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Abstract: Some Learning from Demonstrations (LfD) methods handle small mis-
matches in the action spaces of the teacher and student. Here we address the case
where the teacher’s morphology is substantially different from that of the stu-
dent. Our framework, Morphological Adaptation in Imitation Learning (MAIL),
bridges this gap allowing us to train an agent from demonstrations by other agents
with significantly different morphologies. MAIL learns from suboptimal demon-
strations, so long as they provide some guidance towards a desired solution. We
demonstrate MAIL on manipulation tasks with rigid and deformable objects in-
cluding 3D cloth manipulation interacting with rigid obstacles. We train a visual
control policy for a robot with one end-effector using demonstrations from a sim-
ulated agent with two end-effectors. MAIL shows up to 24% improvement in a
normalized performance metric over LfD and non-LfD baselines. It is deployed
to a real Franka Panda robot, handles multiple variations in properties for objects
(size, rotation, translation), and cloth-specific properties (color, thickness, size,
material). An overview is on this website.
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1 Introduction

Learning from Demonstration (LfD) [1, 2] is a set of supervised learning methods where a teacher
(often, but not always, a human) demonstrates a task, and a student (usually a robot) uses this
information to learn to perform the same task. Some LfD methods cope with small morphological
mismatches between the teacher and student [3, 4] (e.g., five-fingered hand to two-fingered gripper).
However, they typically fail for a large mismatch (e.g., bimanual human demonstration to a robot
arm with one gripper). The key difference is that to reproduce the transition from a demonstration
state to the next, no single student action suffices - a sequence of actions may be needed.

Supervised methods are appealing where demonstration-free methods [5] do not converge or under-
perform [6] and purely analytical approaches are computationally infeasible [7, 8]. In such settings,
human demonstrations of complex tasks are often readily available e.g., it is straightforward for a
human to show a robot how to fold a cloth. An LfD-based imitation learning approach is appealing
in such settings provided we allow the human demonstrator to use their body in the way they find
most convenient (e.g., using two hands to hang a cloth on a clothesline to dry). This requirement
induces a potentially large morphology mismatch - we want to learn and execute complex tasks with
deformable objects on a single manipulator robot using natural human demonstrations.

We propose a framework, Morphological Adaptation in Imitation Learning (MAIL), to bridge this
mismatch. We focus on cases where the number of end-effectors is different from teacher to student,
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although the method may be extended to other forms of morphological differences. MAIL enables
policy learning for a robot with m end-effectors from teachers with n end-effectors. It does not
require demonstrator actions, only the states of the objects in the environment making it potentially
useful for a variety of end-effectors (pickers, suction gripper, two-fingered grippers, or even hands).
It uses trajectory optimization to convert state-based demonstrations into (suboptimal) trajectories
in the student’s morphology. The optimization uses a learned (forward) dynamics model to trade
accuracy for speed, especially useful for tasks with high-dimensional state and observation spaces.
The trajectories are then used by an LfD method, optionally with exploration components like re-
inforcement learning, which is adapted to work with sub-optimal demonstrations and improve upon
them by interacting with the environment.
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Figure 1: MAIL generalizes LfD to large morphological
mismatches between teacher and student in difficult ma-
nipulation tasks. We show an example task: hang a cloth
to dry on a plank (DRY CLOTH). The demonstrations are
bimanual, yet the robot learns to execute the task with a
single arm and gripper. The learned policy transfers to
the real world and is robust to object variations.

Though the original demonstrations
contain states, we generalize the solu-
tion to work with image observations
in the final policy. We showcase our
method on challenging cloth manipula-
tion tasks (Sec. 4.1) for a robot with one
end-effector, using image observations,
shown in Fig. 1. This setting is chal-
lenging for multiple reasons. First, cloth
manipulation is easy for bimanual hu-
man demonstrators but challenging for
a one-handed agent (even humans find
cloth manipulation non-trivial with one
hand). Second, deformable objects exist
in a continuous state space; image ob-
servations in this setting are also high-
dimensional. Third, the cloth being ma-
nipulated makes a large number of con-
tacts (hundreds) that are made/broken per time step. These can significantly slow down simulation,
and consequently learning and optimization. We make the following contributions:

1. We propose a novel framework, MAIL, that bridges the large morphological mismatch in LfD.
MAIL trains a robot with m end-effectors to learn manipulation from demonstrations with a
different (n) number of end-effectors.

2. We demonstrate MAIL on challenging cloth manipulation tasks on a robot with one end-effector.
Our tasks have a high-dimensional (> 15000) state space, with several 100 contacts being
made/broken per step, and are non-trivial to solve with one end-effector. Our learned agent out-
performs baselines by up to 24% on a normalized performance metric and transfers zero-shot to
a real robot. We introduce a new variant of 3D cloth manipulation with obstacles - DRY CLOTH.

3. We illustrate MAIL providing different instances of end-effector transfer, such as a 3-to-2, 3-
to-1, and 2-to-1 end-effector transfer, using a simple rearrangement task with three rigid bodies
in simulation and the real world. We further explain how MAIL can potentially handle more
instances of n-to-m end-effector transfer.

2 Related Work

Imitation Learning and Reinforcement Learning with Demonstrations (RLfD): Imitation learn-
ing methods [9, 10, 11, 12, 13] and methods that combine reinforcement learning and demonstra-
tions [14, 15, 1, 2] have shown excellent results in learning a mapping between observations and ac-
tions from demonstrations. However, their objective function requires access to the demonstrator’s
ground truth actions for optimization. This is infeasible for cross-morphology transfer due to action
space mismatch. To work around this, prior works have proposed systems for teachers to provide
demonstrations in the students’ morphology [16] which limits the ability of teachers to efficiently
provide data. Similar to imitation learning, offline RL [17, 18, 19] learns from demonstrations stored
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in a dataset without online environment interactions. While offline RL can work with large datasets
of diverse rollouts to produce generalizable policies [20, 21], it requires the availability of rollouts
that have the same action space as the learning agent. MAIL learns across morphologies and is not
affected by this limitation.

Imitation from Observation: Imitation from observation (IfO) methods [3, 9, 22, 23, 24, 25, 26]
learn from the states of the demonstration; they do not use state-action pairs. In [27], an approach
is proposed to learn repetitive actions using Dynamic Movement Primitives [28] and Bayesian op-
timization to maximize the similarity between human demonstrations and robot actions. Many IfO
methods [3, 23, 24, 29] assume that the student can take a single action to transition from the demon-
stration’s current state to the next state. Some methods [3, 23] use this to train an inverse dynamics
model to infer actions. Others extract keypoints from the observations and compute actions by sub-
tracting consecutive keypoint vectors. XIRL [30] uses temporal cycle consistency between demon-
strations to learn task progress as a reward function, which is then fed to RL methods. However,
when the student has a different action space than the teacher, it may require more than one action
for the student to reach consecutive demonstration states. For example, in an object rearrangement
task, a two-picker teacher agent can move two objects with one pick-place action. But a one-picker
student will need two or more actions to achieve the same result. Zero-shot visual imitation [9]
assumes that the statistics of visual observations and agents observations will be similar. However,
when solving a task with different numbers of arms, some intermediate states will not be seen in
teacher demonstrations. State-of-the-art learning from observation methods [25, 31] have made
significant advancements in exploiting information between states. However, their tasks have much
longer horizons, hence more states and learning signals than ours. Whether these methods work well
on short-horizon, difficult manipulation tasks is uncertain. To address this and provide a meaningful
comparison, we conducted experiments to compare MAIL with these methods (Sec. 4).

Trajectory Optimization: Trajectory optimization algorithms [32, 8, 33] optimize a trajectory by
minimizing a cost function, subject to a set of constraints. It has been used for manipulation of
rigid and deformable objects [7], even through contact [34] using complementarity constraints [35].
Indirect trajectory optimization only optimizes the actions of a trajectory and uses a simulator for
the dynamics instead of adding dynamics constraints at every step.

Learned Dynamics: Learning dynamics models is useful when there is no simulator, or if the
simulator is too slow or too inaccurate. Learned models have been used with Model-Predictive
Control (MPC) to speed up prediction times [36, 37, 38]. A common use case is model-based
RL [39], where learning the dynamics is part of the algorithm and has been shown to learn dynamics
from states and pixels [40] and applied to real-world tasks [41].

3 Formulation and Approach

3.1 Preliminaries

We formulate the problem as a partially observable Markov Decision Process (POMDP) with state
s ∈ S , action a ∈ A, observation o ∈ O, transition function T : S × A → S , horizon H ,
discount factor γ and reward function r : S × A → R. The discounted return at time t is Rt =∑H
i=t γ

ir(si,ai) and si ∼ T (si−1,ai−1). A task is instantiated with a variant sampled from the
task distribution, v ∼ V . The initial environment state depends on the task variant, s0(v),v ∼ V .
We train a policy πθ to maximize expected reward J(πθ) of an episode over task variants v, J(πθ) =
Ev∼V [R0], subject to initial state s0(v) and the dynamics from T .

For an agent with morphology M , we differentiate between datasets available as demonstrations
(DM

Demo) and those that are optimized (DM
Optim). For our cloth environments, our teacher mor-

phology is two-pickers (M = 2p) and student morphology is one-picker (M = 1p). We assume the
demonstrations are from teachers with a morphology that can be different from the student (and from
each other). We refers to these as teacher demonstrations, DTeacher, to emphasize that they do not
necessarily come from an expert or an oracle. Further, these can be suboptimal. The demonstrations
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Figure 2: An example cloth folding task with demonstrations from a teacher with n = 2 end-
effectors, deployed on a Franka Panda with m = 1 end-effector (parallel-jaw gripper). We train
a network to predict the forward dynamics of the object being manipulated in simulation, using a
random action dataset DRandom. For every state transition, we match the predicted particle dis-
placements from our model, ∆Ppred, to that of the simulator, ∆Psim. Given this learned dynamics
and the teacher demonstrations we use indirect trajectory optimization to find student actions that
solve the task. The optimization objective is to match with the object states in the demonstration.
Finally, we pass the optimized dataset DStudent to a downstream LfD method to get a final policy
π that generalizes to task variations and extends task learning to image space, enabling real-world
deployment.

are state trajectories τT = (s0, . . . , sH−1). The teacher dataset is made up of KT such trajectories,
DTeacher = {τT,i}∀i = 1, . . . ,KT , using a few task variations from the task distribution vd ∼ V .

We now discuss the components of MAIL, shown in Fig. 2. The user provides teacher demonstra-
tions DTeacher. First, we create a dataset of random actions, DRandom, and use it to train a dynamics
model, Tψ . Tψ reduces computational cost when dealing with contact-rich simulations like cloth ma-
nipulation (Sec. 4.1). Next, we convert each teacher demonstration to a trajectory suitable for the
student’s morphology. For our tasks, we find gradient-free indirect trajectory optimization [33] per-
forms the best (Appendix Sec. A.1). We used Tψ for this optimization as it provides the appropriate
speed-accuracy trade-off. The optimization objective is to match with object states in the demonstra-
tion (we cannot match demonstration actions across morphologies). We combine these optimized
trajectories to create a dataset DStudent for the student. Finally, we pass DStudent to a downstream
LfD method to learn a policy π that generalizes from the task variations in DTeacher to the task
distribution V . It also extends π to use image observations and deploys zero-shot on a real robot
(rollouts in Fig. 5).

3.2 Learned Spatio-temporal Dynamics Model

MAIL uses trajectory optimization to convert demonstrations into (suboptimal) trajectories in the
student’s morphology. This can be prohibitively slow for large state spaces and complex tasks such
as cloth manipulation. Robotic simulators have come a long way in advancing fidelity and speed, but
simulating complex deformable objects and contact-rich manipulation still requires significant com-
putation making optimization intractable for challenging simulations. We use the NVIDIA FLeX
simulator that is based on extended position-based dynamics [42]. We learn a CNN-LSTM based
spatio-temporal forward dynamics model with parameters ψ, Tψ , to approximate cloth dynamics, T .
This offers a speed-accuracy trade-off with a tractable computation time in environments with large
state spaces and complex dynamics. The states of objects are represented as N particle positions:
s = P = {pi}i=1...N . Each particle state consists of its x, y, and z coordinates. For each task, we
generate a corpus of random pick-and-place actions and store them in the dataset DRandom = {di},
where i = 1, . . . ,KR and di = (Pi, ai, P

′
i ). For each datum i, we feed Pi to the CNN network

to extract features of particle connectivity. These features are concatenated with ai and input to the
LSTM model to extract features based on the previous particle positions. A fully connected layer
followed by layer normalization and tanh activation is used to learn the non-linear combinations
of features. The outputs are the predicted particle displacements. The objective function is the
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distance between predicted and ground-truth particle displacements, ∥∆Psim − ∆Ppred∥2. Here
∆Psim = {∆pi}i=1,...,N is obtained from the simulator and ∆pi = pi+1 − pi for every particle i.

Due to its simplicity, the CNN-LSTM dynamics model provides fast inference, compared to a sim-
ulator which may have to perform many collision checks at any time step. This speedup is crucial
when optimizing over a large state space, as long as the errors in particle positions are tolerable. In
our experiments, we were able to get 162 fps with Tψ , compared to 3.4 fps with the FleX simulator,
a 50x speed up (Fig. 8). However, this stage is optional if the environment is low-dimensional, or
if the simulation speed-up from inference is not significant. Simulation accuracy is important when
training a final policy, to provide accurate pick-place locations for execution on a real robot. Hence,
the learned dynamics model is not used for training in the downstream LfD method.

3.3 Indirect Trajectory Optimization with Learned Dynamics

We use indirect trajectory optimization [33] to find the open-loop action trajectory to match the
teacher state trajectory, τT . This optimizes for the student’s actions while propagating the state with
a simulator. We use the learned dynamics Tψ to give us fast, approximate optimized trajectories.
This is in contrast to direct trajectory optimization (or collocation) that optimizes both states and
actions at every time step. Direct trajectory optimization requires dynamics constraints to ensure
consistency among states being optimized, which can be challenging for discontinuous dynamics.
We use the Cross-Entropy Method (CEM) for optimization, and compare this against other methods,
such as SAC (Appendix A.1). Optimization hyperparameters are described in 5. The optimization
objective is to match the object’s goal state sgoal in the demonstration with the same task variant vd.
Formally, the problem is defined as:

min
at

∥sgoal − sH∥2 subject to s0 = s0(vd) and st+1 = T (st,at) ∀t = 0, . . . ,H − 1 (1)

where sH is the predicted final state. Note that if τT has a longer time horizon, it would help to
match intermediate states and use multiple-shooting methods. After optimizing the action trajec-
tories for each demonstration τT,i ∈ DTeacher, we use them with the simulator to obtain the opti-
mized trajectories in the student’s morphology. These are combined to create the student dataset,
DStudent = {τ1, τ2, τ3, . . . }, where τi = (st,ot, at, st+1,ot+1, rt, d)∀t = 1 . . . H − 1. For gen-
eralizability and real-world capabilities, we train an LfD method using DStudent. Note that we
use the learned dynamics model at this stage, trading faster simulation speed for lower accuracy in
the learned model. This is also partially responsible for why DStudent contains suboptimal demon-
strations. To reduce the effect of learned model errors, once we obtain the optimized actions, we
perform a rollout with the true simulator to get the demonstration data.

3.4 Learning from the Optimized Dataset

Our chosen LfD method is DMfD [43], an off-policy RLfD actor-critic method that utilized expert
demonstrations as well as rollouts from its own exploration. It learns using an advantage-weighted
formulation [44] balanced with an exploration component [5]. As mentioned above, we use the
simulator instead of the learned dynamics model Tψ at this stage, because accuracy is important
in the final reactive policy. Hence, we cannot take the speed-accuracy tradeoff that Tψ provides.
However, one may choose to use other LfD methods that do not need to interact with the environ-
ment [45], in which case neither a simulator nor learned dynamics are needed.

As part of tuning, we employ 100 demonstrations, about two orders of magnitude fewer than the
8000 recommended by the original work. To prevent the policy from overfitting to suboptimal
demonstrations in DStudent, we disable demonstration-state matching, i.e., resetting the agent to
demonstration states and applying imitation reward (see Appendix A.5). These were originally
proposed [46] as reference state initialization (RSI). These modifications are essential for our LfD
implementation, where the demonstrations do not come from an expert.

From DMfD, the policy π is parameterized by parameters θ, and learns from data collected in a
replay buffer B. The policy loss contains an advantage-weighted loss LA where actions are weighted
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by the advantage function Aπ(s,a) = Qπ(s,a) − V π(s) and temperature parameter λ. It also
contains an entropy component LE to promote exploration during data collection. The final policy
loss Lπ is a combination of these terms (Eq. 2).

LA = E
s,a,o∼B

[
log πθ(a|o) exp

(
1

λ
Aπ(s,a)

)]
LE = E

s,a,o∼B
[α log πθ(a|o)−Q(s,a)]

Lπ = (1− wE)LA + wELE , 0 ≤ wE ≤ 1 (2)

where wE is a tuneable hyper-parameter. The resulting policy is denoted as πθ. We pre-populate
buffer B with DStudent. Using LfD, we extend from state inputs to image observations, and gener-
alize from vd to any variation sampled from V .

4 Experiments
Our experiments are designed to answer the following: (1) How does MAIL compare to state-of-the-
art (SOTA) methods? (Sec. 4.2) (2) How well can MAIL solve tasks in the real world? (Sec. 4.2.1)
(3) Does MAIL generalize to different n-to-m end-effector transfers? (Sec. 4.3) Additional ex-
periments demonstrating how different MAIL components affect performance are in Appendix A.

4.1 Tasks
We experiment with cloth manipulation tasks that are easy for humans to demonstrate but difficult
to perform on a robot. We also discuss a simpler rearrangement task with rigid bodies to illustrate
generalizability. The tasks are shown in Appendix Fig. 6. We choose a 6-dimensional pick-and-place
action space, with xyz positions for pick and place. The end-effectors are pickers in simulation, and
a two-finger parallel jaw gripper on the real robot.

CLOTH FOLD: Fold a square cloth in half, along a specified line. DRY CLOTH: Pick up a square
cloth from the ground and hang it on a plank to dry, variant of [47]. THREE BOXES: A simple
environment with three boxes along a line that needs to be rearranged to designated goal locations.
For details on metrics and task variants, see Appendix B.

Cloth fold Dry cloth
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Figure 3: SOTA performance comparisons. For
each training run, we used the best model in each
seed’s training run, and evaluated using 100 roll-
outs across 5 seeds, different from the training
seed. Bar height denotes the mean, error bars in-
dicate the standard deviation. MAIL outperforms
all baselines, in some cases by as much as 24%.

We use particle positions as the state for train-
ing dynamics models and trajectory optimiza-
tion. We use a 32x32 RGB image as the vi-
sual observation, where applicable. We record
pre-programmed demonstrations for the teacher
dataset for each task. Details of the datasets to
train the LfD method and the dynamics model
are in Appendix E and Appendix F. The in-
stantaneous reward, used in learning the policy,
is the task performance metric at a given state.
Further details on architecture and training are
in the supplementary material. In all experi-
ments, we compare each method’s normalized
performance, measured at the end of the task
given by p̂(t) = p(st)−p(s0)

popt−p(s0)
, where p is the per-

formance metric of state st at time t, and popt
is the best performance achievable by the task.
We use p̂(H) at the end of the episode (t = H).

4.2 SOTA comparisons
Many LfD baselines (Sec. 2) are not directly applicable, as they do not handle large differences
in action space due to different morphologies. We compare MAIL with those LfD baselines that
produce a policy with image observations, given demonstrations without actions.
1. SAC-CURL [48]: An image-based RL algorithm that uses contrastive learning and SAC [5] as

the underlying RL algorithm. It does not require demonstrations.
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2. SAC-DrQ [49]: An image-based RL algorithm that uses a regularized Q-function, data augmen-
tations, and SAC as the underlying RL algorithm. It does not require demonstrations.

3. GNS [50]: A SOTA method that represents cloth as a graph and predicts dynamics using a graph
neural network (GNN). It does not require demonstrations but learns dynamics from the random
actions dataset.We run this learned model with a planner [51], given full state information.

4. SAC-DrQ-IR: A custom variant of SAC [5] that uses DrQ-based [49] image encoding and a state-
only imitation reward (IR) to reach the desired state of the object to be manipulated. It does not
imitate actions, as they are unavailable.

5. GAIfO [25]: An adversarial imitation learning algorithm that trains a discriminator on state-state
pairs (s, s′) from both the demonstrator and agent. This is a popular extension of GAIL [13] that
learns the same from state-action pairs (s, a).

6. GPIL [31] A goal-directed LfD method that uses demonstrations and agent interactions to learn
a goal proximity function. This function provides a dense reward to train a policy.

Fig. 3 has performance comparisons against all baselines. In each environment, the first three
columns are demonstration-free baselines, and the last four are LfD methods. MAIL outperforms
all baselines, in some cases by as much as 24%. For the easier CLOTH FOLD task, the SAC-DrQ
baseline came within 11% of MAIL.

(a) Teacher demonstration with three pickers.

(b) Final policy: Two pickers

(c) Final policy: One picker

(d) Final policy: One Franka Panda robot

Figure 4: Sample trajectories of the THREE
BOXES task. A three-picker teacher trajectory to
reach the goal state (Fig. 4a). Final policies of the
two-picker and one-picker agent, and real-world
execution of the one-picker agent.

However, all baselines do not perform well in
the more difficult DRY CLOTH task. RL meth-
ods fail because they have not explored the pa-
rameter space enough without guidance from
demonstrations. Our custom LfD baseline,
SAC-DrQ-IR, has reasonable performance, but
the results show that naive imitation alone
is not a good form of guidance to solve it.
The other LfD baselines, GAIfO and GPIL,
have poor performance in both environments.
The primary reason is the effect of cross-
morphological demonstrations. They perform
significantly better with student morphology
demonstrations, even if they are suboptimal.
Moreover, environment difficulty also plays an
important part in the final performance. These
and other ablations are in Appendix A.

Surprisingly, the GNS baseline with structured
dynamics does not perform well, even though it
has been used for cloth modeling [52]. This is
because it is designed to learn particle dynamics via small displacements, but our pick-and-place
action space enables large displacements. Similar to [51], we break down each pick-and-place
action into 100 delta actions to work with the small displacements that GNS is trained on. Thus,
planning will accumulate errors from the 100 GNS steps for every action of the planner, which
can grow superlinearly due to compounding errors. This makes it difficult to solve the task. It is
especially seen in DRY CLOTH, where the displacements required to move the entire cloth over the
plank are much higher than the displacements needed for CLOTH FOLD. The rollouts of MAIL on
DRY CLOTH show the agent following the demonstrated guidance - it learned to hang the cloth over
the plank. It also displayed an emergent behavior to straighten out the cloth on the plank to spread
it out and achieve higher performance. This was not seen in the two-picker teacher demonstrations.

4.2.1 Real-world results
For DRY CLOTH and CLOTH FOLD tasks, we deploy the learned policies on a Franka Panda robot
with a single parallel-jaw gripper (Fig. 5, statistics over 10 rollouts). We test the policies with
many different variations of square cloth (size, rotation, translation, thickness, color, and material).
See Appendix D for performance metrics. The policies achieve ∼ 80% performance, close to the
average simulation performance, for both tasks.
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4.3 Generalizability
We show examples of how MAIL learns from a demonstrator with a different number of end-

effectors, in a simple THREE BOXES task (Fig. 4). Consider a three-picker agent that solves the
task in one pick-place action. Given teacher demonstrations DTeacher, we transfer them into one-
picker or two-picker demonstrations using indirect trajectory optimization and the learned dynamics
model. These are the optimized datasets that are fed to a downstream LfD method. In both cases,
the LfD method learns a model, specific to that morphology, to solve the task. It generalizes from
state inputs in the demonstrations to the image inputs received from the environment. Fig. 4 shows
the three picker demonstration, a 3-to-2 and 3-to-1 end-effector transfer. We have also done this for
the 2-to-1 case (omitted here for brevity). These examples illustrate n-to-m end-effector transfer
with n > m; it is trivial to perform the transfer for n-to-m with n ≤ m by simply appending the
teacher’s action space with m− n arms that do no operations.

4.4 Limitations
MAIL requires object states in demonstrations and during simulation training, however, full state
information is not needed at deployment time. It has been tested on the pick-place action space. It
has been tested only on cases where the number of end-effectors is different from teacher to stu-
dent.While it works for high-frequency actions (Appendix A.7), it will likely be difficult to optimize
actions to create the student dataset for high-dimensional actions. This is because the curse of di-
mensionality will apply for larger action spaces when optimizing for Dstudent. The state-visitation
distribution of demonstration trajectories must overlap with that of the student agent; this overlap
must contain the equilibrium states of the demonstration. For example, a one-gripper agent cannot
reach a demonstration state where two objects are moving simultaneously, but it can reach a state
where both objects are stable at their goal locations (equilibrium). MAIL cannot work when the
student robot is unable to reach the goal or intermediate states in the demonstration. For example,
in trying to open a flimsy bag with two handles, both end-effectors may simultaneously be needed
to keep the bag open. When we discuss generalizability for the case n ≤ m, our chosen method
to tackle morphological mismatch is to use fewer arms on the student robot, in lieu of trajectory
optimization. This is an inefficient approach since we ignore some arms of the student robot. MAIL
builds a separate policy for each student robot morphology and each task. While it is possible to
train a multi-task policy conditioned on a given task (provided as an embedding or a natural lan-
guage instruction), extending MAIL to output policies for a variable number of end-effectors would
require more careful consideration. Subsequent work could learn a single policy conditioned on the
desired morphology - another way to think about a base model for generalized LfD.

5 Conclusion

Cloth fold

Performance 0.818

Dry cloth

Spread metric 8/10

Figure 5: Real-world results for CLOTH
FOLD and DRY CLOTH.

We presented MAIL, a framework that enables LfD
across morphologies. Our framework enables learn-
ing from demonstrations where the number of end-
effectors is different from teacher to student. This
enables teachers to record demonstrations in the set-
ting of their own morphology, and vastly expands
the set of demonstrations to learn from. We show
an improvement of up to 24% over SOTA baselines
and discuss other baselines that are unable to handle
a large mismatch between teacher and student. Our
experiments are on challenging household cloth ma-
nipulation tasks performed by a robot with one end-effector based on bimanual demonstrations. We
showed that our policy can be deployed zero-shot on a real Franka Panda robot, and generalizes
across cloths of varying size, color, material, thickness, and robustness to cloth rotation and trans-
lation. We further showed examples of LfD generalizability with instances of transfer from n-to-m
end-effectors, with multiple rigid objects. We believe that this is an important step towards allowing
LfD to train a robot to learn from any robot demonstrations, regardless of robot morphology, expert
knowledge, or the medium of demonstration.
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Figure 6: Environments used in our experiments, with one end-effector. The end-effectors are
pickers (white spheres). In CLOTH FOLD (left) the robot has to fold the cloth (orange and pink)
along an edge (inspired by the SoftGym [54] two-picker cloth fold task). In DRY CLOTH (middle)
the robot has to hang the cloth (orange and pink) on the drying rack (brown plank). In THREE
BOXES (right), the robot has to rearrange three rigid boxes along a line.

A Ablations

We use the DRY CLOTH task for all ablations unless specified; it is the most challenging of our
tasks. We provide detailed answers to the following questions in Appendix A. Appendix Fig. 7
illustrates the ablations corresponding to each part of the overall method. (1) How do different
methods perform in creating optimized dataset DStudent? (2) What is the best architecture to learn
the task dynamics? (3) How good is DStudent compared to the recorded demonstrations? (4) How
well does the downstream LfD method handle different kinds of demonstrations? (5) How does the
use of expert state matching affect the downstream LfD? (6) How do the baselines perform across
related morphologies and environment?

We discovered that the Cross-Entropy Method (CEM) is the most effective optimizer for generating
a DStudent from demonstrations. When combined with CEM, the 1D CNN-LSTM architecture
produces the best results for trajectory optimization. Our optimized DStudent performs similarly
to the pre-programmed D1p

Demo, which has access to full state information of the environment. By
utilizing our chosen downstream LfD method, we can successfully complete tasks with a variety of
demonstrations and achieve superior performance compared to both DStudent and DTeacher. Expert
state matching negatively impacts the performance of DMfD. Lastly, we found that GAIfO trained
on our DStudent outperforms GAIfO trained on the DTeacher, and the difficulty of the environment
significantly influences the performance of GAIfO and GPIL.

A.1 Ablate the method for creating optimized dataset DStudent
We answer the question: how do different methods perform in creating optimized dataset DStudent?
We ablate the optimizer used to create DStudent from the demonstrations, labeled ABL1 in Fig. 7,
and compare the following methods, given state inputs from DTeacher.

• Random: A trivial random guesser, that serves as a lower benchmark.

• SAC: An RL algorithm that tries to reach the goal states of the demonstrations.

• Covariant Matrix Adaption Evolution Strategy (CMA-ES): An evolutionary strategy that
samples optimization parameters from a multi-variate Gaussian, and updates the mean and
covariance at each iteration.

• Model Predictive Path Integral (MPPI): An information theoretic MPC algorithm that can
support learned dynamics and complex cost criteria [36, 53].

• Cross-Entropy Method (CEM, ours): A well-known gradient-free optimizer, where we
assume a Gaussian distribution for optimization parameters.
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Figure 7: Ablations to MAIL components.

We did not use gradient-based trajectory optimizers since the contact-rich simulation will give rise
to discontinuous dynamics and noisy gradients. As shown in Table 1a, SAC is unable to improve
upon the random baseline, likely because of the very large state-space of our environment (> 15000
states for> 5000 cloth particles) and error accumulations from the imprecision of learned dynamics
model. Trajectory optimizers achieve the highest performance, and we chose CEM as the best
optimizer based on the performance of the optimized trajectory.

A.2 Ablate the dynamics model

We answer the question: what is the best architecture to learn the task dynamics? We ablate the
learned dynamics model Tψ , labeled ABL2 in Fig. 7. The environment state is the state from
DTeacher i.e., positions of cloth particles. This is a structured but large state space since the cloth is
discretized into > 5000 particles.

Table 1b shows the performance of trajectories achieved by using the dynamics models. We see that
CNN-LSTM models work better than models that contain only CNNs, graph networks (GNS [50]),
transformers (Perceiver IO [55]), or LSTMs. We hypothesize that this is the case since we need
to capture the spatial structure of cloth and capture a temporal element across the whole trajectory
since particle velocity is not captured in the state. Further, a 1D CNN works better because the cloth
state can be simply represented as a 2D vector (N × 3 which represents the xyz for N particles).
This is easier to learn with than the 3D state vector fed into 2D CNNs.

GNS performs poorly also due to the reasons of error accumulation from large displacements, dis-
cussed in Sec. 4.2. Although Perceiver IO did not perform as well as CNN-LSTM, it did not affect
the downstream performance for the LfD method. We conducted an experiment to compare DMfD
performance when it was trained on the DStudent obtained from Perceiver IO and CNN-LSTM and
found that they had comparable results, shown in Fig. 9. This indicates that MAIL is adaptable to
different DStudent and capable of learning from suboptimal demonstrations.

Our learned dynamics model Tψ was significantly faster than the simulator. We tested it on a simple
training run of SAC [5], without parallelization. Our learned dynamics gave 162 fps, about 50x
faster than the 3.4 fps with the simulator. However, the dynamics error was not insignificant. We
compute the state changes in cloth by considering the cloth particles as a point cloud, and computing
distances between point clouds using the chamfer distance. We then executed actions on the cloth
for the DRY CLOTH task, comparing the cloth state before an action with the model’s predicted
state and the simulator’s true state after the action. Over 100 state transitions, we observed a cloth
movement of 0.67 m in the true simulator, and an error of 0.17 m between the true and predicted
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Tψ Tψ SimulatorSimulator

Figure 8: Predictions of the learned spatio-temporal dynamics model Tψ and the FleX simu-
lator. Predictions are made for the same state and action, shown for both cloth tasks. The learned
model supports optimization approximately 50x faster than the simulator, albeit at the cost of accu-
racy.

state of the cloth. This accuracy was tolerable for trajectory optimization, qualitatively shown in
Fig. 8, where we did not need optimal demonstrations.

A.3 Compare performance of optimized dataset D1p
Optim
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Figure 9: Performance comparison between
DMfD trained on DStudent obtained using dif-
ferent learned dynamics models: 1D CNN-LSTM
and Perceiver IO. For each training run, we used
the best model in each seed’s training run, and
evaluated using 100 rollouts across 5 seeds, dif-
ferent from the training seed. Bar height denotes
the mean, error bars indicate the standard devia-
tion.

We answer the question: how good is DStudent
compared to the recorded demonstrations? This
ablation gauges the performance of the op-
timized dataset that we used as the student
dataset for LfD, DStudent = D1p

Optim. We
compare this to other relevant datasets to solve
the task, as shown in Table 1c. It is labeled
ABL3 in Fig. 7. The two-picker demonstra-
tions D2p

Demo are recorded for an agent with
two pickers as end-effectors. This is used as
the teacher demonstrations in our experiment
DTeacher = D2p

Demo. The one-picker demon-
strations D1p

Demo are recorded for an agent with
one picker as an end-effector. This is to contrast
against the optimized demonstrations in the
same morphology, D1p

Optim. The random action
trajectories are with a one-picker agent, added
as a lower performance benchmark. They are
the same random trajectories used to train the
spatio-temporal dynamics model Tψ . Naturally,
the teacher dataset is the best, as it is trivial to
do this task with two pickers. The one-picker
dataset has about the same performance as the
optimized dataset D1p

Optim, both of which are suboptimal. It can be inferred that it is not trivial to
manipulate cloth with one hand. This is the kind of task we wish to unlock with this work: tasks that
are easy to do for teachers in one morphology but difficult to program or record demonstrations for
in the student’s morphology. Note that D1p

Optim has been optimized on the fast but inaccurate learned
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dynamics model, which is one reason for the reduced performance. This is why the downstream LfD
method uses the simulator, as accuracy is very important in the final policy.

Method 25th% µ ± σ median 75th%

Random 0.000 0.003±0.088 0.000 0.000

SAC 0.000 0.000±0.006 0.000 0.000

CMA-ES 0.104 0.270±0.258 0.286 0.489

MPPI 0.070 0.289±0.264 0.275 0.474

CEM 0.351 0.502±0.242 0.501 0.702

(a) Ablation on the method chosen for creating demonstrations.

Method 25th% µ ± σ median 75th%

Perceiver IO 0.305 0.450±0.258 0.486 0.628

GNS -0.182 0.002±0.223 -0.042 0.149

2D CNN, LSTM 0.157 0.376±0.305 0.382 0.602

No CNN, LSTM 0.327 0.465±0.213 0.463 0.595

1D CNN, No LSTM 0.202 0.407±0.237 0.387 0.587

1D CNN, LSTM (ours) 0.351 0.502±0.242 0.501 0.702

(b) Ablation on the dynamics network architecture.

Dataset 25th% µ ± σ median 75th%

DRandom 0.000 0.003±0.088 0.000 0.000

D1p
Demo 0.344 0.484±0.169 0.446 0.641

D2p
Demo 0.696 0.744±0.068 0.724 0.785

D1p
Optim 0.351 0.502±0.242 0.501 0.702

(c) Compare the performance of the optimized dataset.

Table 1: Ablation results for MAIL

A.4 Ablate modality of demonstrations

We answer the question: how well does the downstream LfD method handle different kinds of
demonstrations? This ablates the composition of the student dataset fed into LfD, and is labeled
ABL4 in Fig. 7. We compare the following datasets for DStudent, using the notation for datasets
explained in Sec. 3.1:

• Demonstrations in one-picker morphology, D1p
Demo: These are non-trivial to create and are

thus not as performant, discussed above. Creating these is increasingly difficult as the task
becomes more challenging.

• Optimized demos, D1p
Optim: This is optimized from the two-picker teacher demonstrations

(DTeacher = D2p
Demo), which are easy to collect as the task is trivial with two pickers.

• 50% D1p
Demo and 50% D1p

Optim: A mix of trajectories from the two cases above. This is an
example of handling multiple demonstrators with different morphologies.

Fig. 10 illustrates that all three variants achieve similar final performance. This demonstrates that the
downstream LfD method is capable of solving the task with a variety of suboptimal demonstrations.
This could be from one dataset of demonstrations, or even a combination of datasets obtained from
a heterogeneous set of teachers.

16



0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pe
rfo

rm
an

ce

0.0 0.1 0.2 0.3 0.4 0.5
Million Steps

0.0

0.1
100% one-picker demos
50% one-picker demos and 50% DStudent

100% DStudent

Figure 10: Ablation on the modality of demon-
strations on LfD performance. Similar perfor-
mance shows that MAIL can learn from a wide
variety of demonstrations, or even a mixture of
them, without loss in performance. See Sec. A.4.
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Figure 11: Ablation on the effect of reference
state initialization (RSI) and imitation reward
(IR) on LfD performance. RSI is not helpful
here because our tasks are not as dynamic or long
horizon as DeepMimic [46]. See Sec. A.5.

An interesting observation here is that by comparing Fig. 10 and Table 1c, we see that the final
policy is better than the suboptimal demonstrations by a considerable margin, and also slightly im-
proves upon the performance of the teacher demonstrations. This improvement comes from the LfD
method’s ability to effectively utilize demonstrations and generalize across task variations. This re-
sult, combined with the ablation that we need demonstrations in Sec. 4.2, shows that our downstream
LfD method is well adapted to work with suboptimal demonstrations to solve a task.

A.5 Ablate Reference State Initialization in DMfD

We answer the question: how does the use of demonstration state matching affect the downstream
LfD? An improvement we made over the original DMfD algorithm is to disable matching with
expert states, known as RSI-IR, first proposed in [46]. We justify this improvement in this ablation,
labeled ABL5 in Fig. 7.

As shown in Fig. 11, removing RSI and IR has a net positive effect throughout training, and around
10% on the final policy performance. This means that matching expert states exactly via imitation
reward does not help, even during the initial stages of training when the policy is randomly initial-
ized. We believe this is because RSI helps when there are hard-to-reach intermediate states that the
policy cannot reach during the initial stages of training. This is true for dynamic or long-horizon
tasks, such as karate chops and roundhouse kicks. However, our tasks are quasi-static, and also have
a short horizon of 3 for the cloth tasks. In other words, removing this technique allows the policy to
freely explore the state space while the demonstrations can still guide the RL policy learning via the
advantage-weighted loss from DMfD.

A.6 Ablate the effect of cross-morphology on LfD baselines

We answer the question: how do established LfD baselines perform across morphologies? This
ablation studies the effect of cross-morphology in the demonstrations, where we compare the per-
formance of GAIfO, when provided demonstrations from the teacher dataset DTeacher and (subop-
timal) student dataset DStudent, for the DRY CLOTH task.

As we can see in Table 2, there is a 36% performance improvement when using DStudent instead of
DTeacher. The primary difference that the agent sees during training is the richness of demonstration
states, as the demonstration actions are not available to learn from. Since the student morphology
has only one picker, any demonstration for the task (DRY CLOTH) includes multiple intermediate
states of the cloth in various conditions of being partially hung for drying. By contrast, the teacher
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requires fewer pick-place steps to complete the task, and thus there are fewer intermediate states in
the demonstrations.

A.7 Ablate the effect of environment difficulty on LfD baselines

We answer the question: how do established LfD baselines perform across environments? Given the
subpar performance of the LfD baselines GAIfO and GPIL on our SOTA environments, we ablated
the effect of environment difficulty. We took the easy cloth environment (CLOTH FOLD) and used
an easier variant of it, CLOTH FOLD DIAGONAL PINNED [43]. In this variant, the agent has to fold
cloth along a diagonal, which can be done by manipulating only one corner of the cloth. Moreover,
one corner of the cloth is pinned to prevent sliding, making it easier to perform. We used state-based
observations and a small-displacement action space, where the agent outputs incremental picker
displacements instead of pick-and-place locations. We can see in Table 3 that the same baselines
are able to perform significantly better in this environment. Hence, we believe manipulating with
long-horizon pick-place actions, with an image observation, makes it challenging for the baselines
to perform cloth manipulation tasks described in Sec. 4.1 and Appendix B.

Method 25th% µ ± σ median 75th%

DTeacher -0.198 -0.055±0.183 -0.043 0.078

DStudent 0.199 0.363±0.245 0.409 0.528

Table 2: Ablation of GAIfO on the effect of cross-morphology. We compare the normalized perfor-
mance, measured at the end of the task.

Method 25th% µ ± σ median 75th%

GPIL 0.356 0.427±0.162 0.487 0.553

GAIfO 0.115 0.374±0.267 0.471 0.592

Table 3: Measuring performance on the easy cloth task, CLOTH FOLD DIAGONAL PINNED. We
compare the normalized performance, measured at the end of the task.

B Tasks

Here we give more details about the tasks, including the performance functions, teacher dataset, and
sample images. Fig. 6 shows images all of simulation environments used for SOTA comparisons and
generalizability, with one end-effector. In each environment, the end-effectors are pickers (white
spheres). In cloth-based environments, the cloth is discretized into an 80x80 grid of particles, giving
a total of 6400 particles.

1. CLOTH FOLD: Fold a square cloth in half, along a specified line. The performance metric
is the distance of the cloth particles left of the folding line, to those on the right of the
folding line. A fully folded cloth should have these two halves virtually overlap. Teacher
demonstrations are from an agent with two pickers (i.e., DTeacher = D2p

Demo); we solve
the task on a student agent with one picker. Task variations are in cloth rotation.

2. DRY CLOTH: Pick up a square cloth from the ground and hang it on a plank to dry, variant
of [47]. The performance metric is the number of cloth particles (in simulation) on either
side of the plank and above the ground. Teacher demonstrations are from an agent with
two pickers (i.e., DTeacher = D2p

Demo); we solve the task on a student agent with one
picker. Task variations are in cloth rotations and translations with respect to the plank.
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3. THREE BOXES: A simple environment with three boxes along a line that need to be rear-
ranged to designated goal locations. Teacher demonstrations are from an agent with three
pickers (i.e., DTeacher = D3p

Demo); we solve the task on student agents with one picker
and two pickers. Performance is measured by the distance of each object from its goal
location. This task is used to illustrate the generalizability of MAIL with various n-to-m
end-effector transfers, and is not used in the SOTA comparisons.

C Hyperparameter choices for MAIL

In this section, Table 4 shows the hyperparameters chosen for training the forward dynamics model
Tψ . Table 5 shows the details of CEM hyperparameter choices. Table 6 shows the hyperparameters
for our chosen LfD method (DMfD).

Parameter Description

CNN 4 layers, 32 channels, 3x3 kernel, leaky ReLU activation.
stride = 2 for the first layer, stride = 1 for subsequent layers

LSTM One layer
Hidden size = 32

Other Parameters Learning rate α =1e-5
Batch size = 128

Table 4: Hyper-parameters for training the forward dynamics model.

Planning
Horizon

Number of
optimization iterations

Number of env
interactions

1 1 2 21,000
2 2 2 15,000
3 2 2 21,000
4 2 2 31,000
5 2 2 34,000
6 2 10 21,000
7 2 1 21,000
8 2 1 15,000
9 2 1 32,000
10 3 2 21,000
11 3 10 21,000
12 4 2 21,000
13 4 10 21,000

Table 5: CEM hyper-parameters tested for tuning the trajectory optimization. We conducted ten
rollouts for each parameter set and used the set with the highest average normalized performance
on the teacher demonstrations. Population size is determined by the number of environment inter-
actions. The number of elites for each CEM iteration is 10% of population size.

D Performance metrics for real-world cloth experiments

In this section, we explain the metrics for measuring performance of the cloth, to explain the
sim2real results discussed in Sec. 4.2.1

For CLOTH FOLD task, we measure performance at time t by the number of pixels of the top color
pixtop,t and bottom color pixbot,t of the flattened cloth, compared to the maximum number of pixels,
pixmax (Fig. 12).

For DRY CLOTH task, it is challenging to measure pixels on the sides and top of the plank. Moreover,
we could be double counting pixels if they are visible in both side and top views. Hence, we measure
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Parameter Description

State encoding Fully connected network (FCN)
2 hidden layers of 1024, ReLU activation

Image encoding
32x32 RGB input, with random crops.
CNN: 4 layers, 32 channels, stride 1, 3x3 kernel, leaky ReLU activation
FCN: 1 layer of 1024 neurons, tanh activation

Actor Fully connected network
2 hidden layers of 1024, leaky ReLU activation

Critic Fully connected network
2 hidden layers of 1024, leaky ReLU activation

Other parameters

Discount factor: γ = 0.9
Entropy loss weight: wE = 0.1
Entropy regularizer coefficient: α = 0.5
Batch size = 256
Replay buffer size = 600,000
RSI-IR probability = 0 (disabled)

Table 6: Hyper-parameters used in the LfD method (DMfD).
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Figure 12: Performance function for CLOTH FOLD on the real robot. At time t, we measure
the fraction of pixels visible to the maximum number of pixels visible ftop = pixtop,t/pixmax and
fbot = pixbot,t/pixmax. Performance for the top of the cloth should be 1 when it is not visible,
p(top) = 1 − ftop. Performance for the bottom of the cloth should be 1 when it is exactly half-
folded on top of the top side, p(bot) = min [2 (1− fbot) , 2fbot]. Final performance is an average
of both metrics, p(st) = p(top) + p(bottom)/2. Note that the cloth is flattened at the start, thus
pixmax = pixtop,0.
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the cloth to determine whether the length of the cloth on top of the plank is equal to or greater than
the side of the square cloth. We call this the spread metric.

The policies achieve ∼ 80% performance, which is about the average performance of our method in
simulation, for both tasks. However, since these performance metrics are different in the simulation
and real world, we cannot quantify the sim2real gap through these numbers.

E Collected dataset of teacher demonstrations

We have 100 demonstrations provided by the teacher, mentioned on Sec. 3.4. The diversity of the
task comes from the initial conditions for these demonstrations, which are sampled from the task
distribution vd ∼ V . This variability in the initial state adds diversity to the dataset. The quality and
performance of these teacher demonstrations were briefly discussed in the ablations (Sec. A.4).

All demonstrations come from a scripted policy. For ClothFold, the teacher has two end-effectors
and picks two corners of the cloth to move them towards the other two corners. For DryCloth, the
teacher has two end-effectors and picks two corners of the cloth to move them to the other side of
the rack. They maintain the same distance between each other during the move to ensure the cloth is
spread out when it hangs on the rack. For ThreeBoxes, the teacher has three end-effectors. It picks
up all the boxes simultaneously and places them in their respective goals.

F Random actions dataset used for training the dynamics model

We trained the dynamics model on random actions from various states, to cover the state-action
distributions our tasks would operate under.

For CLOTH FOLD, our random action policy is to pick a random cloth particle and move the particle
to a random goal location within the action space. For DRY CLOTH, the random action policy is to
pick a random cloth particle, and move it to a random goal location around the drying rack, to learn
cloth interactions around the rack. For completeness, we also trained a forward dynamics model for
the THREE BOXES task. Here, the random action policy is to pick the boxes in order and sample a
random place location within the action space.

Each task’s episode horizon is 3. Our actions are pick-and-place actions, and the action space is in
the full range of visibility of the camera. For DRY CLOTH, this limit is [−0.5, 0, 0.5] to [0.5, 0.7, 0.5].
For CLOTH FOLD it is [−0.9, 0, 0.9] to [0.9, 0.7, 0.9]. For THREE BOXES it is −0.1 to 1.35.
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