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ABSTRACT

Contrastive learning is a potent technique for self-supervised learning (SSL) that
maintains invariance between two views. Advancements such as the “core view”
(Tian et al., 2020a) or multi-cropping have harnessed insights from multiple views,
culminating in the latest state-of-the-art performance. However, the complexities
of multiview learning remain partially unexplored. In this paper, we introduce
a “plug-and-play” multi-positive-views (≥ 3) learning approach seamlessly inte-
grated with existing two-view SSL architectures. Theoretical and empirical analy-
ses underscore the feasibility of enhancing traditional SSL models by incorporat-
ing multiple positive views. By mitigating the intrinsic biases towards sufficiency
and minimality in the embeddings, our method achieves improvements in average
accuracy (2% on CIFAR-10 and 26% on Tiny ImageNet) and significant speed-ups
(3–4 times) across five datasets and eight architectures. Our research reveals and
improves the double-edged nature of conventional assumptions tied to two-view
suitability, thereby paving the way for future investigations in multiview SSL.

1 INTRODUCTION

Self-supervised learning (SSL) (Grill et al., 2020) is a powerful paradigm in representation learn-
ing, bringing about a host of functions and corresponding schemes that have immensely developed
machine learning. The path we have traversed, from the inception of representation learning (Tian
et al., 2020a), through self-distillation (Grill et al., 2020; Chen & He, 2021), correlation analysis
(Zbontar et al., 2021), contrastive learning (Oord et al., 2018), to multiview invariance (Balestriero
et al., 2023), illustrates a paradigm shift that has expanded our understanding of learning algorithms
and has reshaped the landscape of machine learning research.

Previous research in the realm of SSL aimed to maximize mutual information between two views as
a pretext task (Bachman et al., 2019; Oord et al., 2018). A data point can generate “positive views”
and “negative views.” As shown in Figure 1, positive views arise from identical transformations ap-
plied to the same image, whereas differences in images within the same batch constitute negative
views. This process of “pushing” the views apart along both sample and feature dimensions serves to
infuse diversity and variability, enabling models to acquire more perceptive and transferable repre-
sentations (Shorten & Khoshgoftaar, 2019). However, when we refer to multimodal learning (Huang
et al., 2021), it denotes leveraging various modalities (three or more).

Figure 1: Three dimensions in
self-supervised learning

Multi-view invariant means 2n − 2 negative samples and
only 1 positive pair, which naturally prompts the question,
“Why not extend the idea of attracting n positive samples
in contrastive learning as well?” In fact, multiview (≥ 3)
approaches are not a frontier concept in SSL. Recent ad-
vancements have been extensively influenced and benefited
from the essence of multiple-positive learning. For in-
stance, Bardes et al. (2022b); Tong et al. (2023); Caron
et al. (2021) harnessed multi-cropping augmentation, blend-
ing multi-scale perspectives to obtain a more “global” in-
sight. Drawing parallels with methodologies presented in
(Tian et al., 2020a), these approaches implicitly incorporate
positive views by simultaneously optimizing several pairs.
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The recurrent prominence of such methods in the latest state-of-the-art (SOTA) literature attests
to their substantial potential in the SSL domain.

Recent advancements in this domain have motivated our investigation. We observe that existing
methods present seemingly contradictory viewpoints, such as maximizing information representa-
tion in InfoMax (Linsker, 1988), as opposed to minimizing it in InfoMin (Tian et al., 2020b). No-
tably, several of these approaches are rooted in a myriad of complex assumptions, as highlighted by
Balestriero et al. (2023). In response to identifying needs and gaps, we do not perceive these perspec-
tives as entirely antagonistic. Instead, we critically examine these divergent viewpoints, highlighting
the necessity to acknowledge and address the unique complexities introduced by multiview learning.
Our key contributions to the SSL are as follows:

• Theoretical Evidence Synthesis: By challenging the traditional assumptions that all views
share the same task information (Zhao et al., 2017), we establish the connection between
multiview(≥ 3) learning and bottleneck theory defined on downstream tasks.

• Method Development: We present a “plug-and-play” multiview (≥ 3) learning method,
seamlessly integrating existing two-view SSL architectures and enhancing their ability to
capture data diversity and richness.

• Performance Improvement: Our method improves accuracy (ranging from 2%-26%) and
significant speed-ups (up to 18 times) across diverse datasets and architectures. It also
excels in domain transfer learning scenarios.

• Ablation Studies: We examine how increasing the number of views affects optimization,
considering factors such as data augmentation and batch size.

2 RELATED WORK

Objective of SSL Unified SSL paradigms emerged relatively late (Shwartz-Ziv et al., 2022;
Balestriero et al., 2023). Previously, SSL drew inspiration from contrastive, metric, and multiview
learning. Therefore, optimization objectives can be obtained from background information in the
relevant domain. For example, InfoMax, a reconstruction-based method (Linsker, 1988), empha-
sizes maximizing information retention (Zhang et al., 2016; Srivastava et al., 2015; Gidaris et al.,
2018). Conversely, model compression such as InfoMin (Tian et al., 2020b) considers the noise
implications on the accuracy of downstream tasks. Methods such as pretext-invariance (Misra &
Maaten, 2020), model distillation (Tarvainen & Valpola, 2017), and information bottleneck (Fed-
erici et al., 2020) achieve this.

Training samples can be categorized into inter-class label or label-free positive-negative pairs. Met-
ric learning primarily focuses on maximizing inter-class variance with techniques such as triplet loss
(Schroff et al., 2015; Sohn, 2016). Contrastive learning, bearing similarities with metric learning,
takes positive-negative pairs as input, with prominent models being SimCLR (Chen et al., 2020);
noise contrastive estimation (NCE), such as DIM (Hjelm et al., 2019); and InfoNCE variants, such
as contrastive predictive coding (CPC) (Oord et al., 2018) and MoCo (He et al., 2020). These
paradigms aim to distinguish diverse data samples through embeddings. Notably, CPC, being em-
blematic of contrastive objectives, is a lower bound on mutual information, which may indicate a
significant shift toward the view-invariance method termed by (Balestriero et al., 2023).

Multiple Positive Views While dedicated SSL methods with multiple positive views are scarce,
insights can be gained from multiview learning studies that provide both theoretical foundations
(Geng et al., 2020) and empirical evidence (Tsai et al., 2020). The multiview criteria include: i.
Consensus Principle and ii. Complementarity Principle (Xu et al., 2013), which in the SSL do-
main translates into minimal sufficiency and mutual redundancy (Shwartz-Ziv & LeCun, 2023; Tian
et al., 2020b), respectively. Under these premises, DMVIB and CMC Wang et al. (2019); Tian et al.
(2020a) have validated the feasibility of similar work in both supervised and unsupervised multi-
view settings. Specifically, CMC proposes two training paradigms based on a “core view” defined
as

∑
loss(z0, zmean) and “global graph” characterized by 2

n(n−1)

∑∑
loss(zi, zj). Following these

paradigms, SwAV (Caron et al., 2020), DINO (Caron et al., 2021), VICRegL (Bardes et al., 2022b),
and EMP-SSL (Tong et al., 2023) were proposed, emphasizing the extraction of different insights
from various views using multi-crop techniques to introduce local features as an additional dimen-
sion for enrichment. Moreover, a strategy called multiview clustering exists. This approach does not
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explicitly rely on negative samples; instead, it harnesses complementary information from multiple
views to derive common representations of multiple positive samples, as detailed in (Caron et al.,
2020; Ermolov et al., 2021).

However, the view independence assumption might be overly stringent for both the multimodal and
multiview domains. Research by Federici et al. (2020) suggests that contrastive learning cannot scale
beyond two views, as previous studies did not consider the complexity of information interactions
stemming from generalizing over two variables (Watanabe, 1960; Te Sun, 1980). Therefore, mul-
tiview learning (Isabelle et al., 2002) relaxes the independence assumption, adopting a co-training
strategy with only weak dependencies.

3 METHOD

Grounded in Information Bottleneck theory, we assume that previous models aimed to maximize
mutual information between augmented view pairs. Upon scrutinizing this goal, we identify several
challenging conditions required for optimality. By relaxing these strict assumptions, we decoupled
the objective from view-specific scenarios, enabling it application in multiview contexts.

3.1 VIEW-INVARIANT THEORETICAL OBJECTIVES FOR SSL

SSL creates high-quality embeddings or latent representations for downstream tasks such as classifi-
cation or detection, regardless of the number of views (Chen et al., 2020; He et al., 2020; Chen & He,
2021). This process involves preserving task-specific information while filtering unnecessary data
(Oord et al., 2018). This concept is expressed in the information bottleneck (IB) principle (Tishby
et al., 1999), which is summarized in the following equation:

min
p(z|v)

I(V ;Z)− βI(Z;Y ) (1)

where V is the input, Y is the output or labels, Z denotes the representations, and β is a positive
trade-off parameter that is not inherently bounded. However, the IB principle (Tishby et al., 1999),

Figure 2: Optimization
of minimal sufficiency

originally devised for representation learning, introduces the entangle-
ment between minimality I(V ;Z|Y ) and sufficiency I(V ;Y |Z) in its
formulation. However, even after optimizing for minimal sufficiency via
the IB principle, as shown in Figure 2, the embeddings are prone to suf-
ficiency bias that stems from incomplete coverage of view-specific and
task-related information.

Therefore, assumed that the embedding Z serves as the representation
of the image V (see appendix 8.4.1), we reworked the objective func-
tion on the left-hand side of Eq. (2). Our objective can be considered a
lower bound of the IB objective. However, the two terms in our objective
are independent, thus separating detrimental and beneficial information
without the need for a trade-off parameter,

min
p(z|v)

I(V ;Z|Y )− βI(Z;Y ) + σ
21
= min

p(z|v)
I(V ;Z)− (β + 1)I(Z;Y ) + σ (2)

22∝ min
p(z|v)

I(V ;Z|Y )︸ ︷︷ ︸
Minimality bias

+βI(V ;Y |Z) + σ︸ ︷︷ ︸
Sufficiency bias

(3)

where the terms I(Z;Y ) and I(V ;Y |Z), both integral parts of Z, are in a mutually exclusive state
owing to the invariant nature of I(V ;Y ) in optimization. Moreover, we define optimizable error
terms as view-specific bias. Correspondingly, we introduce view-invisible bias σ as follows:

1. View-Specific Bias: This bias originates from improper optimization within individual
views, leading to deviations from minimal sufficiency. Thus, each view can independently
mitigate this type of bias through its own optimization process.

2. View-Invisible Bias σ: Illustrated as the horizontal strip area in Figure 2, this term reflects
the inherent error in a specific view that is unobservable and therefore cannot be optimized
within that view alone. However, this type of bias can be alleviated by introducing addi-
tional prior knowledge or views, providing a more comprehensive representation.

3

isxzl
Underline

isxzl
Underline

isxzl
Underline



Under review as a conference paper at ICLR 2024

3.2 PRETEXT TASK DESIGN: FROM TWO-VIEW TO MULTIVIEW LEARNING

3.2.1 REVISITING CONTRASTIVE LEARNING

The introduction of a corrected objective function in the previous subsection reveals the limitations
within traditional contrastive learning methodologies (Oord et al., 2018; Shwartz-Ziv & LeCun,
2023). The classical methods often relied on idealized and sometimes conflicting assumptions,
leading to biases and inefficiencies. These shortcomings were essentially overlooked because of the
lack of a corrective objective function.

Hypothesis for single view Mutually extended

Minimality I (vi; zi | y) = 0 → I (vi; zj | y) = 0
Sufficiency I (vi; y | zi) = 0 → I (vi; y | zj) = 0
Redundancy I (zi; y | vi) = 0 → I (zi; y | vj) = 0

Figure 3: Hypothesis in previous methods (Left); view of optimization (Right)

As shown in Figure 3, prior approaches focused on minimizing I(z1, z2) assume that the two views
share solely task-relevant information and are independent of redundancy information, while mutual
counterparts broaden these principles to include mutual redundancy (Federici et al., 2020), mini-
mality, and sufficiency (Tian et al., 2020b). Therefore, a link between I(z1; z2) and the theoretical
objective function can be established only under an exceedingly strict set of conditions above,
serving as limiting constraints that may hinder stability and consistency.

InfoNCE ≤ I (z1; z2) (4)
23
= I (z1; y)− I (z1; y | z2) + I (z1; z2 | y) (5)
∝ −I (v1; y | z1)− I (z1; y | z2) + I (z1; z2 | y) (6)

The issues of rigor can be further depicted in Figure 3, given that ideal assumptions are nearly impos-
sible to fulfill owing to random fluctuations of the positive sample and augmentation. Consequently,
the effective area, called the “safety zone” or “sweet spot” (Tian et al., 2020b), becomes smaller,
leading to more invisible sufficiency biases and even view-specific biases. This discrepancy grows
with increasing views, demonstrating the limitations of extending more views.

3.2.2 RECONSTRUCTION OF THE MULTIVIEW PRETEXT TASK

To address the underlying biases that can lead to poor convergence of embeddings, we initially
set aside the hypotheses discussed in the previous section. Then we maximize mutual information
(MI) between multiple views and a mean embedding denoted as zmean. This principle is inspired by
the concept of “embedding distillation,” as highlighted in works such as mean shift (Koohpayegani
et al., 2021) and MixMatch (Berthelot et al., 2019). Subsequently, we extend the sum of MI to
achieve a “circular symmetric” distribution, especially when considering an increased number of
views {v1, . . . , vn}. Similar to contrastive learning in Eq.(6), the final formulation is as follows:

Ω′ =
∑

I(zi; zmean)← pretext task (7)

∝
∑

I(vi; y | zi)−
∑

I(zi; y | zmean) +
∑

I(zi, zmean | y) (8)

∝
∑

I(vjoint; y | zi)︸ ︷︷ ︸
Sufficiency Bias

+
∑

β I(vjoint; zi | y)︸ ︷︷ ︸
Minimality Bias

−
∑

I(zjoint; y | zmean)︸ ︷︷ ︸
Decaying error

(9)

s.t. I(z1; . . . ; zn) ≤ H(zmean) ≤ H(z1, . . . , zn) (10)

The achievement of optimal embedding involves maximizing the minimum sufficient joint embed-
ding across views, denoted as I(z1, z2, . . . , zn; y), while concurrently minimizing joint redundancy.
We elaborate on how this transition occurs from Eq. (8) to Eq. (9) in the subsequent points.

i). Reducing Sufficiency Bias via Pseudo/Mean Embedding
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During optimization, the sufficiency bias can be decomposed into two components: view-specific
sufficiency bias I(vi; y|zi) and invisible sufficiency bias H(y) − I(y; v). In our approach, view-
specific sufficiency bias is already well-accounted for through Eq. (8). To address view-invisible

Figure 4: Pseudo embed-
ding

bias, we propose a computationally efficient alternative to joint embed-
ding by calculating the average embedding. This idea draws parallels
with 1x1 convolution (Lin et al., 2013). The averaging operation serves
to reinforce the strong, task-relevant features Y , as these features are
unlikely to nullify each other. Conversely, irrelevant or view-specific
features H(V | Y ) are more likely to be attenuated during this process.
Therefore, we assert the constraint in Eq. (10) as follows:

I(z1; . . . ; zn) ≤ H(zmean) ≤ H(z1 . . . zn)

This allows us to deduce that I(zi; y | zmean) is a “subset” of I(vjoint; y |
zi), reweighting the sufficiency term while preserving the direction.

ii). Mitigating Minimality Bias via Forgetting Mechanism

The minimality term is not explicitly optimized in the InfoNCE loss function and even experiences
counter-optimization owing to the term I(zi, zj | y). The introduction of multiple views and mean
embedding implicitly resolves this issue, which can be understood in two iterative steps:

1. Stabilizing the Direction of the Error Term: As illustrated in Figure 4, with the increase in
the number of views and iterations, the counter-optimizing gradients gradually decay, and
the term I(zi, zmean | y) naturally converges around the mean embedding in our approach.
Consequently, the issue of unstable growth towards the uncompressed joint-view seen in
contrastive learning during the iteration with changing view pairs is mitigated.

2. Influence of Catastrophic Forgetting: This stability gives rise to an interesting phenomenon
in neural networks known as “catastrophic forgetting” (McCloskey & Cohen, 1989; Kirk-
patrick et al., 2017). The embedding comprises three distinct types of information. Specif-
ically, when a neural network optimizes only two types of terms—task-relevant visible and
invisible sufficiency terms, it may inadvertently suppress or degrade its ability to represent
task-irrelevant redundancy. This phenomenon is equivalent to implicitly introducing the
slow-optimizing term βI(vjoint; zi | y), forming a closed-loop process1.

3.3 GENERALIZATION TO ANY LOSS FUNCTION

Our method can be extended to most mutual information-based loss functions ℓ(zi, zj), and we
derive the enhanced loss function integrated multiview strategy Lm as follows :

Lm(z1, z2, . . . , zn) ≜
n∑

i=1

I(zmean, zi) ≥
n∑

i=1

ℓ(zmean, zi) (11)

where zmean = 1
n

∑n
i=1 zi. For instance, if we consider the loss function of SimCLR, l(zi, zj), it is

often regarded as lower bounds of the mutual information (MI) between two variables (Chen et al.,
2020; Oord et al., 2018), which establishes a connection with and benefits from our strategy.

Table 1: Comparison of multiview strategies in recent research (Config: Appendix 9.5.1)

Strategy Accuracy GPU Time Integration of Multiview2 Recent Research

Two Views 49.5±0.2 0.47 28.2 loss(zi, zj) Contrastive Learning

FastSiam 67.6±0.2 0.62 38.2 1
n

∑
i loss(zi,

∑
j ̸=i

zj
n−1

) (Pototzky et al., 2022)

Full Graph 62.4±0.4 0.65 39.2
∑

i

∑
j ̸=i loss(zi, zj) (Tian et al., 2020a)

Core View 44.6±0.6 0.66 38.0 1
n−1

∑
i loss(z1, zi) (Tian et al., 2020a)

Mean Shift 54.9±0.7 0.61 33.4 loss(z1, zmean) (Reiss & Hoshen, 2023)

SwAV 64.8±0.4 0.63 35.4
∑

i∈{1,2}
∑

j ̸=i loss(zi, zj) (Caron et al., 2020)

Mean vs. N 68.2±0.2 0.66 34.7 1
n

∑
i loss(zi, zmean) Our Method

1The contraction of vjoint iteratively results in the inward migration of zmean boundary untill converge.
2Table note: gray circle (zi), blue circle (zmean), solid line (loss).
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By mitigating both sufficiency and minimality biases, our approach outperforms all existing mul-
tiview methods. From the standpoint of regularization3, our method effectively increases the Eu-
clidean distance along feature and batch axes while concurrently reducing it along view axes.

4 EXPERIMENT

We extensively assessed the relative improvement and efficiency of our theory across five datasets
and various model architectures. We ensured that all models and modifications shared the same
configurations and further performed domain transfer to validate the transferability.

4.1 UNIFIED EXPERIMENT SETTINGS

We selected a lighter architecture, utilizing the backbone of ResNet-18 (He et al., 2016) and a
batch size of 512 for consistency and efficiency across multiview configurations. This choice en-
ables broader baseline comparisons within computational limits and enriches the significance for
future work. To validate our theoretical assumptions, we adopted unselected data augmentations
that slightly deviate from a “Sweet Spot” (Tian et al., 2020b). This setup shows that our method
maintains a performance that is consistent with SOTA benchmarks, under less-tailored conditions.

4.2 BENCHMARK COMPARISON: BETWEEN TWO AND FOUR VIEWS

Accuracy and Stability: We compared the performance of models trained using both the original
method and proposed technique, employing KNN accuracy as the evaluation metric4. As Table
2 presents, evident increases in accuracy were observed in most results. Moreover, our approach
could prevent model collapse for specific models such as VICReg (Bardes et al., 2022a) under
given conditions. Such improvement is attributed to the consideration of sufficiency and minimality
bias in our method rather than relying on mere intuition. Notably, we found that the magnitude of
improvement depends on the model to some extent. For example, NNCLR (Dwibedi et al., 2021) on
CIFAR-10 and Tiny ImageNet benefit greatly from our method, resulting in relative improvements
of 1.42% and 60.25%, respectively. Similarly, methods such as DCL (Yeh et al., 2022) that perform
poorly on a smaller dataset are highly probable to fail on larger datasets as well. Theoretically,
methods that strive to maximize MI may be more successful;

Table 2: Accuracy comparison on CIFAR-10 and Tiny ImageNet KNN accuracy was evaluated
for eight different SSL architectures, employing two views (baseline) and four views (our method).
We deliberately selected CIFAR-10 (Krizhevsky et al., 2009) and TinyImageNet (Le & Yang, 2015)
considering the differences in resolution diversity and distinct data sources, serving to accentuate
the stark contrast in class variety.

Methods Baseline Multiview Baseline Multiview
(2 views) (4 views) (2 views) (4 views)

BYOL Grill et al. (2020) 91.31% 92.39% 36.31% 43.76%
MoCo He et al. (2020) 89.85% 90.84% 41.23% 42.48%
SimCLR Chen et al. (2020) 88.89% 91.33% 37.83% 43.48%
SimSiam Chen & He (2021) 90.13% 90.50% 27.96% 42.24%
VICReg Bardes et al. (2022a) 71.06% 72.24% Collapse 33.31%
DCL Yeh et al. (2022) 87.49% 87.31%↓ 40.14% 38.44%↓
TiCo Zhu et al. (2022) 79.47% 82.89% 41.94% 42.98%
NNCLR Dwibedi et al. (2021) 89.07% 90.34% 24.38% 39.07%

Specifically, SwAV (Caron et al., 2020) reports an accuracy of 85.07% and 35.39%, while DINO
(Caron et al., 2021) achieves 91.74% and 35.77%. In contrast, the improved baselines not only
matches but in some cases exceeds the state-of-the-art (SOTA) architectural designs.

3When treating regularization as a linear concept, KL divergence and distance functions cannot be consid-
ered equivalent. However, they share the commonality of quantifying discrepancies.

4We adhere to the procedure outlined by Caron et al. (2020); Wu et al. (2018), akin to linear evaluation
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Efficiency and Performance: As presented in Table 3, we rigorously evaluated the efficacy of the
proposed method with focus on data exposure and convergence time. The results underscore a con-
siderable advantage of our methodology, which is achieved by regulating the total number of views
to maintain consistent data exposure. Moreover, our findings demonstrate a marked improvement
in convergence efficiency. Our method achieves 90% and 95% of its optimal precision in fewer
epochs, leading to speed increases by factors of 4.0 and 3.1, respectively. However, the reported
improvements exhibit large standard deviations in ratio, indicating a notable variation across differ-
ent datasets. Additionally, these improvements come with increased computational demands. The
utilization of four views resulted in a 60.5% increase in GPU usage and a 92.6% increase in the
average total runtime, characterized by 112.5% augmentation in the backward computation time.

Table 3: This table delineates the average relative improvement in KNN accuracy with same view
data visibility (400 epochs for 4 views, 800 epoches for 2 views) and the efficiency in terms of
speed-up ratio to reach a predetermined accuracy threshold during an 800 epoch training cycle, ob-
served across five datasets (STL-10, CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNette).
Moreover, it documents the computational and GPU utilization costs incurred in the ImageNette.

Efficiency Performance
Method 800 views 90% 95% GPU Backward Forward Total Time

BYOL 10.8% (10.5) 5.8 (3.8) 4.7 (2.7) 73.1% 97.2 % 1.0% 86.5%
MoCo 1.8% (3.8) 1.9 (1.0) 1.5 (0.7) 65.6% 103.2% 2.7% 87.6%
SimCLR 7.1% (6.3) 3.1 (1.6) 2.1 (1.0) 70.4% 117.8% 8.4% 86.9%
SimSiam 31.1% (29.3) 9.1 (7.0) 7.3 (6.5) 39.6% 84.2% 28.4% 84.6%
VICReg 32.3% (43.0) 6.4 (7.1) 4.6 (4.9) 42.6% 168.3% 3.0% 101.8%
DCL -2.9% (2.0) 1.4 (0.8) 1.1 (0.9) 63.4% 136.5% 18.8% 89.5%
TiCo 2.1% (2.1) 2.1 (1.1) 1.6 (0.7) 72.3% 127.3% 15.2% 118.5%
NNCLR 14.2% (27.6) 2.2 (0.7) 1.8 (0.8) 57.3% 65.3% 14.2% 85.1%
Average 12.1% (15.6) 4.0 (2.9) 3.1 (2.3) 60.5% 112.5% 11.5% 92.6%

4.3 VIEW REGULARIZATION

Figure 5 shows three types of analytical learning curves for DCL, and serves as a microcosm across
all architectures, each consistently exhibiting a similar pattern. The plot underscores that our method
functions as a regularization across a range of datasets and architectures by tuning and balancing
three directions: view, batch, and feature (refer to 3.3). Furthermore, our method does not interfere
with the model’s intrinsic optimization landscape. However, similar to mini-batch techniques, our
method markedly smoothed the loss function curve, reducing oscillations and preventing potential
model collapse by balancing the optimization along three dimensions.

Figure 5: Curve of training loss, standard deviation over view and batch dimension

4.4 DOMAIN TRANSFER

Instead of task transfer such as segmentation or detection (Bardes et al., 2022a), we evaluated the im-
provement that can be realized across different domains (Patacchiola & Storkey, 2020). As depicted
in Figure 6, our approach consistently outperformed the others in most of the results. However, these
improvements do not seem consistent across disparate datasets or models. Moreover, an intriguing
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cancellation symmetry was observed, where the transfer from ImageNette to Cifar10 was easily
achieved, whereas the reverse seemed to induce inhibition to some extent. This symmetry holds
only for improvements, not for original accuracies (for more information, please refer to Appendix
11.1). This observation implies a potential underlying complexity in multiview domain transfer,
which may extend the scope of discussions beyond the current study.

Figure 6: Examination of models’ domain transferability over five diverse datasets. Training
was conducted on the first indicated dataset, followed by linear evaluations on the second dataset
(indicated with a white bar) and vice versa (indicated with a black bar). Any gains exceeding±10%
are capped at 10%. For further details on the implementation, please refer to Appendix 9.5.3.

5 ABLATION ANALYSIS

5.1 MARGINAL BENEFIT OF VIEW NUMBER

To determine the optimal number of views, we conducted tests ranging from two to ten views,
utilizing identical settings (for further information, please refer to section 10.1). We compared two
representative methods, MoCo and VICReg, as shown in Figure 7 and Figure 8. As the number
of views increased, we observed a reduction in both variance and instability, leading to enhanced
accuracy. This trend adheres to a logarithmic curve, signifying an optimal performance–accuracy
trade-off between 4 and 6 views. The results align with the findings of Tian et al. (2020a) and
contradict those of Pototzky et al. (2022), primarily because they do not account for the architecture-
dependent nature of batch size optimization patterns.

Figure 7: Performance of MoCo across views Figure 8: Performance of VICReg across views
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5.2 BATCH SIZE

Contrary to previous research (Pototzky et al., 2022), it is evident that the use of multiple views
does not change the optimization landscape of the original methods. In Table 4, our results reveal an
extremely high correlation of batch series between the two- and four-view strategies for given epochs
across batch sizes ranging from 32 to 2048. Using SimSiam as the underlying architecture, we found
that our multiview strategy maintains high consistency with the original method, smoothens the
optimization hyperplane, and improves the overall accuracy. Because mean embeddings stabilize
oscillations in the two-view objective, while minimizing sufficiency and redundancy biases.

(a) Two views (b) Four views

Correlations
Epoch 0-25 Epoch 25-50

5 0.83 30 0.86
10 0.99 35 0.90
15 0.93 40 0.91
20 0.88 45 0.91
25 0.90 50 0.91
Short Avg:0.91 Long Avg:0.90

Total Average:0.90

Table 4: Correlations along
batch axis between (a) and (b)

5.3 AUGMENTATION ENSEMBLE

Views Generated by Same Augmentation: We first measured the accuracy of SimSiam in two-
view scenarios ordered by the intensity of augmentation. The results followed the InfoMin principle
(Tian et al., 2020b), demonstrating an inverted U-shaped curve. As the intensity of the view in-
creased, our technique consistently improved in terms of accuracy. However, the original methods
demonstrated unpredictable fluctuations, especially when employing weakly selected augmentations
that align more closely with real-world scenarios.

Views Generated by Different/Ensemble Augmentation: In Table 5, each augmentation is divided
into several sub-augmentations, e.g., cropping or color jitter only. All sub-augmentations lead to
model collapse. Nevertheless, our method achieved better accuracy compared with the original
method; however, it was lower than using four views with the same augmentations.

Table 5: Accuracy with different levels of augmentation strength

Augmnemtation View 1 View 2 View 3 View 4 View 5
Weak —————- Strong

2 Views Collapse 41.7 40.9 36.9 49.3
4 Views Collapse 49.2 50.2 51.2 78.4

Ensemble 30.5 38.2 41.6 49.7

Transformation ColorJitter View 1
+Cropping

View 2
+Rotation

View 3
+RandomFlip

View 4
+Random
Grayscale

6 CONCLUSION

The conventional double-edged assumptions have both propelled success and constrained further ad-
vancements in SSL. In this paper, we propose a multiview-based method, grounded in the IB theory.
Our method maximizes joint MI across multiple views by leveraging circular symmetry loss and
pseudo-embedding techniques. Extensive validations across multiple models and datasets confirm
its robustness and effectiveness, while also indicating a correlation between improved performance
and an increased number of views. This study reveals the importance of multiview in reducing
sufficiency and redundancy biases, setting the stage for future research.

9
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7 REPRODUCIBILITY STATEMENT

To empirically validate the effectiveness of our proposed multiview SSL approach, we offer a quick
pathway for the reproduction of the experiments outlined in this manuscript.

1. Plug-and-Play Integration Our proposed methodology offers seamless integration into pre-
existing architectures that are tailored for view-invariant tasks. We make only minimal adjustments
to the existing codebase, thereby preserving the original architecture’s integrity. Empirical evidence
from our experiments demonstrates robust performance across a wide range of configurations and
architectures. The accompanying pseudo-code, presented later, outlines the steps for this integration.
A key aspect to ensure valid comparative evaluation involves the ordering of various components,
such as the stopping gradient and batch size.

Algorithm 1 Multiview training in a PyTorch-like style

for x in loader do

# Generate Multiviews
views← T1(x),T2(x), ...,Tn(x)
for vi in views do

zi ← model.backbone(vi)

# Keep Same Configuration for each View
if Projection or Prediction Head then

pi ← model.projection head(pi)
zi ← model.projection head(zi)

end if
if stop gradient then

pi ← model.projection head(pi)
end if
if Others Technologies then

pi ← model.Other Technologies(pi)

end if
P .append(pi)
Z.append(zi)

end for

# Compute the mean embedding
zmean ← torch.mean(Z, dim = 0)
losses← [torch.criteria(pj , zmean) for pj in P ]
loss← torch.mean(losses)

end for

2. Reimplementation Details and Code Availability To facilitate the reproducibility of our re-
search, we provide a comprehensive description of all experiment-related components, including
hyperparameters, dataset selection, data augmentations, and architectural details, in Appendix 9.

We make available two distinct codebases for straightforward reimplementation, both of
which can be accessed at [Anonymous] https://anonymous.4open.science/r/
Multiple-Positive-View-F043/README.md:

1. Lightly-based Repository: This repository offers a user-friendly implementation using
the Lightly Python framework (Susmelj et al., 2020). It is designed for ease of use and
rapid replication of the main experimental results (Benchmark and Efficiency) presented in
this manuscript.

2. AutoSSL Library: Tailored for researchers seeking granular control and comprehensive
diagnostics, we introduce a specialized library named AutoSSL. The library is fully con-
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figurable via a single configuration file and covers a wide range of architectural and hy-
perparameter options. Additionally, it supports batch tuning for an extensive set of config-
urations, enabling ablation studies and in-depth investigation using advanced monitoring
tools.

Additional Metrics for Evaluation We encourage incorporating the following metrics into your
original code for a more comprehensive analysis and diagnosis of the model performance: Standard
Deviation (STD) of views, STD of batches, STD of feature representations, K-Nearest Neighbors
(KNN) accuracy, Linear classification accuracy, Running time, Forward propagation time, Backward
propagation time, dataloader time, GPU utilization, etc.

REFERENCES

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. Advances in neural information processing systems, 32, 2019.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, et al. A cookbook of self-
supervised learning. arXiv preprint arXiv:2304.12210, 2023.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. In ICLR, 2022a.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicregl: Self-supervised learning of local visual
features. Advances in Neural Information Processing Systems, 35:8799–8810, 2022b.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. Advances in neural informa-
tion processing systems, 32, 2019.

Florian Bordes, Randall Balestriero, and Pascal Vincent. Towards democratizing joint-embedding
self-supervised learning. arXiv preprint arXiv:2303.01986, 2023.
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8 APPENDIX: THEORY BACKGROUND

8.1 PREREQUISITE KNOWLEDGE

This paper relies on a set of key mathematical conditions and properties that lay the groundwork
for our theoretical and methodological framework. For any random variables x,y and z , the key
principles are enumerated as follows:

1. Multivariate Chain Rule: The chain rule can be extended to encompass cases involving
three or more random variables. The formulation of this principle allows for different
permutations of the random variables involved, as represented by the following equation:

I(x;y; z) = I(y; z)− I(y; z | x)
= I(x;y)− I(x;y | z)
= I(x; z)− I(x; z | y)

(12)

2. Multivariate Mutual Information (Multiple View Case): For multiple views exceeding
two, the multivariate mutual information can be generalized as:

I (x1;x2; . . . ;xn+1) = I (x1; . . . ;xn)− I (x1; . . . ;xn | xn+1) . (13)

8.2 RETHINKING SELF-SUPERVISED LEARNING FROM A HOLISTIC PERSPECTIVE

The quest to define what constitutes a ”good representation” has sparked extensive discourse within
the domain of machine learning (Shwartz-Ziv & LeCun, 2023; Wang et al., 2022; Shwartz-Ziv et al.,
2022). Without a robust and rigorous theoretical foundation, it is challenging to delve deeper into
why multiview approaches, or any method, for that matter, can be effectively optimized. A domi-
nant viewpoint advocates for an information-theoretic approach, suggesting that effective represen-
tations in supervised learning models can be understood through the lens of the IB principle. Such
representations strive to encapsulate the minimally sufficient statistics necessary to satisfy specific
conditions.

Nevertheless, the intrinsic complexity of self-supervised learning defies easy categorization or ex-
planation solely based on strict assumptions or monolithic theories. Given this backdrop, we cau-
tiously select a widely-accepted consensus: an effective embedding should incorporate task-specific
information.

Figure 10: Visual representation of information areas relevant to self-supervised learning

Interpretation of Visualized Areas Through Mathematical Formulations Directly following
Figure 10, we aim to elucidate the mathematical foundations behind each visualized area:

• Area 1 (Valid Representation): Corresponds to I(z; y).

• Area 2 (Redundancy Bias 5): Defined as I(z; v)− I(z; y) = H(z)− I(z; y)

• Area 4 (Sufficiency Bias α 4): Given by I(v; y)− I(z; y)

• Area 3 (Redundancy Optimized): Calculated by H(z)− I(v; y)− I(z; v)

• Area 5 (Sufficiency Bias β 6): Expressed as H(y)− I(v; y)

5View Specific Bias; Optimizable for each view
6View Invisible Bias; Non-optimizable
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Formulaic Information Concept into the Visual Elements With the areas now explicitly de-
fined, we can further map them to specific mutual information metrics:

Meaningful Representation:

View v := Area (1) + Area (4) + Area(5)
Embedding z := Area (1) + Area (2) + Area (3) + Area (4)

Task-Related y := Area (1) + Area (2)

Mutual Information:

I(v; y) = Area (1) + Area (4)
I(z; y) = Area (1)
I(z; v) = Area (1) + Area (2)

Conditional Mutual Information Metrics:

I(v; y | z) = Area (4)
I(v; z | y) = Area (2)
I(z; y | v) = 0

8.3 OUR ASSUMPTIONS AND SCOPE OF APPLICATION

Our approach is anchored in the principles of the Information Bottleneck (IB) and mutual informa-
tion within a Self-Supervised Learning (SSL) framework. It is particularly relevant for most SSL
contrastive learning methods, especially those focused on dual-view scenarios. Our method makes
minimal specific assumptions, primarily adopting a fundamental representational hypothesis similar
to Federici et al. (2020) that I(z, y|v) = 0. This suggests a certain level of information redundancy
across different views. Each view, therefore, contains unique information vital for understanding
the overall dataset, along with overlapping information shared with other views. Additionally, we
assume that data augmentation and processing do not significantly alter the relationship of informa-
tion across views. These assumptions are central to our method’s design, influencing our approach
to optimizing the objective function and handling embedded representations.

On the other hand, we posit that existing contrastive learning loss functions, exemplified by CPC
(Linsker, 1988) and SimCLR (Chen et al., 2020), are analogous to minimizing I(z1, z2). The closer
a loss function aligns with this objective, the more effectively it can benefit from minimizing and
reducing sufficiency bias. Our empirical experiments corroborate this assertion. However, architec-
tures deviating from this goal might experience adverse effects, as observed in DCL. Interestingly,
when applying our method in DINO to replace the multi-cropping strategy, we observed comparable
results, achieving 79.25% vs. 79.44% on ImageNette and 35.77% vs. 35.84% on Tiny ImageNet.
Despite the method not being explicitly designed around I(z1, z2), it still demonstrates competitive
performance.

8.4 PREVIOUS ASSUMPTIONS

Previous methods made many assumptions, and its ultimate goal is to approximate the labeled ob-
jective function of the unlabeled pretext task. We present a list to illustrate the potential risks that
may arise from improper assumptions.

8.4.1 REPRESENTATION

Assumptions for Single View As postulated in Federici et al. (2020), it is reasonable to assume
that the embedding z serves as the representation of the image v. Under this assumption, the condi-
tional mutual information between an image vi and a task y given its embedding zi becomes zero,
mathematically denoted as:

I(zi; y | vi) = 0, (14)
indicating that the task-related information remains invariant between the image and its correspond-
ing embedding. It is the sole assumption adopted by our method, which considers the situation for
each view separately, showcasing the method’s reliability.
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Assumptions across Multiple Views When considering multiple views, we naturally extend this
to the concept of mutual representation. In this context, the embedding captures partial task-
unrelated information. We formalize this weak assumption through the following equation:

I(zi; y | vj) = 0 (15)
This is considered a ”weak” assumption due to its overly stringent nature. It imposes the constraint
that the task-related information between vi and y becomes zero when conditioned on an embedding
zj from a different view. This stringent condition could potentially limit the model’s ability to lever-
age shared information across multiple views, potentially hindering its performance in multiview
scenarios.

8.4.2 REDUNDANCY

Assumptions across Two Views The view v1 is considered redundant with respect to v2 for the
task y if and only if:

I (y; v1 | v2) = 0 (16)
Given v2, v1 fails to offer any additional information pertaining to y, thereby rendering it redundant.
Furthermore, the concept of mutual redundancy is introduced based on the assumption of represen-
tation discussed earlier in Eq.14. Aligning with the findings of Federici et al. (2020), the following
equation holds: I (y; v1 | v2) = I (y; v2 | v1), which signifies that v1 and v2 are mutually redundant,
as either view provides sufficient information about y when the other view is given.

Assumptions across Multiple Views It can be extended to multiple views, if vi and vj are mutu-
ally redundant, the following equation holds:

I (vi; y | vj) = I (vj ; y | vi) = 0 (mutually) (17)
This signifies that vi and vj are interchangeable in the context of providing information about y. That
is, knowing either vi or vj suffices to capture all task-related information, making the other view
unnecessary and mutually redundant. However, as Federici et al. (2020) illustrated, the assumption
is too strict, the two view scenario cannot be simply extended to this case.

8.4.3 MINIMALITY AND SUFFICIENCY

Assumptions for Single View: Inherited from IB theory (Tishby et al., 1999) of supervised learn-
ing, two critical assumptions of sufficiency and minimality are commonly delineated:

Sufficiency: I(vi; y | zi) = 0,

Minimality: I (vi; zi | y) = 0.
(18)

In contrastive learning, an indirect formulation frequently arises in the literature (Tian et al., 2020b;
Federici et al., 2020) can be seen in the following equation. It should be emphasized that transition-
ing from Eqs.18 -19 is not trivial. Most of these formulations implicitly depend on representation
assumptions, as encapsulated in the previous Eq.14.

I (vi; y) = I (zi; y) = I (zi; vi) (19)

Assumptions across Multiple Views: Further, contrastive learning can be extended to maximize
mutual information between different view representations, thereby obtaining sufficient representa-
tions (Oord et al., 2018; Arora et al., 2019; Tian et al., 2020a; Wang et al., 2022). The fundamental
premise is that all views should share and only share the minimal task-related information. This
is informed by the understanding that all supervisory information in one view stems from another
(Wang et al., 2022).

Sufficiency: I(vi; y | zj) = 0

Minimality: I (vi; zj | y) = 0

or

Mutually Minimal Sufficient: I (vi; y) = I (zj ; y)

(20)

However, the sharing of unbiased effective task-related information between these views is complex
and accompanied by difficulties. Wang et al. (2022) demonstrated that contrastive learning models
risk overfitting by sharing information excessively between views. This complexity emerges because
each view could harbor unique, non-shared information, complicating the sufficiency and minimality
conditions.
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8.5 PROOFS IN OUR METHOD

8.5.1 LINK BETWEEN REWORKED OBJECTIVE AND INFORMATION BOTTLENECK THEORY

Proof.

This is a detailed proof (for Eqs.2 -3), we proposed an objective function that is based on the infor-
mation bottleneck theory. We aim to highlight the established connection rather than presenting a
novel concept.

min
p(z|x)

I(V ;Z | Y )− βI(Z;Y )
12
= min

p(z|x)
I(V ;Z)− I(V ;Z;Y )− βI(Z;Y )

12
= min

p(z|x)
I(V ;Z)− I(Z;Y ) + I(Z;Y | X)− βI(Z;Y )

= min
p(z|x)

I(V ;Z)− (β + 1)I(Z;Y ) + I(Z;Y | X)

then

14
= min

p(z|x)
I(V ;Z)− (β + 1)I(Z;Y )

≤ min
p(z|x)

I(V ;Z)− βI(Z;Y )

or

= min
p(z|x)

I(V ;Z)− βI(Z;Y ) + I(Z;Y | X)− I(Z;Y )︸ ︷︷ ︸
≤0

≤ min
p(z|x)

I(V ;Z)− βI(Z;Y )

(21)

For given view, I(V ;Y ) is fixed:

I(V ;Y ) = I(Z;Y ) + I(V ;Y |Z)

→ min
p(z|x)

−I(Z;Y ) = min
p(z|x)

I(V ;Y |Z)

Then

min
p(z|x)

I(X;Z|Y )− βI(Z;Y ) ∝ min
p(z|v)

I(V ;Z|Y )︸ ︷︷ ︸
Minimality bias

+βI(V ;Y |Z) + σ︸ ︷︷ ︸
Sufficiency bias

(22)

As a result, we build a connection with IB theory in Eq.2. By utilizing the invariant nature of label
and view information in optimization, we rewrite the formula into redundancy bias and sufficiency
bias in Eq.3.

8.5.2 OBJECTIVE OF CONTRASTIVE LEARNING UNDER STRICT ASSUMPTIONS

This is a detailed proof (for Eqs.4 -6) that examines and expands on what is being optimized by
traditional two-view contrastive learning. Without making any assumptions, we observe that the
terms I (z2; y | z1) and I (z1; z2 | y) are the source of the error. While it is possible to achieve an
optimal outcome under certain strict assumptions, these are difficult to satisfy in (most) real cases.

Proof.
InfoNCE ≤ I (z1; z2)

12
= I (z1; z2 | y) + I (z1; z2; y)

12
= I (z1; z2 | y) + I (z2; y)− I (z2; y | z1)

With Assumptions :

15
= I (z1; z2 | y) + I (z2; y)

20
= I (z2; y) + I (v2; z2 | y)
20
= I (z2; y)− βI (v2; z2 | y)

(23)
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Reform in symmetric Loss function:

InfoNCE ≤ I (z1; z2) + I (z2; z1)

=

2∑
n=1

I (zi; y)− β

2∑
n=1

I (vi; zi | y) (where β = −1)

Remark: In the derived formula, the term I(v2; z2 | y) introduces a negative contribution compared
to the theoretical objective. This discrepancy can be eliminated under a specific set of assumptions
across multiple views, namely, I(v1; v2) = I(v2; v3) = I(v1; v3) = I(zi; zj). This condition
implies that all embeddings are sharing only task-related information. Under these strict conditions,
the term I(vi; zi | y) can be considered negligible, effectively reducing it to zero, thereby aligning
the expression with the theoretical framework.

8.6 ADAPTIVE WEIGHT ADJUSTMENT BY CIRCULAR SYMMETRIC LOSS

Ω =

n∑
i=1

I (vi; zi | y)−
n∑

i=1

βI (zi; y) (24)

In fact, due to their mathematical properties and inherent symmetry in many self-supervised tasks,
symmetric loss functions are frequently employed. This symmetry could arise from the task setup
itself, such as predicting the context from a word in Church (2017) (or vice versa), or predicting the
rotation of an image given a rotated version (Gidaris et al., 2018) (or vice versa). Further, symmetric
loss functions often stem from the assumption of exchangeability of views in self-supervised learn-
ing tasks (Grill et al., 2020; Chen et al., 2020). In many such tasks, there is no inherent order or
preference among the views, and they can be interchangeably treated. This symmetry resonates with
the maximum entropy principle (Hadsell et al., 2006), advocating that the optimal model preserves
all information about the answer found in the input, which aligns seamlessly with our goal.

As illustrated in Figure 11, extending this symmetry to a multiview framework leads to an objective
function that summarizes all views. Given the factors of redundancy and sufficiency bias discussed
earlier, not all views will perfectly overlap or share task-relevant information uniformly. In this con-
text, the circular symmetry prioritizes the regions of the feature space where more views intersect
while down-weighting the regions that are less commonly shared among the views. This mecha-
nism serves as a smoothing factor, adaptively adjusting the weights to achieve an optimized and
comprehensive representation of the feature space.

Figure 11: Visualization of circular symmetry. In this figure, solid circles represent task-relevant
information, while dashed areas indicate task-irrelevant information. Color-coded regions denote
the degree of information sharing among multiple views: the blue regions represent task-relevant
information, while the grey regions indicate redundancy. The intensity of the color signifies the
level of overlap among the views, with deeper hues representing greater overlap.

8.7 DIFFERENCE BETWEEN SYMMETRIC AND MULTIVIEW LOSS FUNCTION

Taking the negative cosine similarity as an example. The basic form of the loss is given by:

L(q, z) = 1− ⟨p, z⟩
∥p∥2 · ∥z∥2

(25)
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When applied to a two-view case, it follows the computation as suggested in BYOL (Grill et al.,
2020):

Lv2 = 0.5 ·
(
1− ⟨p0, z1⟩
∥p0∥2 · ∥z1∥2

+ 1− ⟨p1, z0⟩
∥p1∥2 · ∥z0∥2

)
(26)

For the four-view case, we first compute the mean projection embedding zmean, then the final loss
Lv4 for the four-view scenario is then computed by averaging the losses as follows:

Lv4 =
1

n

n∑
i=1

L(pi, zmean) (27)

Our research indicates the crucial role of Circular Symmetry and Mean Embedding in reducing
sufficiency and redundancy biases, thereby bolstering the effectiveness of symmetric loss functions.

9 APPENDIX: IMPLEMENTATION DETAILS

As outlined in Statement 7, we designed the benchmarking experiments on various comparative
methodologies to be flexibly reimplemented. A comprehensive presentation of datasets, hyperpa-
rameters, and other configuration settings is presented to standardize these variables for a fairer
comparison. Unless there’s an additional statement, these configurations are consistently employed
across all experiments. Specific procedures or parameters unique to individual experiments are de-
tailed in Appendix 9.5.

9.1 DATASETS

In our experiments, we evaluated five distinct datasets (Krizhevsky et al., 2009; Coates et al., 2011;
Howard, 2020; Le & Yang, 2015), each possessing unique characteristics. Table 6 offers an overview
of each dataset, detailing the number of classes, total samples, and image size. Of particular note
is the STL-10 dataset, which comprises 10 classes, each housing 500 labeled images. This dataset
further boasts an additional 100,000 unlabeled images and reserves a separate set of 8,000 images
exclusively for independent testing. CIFAR-10 is a standard and balanced dataset with uniform
class distribution. CIFAR-100, similar to CIFAR-10, contains more classes, making it suitable to
test a model’s ability to handle multi-class data. Tiny ImageNet features a larger number of classes
and images, which are down-sampled from the original ImageNet (Deng et al., 2009). ImageNette,
resembling ImageNet, includes images of varying sizes, highlighting a model’s robustness to size
and adaptability.

Table 6: Overview of datasets.

Dataset Samples Classes Image Size

CIFAR-10 (Krizhevsky et al., 2009) 60000 10 3x32x32
CIFAR-100 (Krizhevsky et al., 2009) 60000 100 3x32x32
ImageNette (Howard, 2020) 13394 10 variable
Tiny ImageNet (Le & Yang, 2015) 110000 200 3x64x64
STL-10 (Coates et al., 2011) 113000 10 3x96x96

9.2 HYPERPARAMETER OF ARCHITECTURES

In our experiment, we evaluated 8 different SSL methods (Grill et al., 2020; He et al., 2020; Chen
et al., 2020; Chen & He, 2021; Bardes et al., 2022a; Yeh et al., 2022; Zhu et al., 2022; Dwibedi et al.,
2021). We utilized ResNet-18 (He et al., 2016) with a batch size of 512. The learning rate factor,
denoted as lr factor, is determined as the ratio of the batch size/128. For optimization, we applied
the Stochastic Gradient Descent (SGD) algorithm (Bottou, 2010), incorporating a cosine annealing
learning rate schedule (Loshchilov & Hutter, 2017). The learning rate lr within SGD is computed
as lr = 6× 10−2 × lr factor.
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BYOL setup (Grill et al., 2020): In accordance with the BYOL architecture, we implement a pro-
jection head consisting of a 2-layer MLP and a prediction head. The projection head takes an input
of dimension 512, which expands to a hidden layer of 1024 dimensions. This is followed by batch
normalization and a ReLU activation unit, yielding an output dimension of 256. Similarly, the pre-
diction head starts with an input dimension of 256, processes through a 1024-dimensional hidden
layer, and outputs a 256-dimensional feature vector.

MoCo setup (He et al., 2020): MoCo, sharing structural similarities with BYOL mainly because
both leverage a momentum encoder, distinguishes itself by only employing an MLP projection head
paired with a memory bank. This projection head transforms the 512-dimensional input into a 512-
dimensional hidden layer, undergoes batch normalization and ReLU activation, finally resulting in a
128-dimensional output.

SimCLR setup (Chen et al., 2020): Following the setup in SimCLR, it has a projection head iden-
tical to MoCo.

SimSiam setup (Chen & He, 2021): Consistent with the SimSiam architecture, the projection head
comprises three fully-connected layers, each accompanied by Batch Normalization. Importantly,
ReLU activations are implemented only after the first two layers, not extending to the final output
layer. These layers primarily function at a 2048-dimension space, deviating from the initial layer
which accommodates a 512-dimension input. In addition, SimSiam features a 2-layer prediction
head. This MLP incorporates batch normalization within its hidden layers and includes a ReLU ac-
tivation unit, facilitating a dimensional progression of 2048 (input), 512 (hidden), and 2048 (output).

VICReg setup (Bardes et al., 2022a): In line with the VICReg architecture, the projection head,
analogous to that in BarlowTwins (Zbontar et al., 2021), incorporates a 3-layer MLP. The first layer
expands the input from a 512-dimensional space to a 2048-dimensional space. The subsequent
layers retain a dimensionality of 2048.

DCL setup (Yeh et al., 2022): Following the setup in DCL, it has a projection head identical to
MoCo.

TiCo setup (Zhu et al., 2022): Following the setup in TiCo, it has a projection head identical to
BYOL.

NNCLR setup (Dwibedi et al., 2021): In line with the NNCLR architecture, it employs a pro-
jection head consisting of three distinct fully-connected layers, with the input, hidden, and output
dimensions being 512, 2048, and 256, respectively. Each layer incorporates batch normalization,
while ReLU activation is applied following the first and second layers, mirroring the configuration
observed in SimSiam. Furthermore, it integrates a 2-layer prediction head, initiating with a dimen-
sional expansion from 256 to 4096, complemented by batch normalization and ReLU activation,
culminating in an output dimensionality of 256.

9.3 DATA AUGMENTATION

In our experiments, we generate multiple positive views for two and four views utilizing global
data augmentation. The underlying data augmentation operations are implemented through
torchvision.transforms from PyTorch (Paszke et al., 2019). Although each self-supervised
learning (SSL) method we employ possesses a distinct data augmentation approach, there is a no-
table similarity among them. Broadly speaking, the methods utilized can be categorized based on
two primary strategies: the SimCLR group and the SimSiam group. While these groups share over-
arching similarities, they significantly diverge in the selection of parameters in random cropping and
color jittering. The SimCLR global augmentation is applied to BYOL, MoCo, SimCLR, VICReg,
DCL, TiCo and NNCLR. For SimSiam, its native global augmentation strategy is employed. Below
are details of our global augmentation process:

1. Random cropping: The input image is randomly cropped, with the scale ratio of the crop
being randomly selected from the minimum scale size to 1. The crop range for SimCLR is
[0.08, 1]; for SimSiam, it is [0.2, 1];

2. Horizontal flip: The horizontal flip probability for both global augmentations is 0.5;
3. Color Jittering: The brightness, contrast, saturation, and hue of the image are individually

adjusted by applying a random offset to all pixels in the image uniformly. The alteration

22



Under review as a conference paper at ICLR 2024

strength is set at 0.5 for SimCLR, a configuration found to be better suited for datasets with
smaller image sizes. In contrast, the SimSiam employs a higher color jittering strength of
1.0. The probability for both global augmentations is 0.8 and color jitter for SimCLR is
(0.8, 0.8, 0.8, 0.2); for SimSiam (0.4, 0.4, 0.4, 0.1);

4. Grayscale: the probability of grayscale is 0.2 in both augmentations;

5. Gaussian blur: Gaussian blur is not applied in both SimCLR and SimSiam augmentations
(set to 0 in our experiments);

6. Normalization: Normalization with a mean of (0.485, 0.456, 0.406) and a standard devia-
tion of (0.229, 0.224, 0.225) for both augmentations.

9.4 EVALUATION

KNN Evaluation: Following the setup in Wu et al. (2018); Caron et al. (2020), we employ the
k-Nearest Neighbors (K-NN) approach to assess the feature representations extracted by ResNet-18
(He et al., 2016). The K-NN classifier is trained on the training dataset and evaluated on the corre-
sponding testing dataset. For both the K-NN training and testing datasets, a series of transformations
are applied that scale the pixel values to the range [0.1, 1.0] and normalize the images using a mean
of (0.485, 0.456, 0.406) and a standard deviation of (0.229, 0.224, 0.225). In our experiment, we
set k = 200, which means that the class of each test sample is determined by its 200 nearest neigh-
bors (200NN). Furthermore, we utilize a temperature parameter τ = 0.1 to reweight the similarities
between the samples during the K-NN classification.

Linear Evaluation: Following the methodology of Chen et al. (2020), we freeze the ResNet-18
backbone and train a linear classifier on top using SGD Bottou (2010), with a base learning rate
of 0.1 and a momentum of 0.9. The learning rate is adjusted using a cosine schedule Loshchilov
& Hutter (2017), and no warm-up phase is adopted. The training data undergoes augmentation
with operations such as random resized cropping (224x224) and horizontal flipping, followed by
normalization. In contrast, the validation data is resized to 256 pixels, center-cropped to 224 pixels,
and similarly normalized.

9.5 IMPLEMENTATION DETAILS OF THE EXPERIMENTS

In this section, we provide a thorough explanation of each experiment conducted in our study. Except
as specifically noted, all experiments adhere to the same general architecture and augmentation
strategies defined above.

9.5.1 METHOD: COMPARISON OF MULTIVIEW STRATEGIES

As an extension to the foundational architecture detailed in Section 9.2, Table 1 presents a thor-
ough comparative analysis of various multiview strategies. This evaluation primarily utilizes the
K-Nearest Neighbors (KNN) accuracy metric, detailed in Section 9.4. Additionally, computational
overheads such as GPU utilization and time complexity, estimated via the Lightning package (Falcon
& team, 2019), are reported across all configurations.

The experimental setup specifically utilizes the CIFAR-10 dataset, and the model is trained for 50
epochs using a batch size of 128. To quantify the level of uncertainty in our findings, each strategy
is subjected to three independent tests. Both the mean and the standard deviation of the results are
reported to provide a comprehensive understanding of the performance of each multiview strategy.

This supplemental section aims to provide detailed insights into the comparative efficiency and effec-
tiveness of different multiview strategies, thereby facilitating a nuanced understanding and smoother
replication of our research.

9.5.2 EXPERIMENT: TRAIN LOSS, VIEW AND BATCH REGULARIZATION

To provide further clarity, Figure 5 complements the general experimental setup delineated in Sec-
tions 9. The presented results are based on experiments conducted over a span of 200 epochs on the
ImageNette dataset with a fixed batch size of 512.
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We observe consistent patterns across multiple architectures. To illustrate more concretely, we in-
clude a plot comparing the training losses between two-view and four-view configurations, with
DCL serving as a representative example. Additionally, the figure depicts the variability in standard
deviation across views when employing VICReg, it also reports the standard deviation of batch sizes
in the context of MoCo.

The purpose of this appendix section is to furnish a comprehensive insight into the nuances of our
experimental setup, facilitating a clearer interpretation and easier reproducibility of our results.

9.5.3 EXPERIMENT: DOMAIN TRANSFER ASSESSMENT

In the context of self-supervised learning, assessing the generalizability of models across diverse
datasets is critical. Complementary to the main text, this section details our efforts in evaluating the
domain transfer capabilities of various self-supervised models. The evaluation metric used is linear
evaluation, as outlined in Section 9.4.

Using a single Nvidia 4090 GPU, we conduct training for 100 epochs with a batch size of 512,
and evaluate the models on out-of-domain datasets. We scrutinize the performance of five key self-
supervised models: BYOL (Grill et al., 2020), MoCo (He et al., 2020), SimCLR (Chen et al., 2020),
SimSiam (Chen & He, 2021), and VICReg (Bardes et al., 2022a). These models are evaluated over
six dataset pairs:

1. STL-10 and CIFAR-100;
2. CIFAR10 and CIFAR-100;
3. ImageNette and CIFAR-10;
4. STL-10 and CIFAR-10;
5. STL-10 and ImageNette;
6. Tiny ImageNet and CIFAR-100.

For each dataset pair, the models are trained on one dataset and their performance is evaluated on
the other, facilitating a comprehensive assessment of their generalizability.

The aim of this appendix section is to offer exhaustive details about the domain transfer experiments,
thereby assisting in a granular understanding and reproducibility of our assessments.

9.5.4 EXPERIMENT: BENCHMARK COMPARISION AND PERFORMANCE

In Table 2 and 3, we assess the KNN accuracy and performance utilizing an Nvidia 4090 GPU with
a batch size of 512. The architecture setup follows 9.2. We benchmark the KNN accuracy across
8 methods on 5 datasets in two-view scenarios, conducting training over 800 epochs using Python
Lightly (Susmelj et al., 2020). This is extended to four-view scenarios, with training conducted
over 200 epochs, applying our method as detailed in Section 7. Evaluation of GPU usage and
runtime is conducted with the Pytorch Lightning package. Intermediate results are documented
in TensorBoard, with full implementation details available on https://anonymous.4open.
science/r/Multiple-Positive-View-F043/README.md.

9.5.5 ABLATION: BATCH SIZE, VIEW NUMBER, AND DATA AUGMENTATION

In our ablation study using an Nvidia 4090 GPU, we leverage the AutoSSL-library to assess both
two-view and four-view scenarios. For the view ablation, we examine the performance of MoCo and
VICReg with a batch size of 128 for 50 epochs. In the batch ablation study, we evaluate SimSiam
performance using various batch sizes, up to a maximum size of 2048, over a span of 50 epochs.
For each architecture used, the setup is detailed in 9.2. For the augmentation ablation, we assess the
linear accuracy of SimSiam, utilizing a batch size of 128 across 50 epochs, while employing different
augmentation strategies. The data augmentation in the first two parts of the ablation study utilizes
a ’global augmentation’ strategy, which integrates approaches from both SimCLR and SimSiam,
as detailed in section 9.3. Specifically, we employ SimSiam’s color jittering and SimCLR’s other
parameters. For the augmentation ablation part, we align parameters with “global augmentation”.
However, we either remove or add a specific technique, as required, to analyze its impact.
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10 APPENDIX: ADDITIONAL ANALYSES

In our experiment, we carefully account for both time efficiency and accuracy, as an exclusive em-
phasis on either would compromise the fairness of the conclusions. Our aim is to provide valuable
insights and pragmatic strategies suitable for future research.

10.1 ABLATION: VIEW NUMBER

Multiview contrastive learning techniques like CMC, SwAV, DINO, and VIERegL (Tian et al.,
2020a; Caron et al., 2020; 2021; Bardes et al., 2022b) have empirically demonstrated performance
improvements with an increased number of views. Nevertheless, these advantages often incur a cor-
responding rise in computational cost. Our empirical observations, showcased in Figures 7 and 8,
validate these trends.

In our experiments with MoCo and VICReg, we noted a consistent increase in both KNN and linear
accuracies with the escalation of view counts. This trend validates the use of KNN accuracy as
an effective metric for comparative benchmarking. Importantly, our study is the first to identify a
trade-off at four views, beyond which accuracy gains diminish as the number of views increases.

Meanwhile, running time correspondingly increases as a by-product of accuracy improvement. We
focus on identifying when this cost becomes non-negligible. In MoCo, which utilizes a memory
bank, GPU usage peaks at four views and subsequently stabilizes. In the case of VICReg, GPU
usage significantly increases utilizing four views and reaches a plateau thereafter. Despite current
conventions suggesting that memory banks usually inflate GPU usage, VICReg consumes more
computational resources than MoCo. This anomaly is attributed to VICReg’s linear computations
across batches.

10.2 ABLATION: BATCH SIZE

We examined the impact of two-view and four-view configurations on SimSiam’s accuracy, with
a specific focus on varying batch sizes. Apart from the findings reported in the ablation part, we
observed that a four-view setup prevents model collapse in smaller batch sizes, particularly in the
range of 52 to 536 where fluctuations in accuracy are significant. As the number of training epochs
increases, the influence of batch size on model accuracy becomes more pronounced. This stability is
attributed to the additional perspectives offered by multiple views, while “mean embedding” further
mitigates unstable gradients in smaller batch training. In the multiview strategy, we also noticed
the relationship between the model’s running time and batch size exhibits a similar linear trend as
with the four-view setup. Consequently, our approach does not compromise the efficiency gains
attributable to batch size.

10.3 ABLATION: DATA AUGMENTATION

Our work demonstrates the robustness of multiview model performance to diverse data augmen-
tations. While He et al. (2020) initially established the value of data augmentation in enriching
feature representations in self-supervised learning, Bordes et al. (2023) extended this understand-
ing by demonstrating that even a single, carefully chosen augmentation can greatly enhance feature
richness. However, current research indicates that more augmentation is not always better (Tian
et al., 2020b), and not all augmentations are equally effective, as shown in Table 5. Strong aug-
mentations such as grayscale. (Bordes et al., 2023), boosting performance considerably. Excessive
augmentation, however, hampers learning and introduces additional errors.

In contrast, our multiview strategy exhibits greater inclusivity in view selection. Our approach
captures a wider range of features without requiring carefully chosen augmentation techniques and
corresponding parameters, thus offering more valuable prospects for industrial applications.
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11 APPENDIX: ADDITIONAL INTERMEDIATE DATA

11.1 DETAILED RESULTS OF DOMAIN TRANSFER TASKS

The implementation of our domain transfer experiments can be found in Appendix 9.5.3 and the
detailed results are summarized in Tables 7 to 9. Notably, our method improves transferability in
over half of the evaluated scenarios. In addition, we observe that transferring from ImageNette to
STL-10 substantial gains across all five architectures when employing four views, notably for MoCo
and VICReg, corresponding to improvements in both 65.79% and 98.76%. Conversely, when trans-
ferring from STL-10 to ImageNette, such gains are only observed for BYOL and MoCo. Similar
trends are evident across other dataset pairs. This phenomenon may be attributed to dataset-specific
characteristics, as described in Section 9.1.

Table 7: STL-10 and CIFAR-100; CIFAR-10 and CIFAR-100

STL-10→ CIFAR-100 CIFAR-10→ CIFAR-100

Methods Gain Vice Versa Gain Vice Versa

BYOL Grill et al. (2020) 0.21% 3.86% −10.88% 3.62%
MoCo He et al. (2020) 3.64% 1.21% 3.29% 2.33%
SimCLR Chen et al. (2020) 8.12% 2.31% 0.78% 4.80%
SimSiam Chen & He (2021) 4.61% −4.12% −1.11% 17.24%
VICReg Bardes et al. (2022a) 4.16% −1.53% 5.24% 6.96%

Table 8: ImageNette and CIFAR-10; STL-10 and CIFAR-10

ImageNette→ CIFAR-10 STL-10→ CIFAR-10

Methods Gain Vice Versa Gain Vice Versa

BYOL Grill et al. (2020) 2.52% −3.09% 0.52% −0.75%
MoCo He et al. (2020) 60.77% 5.72% 0.25% 7.70%
SimCLR Chen et al. (2020) −1.90% −2.57% 2.63% 1.53%
SimSiam Chen & He (2021) 7.40% −1.26% −3.44% −0.55%
VICReg Bardes et al. (2022a) 32.19% −1.63% 1.59% −8.64%

Table 9: STL-10 and ImageNette; Tiny ImageNet and CIFAR-100

STL-10→ ImageNette Tiny ImageNet→ CIFAR100

Methods Gain Vice Versa Gain Vice Versa

BYOL Grill et al. (2020) 2.98% 2.59% 1.75% 3.87%
MoCo He et al. (2020) 0.13% 98.76% 2.11% −1.36%
SimCLR Chen et al. (2020) −0.55% 7.92% 6.39% 1.37%
SimSiam Chen & He (2021) −7.38% 3.40% 22.92% −5.66%
VICReg Bardes et al. (2022a) −2.89% 65.79% 8.23% 7.17%

11.2 DETAILED RESULT OF 800 EPOCHES TRAINING OVER 5 DATASETS

The implementation of our benchmark experiments can be found in Appendix 9.5.4. Table 3 show-
cases the advantages of employing a four-view in enhancing model performance, characterized by
improvements in KNN accuracy and time efficiency. Here, “time efficiency” signifies the reduction
in time required to attain 90% and 95% of the final KNN accuracy in a two-view scenario within an
800-epoch training cycle, as facilitated by the adoption of four views. The noticeable variations in
the KNN accuracy and time efficiency metrics across all datasets hint at the differential benefits of
the four-view approach.
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For instance, when focusing on the STL-10 dataset (Coates et al., 2011), a 200-epoch training em-
ploying four views allowed six out of eight evaluated methods to surpass the KNN accuracy achieved
through 800 epochs of two-view training. However, this enhancement was not observed on CIFAR-
10 (Krizhevsky et al., 2009). Noteworthy is the role of the four-view configuration in preventing
the collapse of VICReg (Bardes et al., 2022a) on multiple datasets including STL-10, Tiny Ima-
geNet, and ImageNette. (Coates et al., 2011; Le & Yang, 2015; Howard, 2020). In these cases, the
implementation of four views serves as a stabilizing factor, in addition to enhancing KNN accuracy.

Regarding time efficiency, the implementation of a four-view configuration can potentially acceler-
ate the training process to reach a comparable level of accuracy, albeit the results showcase notable
variance across different methods and datasets. For example, the STL-10 and CIFAR-100 datasets
reveal substantial benefits when applying four-view approaches. Contrarily, half of the methods
show a slowdown in the ImageNette dataset when adopting the four-view strategy.
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