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ABSTRACT

The Local Differential Privacy Federated Learning (LDP-FL) framework provides
privacy protection by injecting noise at the client level. However, the noise ac-
cumulates in the model through the two-phase indivisible sequential process of
LDP, thereby bringing the well-recognized privacy-utility trade-off challenge. In
this paper, we propose an ideal interaction mode, Ideal Differential Privacy Fed-
erated Learning (IDP-FL), which allows for independent protection in the uplink
and downlink phases. Through a comparative analysis of noise accumulation in
IDP-FL and LDP-FL, we discover and theoretically prove that LDP-FL suffers
from inherent noise redundancy, i.e. noise accumulation in uplink exceeds pri-
vacy requirements in downlink. To avoid this defect, we propose a novel frame-
work, Noise Annihilation Differential Privacy Federated Learning (NADP-FL),
which can be regarded as an instantiation of IDP-FL. In this framework, a portion
of noises are distributedly generated in pairs, thereby mutually canceling each
other out during aggregation and not appearing in the downlink phase. As a re-
sult, NADP realizes independent protection for both phases, eliminating unnec-
essary noise accumulation, achieving a more favorable privacy-utility trade-off
and enhance protection in a way that incurs no further utility loss. We validate
the superior utility, scalability and robustness of our framework through extensive
experiments.

1 INTRODUCTION

With the rapid expansion of distributed databases and the ever-growing volume of data across do-
mains such as smart homes (L1 et al.,|2023)), transportation (Tahaei et al.,2020), and healthcare (Tang
et al.}2019), ensuring secure and reliable data mining in decentralized environments has become in-
creasingly critical. Federated Learning (FL) (McMahan et al.l 2017) has emerged as a promising
paradigm for privacy-preserving machine learning by allowing clients to collaboratively train mod-
els without exposing raw data. However, despite its decentralized nature, FL typically relies on a
central server for model aggregation and distribution. In practice, assuming this server to be fully
honest and trustworthy is often unrealistic—such trusted third parties are rare, and their compromise
can lead to significant privacy breaches. Furthermore, FL remains vulnerable to privacy threats such
as model inversion (Zhu et al.l 2019) and membership inference attacks (Shokri et al., [2017)), which
can reveal sensitive information from seemingly innocuous model updates.

To address these threats, Local Differential Privacy (LDP) (Wei et al., 2020; 2021) has been widely
integrated into FL by injecting noise directly on the client side. This ensures that individual data
remains protected even when the central server is untrusted. Nevertheless, LDP introduces a funda-
mental challenge: the noise injected in the early stage (uplink) persists throughout the FL process
and irreversibly propagates into the global model during aggregation. This results in a well-known
trade-off between privacy and utility (Kim et al., [2021}; |[Zhang et al., |[2023)).

In particular, the two-phase interaction in LDP-FL involves: (1) clients uploading perturbed local
updates (uplink), and then (2) receiving the aggregated model from the server (downlink). Since
noise is added only during uplink, it simultaneously protects downlink phase by propagating through
aggregation. It is worth noting that the two phases remain tightly coupled, the amount of noise in
each phase is inherently determined by the aggregation structure, rather than the actual privacy needs
of each phase. Consequently, we are naturally led to ask: Does this coupling lead to a mismatch
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between the minimal noise required for each phase, resulting in excessive perturbation and
degraded model performance?

In this work, we answer this question positively. We identify and formalize an inherent flaw in LDP,
which we term noise redundancy. This redundancy arises from the structural dependency between
the two phases in LDP-FL: the noise injected in the uplink often exceeds the privacy requirement
for the downlink, leading to inefficient noise allocation and unnecessary utility loss. To the best of
our knowledge, this is the first work to formally define and analyze this problem.

To resolve this issue, we propose a new DP-FL interaction mode that decouples the uplink and down-
link phases, and build upon it a novel framework, Noise Annihilation Differential Privacy Federated
Learning (NADP-FL). Unlike traditional LDP, NADP enables independent privacy protection for
both uplink and downlink phases. It introduced a part of structured noise pairs that cancel out each
other during aggregation, effectively eliminating unnecessary perturbation. As a result, NADP can
avoid noise redundancy and enhance protection in a way that incurs no further utility loss, with both
theoretical privacy guarantees and experimental results showing superior privacy-utility trade-offs.
Our contributions are as follows:

* We revisit the two-phase process of LDP (uplink and downlink) and theoretically prove that
the LDP framework inevitably suffers from noise redundancy. To the best of our knowl-
edge, this systemic defect in the LDP framework is raised for the first time.

* We construct a novel framework, NADP-FL, to avoid noise redundancy. Additionally, we
theoretically prove that this framework satisfies (¢, §)-DP and can enhance protection in a
way that incurs no further utility loss.

* We conduct extensive experiments to validate our framework. It shows that, compared to
LDP, NADP exhibits a better privacy-utility trade-off, offers better scalability, and inher-
ently maintains a certain degree of robustness in dropout scenarios.

2 RELATED WORK

To mitigate the utility loss of LDP-FL, various strategies have been explored. Adaptive gradient
clipping (Andrew et al.| 2021; [Fu et al.| [2022) techniques dynamically adjust clipping thresholds
based on data distribution to better fit different clients and training rounds. Dynamic noise scal-
ing (Phan et al., [2017; Talae1 & Izadi, 2024) allocates privacy budgets adaptively across training
rounds, calibrating noise to changing model sensitivity. Per-layer budgeting (Errounda & Liul [2023}
Chen et al., [2023) approaches assign differentiated noise weights to model components based on
their empirical contributions. More recently, shuffle-based methods (Balle et al.l 2019; [Chen et al.,
2024) have been proposed to amplify privacy through trusted intermediaries that anonymize clients.

However, these approaches suffer from fundamental limitations: (1) Heuristic-based methods (adap-
tive clipping, noise scaling, per-layer budgeting) rely on task-specific assumptions and neural inter-
pretability, raising transferability concerns; (2) Shuffling introduces new trust dependencies and
communication overhead; (3) Most critically, all existing techniques ignore the structural coupling
between phases, failing to address noise interdependence or inherent sequential defects of LDP.

Our work is the first to formally analyze this structural issue and avoid unnecessary utility loss
through a novel framework, providing a principled solution beyond heuristic optimizations.

3 PRELIMINARIES

3.1 FEDERATED LEARNING
A basic FL system consists of one server and N clients. Each interaction comprises two phases:

uplink and downlink. In the uplink phase of the ¢-th interaction, client 7 trains the model locally and
then uploads the result w! to the central server, which aggregates them as follows:

N
wh= pwi, (1)
i=1
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Figure 1: Interaction Modes of LDP & IDP. In LDP (a), datasets are distributed, the server selects
k clients to perform training with clients adding noise once. In IDP (b), all datasets are aggregated
through a protocol, conducting two independent publishing to mimic uplink and downlink, where 2
kinds of noise are added separately, ensuring the privacy of both phases independently.

where p; = % is the aggregation weight of client ¢, and D; denotes the dataset of the ¢-th client.
In the downlink phase, the server sends w® back for the next round of training.

3.2 DIFFERENTIAL PRIVACY IN FL

Under the semi-honest setting, by measuring the maximum change rate of the query function, (¢, ¢)-
DP provides a strong criterion for privacy protection in FL.

Definition 1 ((¢, §)-DP(Dwork, 2006)). A randomized mechanism M : X — R with domain X
and range R satisfies (¢, 6)-DP, if for all measurable sets S C R,

PrM(D) € 8] < e Pr[M(D’) € 8] + 6,
where D, D' € X are any pair of adjacent datasets, which differ by only one record.
Definition 2 (Global Sensitivity (Dwork, 2000)). : Given any dataset D and query f : D — R, the

global sensitivity Ay is defined as the maximum change in the query result,
Ap = max |If(D) = f(D),
where D, D’ are any two adjacent datasets, differed by only one record, and ||-||; denotes the l-norm.

Adding Gaussian noise n ~ A(0,0?) to each dimension of all the queries can ensure (¢, §)-DP,
where the noise intensity o > A - s, and s = s(¢,9,T) can be provided by the commonly used

moment accountant (MA) (Weli et al.| [2020).

3.3 TREAT MODEL

In this paper, we inherit the general assumptions of LDP-FL: the server and clients are honest and
will follow the protocol exactly. In addition, there exists an adversary who can infer clients’ privacy
by eavesdropping on the intermediate parameters {w!}¥ | and w* during FL procedure.

4 REVISITING UP & DOWNLINK OF DP-FL

In this section, we revisit the two phases of LDP and propose a new interaction mode, Ideal Differ-
ential Privacy (IDP). By proving that IDP accumulates less noise than LDP under the same privacy
guarantees (Thm[I)), we quantitatively present the inherent flaw of LDP, termed noise redundancy.
In later sections, we present an instantiation framework (Alg[T)) to demonstrate the feasibility of IDP.

4.1 IDEAL VS TRADITIONAL INTERACTION MODES

In LDP, as shown in FigEka), clients add noise n; to local models w; before uploading them:
VNVZ‘ =w,; + néocal
néocal ~ N(()? Ulzocal,i)'
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After aggregation, the final model consists of two parts (model component and noise component):

N N N
W= E in~Vi = § Piw; + E piny = W + Ngervers
=1 i=1 =1

where ngepper also follows a Gaussian distribution. It is worth noting that in LDP, the noise in
downlink is entirely determined by the noise injection in uplink: nserver:Zizl piné"‘al. However,
this coupling may lead to an inherent defect: when the noise accumulation in uplink phase exceeds

the protection requirement of downlink phase, T sepyer> 07¢9% ¢4 noise redundancy occurs.

Our intuition is straightforward: if there exists an interaction mode that decouples the inherently
sequential two phases in DP-FL and provides independent privacy protection for each, then the
potential mismatch can be avoided. Accordingly, we propose a new interaction mode, IDP (Def[3).
As illustrated in Fig[T[b), we assume the existence of an ideal mechanism that can regard the server
and all clients as a collective entity to perform a two-phase independent model publishing by adding
noise twice. Specifically, we can independently adjust the noises nj, ns for both phases and make
it indistinguishable for an external adversary to differentiate between IDP and LDP based on the
collected information.

Definition 3 (Interaction Modes of LDP & IDP ). DP-FL interaction mode is defined as a quintuple:
I2{P,D,6§,0, M},

where P = {{C4,--- ,Ck}, S} represents the set of participants in one iteration, including k se-
lected clients and a server; D = {D1,--- , Dy} denotes their datasets; 6 € {uplink, downlink}
serves as the indicator to distinguish between the uplink and downlink phases; O : D; — w; is the
training optimizer; M = {MGL DP> M? pp ) represents the DP noise injectors for different modes.

The interaction mode in LDP can be formally defined as the following two indivisible sequential
processes. In contrast, the IDP interaction mode can be formally defined by utilizing a trusted
third-party server and then proceeding through independent uplink and downlink phases:

Federated Interaction Mode of LDP-FL.  Federated Interaction Mode of IDP-FL

if 0 = uplink then Joint: Cy,--- ,Cy, S — [Ch, - ,Ck, S] =9
P1-Upload: Vi € [k] Joint: Dy,--- Dy — [Dq,--- ,Dg] =D
Wf‘DP:M%Ii"k(O(Di)) 59 if 6 = uplink then ‘

if 0 = downlink then P1-Publish: W!2P= MBE"™ (O(D;)), Vi€ [k]
P2-Download: Vi € [k] if 0 = downlink then '
WPy %WJLDP L C, P2-Publish: wi""= MGBE""* (37, ), ||%|‘ O(Dy))

Such that: Wi =37, Wit

Intuitively, in IDP, the independent addition of noise in the two phases is more likely to match their
respective protection requirements than in LDP.

4.2 NOISE REDUNDANCY IN LDP-FL

To quantitatively reveal the inherent noise redundancy in LDP, we compare the noise magnitudes in
uplink and downlink phases of LDP and IDP. We first present several lemmas, the proofs of which
are provided in the appendix, and the final comparison results are presented in Thm/[T}

Let D; be the dataset of ¢, D,,;, and D denote the smallest and total dataset in the current sam-
pling round, respectively, C is the clipping threshold such that the clipped gradient g satisfies
|clip(g, C)l2 = |lgll2 - min{1,C/l[gll2} < C.

Lemma 1 (sensitivity of LDP-FL & IDP-FL). In the traditional LDP-FL interaction mode, the
sensitivity corresponding to the local client 1 is:

2C
|Di|”

local __
A; =
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In IDP-FL interaction mode, the sensitivities corresponding to the uplink and downlink phases are:
2C 2C
Au = TN Adown = T
? ‘D mm| |D |
Lemma 2 (combined properties (Wei et al.,[2020)). For T different queries f; with sensitivity Ay, to
ensure satisfying (e,0)-DP, the intensity of the noise o from the Gaussian mechanism should satisfy:
At\/ 2Tln(1/5)

op = — V22 T )

€

In IDP, performing federated aggregation 7" times is equivalent to alternately conducting 7" uplink
and downlink publishing, resulting in a total of 27" queries. Therefore, we have:

Ap/4AT In(1/6 Ayp, 21t

gy = DeVATINA/O) [ f L te[1,27]
€ AUlown? 2 ‘ t

In DP-FL, fairness is typically ensured by having all clients agree on the same privacy parameters.

However, slight deviations are sometimes allowed. Our approach is to fix a commonly used § and

reflect the difference in e. By Lemma.2, for any set of privacy parameters (€1, d1), it can be trans-

In(1/6)
In(1/61)°

Furthermore, Lemma[3| presents the equivalent noise intensity in downlink phase of LDP.

formed into equivalent parameters (e; ) while keeping the noise intensity unchanged.

Lemma 3 (equivalent noise intensity of server in LDP). In LDP, suppose that k clients are sampled

and each client i satisfies (e;,0)-DP with sensitivity Aé"ml = % Without loss of generality,

assume that (1 — k)e = ¢; < --- < €, = €, k << 1. Then LDP satisfies (¢,0)-DP, and the
equivalent noise intensity in downlink phase satisfies:
8C2%qTk1In(1/9) <2 < 8C2%qTk1In(1/9)
Bl Sttt Sl A s Dt i S
62|D|2 _ Server — (1 _ 5)262‘ID|2 ’

where 1 measures the variance of {€; };c[). For the sake of fairness,  is set to a very small value.

With this series of preparations, we can compare the noise required by LDP and IDP. As a result,
the following theorem quantitatively demonstrates that LDP suffers noise redundancy.

Theorem 1 (noise redundancy). Suppose a FL system with N clients undergoes T iterations. In each
iteration, clients are sampled at a rate ¢>+/2/N. To ensure (¢,0)-DP, in IDP, clients add Gaussian

2C\/AT In(1/6 2C+\/4T In(1/5) . .
20y AT In(1/6) 204 In(1/5) in downlink. Moreover,
E‘Dnzinl ‘|D|

compared to LDP, IDP requires larger noise intensity in uplink, while smaller in downlink.

noise with o, = in uplink, while 4o =

Proof. In IDP mode, we abstract the two-stage process into two query functions, f,, and fiown,
with sensitivities Ay, and A gy respectively. From Lemmam, we have:

2C 2C
IR Adoum, = T
|Dmin| |D|
According to Lemma to ensure (€, §)-DP over a total 27" queries, the noise intensities correspond-
ing to the two phases should be satisfied as follows:

_ 20\/ATn(1/3) 2C\/4T In(1/9) )

Ay =

Oup €|Dmin| s Odown = 6|D|
Comparing the equivalent intensities in two phases under LDP mode, combining Lemmal[3] we have:
02 ver - 8C?qTkIn(1/5) €2|D)? _¢°N -1
02 wn €2|D|2 1602T1In(1/85) 2 '
As for the noise intensity crfocal’i added by client ¢ under LDP mode, from Lemma we have:

O—l200al,i _ 802(1T 111(1/6) . €2|Dmin‘2 < q
o2 €|D? 16C2T In(1/8) ~ 2(1—k)2

up

<1.



Under review as a conference paper at ICLR 2026

According to Thm[T] in LDP, the noise in downlink Ui view 9 Downink View ©

d th . . t d l . If Indistinguishable from IDP v
exceeds the noise requirement in an ideal scenario. "

there exists a framework that can provide indepen- W"=‘”‘+E(""“(Z""‘z’“’” ”“‘“m
dent privacy protectioa for both phases to simulate p1-Upload N et to
IDP, it would avoid noise redundancy caused by the Py ‘

sequential coupling of the two phases in LDP. m @ W m m m
CE e
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In this section, we present Noise Annihilation Dif- generates two sets of independent random

ferentially Private Federated Learning (NADP-FL),  yariables to produce counteracting and resid-

to instantiate IDP. Conceptually, we are inspired by ;4] noises. The NADP framework is indis-

theoretical physics: during annihilation, the mass tinguishable from IDP interaction mode.
of particles disappears and is converted into energy,

with the total energy remaining unchanged. Similarly, we aim to reduce the accumulation of noise in
the model by allowing a portion of the noise to “annihilate” each other while maintaining the same
level of protection, which can make the noise in uplink and downlink phases mutually independent,
thereby avoiding the issue of noise redundancy.

5 NOISE-ANNIHILATION DP-FL

Algorithm 1 NADP-FL

Parties: Clients 1, ..., N with datasets D,, Server.
Public Parameters: model vector length [, input domain X!, standard Gaussian sequence sampler:
GS(seed)— X'~ N(0,1), public clipping threshold Cy, privacy parameters (e, §), sampling rate q.
Input: D; (by each client 7).
Output: w” € X' (by the server).

1: Preparation Phase:

2: Initialize: ¢t = 0 and w.

3: Each client ¢ generates secret key s;, and uses Diffie-Hellman protocol to establish a shared key
si; with each client j # 4, which serve as seeds.
4: whilet <T do
5:  Sample clients with probability g, obtaining k clients. Sampled client set is denoted as /C;.
6: Local Training Phase:
7:  Broadcast w' to all clients.
8:  for each client 7 € K; do
9: Perform local training and clip gradients using C', obtain the local model Wt+1
10: Noise Addlng Phase:
11: Allocate noise intensities with Algl yielding {aH'l t"'l}#]e
12: Update secret values:
st Gyl S (sl v € K/
13: Iple noise set:
ot GS(siHY), Vi € Ky /{i}
t+1 « O_t-‘rl GS( t+1)
14: Set noise compensation factor \.
15: Add noise:
t+ D,
Pi Trex, D"
Wit ewit +o; ( i FA 5 nZ‘d —Di<i nf—gﬂ))
16: Upload model parameters to the server.
17:  Model Aggregatlng Phase:
18wt 3 e, Pl W
190 t+t+1.

20: return w7l

To implement this, we artificially decompose the noise added on client i into two parts: nl°¢? =

nresidual  peounteract —presidual jg retained in the aggregated model to provide protection for
downhnk phase while n§ounteract js pegotiated with the remaining k& — 1 clients, ensuring mu-
tual cancellation during aggregation, thereby solely protecting the privacy in uplink phase, i.e.,
Zpineounteract =0

g .
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Specifically, on the one hand, any two clients
1,7 employ the Diffie-Hellman protocol (Diffie
& Hellman, [2022) to negotiate shared secret
keys s;; = sj;, which can be used as seeds
to sample paired noise sequences n;; = nj;,
Further, client ¢ scales each of {n;;},x; to
serve as local counteracting noise: ngoneret —
i > j>iNij— > ;; 0. The aggregation can-
cellation is ensured by (I)) and the following

identity:
k
3D IETED DETEUANT
i=1 j>ie[k] j<i€lk]

On the other hand, each client ¢ generates a lo-

Algorithm 2 Noise Intensity Allocation

IDPUt: {‘Dl|7pl}7,€[k]’ U(%own'
1: Sort {|D;|};¢[ in ascending order.

2: Calculate {Bz = |Di|2/‘Dmin‘2 - pz}ze[k]
3: 0 ﬁﬁl
4: forn € [2,k — 2] do
n—1
5: 9n<—ﬁ(6n—2j:1 6;).
6: Op1 ¢ Br— 301 0.
7: for i # j € [k] do
8: Ué <~ Pi0pun
90 05 < 0i05,0n 5 Vi< J.
10: O'Z-Qj — Hjafioum , Vi>j.

. k_ (.2 27
cal seed s; to sample the local residual noise: 11 return X% = {07, 07 Fizje k-

nresidual — I%ni. Moreover, the variance of
T

the noises n; and n;; needs to be finely allocated to match the distribution of dataset sizes (see
Section[6). In addition, we deploy a noise compensation coefficient A on local counteracting noise
to enhance privacy at client level without further utility loss. Our framework is presented in Alg[T]
which consists of four steps:

* Preparation Phase: Each client ¢ pairs up with others to negotiate common secrets
{s:} i, which serves as the seeds for generating synchronized counteracting noise. Addi-
tionally, each client generates another secret s; to serve as the seed for generating residual
noise. The server then broadcasts the initial model w°.

* Local Training Phase: Sampled clients perform local training and apply gradient clipping.

* Noise Adding Phase: By performing noise intensity allocation (Alg[2] see Section6),
each client obtains the corresponding noise intensities for both counteracting and residual
noise. Further, the clients link the iteration indicator ¢ to the secret values as updated
seeds, from which & — 1 counteracting noises and one residual noise are sampled. Then,
counteracting noises are amplified using the noise compensation coefficient A to enhance
protection. Finally, all the noises are added, and the model is uploaded to the server.

* Model Aggregating Phase: The server weights the models and aggregates them.

As shown in Fig in NADP, client ¢ generates k — 1 counteracting random variables {X;; };-; and
generates a residual random variable X;, where {Xi]‘}j?éi and X; are independent of each other,
which sample Gaussian sequences with different variances separately. The independence of the
noise allows for separate privacy protection in the uplink and downlink phases. Specifically, let
z* zZ down e the total noise variable added by client 7 in uplink phase and the aggregated noise
variable in downlink phase, respectively:

o1
Z;? = ;(Xz‘ +AO Xy =Y Xiy) ~ N(0,07),

7> 7<i

k k
290 =N 2 = X, ~ N(0,62).
i=1 i=1
Here, 0? = Var(Z;'"),03 = Var(Z%®"), which can be independently controlled by adjusting
Var(X;),{Var(X,;)}iz; separately. This indicates that NADP simulates IDP interaction mode,
thereby avoiding the issue of noise redundancy. It is worth noting that we introduce a noise compen-
sation coefficient A, which allows us to independently enhance the protection in the uplink phase.
The additional noise introduced by this enhancement will also cancel out during aggregation (as
shown in (@), and thus will not incur further utility loss.

6 NOISE INTENSITY ALLOCATION

In this section, we explore the intensities of these noises to ensure (e, d)-DP. By setting A = 1, we
consider the standard intensity allocation required to defend against bystanders.
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We assume an eavesdropper comprises both bystanders and the server, which can obtain both the
gradients uploaded by all clients and the aggregated gradients distributed by the server.

In each iteration of NADP, we assume k clients are sampled. Let the random variable Z; =
2-(30;5s Xij — 22;; Xij + X;) represent the noise added by client i (without A). To ensure
(¢, 0)-DP, the following conditions must be satisfied:

piZi:ZXij *ZXij + X, i=1,2,--- K

J>1 J<i

k
Z; ~ N0, Uip) ) ZXl ~ N(0, Uflown)
i=1
Xij =X, pi=|Dil/|D],
where o, and 044, represent the noise requirements for uplink and downlink phases in IDP,

respectively (defined in (3)). Examining the variances of each term and employing a variable sub-

2
stitution: Var(X;;) = x;j - %};9/‘” =Ty - Uflown and Var(X;) =z, - Uflown, we can obtain

its simplified form:

D 2

§ xz]+xz—|‘|D ||2 >1,i=12,---k
14 min

j=1,j# (5)

k

inzl, xij:xjiZO, (EZZO

i=1
The noise intensity distribution induced by the solution of (5 provides a reasonable allocation for
NADP to satisfy (e, d)-DP, from the perspective of bystanders. However, under certain extreme
cases, finding a non-negative solution becomes challenging. To address this, we propose a method
based on mathematical induction to obtain an approximate solution without introducing excessive
noise.

Theorem 2 (reasonableness of intensity allocation). There exists an approximate solution 0% =
{4, 25 }izjeik), where only one variable may violate the non- negativity condition in @) Further,

from this solution, a reasonable noise intensity allocation X = {UZ s }Z#e[k] can be derived.

We formally present Thm[2)in Alg[2] which provides an effective method for calculating a reason-
able allocation. The proof is available in Appendix [C| For Algl2l on one hand, we set the only
possible negative value ;1 equal to 8; > 0, which effectively increases the actual noise intensity
for a single client but still ensures privacy. On the other hand, under this configuration, all allo-
cations are made in pairs, allowing the counteracting noise to cancel out during aggregation and
thereby preventing the introduction of excessive noise.

7 SIMULATION RESULTS

To most intuitively demonstrate the effectiveness of NADP-FL, we deploy the classic CNN on
three representative CV datasets, MNIST (Deng, |2012)), Fashion-MNIST (Xiao et al.l 2017)), FEM-
NIST (Caldas et al.| [2018) for image classification tasks, and deploy the GRU-RNN (Cho et al.,
2014) on IMDb (Maas et al.,|2011) for NLP task. We examine the utility superiority of NADP under
different scales and privacy parameters, and also evaluate its performance in terms of scalability,
reliability and privacy (presented in Appendix[F] due to space constraints). In terms of the FL setup,

we consider three scales of client numbers: large(N = 100), medium(N = 50), and small(N = 10

or 25). Additionally, we set % < 2 (prevent excessive interference caused by large differences

in data distribution) and ensure that under each scale, we randomly sample the same distribution of
client dataset sizes. We set the total number of rounds 7" = 200, § = 10~°, and C' = 10, with one
local training iteration per round. For the optimizer, we use SGD with a learning rate of 0.1 and
a decay rate of 0.995. For all experiments, our primary comparison target is LDP with commonly
used MA composition mechanism.

As shown in Table[T] our framework NADP outperforms LDP across different e. Under stronger pri-
vacy protection (smaller €), LDP-FL fails as the level of protection increases, however, NADP still
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Table 1: Acc(%) of Different Frameworks under Different Scales with ¢ = 0.8

e=3 e=2 e=1 e=0.5
LDP NADP LDP NADP LDP NADP LDP NADP

N No-DP

o 10 9294 81.76 82.20(0.447) 8027 82.05(1.781) 77.23 81.65(4.427) 67.44 78.41 (10.971)
2 50 93.30 83.94 85.55(1.611) 81.52 8558 (4.067) 6547 85.19(19.721) 29.97 80.39 (50.421)
S 100 9291 85.09 87.37(2.287) 76.69 87.33 (10.647) 46.97 86.84 (39.871) 10.44 80.58 (70.141)
£ 10 8046 80.02 80.84(0.827) 79.08 80.48(1.407) 7634 79.29(2.951) 70.76 76.88 (6.121)
2 50 8244 7890 81.61 (2.717) 77.12 81.36(4.247) 71.16 80.17 (9.017) 60.21 77.19 (16.987)
2 100 8323 77.97 8233 (4.367) 74.88 82.02(7.141) 67.41 81.08 (13.671) 52.81 77.71 (24.907)
£ 10 88.68 78.57 78.56(0.011) 78.01 78.65(0.641) 7557 77.78(2.217) 67.30 74.94 (7.647)
Z 50 88.65 7635 78.68(2.331) 74.18 78.49 (4311) 63.49 77.47(13.981) 44.45 7432 (29.871)
Z 100 8861 7551 78.67(3.167) 7068 78.63(1.951) 54.30 77.98(23.687) 31.05 75.07 (44.021)
. 10 8971 8532 87.24(1.921) 82.93 85.29(2367) 79.46 83.79 (4.337) 59.32 78.22 (18.91)
S 50 8856 8497 86.68(1.717) 7986 84.80 (4947) 6837 8461 (16247) 50.68 80.29 (29.617)
=100 90.87 84.25 87.09 (2.841) 78.19 84.14 (5.951) 61.89 83.98(22.091) 49.19 79.63 (30.441)

maintains a high utility. It is worth noting that, as N increases, NADP experiences almost no perfor-
mance degradation, whereas the accuracy of LDP drops rapidly. This highlights the greater potential
of our framework in large-scale scenarios. Additional experiments are presented in Appendix

8 DISCUSSION

Overheads Discussion: Without considering the computational overhead of local training, we com-
pare the computation, communication, and storage overheads of LDP, NADP, and secure aggrega-
tion (SA) (Bonawitz et al.,|2017) in each round, where m denotes the size of model, n represents
the number of clients, n << m. The results are presented in Table E}

Table 2: Complexity among Different Frameworks.

Cost\ Framework LDP-FL NADP-FL SA-FL
Client Computation O(m) O(nlog)+nm) Om*+nm)
Client Communication | O(m) O(m) O(m +n)
Client Storage O(m) O(m + n) O(m +n)
Server Computation | O(nm) O(nm) O(n’m)
Server Communication | O(nm) O(nm) Om?+nm)
Server Storage O(nm) O(nm) Om2+nm)

Compared to LDP, as key negotiation and other preliminary operations are conducted in advance,
the primary additional cost of NADP lies in local computation, which is reflected in the generation
of n noise sequences and the execution of Alg[2] On the one hand, Alg[2|consists of a sorting algo-
rithm (O(n log(n))) and n iterations of computation (O(n)), and since all computational objects are
scalars (6;), additional computation is minimal; on the other hand, the sampling of n noises is also
completed locally, which prevents a significant decrease in the computational efficiency. Moreover,
in contrast to SA, NADP incurs lower overhead due to the absence of secret-sharing for each round.

Advancing Toward Malicious Scenarios: We follow the general assumption in DP-FL framework
that all clients honestly execute the protocol. However, even without this assumption, under scenar-
ios similar to LDP that do not consider malicious poisoning, NADP will not collapse. The discussion
details are presented in Appendix

9 CONCLUSION

In this paper, we revisit the two-stage interaction mode of uplink and downlink in LDP-FL and
propose a novel interaction perspective, IDP, to demonstrate the inherent flaw in LDP, called noise
redundancy. On this basis, we instantiate IDP and propose NADP-FL, which decouples the noise in-
tensity requirements of uplink and downlink phases using counteracting noise to mitigate the utility
loss. Furthermore, we discuss the intensity allocation to counteract noise to ensure (¢, d)-DP. Fi-
nally, we validate the superiority of our framework in terms of utility, scalability, robustness through
extensive experiments. Both theoretical and experimental results demonstrate that our framework
achieves a better utility-privacy trade-off than the traditional LDP-FL framework.
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A ADVANCING TOWARD MALICIOUS SCENARIOS

In malicious settings, under scenarios similar to LDP that do not consider malicious poisoning,
NADP will not collapse. On one hand, the impact of malicious client ¢ on the noise generated by
any benign client j is limited: it can only control n;; # n;;, preventing the associated noise from
being canceled out, but it will not affect the noise cancellation among the remaining benign clients.
This is similar to the dropout situation, and as we also show in Figure 4] (Appendix [F)), the impact
of incomplete noise cancellation on utility is limited. On the other hand, when malicious clients add
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non-Gaussian noise, Z," indeed no longer follows a Gaussian distribution. However, introducing
A and budgeting can stlll satisfy (e, 0)-DP privacy for benign clients, and the noise redundancy
introduced by malicious clients will further enhance privacy.

We next consider a typical scenario in a malicious setting. Specifically, we significantly enhance the
adversary’s capabilities in Section[6} the adversary can also collude and collect all the local infor-
mation from a subset of participants to infer the privacy of the remaining benign clients. However,
unlike the traditional collusion scenario in the malicious setting, the adversary cannot manipulate
the eavesdropped clients, who still remain honest. We assert that appropriately selecting the noise
compensation coefficient A can protect against such attacks.

Assuming an adversary A5 that corrupts the server and a proportion 7 of the clients sampled in each
iteration. Let G = {1,2,---,(1 — 7)k} and C = {(1—7)k+1,(1—7)k+2, - -,k} denotes the set of
indices corresponding to honest and corrupted clients, respectively. The adversary A can generate
two types of inference queries “d“7 gggn through uplink and downlink phases by subtracting the
information already obtained:

sgv(DG) = fl(D/DC) = [gla-~-ag(177)k703-~-70}7
l(il(illjn(DG) = f ( ) f2 DC Z Digi

1€Dg
|D;| |De|

=2 ||D| Z |D| Zg

i1€Dg j=1

Here, D¢ and D¢ denote the total datasets of the corrupted clients and the honest clients, respec-
tively, and ¢’ denotes the gradient computed from the j-th data in Dg. Analogous to the proof of
Lemmal [I] we assume that the difference in neighboring datasets exists in Dy, then we can get:

Aadv_ max H adv(DG) adv(DG HQ

_Drgi%(’ H[ —J1, "39214)k_g(1—'r)k707" 70”‘2
[ra—
= Inax 1ll2 =
e I |Dunin|’
d d
Agofyn:DrgaB( ||fdown(DG)_ got?}n(D/G”b
Ha
|Dc| |Dc|

= nax, |||D| Zg DI+l Zg +9)l2

E'DG‘IIg —9ll2 201De] _ 20 3~
—_ — - 7
pe.; DI(D[+1) = [DP "Dl &

Therefore, according to Lemma 2, to ensure the system satisfies (¢, §)-DP for inference queries f29?

up
and f39v  the noise intensities should satisfy:

16T In(1/5)
2 _ _ 2
Uadv,up - 2|Dmin|2 - Jup ’
16C2T In(1/4)
2 —
O—adv,dmun - 62|D|2 6Zsz < O'doum

12
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In addition, for an honest client ¢, the effective noise intensities from the adversary’s perspective (the
remaining after canceling out the adversary’s portion) are:

2 _ 2 § 2 2 _ 2
JG,up,i - Uup - Uij < Uup - O—adv,upa
jec
2 _2 : 2 _§ o2
UG,down - 0; = Pi0 down
i€G ieG
= —-— . g .
62|D‘2 ? adv,down

i€G

Therefore, it can be observed that if collusion exists, the residual noise generated by honest clients
satisfies the server-side security requirements from the internal adversaries, attributed to our intricate
construction of the particular solution {z; = p; };cx) in Thm

Since the noise intensity is insufficient to meet client-side privacy requirements in collusion scenar-
ios, we utilize A to enhance protection during the uplink phase.

For an honest client ¢, the actual effective noise it adds during the uplink phase is sampled by the
random variable Z; = meec Xij— ZKMEQV X;j + X;. On this basis, we amplify the effective
counteracting noise by A to meet the privacy requirements, i.e.,

Zi =MD Xij— > Xij) + Xi.

J>i j<i

To determine the range of A, we examine the most extreme case of the intensity distribution. Adopt-
ing notations from Thm[2] we first examine the lower bound of :
|D| < |szn|+(k_]-)‘Dmax|

o] = < =1+ (k — 1)0[2. (6)
‘szn| ‘szn|
Then, we examine the distribution of 3; = I Ll)D'f|2|2 — ||%i|| (defined in Alg. For Bymin and Bimaz,
we have: ) Dy )
1— = <Bpin=1—220 1 = <1,
k — ﬂ |D| aq
1 |D7na:t|2 |Dmaz| 2 a2
1--< max — - = - .
ESP Dmnl2 D] T @

1

Where, a% — Z—f is a quadratic function in terms of a. Since ag > 1 > FaT>

increasing respect to cw. Therefore, combining equation[6] we have:

Bimag 1S monotonically

2 Q2 2 1 s 1
maxr — - S - < - 7
B 0[2 oy 042 %2 + (k _ 1) O[2 k'
Combining Alg 1-1<B < < B <ad— 4, we have:
1
0 pr—
1 kE—1 517
1 n—1
ani n — 01;2§ §k727
— (8 ; ), 2<n
k—2
Or1=Br— Y 0i.
i=1
Here, [01,02, -, 0:—1, 0,04, - -,0:], (0; <0;11) is the counteracting noise intensity allocation of client
t (see more details in Appendix E), and the allocation matrix is as follows:
0 6, 01 - 0 01 1 b1
(91 0 92 e 92 92 1 62
0, 6 0 --- 03 0O 1 Bs
th O 03 -+ 0 O 1 Br-1
0, O 63 --- Oy 0 1 Bk
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To compute A(7), we consider the worst-case scenario, corresponding to the most extreme counter-

acting noise intensity allocation [01, 65, - - - ,0_1,0] (i.e. client k). Under this allocation, to ensure
privacy protection, A needs to satisfy the following inequality:
N0+ 024+ 0a—ryk—1) = Br. @)

Since 6; < 6;1, in order for equation[7]to hold, we set X to satisfy:

)\2[(177)143—1}91:AQ[(lfT)kfly > B

k—1
For 81 =Bmin>1—+ and Br = Bmaz < 02— £, we obtain:

k-a2-1
A> 2 8
“V(A-nk-1 ®
This indicates that A is positively correlated with 1/1—7) in a sub-linear manner, ensuring that A does
not become excessively large. In general, to ensure fairness, as = B’"”I‘ cannot be set too large.

We suggest assuming that ar, < /2, which allows for up to 41% database size imbalance (for cases
where ay > /2, we can sample the data in each iteration of these clients that exceed the threshold,
satisfying the fairness requirements of FLIZhang et al.| (2020)). Table 3| presents the magnitude of
under different settings.

Table 3: X under Different %, Kand 7

A
K
[Dumin| 7=01 7=02 7=03 7=04 7=0.5

25 1.0565 1.1239  1.2060 1.3093 1.4446
50 1.0553 1.1209  1.2005 1.2999  1.4289

10 100 1.0547 1.1194 1.1978 1.2954 14214
oo 1.0541 1.1180 1.1952 1.2910 1.4142

25 13029 1.3860 1.4873 1.6147 1.7815

15 50  1.2968  1.3775 1.4753 1.5974  1.7559
’ 100 1.2939 13733 1.4695 1.5892 1.7438
oo 1.2910 1.3693 1.4639 15811 1.7321

25 15097 1.6059 1.7233 1.8708  2.0642

2.0 50 15000 1.5933 1.7064 1.8476 2.0310

100 1.4953 1.5871 1.6983  1.8365 2.0152
oo 14907 1.5811 1.6903 1.8257  2.0000

B PROOF OF LEMMA 1

Proof. According to the definition of LDP, we consider the neighboring datasets D;, D} for the i-th
client, where D; has one fewer sample than D, (] D;| = m;), with the remaining samples being the
same. Therefore, the output of one training process can be written in the following form:

1 &
gi = EZE:lgyj
j=

According to the sensitivity calculation formula:
local
Alewel = wmax |lgi(D;) — gu(D))|

ity

m;
= - I g
glag,ll Zgl ml+12(gz+g)ll
< ma Zj:l i _9 i < '
D; D, ml(mz—i—l) |Dz|
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In IDP-uplink process, let the publish function corresponding to clients be fi(D;) =
l91,92,--.,9k], where D, is the union of the k clients sampled in ¢-th iteration, denoted as
Dy = Dy U Dy U --- U Dy. Without loss of generality, let D; = D] U Dy U --- U Dg. Then,

we have: ,
Ayp = max || fup(Dy) — fup(Dy)]]2
Dy,D!
:]rjrt}fgcil\[gi*gl,gé*gz,...,géfgk]llz
ma (g} — g1l < o
= X 1191 — g1l|2 = :
Dy,D; ! |szn|

In IDP-downlink process, the union collects the gradient intermediate results from each client,

gi = WlL Z;nzl g{ , and performs a weighted average, finally outputting the aggregated result
g = Zle pjg;, where p; = Zm;w' Therefore, for the equivalent overall training dataset

D (|D| = >_m;), one round of the aggregation process can be written as:

fdown szgz Zpl Z Zm Zg”

then the sensitivity is:

Aclown = m%%”fdown(D) - fdown(D/)H

Il
g
@9’
N/
3

Y

|

N/

3

S —
_|_

-
Y
+

Q\

2l =gl L
D'y mi(3omi+1) ~ D[

C PROOF OF LEMMA 2

Proof. We follow the proof framework from (Wei et al., [2020), focusing only on the differences.
For more details, please refer to the proof of Thm.1 in (Wei et al., 2020).

Define the privacy loss random variable for the t-th query as L,. Then:
P D) =

1 PIMA(D) = o
Pr[M(D") = o
where M, (D) = fi(D) +N(0, 7).

For the Gaussian mechanism, the probability density functions of the output o for the neighboring
datasets are:

o— fi 2
Pr[Mf(D) = 0] = \/%at exp <(éfa_EQD))) ,

o— fi(D"))?
P 1= s (-

Substituting this into the definition of privacy loss yields:

o—ft 2
) i)
1 (o=fi (D)2’
V2moy exp ( 20’1 )

By simplifying the calculation, we obtain:

(0= fi(D)? = (0= f2(D))*

207

Lt:hl

L=
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Let us denote A; = f;(D) — f(D’), which can be controlled to be a small quantity. Then we have:

(0= fi(DDAL, A}

2

Li = o 202"
t t

In Gaussian mechanism, the output o can be expressed as:
o= fy(D)+N(0,0%).
Then, further simplifying, the privacy loss becomes:

A A? AZ A2
Ly = = 2+ ~ N(itgy 75),
o 20’t 207" o}

where Z; ~ N(0, 1) denotes a random variable from the standard normal distribution.
Consider the moment generating function (MGF) of the Gaussian-distributed variable, we have:

A+ 1)A§) '

T e e

2
For the noise intensity, we naturally constrain it to be proportional to the sensitivity, that is: fg’ =

[3

2
% = %2. Suppose T independent queries are performed, then the MGF for multiple rounds of
qtjleries is:

T 2
My, (A H ML = exp (Z AR 557 A )
t

t=1 t=1

- (T)\()\ +1)A ) |

202
Using the tail bound by moments (Abadi et al.|[2016), we have:

AN+ 1)TA2

0 > minex
ERESY p( 202

—Xe) € (0,1). ©))

Minimizing the RHS with respect to A, we obtain:

Ao L
TA2 2
Substituting into (9)), we obtain:
5> ( €252 TA2 . e)
exp(——— — — + -).
= OPUTOTAT T R0 T2
Combining with (9), we have:
A+ 1)TA2
L —Xe<0.
202
Thus, we have:
€202 220 +1 €202

> S T —— W —— ).
0z exp(—orrg + 79 2 P gpar)

That is:
A/2T In(1/9)
—_—

Ot —
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D PROOF OF LEMMA 3

Proof. From Lemma[2] in LDP-FL, we have:

Ai/2¢qT In(1/6) _ 2C/2qT In(1/6)

€| Dyl

Olocal,i =

Then, the equivalent noise intensity for the central server is:

~ _ |Di
Oserver sz Ulocal i Z (kiz)QUl%)cal,i
i=1 Z’i:l ‘D|
B Z 8C2¢Tn(1/8)  8C%qTIn(1/5) z’“: 1
ST epE - pp &

Thus, we obtain:
8C2%qTk1In(1/9) <2 < 8C2%qTk1In(1/9)

€2|D|2 — USSTUST — (1 _ I{)2€2‘D‘2 °

E PROOF OF THEOREM 2

Proof. We only need to find a particular solution to (3). Let z; = p;, the equation can be transformed

into:
k

Z o |Di|*  |Di

1] . 2
=15 Drnl® 1D
xij = il'ji 2 0

Let oy = |D| | 1 > k, then we have:
|Di|2 |Di‘ 2 2
- =D; 1 — Di-

|Dmin|2 |D| ! !

This is a quadratic function in terms of p;. Since p; > |D|}’5i|”'| = a% > ﬁ, p; is positively
|2 . .
correlated with I E‘)Dl_‘ e ||%||. Thus, we can obtain:
|Di|22 . |Di| > |Dmin‘§ . |Dmin| >1— 1 > 0.
|Dmin| ‘D‘ |Dmin‘ |D| k

Let 8; = i [ljD il E ||%|| %35 = by;, where b;; > 0. The above equation can be simplified to:

k
D biy=f i=123k
j=1,j#i
bij =bji 20
Transform the system of equations into the corresponding matrix representation. Due to the sym-
metry, without loss of generality, assume 0 < 51 < 55 < - - < %, we have:

[ 0 b12 b13 bia - bigk—1) bk 1 B1
ba1 0 bas boa -+ bok—1) b2k 1 B2
b31 b3z 0 bsa -+ byk—1) b3k 1 B3
ba1 ba2 b3 0 o b1y bag Ll_| Ba

br—1)1 br-12 br-1)3 br—1)a - 0 bk—1)k 1 Br—1
b1 br2 bk3 beka o brr—1) 0 | [1] | B

(10)
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We discuss the solution §* using mathematical induction:

(i) When k = 3, the system of equations has a solution:

+ —_
bry = by = b1 iz B3
biz = b3y = W (11)
B+ B2 +
b = by = T B

Since 8; < Bit1, b1z = b1 > 0and baz = b3a > 0, that is, has at most two variables by3 = bso
less than 0.

(ii) We assume the existence of solution #* such that at most only one variable is less than zero for
k< K.

(7i7) For the case when k = K, we let by; = ﬁﬁl. Then, the system of becomes:

[ 0 ba3 bay s bQ(K_Q) bo 71 T17 [ /62_$/61 i
b3a 0 b3 e byk 1) b3k 1 Bs— x5
baz bas 0 e by o) bar L Ba— 255
bir-12 bk-1)3 bx-1)2 - 0 bx-nK || 1 Br-1— 751
K2 bks bra - br(x-1) 0 JLI] | 8x— 256

Since 0 < o — 1581 < B3 — 7551 < -+ < Br — 75 B1, it reduces to the assumed case, thus
proving the proposition.

Now, we derive an algorithm for obtaining a reasonable noise allocation from the above induction.
It follows that after ¢ < k — 3 inductive iterations, the allocation for the ¢-th client is as follows:

[btla bt27 Ty bt(t—l)a 07 bt(t+1)7 Tty btk]
= [917927 T 7915—1’0’91‘.7 o 70t]'
Unlike previous inductions, we perform one additional iteration to reduce the system to 2-

dimensional. By adjusting the second-largest 8x_1 < [k, the resulting allocation satisfies the
non-negativity condition, as detailed below:

1
k—1

n—1
1
n— 73 _\Mn— ia2S < -2
On = ——(8 ;0) n<k

k-2
Op—1=Br — Z 0;
im1

At this point, the allocation matrix for (I0) is as following:

0, =

1

0 6 6 - 6 6
60 0 6 - 0 0y
0 0y 0 - Oy Oy
O 0y 05 -+ 0 O
O 0 Oy - O O

The proposition is thus proven.

18



Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTS

We conducted additional experiments using the MNIST dataset.

F.1 SCALABILITY EVALUATION

Now, we extensively explore the relationship between the client size N, sampling rate ¢, and privacy
budget €. As shown in Fig we traverse the sampling rate ¢ € [0.1,0.5] while recording the test
accuracy over 200 iterations. The green lines represent the test results of FL. without DP, while the
blue and orange lines represent LDP-MA and NADP, respectively.

It can be observed that, the blue and orange lines intersect, indicating a gsqm. at which the utility of
two frameworks are the same. When the actual sampling rate ¢ < ¢sqme, LDP performs better; con-
versely, when ¢ > @sqme, NADP outperforms. As scale increases, on the one hand, the intersection
point of the two lines shifts to the left, suggesting that NADP becomes more advantageous in more
extensive settings. On the other hand, as the requirements for privacy protection increase (i.e., a
smaller €) and more clients are involved, the utility advantage of NADP grows, demonstrating better
scalability.

It is worth noting that in some settings where the proportion of aggregated clients is extremely small
(e.g., N = 20, ¢ = 0.1, with only 2 clients participating in aggregation), LDP outperforms NADP.
This is because in IDP, we regard all clients as a collective entity rather than the sampled clients,
which leads to a potentially slightly more relaxed noise bound that satisfies DP. Indeed, we could
more precisely estimate the amount of data sampled each time to optimize our framework for more
extreme scenarios. However, this might prevent us from explicitly comparing the noise accumulation
of LDP and NADP in theory. Therefore, presenting a directly comparable result is more desirable
to us, and optimization of NADP in extreme scenarios is not the focus of this paper.

F.2 RELIABILITY EVALUATION

As a potential threat, dropout of clients results in some noise, which should have been canceled out,
remaining in the model. In this subsection, we set N = 25, 50,100, ¢ = 0.8, with A = 1.0,1.2,1.4
inNADPand e = 1,2, § = 10~°. We vary the dropout rate from 0.1 to 0.5 to examine the reliability.

As shown in Fig[d] FL without DP is not significantly affected by dropout, since the dropout of some
clients merely results in a reduced sampling rate. However, for DP-FLs, dropout decreases the base
of aggregation average, amplifying the uncertainty caused by noise, which ultimately affects overall
performance. Nevertheless, experiments show that this impact is quite limited. It can be observed
that the accuracy of both frameworks decreases smoothly as the dropout rate increases, indicating
that both LDP and NADP exhibit a certain level of robustness against dropout. Specifically, NADP
is more affected than LDP. However, due to the inherent accuracy advantage of NADP, its accuracy
only falls slightly below that of LDP at high dropout rates, by which point the accuracy of both
frameworks dropped to an unacceptable level. While NADP still outperforms LDP at lower dropout
rates. Second, examining the intersection of the LDP and NADP curves, it is apparent that as
the scale increases, the intersection shifts to the right, indicating that NADP’s robustness improves
relative to LDP in large-scale settings. Lastly, while introducing the noise compensation coefficient
A impacts accuracy under dropout, this impact is also quite limited. As the scale increases, this
impact is further diminished.

F.3 PRIVACY EVALUATION

In this subsection, to demonstrate the advantage of NADP in providing independent protection for
both phases, we conduct attacks on uplink phase of NADP and LDP with the same utility (i.e., same
noise intensity after aggregation, same downlink protection strength, but different €), by employing
a commonly used attack method, DLG (Zhu et al., 2019)) and its variant iDLG (Zhao et al.,[2020). In
our experiments, we set the total number of clients N = 100, and all clients possess the same amount
of data. sampling rate ¢ = 0.8, total number of iterations 7' = 200. We examine the case where
datasets are evenly distributed, and ¢ = 5 and 20+/2 corresponding to NADP and LDP, respectively,
to keep the noise intensity accumulated in the model the same. At the same time, we set the noise
compensation coefficient A = 1.2, enabling our NADP to theoretic prevent Tipeoretical = 30% of
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Figure 3: Performance Comparison under Different Sampling Rates on MNIST. We set the number
of rounds to T" = 200 and conduct experiments with different client size /V and privacy parameters
€. We evaluate the performance of NADP and LDP across a range of sampling rates g € [0.1, 0.5].

collusion, and we traverse the practical collusion rate Tp,qcticar € [0.1,0.9] to show the results when
the preset compensation factor does not meet the actual collusion ratio.

For defense evaluation, we made the attack as powerful as possible: each client uses only one sample
in local training, and the attack was conducted during the first iteration. For (i)DLG attacks, we use
the L-BFGS (Tankaria et al., |2022)) optimizer, performing 300 iterations to ensure convergence,
and repeat the experiment 10 times to obtain the worst-case defense results. Based on this, we
compared the reconstructed images with the real images, calculating the normalized Mean Squared
Error (MSE), Learned Perceptual Image Patch Similarity (LPIPS) and Structural Similarity Index
Measure (SSIM).

As shown in Table ] with upward and downward arrows indicating the direction of better defense
performance, the most prominent reconstructed images are placed in the last row to demonstrate
whether they can be recognized by the human eye. It can be observed that, without DP, the (i)DLG
attacks can almost perfectly reconstruct the original images. After applying DP, the reconstructed
images are significantly disrupted, and, NADP exhibits a more effective defense. Additionally, the
observation aligns with the earlier theoretical findings: the residual noise in NADP follows the same
cumulative pattern as in LDP. As shown in Table 4 when the practical collusion rate 7 — 1, that
is, when all remaining clients collude (which is almost impossible in real-world scenarios), the risk
of privacy leakage facing the client is the same as in LDP. However, counteracting noise provides
additional privacy protection, amplified quadratically by the compensation coefficient A > 1, with
no loss in accuracy. This shows that NADP can provide more effective privacy protection with lower
utility loss.
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Figure 4: Performance Comparison under Different Dropout Rates on MNIST. We conduct ex-

periments with different NV and privacy budget e

= 1,2. We evaluate the performance of NADP

(A =1.0,1.2,1.4), LDP and FL without DP across a range of dropout rates d € [0.1,0.5] over 200

iterations.
Table 4: MSE, LPIPS, SSIM results under DLG/iDLG Attacks

; C Flod NADP(e = 5,\ = 1.2)

ramewor (no-dp)  LDP(e =20v) — g =07 =05 =03 =01

MSE{ 348e-4/189e-4 3.33-3/2.78e-3 0.0291/0.0251 0.0331/0.0265 0.0768/0.0536 0.141/0.149  0.224/0.212
& LPIPST 48le-5/4.63e-5 1.55¢-2/1.23e2 0.0663/0.0737 0.0821/0.0847 0.105/0.115 0.188/0.194  0.355/0.353
£ SSIM|  0.9390/0.9439 0.8228/0.8186 6665/ 0.6841 0.6165/0.6488 0.5287/0.5201 0.2900 /0.2922
€ - —— e .

R e e
& MSET 7.58e-5/424e-5 149e-3/3.36e-3 0.0252/0.0178 0.0379/0.0229 0.0683/0.0534 0.132/0.0846 0.0939/0.119
Z LPIPST 7.22¢-6/696c-6 3.6le-3/3.70¢-3 0.0453/0.0359 0.0983/0.0579 0.155/0.172  0.199/0.186  0.297/0315
S SSIML  09575/0.9463 0.8704/0.8482 0.7757/0.7916 0.7202/0.7238 0.5714/0.5642 0.5437/0.5221 0.3811/0.3824
= e " pe—
O PR I P BE B B

MSE{ 3.5de-4/2.67e-4 384e-3/594e-3 0.0171/0.0163 0.0756/0.0577 0.0468/0.0821 0.0718/0.0871 0.117/0.105
& LPIPST 24le-5/324e-5 7.56e-3/4.05¢-3 0.0886/0.0774 0.0811/0.0939 0.0985/0.1092 0.179/0213  0.257/0318
% SSIM | 0.9875/0.9647 0.8817/0.9105 0.8444/0.8135 0.8220/0.7669 0.8164/0.7250 0.6842/0.6703 0.5994 /0.5060
; e U R 8
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