-scale scenarios. Additional experiments are presented in Appendix F.

8 DISCUSSION

Overheads Discussion: Without considering the computational overhead of local training, we compare the computation, communication, and storage overheads of LDP, NADP, and secure aggregation (SA) (Bonawitz et al., 2017) in each round, where m denotes the size of model, n represents the number of clients, $n \ll m$. The results are presented in Table 2.

Table 2: Complexity among Different Frameworks.

Cost \ Framework	LDP-FL	NADP-FL	SA-FL
Client Computation	$O(m)$	$O(n \log(n) + nm)$	$O(n^2 + nm)$
Client Communication	$O(m)$	$O(m)$	$O(m + n)$
Client Storage	$O(m)$	$O(m + n)$	$O(m + n)$
Server Computation	$O(nm)$	$O(nm)$	$O(n^2 m)$
Server Communication	$O(nm)$	$O(nm)$	$O(n^2 + nm)$
Server Storage	$O(nm)$	$O(nm)$	$O(n^2 + nm)$

Compared to LDP, as key negotiation and other preliminary operations are conducted in advance, the primary additional cost of NADP lies in local computation, which is reflected in the generation of n noise sequences and the execution of Alg.2. On the one hand, Alg.2 consists of a sorting algorithm ($O(n \log(n))$) and n iterations of computation ($O(n)$), and since all computational objects are scalars (θ_i), additional computation is minimal; on the other hand, the sampling of n noises is also completed locally, which prevents a significant decrease in the computational efficiency. Moreover, in contrast to SA, NADP incurs lower overhead due to the absence of secret-sharing for each round.

Advancing Toward Malicious Scenarios: We follow the general assumption in DP-FL framework that all clients honestly execute the protocol. However, even without this assumption, under scenarios similar to LDP that do not consider malicious poisoning, NADP will not collapse. The discussion details are presented in Appendix A.

9 CONCLUSION

In this paper, we revisit the two-stage interaction mode of uplink and downlink in LDP-FL and propose a novel interaction perspective, IDP, to demonstrate the inherent flaw in LDP, called noise redundancy. On this basis, we instantiate IDP and propose NADP-FL, which decouples the noise intensity requirements of uplink and downlink phases using counteracting noise to mitigate the utility loss. Furthermore, we discuss the intensity allocation to counteract noise to ensure (ϵ, δ) -DP. Finally, we validate the superiority of our framework in terms of utility, scalability, robustness through extensive experiments. Both theoretical and experimental results demonstrate that our framework achieves a better utility-privacy trade-off than the traditional LDP-FL framework.

486 REFERENCES
487

488 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
489 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC
490 conference on computer and communications security*, pp. 308–318, 2016.

491 Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
492 learning with adaptive clipping. *Advances in Neural Information Processing Systems*, 34:17455–
493 17466, 2021.

494 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model.
495 In *Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference,
496 Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II 39*, pp. 638–667. Springer,
497 2019.

498 Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
499 Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
500 preserving machine learning. In *proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security*, pp. 1175–1191, 2017.

501 Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H Brendan McMahan,
502 Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. *arXiv
503 preprint arXiv:1812.01097*, 2018.

504 E Chen, Yang Cao, and Yifei Ge. A generalized shuffle framework for privacy amplification:
505 strengthening privacy guarantees and enhancing utility. In *Proceedings of the AAAI Conference
506 on Artificial Intelligence*, volume 38, pp. 11267–11275, 2024.

507 Lin Chen, Danyang Yue, Xiaofeng Ding, Zuan Wang, Kim-Kwang Raymond Choo, and Hai Jin.
508 Differentially private deep learning with dynamic privacy budget allocation and adaptive opti-
509 mization. *IEEE Transactions on Information Forensics and Security*, 2023.

510 Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
511 of neural machine translation: Encoder-decoder approaches. *arXiv preprint arXiv:1409.1259*,
512 2014.

513 Li Deng. The mnist database of handwritten digit images for machine learning research. *IEEE
514 Signal Processing Magazine*, 29(6):141–142, 2012.

515 Whitfield Diffie and Martin E Hellman. New directions in cryptography. In *Democratizing Cryp-
516 tography: The Work of Whitfield Diffie and Martin Hellman*, pp. 365–390. 2022.

517 Cynthia Dwork. Differential privacy. In *International colloquium on automata, languages, and
518 programming*, pp. 1–12. Springer, 2006.

519 Fatima Zahra Errouda and Yan Liu. Adaptive differential privacy in vertical federated learning for
520 mobility forecasting. *Future Generation Computer Systems*, 149:531–546, 2023.

521 Jie Fu, Zhili Chen, and Xiao Han. Adap dp-fl: Differentially private federated learning with adaptive
522 noise. In *2022 IEEE International Conference on Trust, Security and Privacy in Computing and
523 Communications (TrustCom)*, pp. 656–663. IEEE, 2022.

524 Muah Kim, Onur Günlü, and Rafael F Schaefer. Federated learning with local differential privacy:
525 Trade-offs between privacy, utility, and communication. In *ICASSP 2021-2021 IEEE Interna-
526 tional Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2650–2654. IEEE,
527 2021.

528 Jingjie Li, Kaiwen Sun, Brittany Skye Huff, Anna Marie Bierley, Younghyun Kim, Florian Schaub,
529 and Kassem Fawaz. “it’s up to the consumer to be smart”: Understanding the security and privacy
530 attitudes of smart home users on reddit. In *2023 IEEE Symposium on Security and Privacy (SP)*,
531 pp. 2850–2866, 2023. doi: 10.1109/SP46215.2023.10179344.

532 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
533 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the
534 association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

540 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 541 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 542 and statistics*, pp. 1273–1282. PMLR, 2017.

543 NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. Adaptive laplace mechanism: Differential
 544 privacy preservation in deep learning. In *2017 IEEE international conference on data mining
 545 (ICDM)*, pp. 385–394. IEEE, 2017.

546 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
 547 tacks against machine learning models. In *2017 IEEE symposium on security and privacy (SP)*,
 548 pp. 3–18. IEEE, 2017.

549 Hamid Tahaei, Firdaus Affifi, Adeleh Asemi, Faiz Zaki, and Nor Badrul Anuar. The rise of traffic
 550 classification in iot networks: A survey. *Journal of Network and Computer Applications*, 154:
 551 102538, 2020. ISSN 1084-8045. doi: <https://doi.org/10.1016/j.jnca.2020.102538>. URL <https://www.sciencedirect.com/science/article/pii/S1084804520300126>.

552 Mahtab Talaei and Iman Izadi. Adaptive differential privacy in federated learning: A priority-based
 553 approach. *arXiv preprint arXiv:2401.02453*, 2024.

554 Wenjuan Tang, Ju Ren, Kun Deng, and Yaoxue Zhang. Secure data aggregation of lightweight e-
 555 healthcare iot devices with fair incentives. *IEEE Internet of Things Journal*, 6(5):8714–8726,
 556 2019.

557 Hardik Tankaria, Shinji Sugimoto, and Nobuo Yamashita. A regularized limited memory bfgs
 558 method for large-scale unconstrained optimization and its efficient implementations. *Compu-
 559 tational Optimization and Applications*, 82(1):61–88, 2022.

560 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
 561 and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
 562 analysis. *IEEE transactions on information forensics and security*, 15:3454–3469, 2020.

563 Kang Wei, Jun Li, Ming Ding, Chuan Ma, Hang Su, Bo Zhang, and H Vincent Poor. User-level
 564 privacy-preserving federated learning: Analysis and performance optimization. *IEEE Transac-
 565 tions on Mobile Computing*, 21(9):3388–3401, 2021.

566 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
 567 ing machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

568 Daniel Yue Zhang, Ziyi Kou, and Dong Wang. Fairfl: A fair federated learning approach to reducing
 569 demographic bias in privacy-sensitive classification models. In *2020 IEEE International Confer-
 570 ence on Big Data (Big Data)*, pp. 1051–1060, 2020. doi: 10.1109/BigData50022.2020.9378043.

571 Xiaojin Zhang, Yan Kang, Kai Chen, Lixin Fan, and Qiang Yang. Trading off privacy, utility, and
 572 efficiency in federated learning. *ACM Transactions on Intelligent Systems and Technology*, 14(6):
 573 1–32, 2023.

574 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
 575 *arXiv preprint arXiv:2001.02610*, 2020.

576 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural infor-
 577 mation processing systems*, 32, 2019.

578

579

580

581

582

583

584

585

586

587 **A ADVANCING TOWARD MALICIOUS SCENARIOS**

588

589 In malicious settings, under scenarios similar to LDP that do not consider malicious poisoning,
 590 NADP will not collapse. On one hand, the impact of malicious client i on the noise generated by
 591 any benign client j is limited: it can only control $n_{ij} \neq n_{ji}$, preventing the associated noise from
 592 being canceled out, but it will not affect the noise cancellation among the remaining benign clients.
 593 This is similar to the dropout situation, and as we also show in Figure 4 (Appendix F), the impact
 594 of incomplete noise cancellation on utility is limited. On the other hand, when malicious clients add

594 non-Gaussian noise, Z_i^{up} indeed no longer follows a Gaussian distribution. However, introducing
 595 λ and budgeting can still satisfy (ϵ, δ) -DP privacy for benign clients, and the noise redundancy
 596 introduced by malicious clients will further enhance privacy.

597 We next consider a typical scenario in a malicious setting. Specifically, we significantly enhance the
 598 adversary's capabilities in Section 6: the adversary can also collude and collect all the local information
 599 from a subset of participants to infer the privacy of the remaining benign clients. However,
 600 unlike the traditional collusion scenario in the malicious setting, the adversary cannot manipulate
 601 the eavesdropped clients, who still remain honest. We assert that appropriately selecting the noise
 602 compensation coefficient λ can protect against such attacks.

603 Assuming an adversary \mathcal{A}_2 that corrupts the server and a proportion τ of the clients sampled in each
 604 iteration. Let $G = \{1, 2, \dots, (1-\tau)k\}$ and $C = \{(1-\tau)k+1, (1-\tau)k+2, \dots, k\}$ denotes the set of
 605 indices corresponding to honest and corrupted clients, respectively. The adversary \mathcal{A}_2 can generate
 606 two types of inference queries $f_{\text{up}}^{\text{adv}}, f_{\text{down}}^{\text{adv}}$ through uplink and downlink phases by subtracting the
 607 information already obtained:

$$\begin{aligned} f_{\text{up}}^{\text{adv}}(D_G) &= f_1(D/D_C) = [g_1, \dots, g_{(1-\tau)k}, 0, \dots, 0], \\ f_{\text{down}}^{\text{adv}}(D_G) &= f_2(D) - f_2(D_C) = \sum_{i \in D_G} p_i g_i \\ &= \sum_{i \in D_G} \frac{|D_i|}{|D|} \cdot \frac{1}{|D_i|} \sum_{j=1}^{|D_i|} g_i^j = \frac{1}{|D|} \sum_{j=1}^{|D_G|} g^j. \end{aligned}$$

618 Here, D_C and D_G denote the total datasets of the corrupted clients and the honest clients, respectively,
 619 and g^j denotes the gradient computed from the j -th data in D_G . Analogous to the proof of
 620 Lemma 1, we assume that the difference in neighboring datasets exists in D_1 , then we can get:

$$\begin{aligned} \Delta_{\text{up}}^{\text{adv}} &= \max_{D_G, D'_G} \|f_{\text{up}}^{\text{adv}}(D_G) - f_{\text{up}}^{\text{adv}}(D'_G)\|_2 \\ &= \max_{D_G, D'_G} \|[g'_1 - g_1, \dots, g'_{(1-\tau)k} - g_{(1-\tau)k}, 0, \dots, 0]\|_2 \\ &= \max_{D_G, D'_G} \|g'_1 - g_1\|_2 \leq \frac{2C}{|D_{\min}|}, \\ \Delta_{\text{down}}^{\text{adv}} &= \max_{D_G, D'_G} \|f_{\text{down}}^{\text{adv}}(D_G) - f_{\text{down}}^{\text{adv}}(D'_G)\|_2 \\ &= \max_{D_G, D'_G} \left\| \frac{1}{|D|} \sum_{i=1}^{|D_G|} g^i - \frac{1}{|D|+1} \left(\sum_{i=1}^{|D_G|} g^i + g' \right) \right\|_2 \\ &\leq \max_{D_G, D'_G} \frac{\sum_{i=1}^{|D_G|} \|g^i - g'\|_2}{|D|(|D|+1)} \leq \frac{2C|D_G|}{|D|^2} = \frac{2C}{|D|} \sum_{i \in G} p_i. \end{aligned}$$

638
 639
 640 Therefore, according to Lemma 2, to ensure the system satisfies (ϵ, δ) -DP for inference queries $f_{\text{up}}^{\text{adv}}$
 641 and $f_{\text{down}}^{\text{adv}}$, the noise intensities should satisfy:

$$\begin{aligned} \sigma_{\text{adv,up}}^2 &= \frac{16C^2 T \ln(1/\delta)}{\epsilon^2 |D_{\min}|^2} = \sigma_{\text{up}}^2, \\ \sigma_{\text{adv,down}}^2 &= \frac{16C^2 T \ln(1/\delta)}{\epsilon^2 |D|^2} (\sum_{i \in G} p_i)^2 < \sigma_{\text{down}}^2. \end{aligned}$$

648 In addition, for an honest client i , the effective noise intensities from the adversary's perspective (the
 649 remaining after canceling out the adversary's portion) are:
 650

$$\begin{aligned} 651 \quad \sigma_{G,up,i}^2 &= \sigma_{up}^2 - \sum_{j \in G} \sigma_{ij}^2 < \sigma_{up}^2 = \sigma_{adv,up}^2, \\ 652 \\ 653 \quad \sigma_{G,down}^2 &= \sum_{i \in G} \sigma_i^2 = \sum_{i \in G} p_i \sigma_{down}^2 \\ 654 \\ 655 \quad &= \frac{16C^2 T \ln(1/\delta)}{\epsilon^2 |D|^2} \sum_{i \in G} p_i > \sigma_{adv,down}^2. \\ 656 \\ 657 \end{aligned}$$

658 Therefore, it can be observed that if collusion exists, the residual noise generated by honest clients
 659 satisfies the server-side security requirements from the internal adversaries, attributed to our intricate
 660 construction of the particular solution $\{x_i = p_i\}_{i \in [k]}$ in Thm.2.
 661

662 Since the noise intensity is insufficient to meet client-side privacy requirements in collusion scenarios, we utilize λ to enhance protection during the uplink phase.
 663

664 For an honest client i , the actual effective noise it adds during the uplink phase is sampled by the
 665 random variable $Z'_i = \sum_{j > i, j \in G} X_{ij} - \sum_{j < i, j \in G} X_{ij} + X_i$. On this basis, we amplify the effective
 666 counteracting noise by λ to meet the privacy requirements, i.e.,
 667

$$Z_i = \lambda \left(\sum_{j > i} X_{ij} - \sum_{j < i} X_{ij} \right) + X_i.$$

668 To determine the range of λ , we examine the most extreme case of the intensity distribution. Adopting
 669 notations from Thm.2, we first examine the lower bound of α_2 :
 670

$$\alpha_1 = \frac{|D|}{|D_{min}|} \leq \frac{|D_{min}| + (k-1)|D_{max}|}{|D_{min}|} = 1 + (k-1)\alpha_2. \quad (6)$$

671 Then, we examine the distribution of $\beta_i = \frac{|D_i|^2}{|D_{min}|^2} - \frac{|D_i|}{|D|}$ (defined in Alg.2). For β_{min} and β_{max} ,
 672 we have:
 673

$$\begin{aligned} 674 \quad 1 - \frac{1}{k} &\leq \beta_{min} = 1 - \frac{|D_{min}|}{|D|} = 1 - \frac{1}{\alpha_1} < 1, \\ 675 \\ 676 \quad 1 - \frac{1}{k} &\leq \beta_{max} = \frac{|D_{max}|^2}{|D_{min}|^2} - \frac{|D_{max}|}{|D|} = \alpha_2^2 - \frac{\alpha_2}{\alpha_1}. \end{aligned}$$

677 Where, $\alpha_2^2 - \frac{\alpha_2}{\alpha_1}$ is a quadratic function in terms of α_2 . Since $\alpha_2 \geq 1 > \frac{1}{2\alpha_1}$, β_{max} is monotonically
 678 increasing respect to α_2 . Therefore, combining equation 6, we have:
 679

$$\beta_{max} = \alpha_2^2 - \frac{\alpha_2}{\alpha_1} \leq \alpha_2^2 - \frac{1}{\frac{1}{\alpha_2} + (k-1)} < \alpha_2^2 - \frac{1}{k}.$$

680 Combining Alg.2, $1 - \frac{1}{k} \leq \beta_1 \leq \dots \leq \beta_k < \alpha_2^2 - \frac{1}{k}$, we have:
 681

$$\begin{cases} 682 \quad \theta_1 = \frac{1}{k-1} \beta_1, \\ 683 \\ 684 \quad \theta_n = \frac{1}{k-n} (\beta_n - \sum_{i=1}^{n-1} \theta_i), \quad 2 \leq n \leq k-2, \\ 685 \\ 686 \quad \theta_{k-1} = \beta_k - \sum_{i=1}^{k-2} \theta_i. \end{cases}$$

687 Here, $[\theta_1, \theta_2, \dots, \theta_{t-1}, 0, \theta_t, \dots, \theta_t]$, ($\theta_i \leq \theta_{i+1}$) is the counteracting noise intensity allocation of client
 688 t (see more details in Appendix E), and the allocation matrix is as follows:
 689

$$\begin{bmatrix} 690 \quad 0 & \theta_1 & \theta_1 & \dots & \theta_1 & \theta_1 \\ 691 \quad \theta_1 & 0 & \theta_2 & \dots & \theta_2 & \theta_2 \\ 692 \quad \theta_1 & \theta_2 & 0 & \dots & \theta_3 & \theta_3 \\ 693 \quad \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 694 \quad \theta_1 & \theta_2 & \theta_3 & \dots & 0 & \theta_{k-1} \\ 695 \quad \theta_1 & \theta_2 & \theta_3 & \dots & \theta_{k-1} & 0 \end{bmatrix} \begin{bmatrix} 696 \quad 1 \\ 697 \quad 1 \\ 698 \quad 1 \\ 699 \quad \vdots \\ 700 \quad 1 \\ 701 \quad 1 \end{bmatrix} = \begin{bmatrix} 696 \quad \beta_1 \\ 697 \quad \beta_2 \\ 698 \quad \beta_3 \\ 699 \quad \vdots \\ 700 \quad \beta_{k-1} \\ 701 \quad \beta_k \end{bmatrix}$$

To compute $\lambda(\tau)$, we consider the worst-case scenario, corresponding to the most extreme counter-acting noise intensity allocation $[\theta_1, \theta_2, \dots, \theta_{k-1}, 0]$ (i.e. client k). Under this allocation, to ensure privacy protection, λ needs to satisfy the following inequality:

$$\lambda^2(\theta_1 + \theta_2 + \dots + \theta_{(1-\tau)k-1}) \geq \beta_k. \quad (7)$$

Since $\theta_i \leq \theta_{i+1}$, in order for equation 7 to hold, we set λ to satisfy:

$$\lambda^2[(1-\tau)k-1] \cdot \theta_1 = \lambda^2[(1-\tau)k-1] \cdot \frac{\beta_1}{k-1} \geq \beta_k.$$

For $\beta_1 = \beta_{min} \geq 1 - \frac{1}{k}$ and $\beta_k = \beta_{max} < \alpha_2^2 - \frac{1}{k}$, we obtain:

$$\lambda \geq \sqrt{\frac{k \cdot \alpha_2^2 - 1}{(1-\tau)k-1}}. \quad (8)$$

This indicates that λ is positively correlated with $1/(1-\tau)$ in a sub-linear manner, ensuring that λ does not become excessively large. In general, to ensure fairness, $\alpha_2 = \frac{|D_{max}|}{|D_{min}|}$ cannot be set too large.

We suggest assuming that $\alpha_2 \leq \sqrt{2}$, which allows for up to 41% database size imbalance (for cases where $\alpha_2 > \sqrt{2}$, we can sample the data in each iteration of these clients that exceed the threshold, satisfying the fairness requirements of FLZhang et al. (2020)). Table 3 presents the magnitude of λ under different settings.

Table 3: λ under Different $\frac{|D_{max}|}{|D_{min}|}$, K and τ

$\frac{ D_{max} }{ D_{min} }^2$	K	λ				
		$\tau = 0.1$	$\tau = 0.2$	$\tau = 0.3$	$\tau = 0.4$	$\tau = 0.5$
1.0	25	1.0565	1.1239	1.2060	1.3093	1.4446
	50	1.0553	1.1209	1.2005	1.2999	1.4289
	100	1.0547	1.1194	1.1978	1.2954	1.4214
	∞	1.0541	1.1180	1.1952	1.2910	1.4142
1.5	25	1.3029	1.3860	1.4873	1.6147	1.7815
	50	1.2968	1.3775	1.4753	1.5974	1.7559
	100	1.2939	1.3733	1.4695	1.5892	1.7438
	∞	1.2910	1.3693	1.4639	1.5811	1.7321
2.0	25	1.5097	1.6059	1.7233	1.8708	2.0642
	50	1.5000	1.5933	1.7064	1.8476	2.0310
	100	1.4953	1.5871	1.6983	1.8365	2.0152
	∞	1.4907	1.5811	1.6903	1.8257	2.0000

B PROOF OF LEMMA 1

Proof. According to the definition of LDP, we consider the neighboring datasets D_i, D'_i for the i -th client, where D_i has one fewer sample than D'_i ($|D_i| = m_i$), with the remaining samples being the same. Therefore, the output of one training process can be written in the following form:

$$g_i = \frac{1}{m_i} \sum_{j=1}^{m_i} g_i^j.$$

According to the sensitivity calculation formula:

$$\begin{aligned} \Delta_i^{local} &= \max_{D_i, D'_i} \|g_i(D_i) - g_i(D'_i)\| \\ &= \max_{D_i, D'_i} \left\| \frac{1}{m_i} \sum_{j=1}^{m_i} g_i^j - \frac{1}{m_i + 1} \sum_{j=1}^{m_i} (g_i^j + g') \right\| \\ &\leq \max_{D_i, D'_i} \frac{\sum_{j=1}^{m_i} \|g_i^j - g'\|}{m_i(m_i + 1)} \leq \frac{2C}{|D_i|}. \end{aligned}$$

756 In IDP-uplink process, let the publish function corresponding to clients be $f_1(D_t) = [g_1, g_2, \dots, g_k]$, where D_t is the union of the k clients sampled in t -th iteration, denoted as $D_t = D_1 \cup D_2 \cup \dots \cup D_k$. Without loss of generality, let $D'_t = D'_1 \cup D'_2 \cup \dots \cup D'_k$. Then, we have:

$$\begin{aligned} \Delta_{up} &= \max_{D_t, D'_t} \|f_{up}(D_t) - f_{up}(D'_t)\|_2 \\ &= \max_{D_t, D'_t} \|[g'_1 - g_1, g'_2 - g_2, \dots, g'_k - g_k]\|_2 \\ &= \max_{D_t, D'_t} \|g'_1 - g_1\|_2 \leq \frac{2C}{|D_{min}|}. \end{aligned}$$

766 In IDP-downlink process, the union collects the gradient intermediate results from each client,
767 $g_i = \frac{1}{m_i} \sum_{j=1}^{m_i} g_i^j$, and performs a weighted average, finally outputting the aggregated result
768 $g = \sum_{j=1}^k p_j g_j$, where $p_j = \frac{m_j}{\sum m_i}$. Therefore, for the equivalent overall training dataset
769 $D (|D| = \sum m_i)$, one round of the aggregation process can be written as:

$$f_{down}(D) = \sum_{i=1}^k p_i g_i = \sum_{i=1}^k \frac{p_i}{m_i} \sum_{j=1}^{m_i} g_i^j = \frac{1}{\sum m_i} \sum_{i,j} g_i^j,$$

775 then the sensitivity is:

$$\begin{aligned} \Delta_{down} &= \max_{D, D'} \|f_{down}(D) - f_{down}(D')\| \\ &= \max_{D, D'} \left\| \frac{1}{\sum m_i} \sum g_i^j - \frac{1}{\sum m_i + 1} \left(\sum g_i^j + g' \right) \right\| \\ &\leq \max_{D, D'} \frac{\sum \|g_i^j - g'\|}{\sum m_i (\sum m_i + 1)} \leq \frac{2C}{|\mathcal{D}|}. \end{aligned}$$

□

785 C PROOF OF LEMMA 2

787 *Proof.* We follow the proof framework from (Wei et al., 2020), focusing only on the differences.
788 For more details, please refer to the proof of Thm.1 in (Wei et al., 2020).

789 Define the privacy loss random variable for the t -th query as L_t . Then:

$$L_t = \ln \frac{\Pr[\mathcal{M}_t(D) = o]}{\Pr[\mathcal{M}_t(D') = o]},$$

794 where $\mathcal{M}_t(D) = f_t(D) + \mathcal{N}(0, \sigma_t^2)$.

795 For the Gaussian mechanism, the probability density functions of the output o for the neighboring
796 datasets are:

$$\begin{aligned} \Pr[\mathcal{M}_t(D) = o] &= \frac{1}{\sqrt{2\pi}\sigma_t} \exp\left(-\frac{(o - f_t(D))^2}{2\sigma_t^2}\right), \\ \Pr[\mathcal{M}_t(D') = o] &= \frac{1}{\sqrt{2\pi}\sigma_t} \exp\left(-\frac{(o - f_t(D'))^2}{2\sigma_t^2}\right). \end{aligned}$$

802 Substituting this into the definition of privacy loss yields:

$$L_t = \ln \frac{\frac{1}{\sqrt{2\pi}\sigma_t} \exp\left(-\frac{(o - f_t(D))^2}{2\sigma_t^2}\right)}{\frac{1}{\sqrt{2\pi}\sigma_t} \exp\left(-\frac{(o - f_t(D'))^2}{2\sigma_t^2}\right)}.$$

807 By simplifying the calculation, we obtain:

$$L_t = \frac{(o - f_t(D'))^2 - (o - f_t(D))^2}{2\sigma_t^2}.$$

810 Let us denote $\Delta_t = f_t(D) - f_t(D')$, which can be controlled to be a small quantity. Then we have:
 811

$$812 \quad 813 \quad 814 \quad L_t = \frac{(o - f_t(D))\Delta_t}{\sigma_t^2} + \frac{\Delta_t^2}{2\sigma_t^2}.$$

815 In Gaussian mechanism, the output o can be expressed as:

$$816 \quad 817 \quad o = f_t(D) + \mathcal{N}(0, \sigma_t^2).$$

818 Then, further simplifying, the privacy loss becomes:
 819

$$820 \quad 821 \quad 822 \quad L_t = \frac{\Delta_t}{\sigma_t} \cdot Z_t + \frac{\Delta_t^2}{2\sigma_t^2} \sim N\left(\frac{\Delta_t^2}{2\sigma_t^2}, \frac{\Delta_t^2}{\sigma_t^2}\right),$$

823 where $Z_t \sim \mathcal{N}(0, 1)$ denotes a random variable from the standard normal distribution.

824 Consider the moment generating function (MGF) of the Gaussian-distributed variable, we have:
 825

$$826 \quad 827 \quad 828 \quad M_{L_t}(\lambda) = \mathbb{E}[\exp(\lambda L_t)] = \exp\left(\frac{\lambda(\lambda+1)\Delta_t^2}{2\sigma_t^2}\right).$$

829 For the noise intensity, we naturally constrain it to be proportional to the sensitivity, that is: $\frac{\Delta_t^2}{\sigma_t^2} =$
 830 $\frac{\Delta_j^2}{\sigma_j^2} = \frac{\Delta^2}{\sigma^2}$. Suppose T independent queries are performed, then the MGF for multiple rounds of
 831 queries is:
 832

$$833 \quad 834 \quad 835 \quad 836 \quad M_{L_{\text{total}}}(\lambda) = \prod_{t=1}^T [M_{L_t}(\lambda)] = \exp\left(\sum_{t=1}^T \frac{\lambda(\lambda+1)\Delta_t^2}{2\sigma_t^2}\right) \\ 837 \quad = \exp\left(\frac{T\lambda(\lambda+1)\Delta^2}{2\sigma^2}\right).$$

838 Using the tail bound by moments (Abadi et al., 2016), we have:
 839

$$840 \quad 841 \quad 842 \quad \delta \geq \min_{\lambda} \exp\left(\frac{\lambda(\lambda+1)T\Delta^2}{2\sigma^2} - \lambda\epsilon\right) \in (0, 1). \quad (9)$$

843 Minimizing the RHS with respect to λ , we obtain:
 844

$$845 \quad 846 \quad 847 \quad \lambda = \frac{\epsilon\sigma^2}{T\Delta^2} - \frac{1}{2}.$$

848 Substituting into (9), we obtain:
 849

$$850 \quad 851 \quad \delta \geq \exp\left(-\frac{\epsilon^2\sigma^2}{2T\Delta^2} - \frac{T\Delta^2}{8\sigma^2} + \frac{\epsilon}{2}\right).$$

852 Combining with (9), we have:
 853

$$854 \quad 855 \quad \frac{\lambda(\lambda+1)T\Delta^2}{2\sigma^2} - \lambda\epsilon \leq 0.$$

856 Thus, we have:
 857

$$858 \quad \delta \geq \exp\left(-\frac{\epsilon^2\sigma^2}{2T\Delta^2} + \frac{2\lambda+1}{4\lambda+1}\epsilon\right) \geq \exp\left(-\frac{\epsilon^2\sigma^2}{2T\Delta^2}\right).$$

859 That is:
 860

$$861 \quad 862 \quad \sigma_t = \frac{\Delta_t \sqrt{2T \ln(1/\delta)}}{\epsilon}.$$

863 \square

864 **D PROOF OF LEMMA 3**
865866 *Proof.* From Lemma 2, in LDP-FL, we have:
867

868
$$\sigma_{local,i} = \frac{\Delta_i \sqrt{2qT \ln(1/\delta)}}{\epsilon_i} = \frac{2C \sqrt{2qT \ln(1/\delta)}}{\epsilon_i |D_i|}.$$

869

870 Then, the equivalent noise intensity for the central server is:
871

872
$$\begin{aligned} \sigma_{server}^2 &= \sum_{i=1}^k p_i^2 \sigma_{local,i}^2 = \sum_{i=1}^k \left(\frac{|D_i|}{\sum_{i=1}^k |D_i|} \right)^2 \sigma_{local,i}^2 \\ 873 &= \sum_{i=1}^k \frac{8C^2 qT \ln(1/\delta)}{\epsilon_i^2 |D|^2} = \frac{8C^2 qT \ln(1/\delta)}{|D|^2} \sum_{i=1}^k \frac{1}{\epsilon_i^2}. \end{aligned}$$

874

875 Thus, we obtain:
876

877
$$\frac{8C^2 qT k \ln(1/\delta)}{\epsilon^2 |D|^2} \leq \sigma_{server}^2 \leq \frac{8C^2 qT k \ln(1/\delta)}{(1-\kappa)^2 \epsilon^2 |D|^2}.$$

878

879 \square
880881 **E PROOF OF THEOREM 2**
882883 *Proof.* We only need to find a particular solution to (5). Let $x_i = p_i$, the equation can be transformed
884 into:
885

886
$$\begin{cases} \sum_{j=1, j \neq i}^k x_{ij} = \frac{|D_i|^2}{|D_{min}|^2} - \frac{|D_i|}{|D|} \\ x_{ij} = x_{ji} \geq 0 \end{cases}$$

887

888 Let $\alpha_1 = \frac{|D|}{|D_{min}|} \geq k$, then we have:
889

890
$$\frac{|D_i|^2}{|D_{min}|^2} - \frac{|D_i|}{|D|} = p_i^2 \alpha_1^2 - p_i.$$

891

892 This is a quadratic function in terms of p_i . Since $p_i \geq \frac{|D_{min}|}{|D|} = \frac{1}{\alpha_1} > \frac{1}{2\alpha_1^2}$, p_i is positively
893 correlated with $\frac{|D_i|^2}{|D_{min}|^2} - \frac{|D_i|}{|D|}$. Thus, we can obtain:
894

895
$$\frac{|D_i|^2}{|D_{min}|^2} - \frac{|D_i|}{|D|} \geq \frac{|D_{min}|^2}{|D_{min}|^2} - \frac{|D_{min}|}{|D|} \geq 1 - \frac{1}{k} > 0.$$

896

897 Let $\beta_i = \frac{|D_i|^2}{|D_{min}|^2} - \frac{|D_i|}{|D|}$, $x_{ij} = b_{ij}$, where $b_{ij} \geq 0$. The above equation can be simplified to:
898

899
$$\begin{cases} \sum_{j=1, j \neq i}^k b_{ij} = \beta_i & i = 1, 2, 3, \dots, k \\ b_{ij} = b_{ji} \geq 0 \end{cases}$$

900

901 Transform the system of equations into the corresponding matrix representation. Due to the sym-
902 metry, without loss of generality, assume $0 < \beta_1 \leq \beta_2 \leq \dots \leq \beta_k$, we have:
903

904
$$\begin{bmatrix} 0 & b_{12} & b_{13} & b_{14} & \dots & b_{1(k-1)} & b_{1k} \\ b_{21} & 0 & b_{23} & b_{24} & \dots & b_{2(k-1)} & b_{2k} \\ b_{31} & b_{32} & 0 & b_{34} & \dots & b_{3(k-1)} & b_{3k} \\ b_{41} & b_{42} & b_{43} & 0 & \dots & b_{4(k-1)} & b_{4k} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{(k-1)1} & b_{(k-1)2} & b_{(k-1)3} & b_{(k-1)4} & \dots & 0 & b_{(k-1)k} \\ b_{k1} & b_{k2} & b_{k3} & b_{k4} & \dots & b_{k(k-1)} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \vdots \\ \beta_{k-1} \\ \beta_k \end{bmatrix} \quad (10)$$

905

918 We discuss the solution θ^k using mathematical induction:
919
920 (i) When $k = 3$, the system of equations has a solution:

$$\begin{cases} b_{12} = b_{21} = \frac{\beta_1 + \beta_2 - \beta_3}{2} \\ b_{13} = b_{31} = \frac{\beta_1 - \beta_2 + \beta_3}{2} \\ b_{23} = b_{32} = \frac{-\beta_1 + \beta_2 + \beta_3}{2} \end{cases} \quad (11)$$

928 Since $\beta_i \leq \beta_{i+1}$, $b_{13} = b_{31} \geq 0$ and $b_{23} = b_{32} \geq 0$, that is, (11) has at most two variables $b_{23} = b_{32}$
929 less than 0.

930 (ii) We assume the existence of solution θ^k such that at most only one variable is less than zero for
931 $k < K$.

932 (iii) For the case when $k = K$, we let $b_{1i} = \frac{1}{K-1}\beta_1$. Then, the system of (10) becomes:
933

$$\begin{bmatrix} 0 & b_{23} & b_{24} & \cdots & b_{2(K-2)} & b_{2K} \\ b_{32} & 0 & b_{34} & \cdots & b_{3(K-1)} & b_{3K} \\ b_{42} & b_{43} & 0 & \cdots & b_{4(K-1)} & b_{4K} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{(K-1)2} & b_{(K-1)3} & b_{(K-1)4} & \cdots & 0 & b_{(K-1)K} \\ b_{K2} & b_{K3} & b_{K4} & \cdots & b_{K(K-1)} & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \beta_2 - \frac{1}{K-1}\beta_1 \\ \beta_3 - \frac{1}{K-1}\beta_1 \\ \beta_4 - \frac{1}{K-1}\beta_1 \\ \vdots \\ \beta_{K-1} - \frac{1}{K-1}\beta_1 \\ \beta_K - \frac{1}{K-1}\beta_1 \end{bmatrix}$$

942 Since $0 \leq \beta_2 - \frac{1}{K-1}\beta_1 \leq \beta_3 - \frac{1}{K-1}\beta_1 \leq \cdots \leq \beta_K - \frac{1}{K-1}\beta_1$, it reduces to the assumed case, thus
943 proving the proposition.
944

945 Now, we derive an algorithm for obtaining a reasonable noise allocation from the above induction.
946 It follows that after $t < k - 3$ inductive iterations, the allocation for the t -th client is as follows:

$$\begin{aligned} [b_{t1}, b_{t2}, \dots, b_{t(t-1)}, 0, b_{t(t+1)}, \dots, b_{tk}] \\ = [\theta_1, \theta_2, \dots, \theta_{t-1}, 0, \theta_t, \dots, \theta_t]. \end{aligned}$$

950 Unlike previous inductions, we perform one additional iteration to reduce the system to 2-
951 dimensional. By adjusting the second-largest $\beta_{k-1} \leftarrow \beta_k$, the resulting allocation satisfies the
952 non-negativity condition, as detailed below:
953

$$\begin{cases} \theta_1 = \frac{1}{k-1}\beta_1 \\ \theta_n = \frac{1}{k-n}(\beta_n - \sum_{i=1}^{n-1} \theta_i), \quad 2 \leq n \leq k-2 \\ \theta_{k-1} = \beta_k - \sum_{i=1}^{k-2} \theta_i \end{cases}$$

962 At this point, the allocation matrix for (10) is as following:
963

$$\begin{bmatrix} 0 & \theta_1 & \theta_1 & \cdots & \theta_1 & \theta_1 \\ \theta_1 & 0 & \theta_2 & \cdots & \theta_2 & \theta_2 \\ \theta_1 & \theta_2 & 0 & \cdots & \theta_3 & \theta_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \theta_1 & \theta_2 & \theta_3 & \cdots & 0 & \theta_{k-1} \\ \theta_1 & \theta_2 & \theta_3 & \cdots & \theta_{k-1} & 0 \end{bmatrix}$$

970 The proposition is thus proven.
971

□

972 F ADDITIONAL EXPERIMENTS
973974 We conducted additional experiments using the MNIST dataset.
975976 F.1 SCALABILITY EVALUATION
977978 Now, we extensively explore the relationship between the client size N , sampling rate q , and privacy
979 budget ϵ . As shown in Fig.3, we traverse the sampling rate $q \in [0.1, 0.5]$ while recording the test
980 accuracy over 200 iterations. The green lines represent the test results of FL without DP, while the
981 blue and orange lines represent LDP-MA and NADP, respectively.982 It can be observed that, the blue and orange lines intersect, indicating a q_{same} at which the utility of
983 two frameworks are the same. When the actual sampling rate $q < q_{same}$, LDP performs better; con-
984 versely, when $q > q_{same}$, NADP outperforms. As scale increases, on the one hand, the intersection
985 point of the two lines shifts to the left, suggesting that NADP becomes more advantageous in more
986 extensive settings. On the other hand, as the requirements for privacy protection increase (i.e., a
987 smaller ϵ) and more clients are involved, the utility advantage of NADP grows, demonstrating better
988 scalability.989 It is worth noting that in some settings where the proportion of aggregated clients is extremely small
990 (e.g., $N = 20$, $q = 0.1$, with only 2 clients participating in aggregation), LDP outperforms NADP.
991 This is because in IDP, we regard all clients as a collective entity rather than the sampled clients,
992 which leads to a potentially slightly more relaxed noise bound that satisfies DP. Indeed, we could
993 more precisely estimate the amount of data sampled each time to optimize our framework for more
994 extreme scenarios. However, this might prevent us from explicitly comparing the noise accumulation
995 of LDP and NADP in theory. Therefore, presenting a directly comparable result is more desirable
996 to us, and optimization of NADP in extreme scenarios is not the focus of this paper.997 F.2 RELIABILITY EVALUATION
9981000 As a potential threat, dropout of clients results in some noise, which should have been canceled out,
1001 remaining in the model. In this subsection, we set $N = 25, 50, 100$, $q = 0.8$, with $\lambda = 1.0, 1.2, 1.4$
1002 in NADP and $\epsilon = 1, 2$, $\delta = 10^{-5}$. We vary the dropout rate from 0.1 to 0.5 to examine the reliability.1003 As shown in Fig.4, FL without DP is not significantly affected by dropout, since the dropout of some
1004 clients merely results in a reduced sampling rate. However, for DP-FLs, dropout decreases the base
1005 of aggregation average, amplifying the uncertainty caused by noise, which ultimately affects overall
1006 performance. Nevertheless, experiments show that this impact is quite limited. It can be observed
1007 that the accuracy of both frameworks decreases smoothly as the dropout rate increases, indicating
1008 that both LDP and NADP exhibit a certain level of robustness against dropout. Specifically, NADP
1009 is more affected than LDP. However, due to the inherent accuracy advantage of NADP, its accuracy
1010 only falls slightly below that of LDP at high dropout rates, by which point the accuracy of both
1011 frameworks dropped to an unacceptable level. While NADP still outperforms LDP at lower dropout
1012 rates. Second, examining the intersection of the LDP and NADP curves, it is apparent that as
1013 the scale increases, the intersection shifts to the right, indicating that NADP's robustness improves
1014 relative to LDP in large-scale settings. Lastly, while introducing the noise compensation coefficient
1015 λ impacts accuracy under dropout, this impact is also quite limited. As the scale increases, this
1016 impact is further diminished.

1017 F.3 PRIVACY EVALUATION

1018 In this subsection, to demonstrate the advantage of NADP in providing independent protection for
1019 both phases, we conduct attacks on uplink phase of NADP and LDP with the same utility (i.e., same
1020 noise intensity after aggregation, same downlink protection strength, but different ϵ), by employing
1021 a commonly used attack method, DLG (Zhu et al., 2019) and its variant iDLG (Zhao et al., 2020). In
1022 our experiments, we set the total number of clients $N = 100$, and all clients possess the same amount
1023 of data. sampling rate $q = 0.8$, total number of iterations $T = 200$. We examine the case where
1024 datasets are evenly distributed, and $\epsilon = 5$ and $20\sqrt{2}$ corresponding to NADP and LDP, respectively,
1025 to keep the noise intensity accumulated in the model the same. At the same time, we set the noise
1026 compensation coefficient $\lambda = 1.2$, enabling our NADP to theoretic prevent $\tau_{theoretical} = 30\%$ of

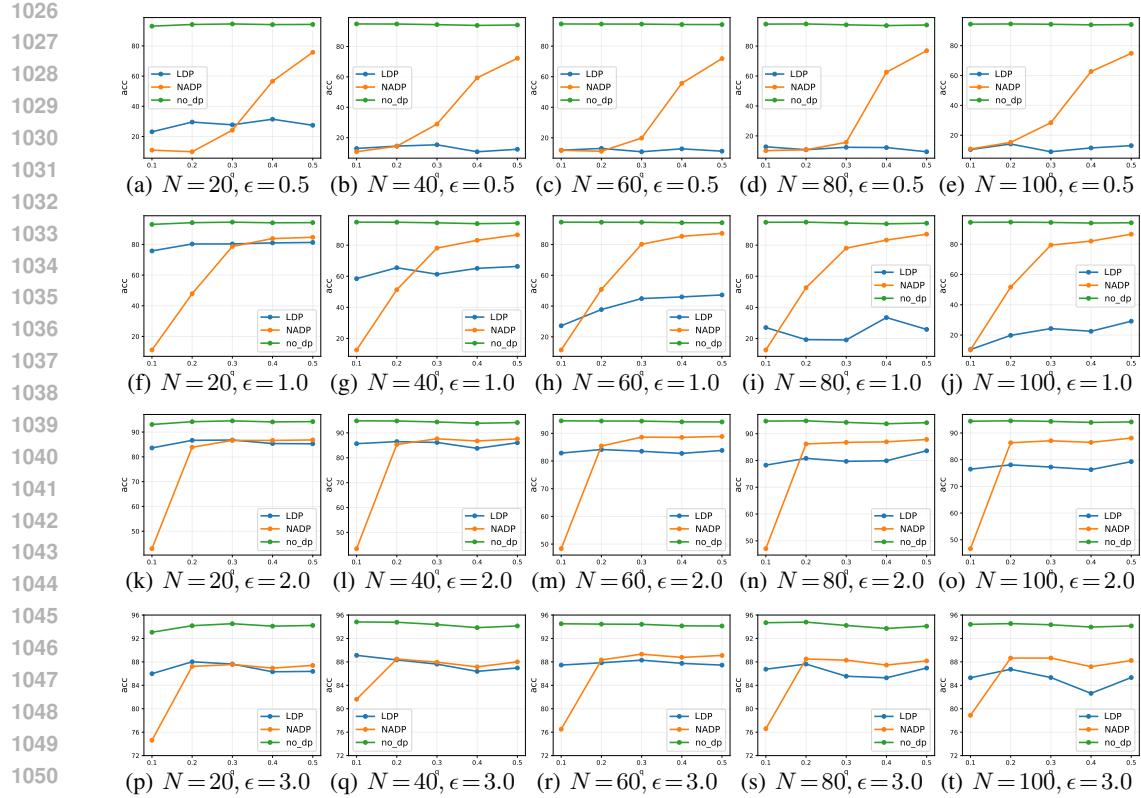


Figure 3: Performance Comparison under Different Sampling Rates on MNIST. We set the number of rounds to $T = 200$ and conduct experiments with different client size N and privacy parameters ϵ . We evaluate the performance of NADP and LDP across a range of sampling rates $q \in [0.1, 0.5]$.

collusion, and we traverse the practical collusion rate $\tau_{\text{practical}} \in [0.1, 0.9]$ to show the results when the preset compensation factor does not meet the actual collusion ratio.

For defense evaluation, we made the attack as powerful as possible: each client uses only one sample in local training, and the attack was conducted during the first iteration. For (i)DLG attacks, we use the L-BFGS (Tankaria et al., 2022) optimizer, performing 300 iterations to ensure convergence, and repeat the experiment 10 times to obtain the worst-case defense results. Based on this, we compared the reconstructed images with the real images, calculating the normalized Mean Squared Error (MSE), Learned Perceptual Image Patch Similarity (LPIPS) and Structural Similarity Index Measure (SSIM).

As shown in Table 4, with upward and downward arrows indicating the direction of better defense performance, the most prominent reconstructed images are placed in the last row to demonstrate whether they can be recognized by the human eye. It can be observed that, without DP, the (i)DLG attacks can almost perfectly reconstruct the original images. After applying DP, the reconstructed images are significantly disrupted, and, NADP exhibits a more effective defense. Additionally, the observation aligns with the earlier theoretical findings: the residual noise in NADP follows the same cumulative pattern as in LDP. As shown in Table 4, when the practical collusion rate $\tau \rightarrow 1$, that is, when all remaining clients collude (which is almost impossible in real-world scenarios), the risk of privacy leakage facing the client is the same as in LDP. However, counteracting noise provides additional privacy protection, amplified quadratically by the compensation coefficient $\lambda > 1$, with no loss in accuracy. This shows that NADP can provide more effective privacy protection with lower utility loss.

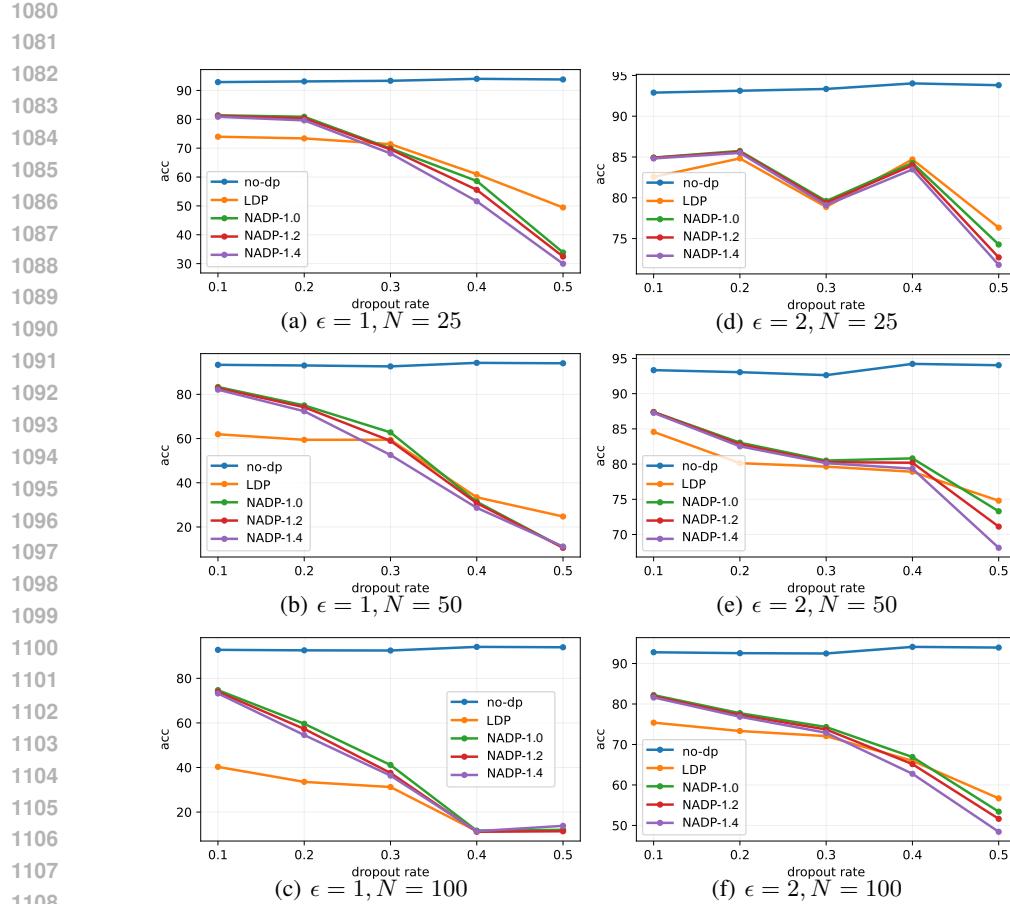


Figure 4: Performance Comparison under Different Dropout Rates on MNIST. We conduct experiments with different N and privacy budget $\epsilon = 1, 2$. We evaluate the performance of NADP ($\lambda = 1.0, 1.2, 1.4$), LDP and FL without DP across a range of dropout rates $d \in [0.1, 0.5]$ over 200 iterations.

Table 4: MSE, LPIPS, SSIM results under DLG/iDLG Attacks

	Framework	FL(no-dp)	LDP($\epsilon = 20\sqrt{2}$)	NADP($\epsilon = 5, \lambda = 1.2$)				
				$\tau = 0.9$	$\tau = 0.7$	$\tau = 0.5$	$\tau = 0.3$	$\tau = 0.1$
MNIST	MSE \uparrow	3.48e-4 / 1.89e-4	3.33e-3 / 2.78e-3	0.0291 / 0.0251	0.0331 / 0.0265	0.0768 / 0.0536	0.141 / 0.149	0.224 / 0.212
	LPIPS \uparrow	4.81e-5 / 4.63e-5	1.55e-2 / 1.23e-2	0.0663 / 0.0737	0.0821 / 0.0847	0.105 / 0.115	0.188 / 0.194	0.355 / 0.353
	SSIM \downarrow	0.9390 / 0.9439	0.8228 / 0.8186	0.6527 / 0.6840	0.6665 / 0.6841	0.6165 / 0.6488	0.5287 / 0.5201	0.2900 / 0.2922
	MSE \uparrow	7.58e-5 / 4.24e-5	1.49e-3 / 3.36e-3	0.0252 / 0.0178	0.0379 / 0.0229	0.0683 / 0.0534	0.132 / 0.0846	0.0939 / 0.119
	LPIPS \uparrow	7.22e-6 / 6.96e-6	3.61e-3 / 3.70e-3	0.0453 / 0.0359	0.0983 / 0.0579	0.155 / 0.172	0.199 / 0.186	0.297 / 0.315
	SSIM \downarrow	0.9575 / 0.9463	0.8704 / 0.8482	0.7757 / 0.7916	0.7202 / 0.7238	0.5714 / 0.5642	0.5437 / 0.5221	0.3811 / 0.3824
Fashion-MNIST	MSE \uparrow	3.54e-4 / 2.67e-4	3.84e-3 / 5.94e-3	0.0171 / 0.0163	0.0756 / 0.0577	0.0468 / 0.0821	0.0718 / 0.0871	0.117 / 0.105
	LPIPS \uparrow	2.41e-5 / 3.24e-5	7.56e-3 / 4.05e-3	0.0886 / 0.0774	0.0811 / 0.0939	0.0985 / 0.1092	0.179 / 0.213	0.257 / 0.318
	SSIM \downarrow	0.9875 / 0.9647	0.8817 / 0.9105	0.8444 / 0.8135	0.8220 / 0.7669	0.8164 / 0.7250	0.6842 / 0.6703	0.5994 / 0.5060