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ABSTRACT

As virtual reality and augmented reality is redefining how users interact with com-
puting devices, research in action and gesture recognition is indeed gaining promi-
nence. Typically, these models deployed on AR/VR devices are trained in their
factory, with large proprietary datasets. Though this training would cover the ma-
jor set of activity and gestures classes, the user should ideally be able to add newer
classes to the model, without forgetting the base set of classes. Importantly, the
user would be able to provide only few samples per class in this process. In-order
to protect the user’s privacy, the setting should also not allow storage and replay
of a data sample, for future learning. We formalize this pragmatic problem setting
as privacy aware few-shot class incremental learning for activity and gestures.
Towards this end, we propose a novel strategy, POET: Prompt-offset Tuning. Un-
like other prompt tuning approaches that demand access to transformer models
pretrained on a large amount of data, our approach demonstrates the efficacy of
prompting on a significantly smaller model trained exclusively on the data from
the base classes. Additionally, we take advantage of the temporal sequencing
in the data stream of actions and gestures to propose a unique temporal-ordered
learnable prompt selection and prompt attachment. To evaluate our newly pro-
posed problem setting, we introduce new benchmarks on NTU RGB+D dataset
for action recognition and SHREC-2017 dataset for hand gesture recognition.

1 INTRODUCTION
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Figure 1: Each user’s device initially recognizes the same set of base action classes (T0). Each user
can then separately add their own (new) action classes whenever they want (at time T1, ..., Ti) to
their respective model, by supplying just a few training examples (few-shots) of each new class.
This learning paradigm relies only on the continual model for action recognition of all classes seen
till that time stamp, discarding user-sensitive data as soon as the model is updated on few-shots.
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Virtual, augmented, mixed and extended reality devices today have increasingly accurate pose es-
timation that tracks body and hand pose over time, which can be used to recognize human activity
and hand gestures. Developers can enable gestures as input for users to interact with virtual envi-
ronments with their hands. Human-robot interactions can be facilitated by activity recognition, such
as a digital assistant reacting to the user’s actions. Although devices can come with a model that
recognizes a predefined set of actions and gestures, developers and users may want to expand or
customize the experiences and functionality of the devices by adding and defining their own actions
and gestures. To easily and securely add new classes we need a continual learning approach that
(1) requires a minimal amount of training data so developers and users can added new classes by
collecting just a few examples and (2) does not need access to previous data and is thus privacy
preserving. In this work, we introduce the concept of privacy-preserving few-shot class incremental
action recognition. As depicted in Figure 1, we expand the capabilities of the device’s default (base)
machine learning action recognition model, empowering users to introduce new action classes that
were previously unknown to the model. Importantly, we provide the assurance that once the model
is updated with these new classes, all associated data is completely discarded.

Addressing the demand for continual learning among users often involves a straightforward yet im-
practical approach: fine-tuning the default model, which is initially trained on proprietary company
data, each time a user requires new action classes for their application. This process proves to be
both costly and time-consuming. In contrast, prior works like MetaSense Gong et al. (2019) have
explored adapting the base model to users’ specific conditions through a few-shot meta-learning
approach. However, the resulting adapted model is limited to working only with the new classes,
rendering it non-functional for the default base model classes. Consequently, we are confronted
with a fundamental challenge known as few-shot class-incremental learning (FSCIL). Our goal is
to tackle this dynamic learning paradigm in such a way that the model can adapt to new knowl-
edge without erasing existing knowledge, i.e., catastrophic forgetting (McCloskey & Cohen, 1989).
In terms of input modality, we have devised our solution around 3D skeleton temporal sequences.
These sequences possess several advantages, including invariance to lighting conditions, viewpoints,
and environments, all while preserving user privacy.

Our solution is to construct a single model with a dynamically expanding classifier, plastic enough
to learn new user classes with high accuracy while maintaining stability to retain performance on all
the classes seen till now (stability-plasticity dilemma (Abraham & Robins, 2005)). A cost efficient
and elegant solution to this problem is to explore learnable input-conditioned control vectors being
trained along with the classifier, while keeping the backbone fixed. Inspired by the existing works
in prompt tuning and visual continual prompting, we explore prompt tuning for few-shot continual
action recognition and find interesting revelations.

We should highlight three fundamental distinctions that set us apart from all existing studies on con-
tinual prompting: (i) First, existing continual visual prompting techniques typically assume access
to a ’generalist’ transformer backbone that has undergone extensive pre-training. These backbones,
such as ViT-B/16 pretrained on ImageNet21K, as demonstrated in Wang et al. (2022c); Smith et al.
(2023), or a pretrained CLIP model as seen in Wang et al. (2022a); Villa et al. (2023), form the
foundation of their approaches. Studying continual learning on ImageNet-R with a feature extractor
backbone pre-trained on ImageNet21K can be thought of as learning distribution shifts on top of pre-
existent knowledge. In this regard, L2P Wang et al. (2022c) cites the assumption of large pre-trained
transformer backbones as a limitation of their work, APT Bowman et al. (2023) analysis show that
quality of pre-training is pertinent to their prompt performance and very recently, Tang et al. (2023)
proves that SOTA continual visual prompting works fail when there is a large semantic gap be-
tween pre-trained and continual tasks. Motivated by the lack of existing large pre-trained models or
datasets for skeleton-based action recognition, we foray into exploring if prompting yields merit by
itself - if we remove the backbone all existing works attribute the credibility of their prompt tuning
to. (ii) Secondly, we recognize unique challenges and insights arising from few-shot class incre-
mental prompting. This perspective sets us apart from existing works, which are primarily tailored
for standard (fully supervised) class-incremental learning (CIL). (iii) Finally, in a first, we explore
prompting of non-transformer based Graph Neural Networks (GNNs) for temporal skeleton action
recognition data.
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2 RELATED WORK

Action Recognition and Continual Learning. In recent years, skeleton-based action recognition
has been gaining prominence as the preferred modality in applications that require low-shot action
recognition capabilities such as medical action recognition (Ma et al., 2022; Zhu et al., 2023). This
is because skeletons offer a robust and compact alternative to videos which are ill-suited to low-
shot regimes due to their high dimensionality and variance under background conditions. Hence,
we distinguish ourselves from all existing video continual learning works Park et al. (2021); Villa
et al. (2022; 2023). Authors in Li et al. (2021a) first attempted 3D skeleton-based (standard) class-
incremental action recognition using dynamic network expansion and exemplar replay. More re-
cently, BOAT-MI Aich et al. (2023) proposes a data-free solution to class-incremental hand gesture
recognition, learning a single-class in each new task.

Few-Shot Class-Incremental Learning. As compared to standard CIL, FSCIL is a more rational
continual learning setting which has been widely studied due to its unique dual-challenge of over-
fitting to novel class few-shots and the heightened (often complete) forgetting of old knowledge as
soon as the base model is fine-tuned on future few-shot data Tao et al. (2020); Dong et al. (2021).
Since the base model is the only source of previously seen knowledge, if it is updated, knowledge is
lost forever. Typically, existing works decouple the learning of (backbone) feature representations
and the classifier by learning the model only on the base session data and relying on non-parametric
class-mean classifiers for continual few-shot data (Peng et al., 2022; Zhou et al., 2022; Hersche
et al., 2022). We differ from these approaches in two aspects: (A) Any non-parametric classifier
relies on storing either explicit or class mean feature-prototypes which could raise issues surround-
ing user identity revelation. (B) Recent works Pernici et al. (2021); Yang et al. (2023) point out the
feature-classifier misalignment due to new class prototypes being extracted from a base-class frozen
backbone representation. We seek to question if this feature-classifier misalignment dilemma (aris-
ing due to training model parameters either only on base or only on continual few-shot classes) can
be resolved by input prompt tuning with a parametric classifier, while keeping the feature extractor
frozen after base session training.

Prompt Tuning for Continual Learning. Conventionally, transfer learning adapts a model to a
downstream task by fine-tuning the entire model, referred to as model tuning. ‘Prefix tuning’ Li &
Liang (2021) and ‘Prompt tuning’ Lester et al. (2021) were the first to show that simply training
tunable parameters attached to the input of a LLM (and initial network layers) while keeping the
backbone freezed is competitive with model tuning. This idea provides a simple and cost-effective
way of learning task-specific signal condensed into task-specific ‘soft prompts.’ A natural alterna-
tive to storing privacy violating exemplars and replaying them is to instead train a set of prompts
for each sequential continual learning task in the future. The caveat here is that even if one trains
a set of prompts for each continual learning task, depending on the continual learning protocol task
identity may not be available at inference time (hence the model will not know which task’s prompt
or classifier to use for evaluating a test sample). In this respect, S-prompts Wang et al. (2022a) and
A-la-carte prompt tuning (APT) Bowman et al. (2023) learn an independent set of prompts for each
domain/task, using a K-NN based search for domain identity or K-Means classsifier concatenation
strategy at inference time. Note that since both S-prompts and APT learn task-specific stand-alone
prompts, the prompt feature space is task-specific, and there is no forgetting of old knowledge when
learning new tasks. On the other hand, these ’no forgetting’ prompts cannot share knowledge across
tasks. This leads to another ideology for continual prompting, i.e., treat each prompt unit in the
attached prompt as being a part of a larger shared pool of prompts. Then the desired number of
prompt units can be curated by either hard or soft selection from the pool, conditioned on the input
instance itself (Wang et al., 2022c;b; Smith et al., 2023). Given the scarcity of data in FSCIL, we
hypothesize that sharing of knowledge will benefit new tasks and draw inspiration from this line of
works. We discuss our prompt design differences from these approaches in Section 3.4.
Most recently, Adaptive Prompt Generator (APG) Tang et al. (2023) challenges the intensive Ima-
geNet21K pre-training assumption as it prompts a ViT pre-trained only on the continual benchmark’s
base class data. They use the knowledge pool prototypes to constraint the prompt and classifier
weights for each class by replay- and knowledge distillation-style ‘anti-forgetting learning’. Even
though our backbone is trained only on the base classes, we propose a simple prompting-only strat-
egy. Finally, we are not the first to attempt continual prompting for temporal data, as PIVOT Villa
et al. (2023) trains a temporal encoder on top of a pre-trained CLIP and proposes separate spatial
and temporal prompts for image-video continual learning. However, we explore prompting GCNs,

3



Under review as a conference paper at ICLR 2024

designed to model the spatio-temporal skeletal information in temporal action recognition datasets
in a single unified model. This has not been attempted before. Such a prompt strategy is all we need
to continually add new action semantics in a few-shot manner.

Learnable Position Encoding. Our work can also be thought of as weakly related to the learnable
structural and positional encodings (LSPE) for MP-GNNs in (Dwivedi et al., 2022). We perform a
simple but effective addition operation to attach our prompt to the input embedding. As our prompts
have the same size as the input it can be thought of as a learned prompt encoding, bearing similarity
with learnable additive position encoding works (Liu et al., 2020; Li et al., 2021b).

3 METHOD

3.1 PROBLEM DEFINITION

Few-shot Class Incremental Learning (FSCIL) is the continual learning paradigm where a model
sequentially adapts to learn a series of T training sessions (also called tasks) {T (0), T (1), ..., T (T )}
corresponding to training datasets {D(0),D(1), ...,D(T )} where D(t) = (xt

i
, yt

i
)
|D(t)|
i=1 , such that the

base session T (0) has a large label space Y(0) and contains sufficient training instances | D(0) |
whereas each subsequent session T (t), t � 1 comprises of only a few training instances (K) for
each of the | Y(t) |= N classes, such that | D(t) |= NK and is referred to as a N-way K-shot
task. Each session has a disjoint label space Y(t) \ Y(t0) = ;, 8t 6= t0. Re-stating our privacy
constraints, in any training session T (t), the model has access to only D(t) and after training, this
data is made inaccessible for use in subsequent sessions. After training on a new session T (t), the
model is evaluated on the test set of all classes seen so far [t

i=0Y(i) and the challenge is to alleviate
catastrophic forgetting of old classes while preventing overfitting to new classes.

Preliminaries. We introduce FSCIL for action recognition such that the input x 2 RT⇥J⇥C is
a temporal sequence of T frames, where each frame is a human skeleton constituted by the set
J = {⌘1, ⌘2, ..., ⌘V } of body or hand joints, where V =| J |. Each input joint ⌘i has a feature
dimension C (joint coordinates in 2D or 3D Cartesian system). Such a modality is commonly
represented as a graph topology G and modeled using Message Passing Graph Neural Networks
(MP-GNNs) which can either be sparse GCNs (CTR-GCN) or fully connected graph-transformers
(DG-STA). Most GNN architectures Dwivedi et al. (2022) can be defined as f = fc�fg �fe, having
an input embedding layer fe, a graph feature extractor fg consisting of a stack of convolutional or
attention layers and a fully connected layer at the end for classification fc.
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Figure 2: Prompt Offset Tuning (POET): We propose to prompt offset the input feature embedding
xe of the main model by learnable prompt parameters PT 0 for FSCIL. Construction of PT 0 : An input
dependent query Q is matched with learnable keys KN using sorted cosine similarity. We create a
mask of the top T 0 key indices in the sorted sequence to form KT 0 . This is the final prompt selection
which is used to index into the prompt pool PN , forming ordered prompt PT 0 which we add to xe.
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Prompt Tuning. The idea of prompting, as it originated from Large Language Models (LLMs) is to
add extra information (referred to as a text prompt) to condition the model’s input for its generation
of the corresponding output label. Instead of applying a discrete, pre-defined ‘hard’ language prompt
token, prompt tuning Lester et al. (2021) formalized the concept of applying ‘soft prompts’ to the
input such that a set of learnable parameters is prepended to the input text and is trained by maximum
likelihood error backpropagation while keeping the backbone parameters frozen. Transformer based
language models and corresponding Vision Transformers (ViT) Dosovitskiy et al. (2020) model
an input represented as a sequence of language or image-patch tokens. All the continual visual
prompting works we refer to in Section 2 prompt a ViT or CLIP backbone.

While the natural choice of prompt tuning for these token-based feature extractors is to prepend
(concatenate) the learnable prompt parameters along the token dimension, prompting remains un-
explored and undefined (to the best of our knowledge) for non-transformer based backbones such
as CNNs and MP-GNNs. Hence, for our work we formally define a set of prompts PT 0 to be
learnable parameter vectors in a continuous space applied to the input feature embedding xe via a
prompt function fp, transforming model input to obtain output logit distribution y = f(x, PT 0) =
fc � fg � fp(fe(x), PT 0). xe is produced by the input embedding layer fe(x) = xe, xe 2 RT⇥J⇥Ce

where Ce is the feature dimension. To train on the | Y(t) | new classes in subsequent sessions t � 1,
the classifier fc expands to accommodate for the new classes ✓c 2 RC

0⇥|[t

i=0Y
(i)|. Importantly, dis-

parate from most existing continual prompting works, our feature extractor backbone fg is trained
only on the base class data D(0) and will never itself be fine-tuned on action semantics from any of
the continual sessions T (t), t > 0. After the base training session, fg parameters ✓g are frozen. We
discuss the composition and selection of PT 0 in Section 3.2, prompt pool expansion in Section 3.3
and prompt attachment and classifier protocols in Section 3.4.

3.2 PROMPT DESIGN

PT 0 2 RT
0⇥ V⇥Ce is an ordered set of T 0 prompts, where each prompt Pi 2 RV⇥Ce has a prompt

length equal to the dimension of the input skeleton and embedding dimension same as input xe.

As mentioned in Section 2, to encourage knowledge sharing in the data-scarce FSCIL setting, we
choose to construct a single prompt pool, sharing encoded knowledge across all tasks such that
the sequence of T 0 prompts is selected from the pool PN = {P1, P2, ..., PN}, T 0  N to form
PT 0 which is applied to the input feature embedding via fp(xe, PT 0) (refer to Figure 2). For the
prompt selection process, we construct a bijective key-value codebook treating prompts in the pool
PN as values and keys KN = {K1,K2, ...,KN},Ki 2 RCe are learnable vectors being used to
find and fetch relevant (closest) values based on a quantization process. This quantization process
involves a query Q and key KN matching such that the query function fq(x) is an input dependent
deterministic function mapping the input instance to a query with dimensionality same as the key
x 2 RT⇥J⇥C ! Q 2 RCe . Note the selection is input dependent and not task or class dependent,
hence we drop subscripts on x. Actual prompt index selection is done as per:

argmax
(si)T

0
i=1✓[1,N ]

�(fq(x),KN ) (1)

Where (si)T
0

i=1 = KT 0 is an ordered set of top T 0 keys sorted by decreasing magnitude of cosine
similarity �(.). Indexing (selection) of values from the pool PN is based on this ordered sequence.
We discuss this further in Section 3.3. To move the aligned query-key pairs towards each other, we
use a normalized cosine similarity clustering based regularization loss inspired from VQ-VAE Van
Den Oord et al. (2017) and similar to L2P (Wang et al., 2022c):

max
✓QA,✓K

T 0
�⌃T

0

i=0�(Q,KN ) (2)

The query-key based cosine similarity matching is responsible for identification of the relevant ‘or-
dered prompt index sequence’, whereas the key-value mapping actually indexes into the pool to
curate the final prompt PT 0 for that input. So what should be an appropriate choice for fq? Notice
that unlike L2P, we do not have a backbone feature extractor trained on an intensive benchmark
dataset encompassing a superset of semantic knowledge the model will potentially see during its
lifetime. Assuming access to no other pre-trained backbone, all we have is a query function pre-
trained only on the base class data, a copy of the same frozen backbone as the main model f(x), i.e.,
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fq(x) = f 0
g
�f 0

e
(x) (note classifier layer f 0

c
will be discarded for fq). Such a fq is clearly not discrim-

inative enough to select relevant prompts for new classes. Thus, we need a mechanism to update the
query on the current task’s cross entropy loss so it can stay relevant to new few-shot classes being
added. We require the classification error gradients to backpropagate through (i) the selected prompt
pool parameters PT 0 , (ii) to the corresponding key parameters that selected the prompts KT 0 and (iii)
tunable parameters in query function fq . Due to the few-shot nature of the problem, fine-tuning the
entire fq will result in completely overfitting to the few shot data and washout of previous class
knowledge. Hence, we modify the base data trained query function as fq(x) = fQA � f 0

g
� f 0

e
(x),

where the query adaptor fQA is a fully connected layer being updated (starting from base model
prompting) to make the query adapt to every new task while freezing all other fq parameters. We
design fQA so that it maps the fq output dimension C 0 to the desired input embedding dimension Ce

(same as key and prompt feature dimension) in addition to updating the query. Final cross entropy
loss for activity and hand gesture recognition can be written as:

min
✓QA,✓K

T 0 ,✓PT 0 ,✓fc
L(f(x, PT 0), y) (3)

From a practical standpoint, the gradient of cross entropy loss above is not defined for key-query
parameters ✓K

T 0 and ✓QA as the argmax operation in Equation 1 generates a non-smooth binary
mask of selected key indices (si). We approximate the gradient similar to the straight-through
estimator reparameterization trick as in Van Den Oord et al. (2017); Bengio et al. (2013), passing
the mask during forward pass and copying the gradients from prompt pool to entire sorted cosine
similarity during backpropagation.

3.3 PROMPT POOL UPDATE IN SUBSEQUENT CONTINUAL TASKS

A crucial observation we make from our initial experiments on is that by construction of the prompt
selection process and clustering loss in Equation 2, when the randomly initialized keys and prompts
are first trained in the base step T (0), they select a random set of prompts and start optimizing them
(only the indexed prompt parameters, i.e. PT 0 ,KT 0 appear in the backpropagation computation
graph). We find that this leads to selection of the same set of prompts in all subsequent steps, as the
clustering brings the queries Q close to the selected keys KT 0 . But, our ordered prompt selection is
discriminative for most examples such that certain prompts tend to appear before others in the sorted
sequence for different task semantics.
Building on this observation, we simplify prompt selection in T (0) such that N = T 0 for the base
session prompt pool. Hence, in the base session, all prompts in the pool are selected but in sorted

order of their relevance for each input instance. Interestingly, this order helps achieve high plas-
ticity on the new tasks, as the scarcely supervised new classes benefit heavily from the pre-existent
knowledge being accumulated from previous tasks. While this is desirable for performance on the
new task, it leads to interference with the old tasks as the same prompt parameters are still being op-
timized on each subsequent task’s few-shot training samples. To address this challenge, we propose
to expand the pool by adding a set of R new prompts (Algorithm 1). We demonstrate that this leads
to a significant improvement in new task performance, while not affecting old task performance. We
select T 0 freely from all prompts PN+R, without task identity at inference time.

Algorithm 1 Prompt Pool Expansion at Training Time, for t � 1
Require: PN ,KN from previous session t� 1

Expand pool and key by R new prompts as: PN ! PN+R;KN ! PN+R

Where PN+R = {PN ;PR} (concatenate new prompts at the end of sequence, explicitly use them)
Initialize parameters of new Pi  Mean(PN ) and new Ki  Mean(KN )
Construct PT 0 as
1. Select T 0 �R key indices KT 0�R from previous pool PN as per Eq 1 to form PT 0�R

2. Concatenate new prompts to this to make PT 0 = {PT 0�R;PR}
Freeze previous task prompts in the pool PN

Train only new prompts PR and all keys KN+R (to learn inter-task selection)

3.4 DESIGN DIFFERENCES FROM EXISTING WORKS

Our key-value codebook style prompt selection mechanism is directly inspired from vector quantiza-
tion works VQ-VAE Van Den Oord et al. (2017), and existing shared prompt-pool based continual
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learning works, (i) L2P Wang et al. (2022c) and (ii) discrete key-value bottleneck Träuble et al.
(2023). However, we observe three key differences as compared to these approaches:

• L2P focuses on decoupling the prompt selection process (query-key matching) from the actual
prompt pool parameters being selected PT 0 . More concretely, they update key parameters only
on the clustering loss in Equation 2, while the classification error gradients backpropagate only
till the prompt pool, as the argmax operation for selecting KT 0 creates non-smooth neurons (note
they do not have a QA). As opposed to them, our coupled design of the prompt key, value,
and query adaptor helps update all PT 0 ,KT 0 , QA parameters so as to make the prompt selection
process better adapted to previously unseen classes. As an additional benefit, it also helps control
prompt expansion by making the key better suited to globally select from the expanded pool
Section 3.3. We demonstrate in our experimental section that both decoupled prompting (L2P)
and soft prompting (CODA-P) does not work well for our setting.

• PT 0 is not just a set of selected top T 0 prompt parameters being used to transform the input, but
is an ordered temporal sequence of continuous learnable parameters, selected by indexing into a
shared prompt pool based on the sorted query-key cosine similarity for each input instance. This
can be thought of as a self-regularization as different input semantics will select discriminative
prompt ordering to be applied for transforming it. The importance of the ordered sequence selec-
tion is further validated by the difference in attaching new expanded prompts R before versus after
in the sequence when training with expanded prompt pool and keys in t � 1. We hypothesize that
the ordering is such that the frames occurring in the beginning of the sequence are learning more
task-agnostic features while appending new prompts towards the end helps learn task-specific
features in those frames.

• We empirically analyse the choice of prompt transformation function fp for our temporal skeleton
modality. As compared to all existing prompt tuning works which concatenate a set of prompts
along the token dimension, we find that a naive addition operation works better as compared to
concatenation along temporal dimension or rolled out spatio-temporal dimension (we try both).
We also discover that selecting the same number of prompts as the input temporal dimension
T 0 = T yields best results, providing a learnable transformation for each joint in the spatio-
temporal graph embedding. The side benefit of this observation is our proposed prompt strategy is
a frustratingly simple plug-and-play prompt such that a learnable parameter having size same as
the input feature embedding size needs to be added to the model input feature, making it invariant
to datasets, backbones and input sizes, as: fp(xe, PT 0) = xe + PT 0 , T 0 = T
We show the significance of each of these design components via ablations in Section 4.3.

4 EXPERIMENTS

4.1 DATASET SPLITS AND EXPERIMENTAL PROTOCOL

We set up two new few-shot continual action recognition benchmarks, one on 3D skeleton-based
Activity Recognition using the NTU RGB+D dataset Shahroudy et al. (2016) and another on 3D
skeleton-based Hand Gesture Recognition using the SHREC-2017 dataset Smedt et al. (2017). It is
important to note that while we propose a prompt-based solution strategy, our dataset split protocols
follow the pre-prompting conventional continual learning experimental dataset splits, wherein base
task is trained on a subset of the benchmark dataset itself (and not any large pre-training dataset as
done in L2P and CODA-P). The model being prompted is seeing every semantic class only once,
and every new session has new data. For NTU RGB+D dataset, we divide the 60 action classes
into 40 base and 20 few-shot continual classes. We propose a 4-task 5-way 5-shot (N-way K-shot)
protocol, such that 5 new classes are being learning over 4 sequential tasks, each having only 5-
training instances per class. For SHREC-2017, we divide the 14 hand gesture classes into 8 base
classes and 6 continual classes are learnt sequentially in a 3-task 2-way 5-shot protocol. We cover
all implementation details in Appendix A.1.

4.2 EVALUATION METRICS

Following Peng et al. (2022), we report Harmonic Mean accuracy AHM in addition to the Average
accuracy after learning every new task. Note that the average accuracy tends to be biased towards
base session T (0) performance due to more number of base classes. A higher AHM implies better
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stability-plasticity trade-off between new task performance and old tasks’ retention. A lower average
and higher AHM indicates better plasticity. Unlike prior continual learning works, we dive into
stability-plasticity trade-offs by transparently analysing ’Old’ and ’New’ accuracy. The ’Old’ is an
average of all previously seen classes.

4.3 INSIGHTS INTO OUR PROMPT-OFFSET TUNING

Prompt pool design ablations. We compare the contribution of individual prompt design elements
in POET using ablation Table 1. ’FE’ denotes the standard continual learning baseline ’Feature
Extraction’ where the model backbone is frozen, while only expanding and updating the classifier
on new classes. As our prompt tuning mechanism is designed on top of FE, this shows that if we
completely remove prompts from our method, there will be a 19.5% drop in average accuracy and
15.7% drop in Harmonic Mean. Notice our proposed prompting improves both old and new task
performance. Next, the ’Decoupled’ prompting experiment indicates the importance of our coupled
prompt selection mechanism (using reparameterization trick and query function update). This is a
direct comparison of our additive prompt attachment with the decoupled key-value prompt selection

in Learning to Prompt Wang et al. (2022c). Only not updating query adaptor QA reduces plasticity
of Task 4 by 4.6%. Not expanding the prompt pool by R new prompts brings down 60 class AHM by
2.2%. Not freezing previous prompt pool parameters during pool expansion reduces previous task
average by 2.8% by the final task. Interestingly, as we mentioned in Section 3.4 point 2, attaching
new prompts at the beginning of the ordered prompt sequence reduces new task performance by
3.3% as compared to attaching it at the end of the cosine-similarity selected T 0 � R prompts. This
validates that our method is indeed learning order discriminability. Note, for all these ablation
experiments, we curate and add 64 prompts from the pool, keeping prompt attachment constant and
only varying other components.

Table 1: Ablation analysis of our prompt-offset tuning, on NTU RGB+D Activity Recognition

T0 T0 ! T1 {T0, T1} ! T2 {T0, T1, T2} ! T3 {T0, T1, T2, T3} ! T4
Method Base Old New Avg Old New Avg Old New Avg Old New Avg AHM

POET (Ours) 87.9 84.7 66.0 82.6 80.1 45.8 77.0 69.9 59.2 68.8 59.3 57.4 59.4 58.4
FE (No Prompting) 88.4 76.5 59.1 74.5 67.9 51.4 66.3 50.4 40.8 49.5 39.2 46.8 39.9 42.7
Decoupled L2P-style 88.0 85.3 61.6 82.8 78.0 50.6 75.3 67.1 55.1 65.8 56.5 51.3 56.1 53.8
w/o clustering loss 85.5 86.6 41.5 81.6 78.9 36.8 74.3 69.2 28.9 64.5 62.0 18.2 57.0 28.1
w/o QA update 87.9 84.7 66.3 82.8 80.9 45.5 77.4 70.1 59.5 69.1 59.4 52.8 58.7 55.9
w/o Pool Expansion 87.9 84.7 66.6 82.6 80.5 45.3 77.0 69.9 58.3 68.9 60.1 52.8 59.5 56.2
w/o Freezing Previous Prompts 87.9 84.8 67.1 82.9 80.8 44.9 77.3 70.1 59.5 69.1 59.5 54.6 58.6 56.9
Attach new prompts before 87.9 84.8 66.6 82.7 80.7 45.8 77.2 70.2 59.2 68.9 59.3 54.1 58.8 56.6

Prompt attachment. As mentioned in Section 3.1 the dimensionality of a temporal prompt and
the prompt function fp are not well defined for non-transformer based architectural backbones. We
empirically explore potential choices for fp in Table 2. Drawing a parallel with sequence based
transformers which concatenate prompts along the token length, we concatenate prompts along the
temporal dimension of the skeleton input feature embedding xe. Since addition of prompt PT 0 to xe

yields the best result, we call our prompt tuning solution as ’Prompt Offset Tuning’ (POET).

Table 2: Prompt Function fp Exploration, empirical analysis of prompt attachment operations. Note,
we attach 64 prompts selected by our coupled pool selection method in all these experiments.

T0 T0 ! T1 {T0, T1} ! T2 {T0, T1, T2} ! T3 {T0, T1, T2, T3} ! T4
Method Base Old New Avg Old New Avg Old New Avg Old New Avg AHM

Addition (Ours) 87.9 84.7 66.0 82.6 80.1 45.8 77.0 69.9 59.2 68.8 59.3 57.4 59.4 58.4
Concatenate, temporal dim 88.6 69.7 75.6 70.3 62.5 60.2 62.4 48.7 60.0 49.8 33.6 50.5 35.1 40.3
Concatenate, feature dim 87.7 85.4 58.4 82.4 79.2 41.8 75.5 68.2 54.2 66.9 57.09 41.5 56.0 48.1

4.4 COMPARISON WITH STATE-OF-THE-ART

In Fine-tuning (FT) all model parameters are trained on new task data, FSCIL is quite challeng-
ing for this modality as old task performance reduces to zero from T1 itself. Feature Extraction
freezes the backbone while only updating the classifier (after expanding the classifier for each new
task). In FE frozen, we freeze parts of the classifier parameters that belong to previous classes to
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prevent forgetting from the classifier. FE replay indicates feature extraction with storage and replay
of the incremental few-shots. Note that our setting prohibits base data (proprietary company data)
replay. FE and FT experiments tell us that the 8-class SHREC, DGSTA backbone is highly plas-
tic and the 40-classs NTU60, CTRGCN backbone is more stable. Next we implement knowledge
distillation based LwF, EWC, replay and LUCIR all of which require fine-tuning of the backbone
with additional regularization losses. Their failure indicates that any kind of backbone fine-tuning
is not feasible for FSCIL. We compare with three continual prompting approaches, L2P, CODA-P
and APT. We also compare with one of the newer FSCIL baselines (ALICE), originally developed
for image benchmarks on SHREC Table 4. Note the high retention of base task performance, but
at the same time poor plasticity and adaptation to new task classes - this is the issue of feature-
classifier misalignment that we hope to alleviate through prompt tuning. Note that the joint (offline,
non-sequential) baseline in Table 3 is outperformed by 3.7% by the corresponding prompted joint
model. This, when compared with the Base (T0) performance with and without prompting shows
that perhaps prompting is particularly useful for learning few-shot data, as the few-shot data lever-
ages the class-agnostic knowledge from classes with full supervision using prompts.

Table 3: Performance of few-shot continual learning on our NTU RGB+D Shahroudy et al. (2016)
Activity Recognition benchmark, based on CTR-GCN backbone. Numbers indicate Test Accuracy
(%, "). After training on each incremental task, we report (A) performance of all old classes aver-
aged (‘Old’), (B) only new classes (‘New’), and (C) Average of all classes seen (‘Avg’) to understand
stability-plasticity trade-offs and AHM in the last task.

T0 T0 ! T1 {T0, T1} ! T2 {T0, T1, T2} ! T3 {T0, T1, T2, T3} ! T4
Method Base Old New Avg Old New Avg Old New Avg Old New Avg AHM

Joint 88.4 79.0 71.0 66.8 63.5
Joint Prompt 67.2
FE 88.4 76.5 59.1 74.5 67.9 51.4 66.3 50.4 40.8 49.5 39.2 46.8 39.9 42.7
FE, frozen 88.4 81.7 49.2 78.1 64.7 40.0 62.3 43.2 27.6 41.7 29.5 25.5 29.2 27.4
FT 88.4 0.4 58.2 6.8 0.0 59.2 6.0 0.0 41.6 3.8 0.0 25.1 2.1 0.0
FE, replay** 88.4 73.5 70.1 73.1 59.2 71.0 60.4 61.8 59.4 61.6 60.3 28.8 57.7 39.0
LWF (Li & Hoiem, 2017) 88.4 0.5 74.0 8.7 0.0 31.5 3.2 0.0 31.4 2.9 0.0 23.1 1.9 0.0
EWC (Kirkpatrick et al., 2017) 88.4 0.0 57.4 6.4 0.0 62.2 6.2 0.0 33.9 3.1 0.0 28.9 2.4 0.0
Experience Replay** 88.4 0.4 59.8 7.0 6.1 5.2 6.0 6.8 42.2 10.0 10.1 32.2 12.0 15.4
LUCIR (Hou et al., 2019) 87.9 0.0 19.9 2.2 0.0 20.1 2.0 0.0 29.2 2.7 1.3 2.5 1.4 0.0
CODA-P (Smith et al., 2023)* 87.4 86.1 4.0 76.3 76.0 0.3 68.4 65.9 0.2 59.7 60.9 0.7 55.7 1.3
CODA-P (Smith et al., 2023) 87.6 4.9 7.4 4.5 31.7 0.0 28.8 0.5 1.6 0.6 35.4 0.7 31.1 1.3
L2P (Wang et al., 2022c)* 88.6 88.4 0.0 78.5 78.5 0.0 70.7 70.1 0.0 63.7 61.2 0.0 56.2 0.0
L2P (Wang et al., 2022c) 84.7 3.0 0.4 2.7 3.1 0.0 2.8 2.8 0.0 2.6 2.4 0.4 2.2 0.6
APT (Bowman et al., 2023)ˆ 86.6 29.2 30.6 35.9 35.0
POET (Ours) 87.9 84.7 66.0 82.6 80.1 45.8 77.0 69.9 59.2 68.8 59.3 57.4 59.4 58.4

Table 4: Performance on SHREC-2017 Smedt et al. (2017) Gesture Recognition Dataset benchmark.
Reporting mean and STD across 5 runs.

T0 T0 ! T1 {T0, T1} ! T2 {T0, T1, T2} ! T3
Method Base Old New Avg Old New Avg Old New Avg AHM

Joint 88.75 91.2 ± 0.4 37.5 ± 3.0 79.4 ± 0.7 91.4 ± 1.1 52.2 ± 4.2 77.3 ± 2.1 90.8 ± 0.2 47.6 ± 2.8 70.9 ± 1.2 62.4 ± 0.4
FT 88.75 0.0 91.6 ± 3.7 20.3 ± 0.8 0.0 69.5 ± 11.9 12.4 ± 2.1 0.0 85.8 ± 9.4 13.4 ± 1.5 0.0
FE 88.75 56.2 ± 3.4 85.7 ± 6.5 62.7 ± 2.4 37.2 ± 6.7 64.3 ± 11.9 41.9 ± 6.9 17.5 ± 5.1 77.3 ± 8.8 26.8 ± 3.4 28.5 ± 6.4
FE, frozen 88.75 69.6 ± 4.1 77.4 ± 9.2 71.3 ± 1.9 61.9 ± 2.1 59.1 ± 11.7 61.4 ± 2.7 44.7 ± 3.2 54.5 ± 6.7 46.2 ± 2.7 49.1 ± 4.3
LWF (Li & Hoiem, 2017) 88.75 0.0 91.2 ± 6.2 20.2 ± 1.4 0.0 70.3 ± 5.8 12.5 ± 1.0 0.0 88.4 ± 13.7 13.8 ± 2.1 0.0
L2P (Wang et al., 2022c) 88.77 17.3 ± 5.2 30.9 ± 25.9 20.3 ± 5.9 12.3 ± 5.9 2.1 ± 3.8 10.5 ± 4.8 8.2 ± 4.0 6.9 ± 8.5 7.9 ± 3.9 7.5 ± 5.5
CODAP (Smith et al., 2023) 87.67 19.9 ± 5.6 0.5 ± 0.7 15.6 ± 4.5 13.6 ± 4.0 2.2 ± 1.9 11.6 ± 1.9 7.9 ± 1.8 14.1 ± 21.4 8.8 ± 2.4 10.1 ± 3.2
ALICE (Peng et al., 2022) 92.07 86.0 ± 3.5 24.5 ± 14.9 72.4 ± 5.7 72.1 ± 5.7 22.5 ± 16.9 63.3 ± 7.6 62.5 ± 6.8 11.9 ± 9.9 54.6 ± 6.9 20.0 ± 8.1
POET (Ours) 91.85 71.1 ± 4.7 80.8 ± 6.7 73.2 ± 3.7 63.1 ± 2.2 56.7 ± 9.4 61.9 ± 1.8 45.9 ± 2.6 72.4 ± 7.1 50.0 ± 1.6 56.2 ± 1.6

5 CONCLUSION

We show that FSCIL for activity recognition can be solved using just a frozen backbone trained only
on base-class data and stability-plasticity trade-offs can be attained by relying solely on a prompt-
tuning strategy with classifier expansion, without use of any other conventional continual learning
methods such as knowledge distillation, prior-based regularization, rehearsal or parameter isolation.
Hence, we demonstrate the merit of prompting for a real-world continual learning problem setting
for a non-image input modality and hope that it becomes the preferred choice for continual learning
solutions even in applications where a well pre-trained backbone is unavailable.
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Frederik Träuble, Anirudh Goyal, Nasim Rahaman, Michael Curtis Mozer, Kenji Kawaguchi,
Yoshua Bengio, and Bernhard Schölkopf. Discrete key-value bottleneck. In International Con-

ference on Machine Learning, pp. 34431–34455. PMLR, 2023.

11



Under review as a conference paper at ICLR 2024

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in

neural information processing systems, 30, 2017.

Andrés Villa, Kumail Alhamoud, Victor Escorcia, Fabian Caba, Juan León Alcázar, and Bernard
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