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Abstract

Many large language models (LLMs) for001
medicine have largely been evaluated on short002
texts, and their ability to handle longer se-003
quences such as a complete electronic health004
record (EHR) has not been systematically ex-005
plored. Assessing these models on long se-006
quences is crucial since prior work in the gen-007
eral domain has demonstrated performance008
degradation of LLMs on longer texts. Moti-009
vated by this, we introduce LONGBOX, a col-010
lection of seven medical datasets in text-to-text011
format, designed to investigate model perfor-012
mance on long sequences. Preliminary exper-013
iments reveal that both medical LLMs (e.g.,014
BioGPT) and strong general domain LLMs015
(e.g., FLAN-T5) struggle on this benchmark.016
We further evaluate two techniques designed017
for long-sequence handling: (i) local-global at-018
tention, and (ii) Fusion-in-Decoder (FiD). Our019
results demonstrate mixed results with long-020
sequence handling - while scores on some021
datasets increase, there is substantial room for022
improvement. We hope that LONGBOX facil-023
itates the development of more effective long-024
sequence techniques for the medical domain1.025

1 Introduction026

In recent years, the exponential increase in027

machine-readable text in the medical domain such028

as electronic health records (EHRs) has sparked a029

growing interest in the development of pretrained030

medical language models (Lewis et al., 2020). Over031

the years, many large language models (LLMs)032

have been developed in these domains such as033

BioGPT (Luo et al., 2022), BioMedLM (Venigalla034

et al., 2022), GatorTRONGPT (Peng et al., 2023)035

and MedPaLM (Singhal et al., 2022). These LLMs036

have been evaluated on a wide range of medical037

tasks, but most tasks have only involved short texts.038

Many real-world medical tasks on the other hand039

1Data and source code are available at <anonymous link>

require models to make predictions from longer 040

texts, such as a summary from a patient visit or 041

a series of EHRs for a patient, hence evaluating 042

performance on longer texts is crucial. While this 043

problem has been tackled in the general domain 044

(Shaham et al., 2022; Tay et al., 2021), model abil- 045

ity to handle long sequences in the clinical domain 046

is under-explored (More related work in App. A). 047

To tackle this, we propose LONGBOX, a col- 048

lection of seven carefully-curated clinical datasets, 049

which can measure performance of models on long 050

sequences, converted to a unified text-to-text for- 051

mat. LONGBOX incorporates three task types: 052

text classification, relation extraction and multi- 053

label classification, and several types of clinical 054

inputs such as discharge summaries and longitu- 055

dinal records. Most importantly, for all datasets, 056

input texts typically contains thousands of words. 057

We first benchmark the performance of widely 058

used high-performing LLMs on LONGBOX from 059

general domain: LLaMA-2 (Touvron et al., 2023), 060

GPT-Neo (Black et al., 2022), FLAN-T5 (Chung 061

et al., 2022) and from medical domain: SciFive 062

(Phan et al., 2021), In-BoXBART (Parmar et al., 063

2022), Clinical-T5 (Lu et al., 2022), BioGPT (Luo 064

et al., 2022), and BioMedLM (Venigalla et al., 065

2022). Our results reveal that these models strug- 066

gle on all datasets from LONGBOX achieving an 067

average score of ∼ 52%. Next we evaluate two 068

long sequence techniques that have shown promise 069

in the general domain: (i) local-global attention 070

(e.g., LongT5 (Guo et al., 2022)), and (ii) Fusion- 071

in-Decoder (FiD) (Izacard and Grave, 2021) (w/ 072

SciFive and Clinical-T5). These methods achieve 073

mixed results on LONGBOX, further highlighting 074

the need for our benchmark. We further evaluate 075

two long sequence clinical models, i.e., Clinical- 076

Longformer and Clinical-BigBird (results are dis- 077

cussed in App. D). We hope LONGBOX facilitates 078

the development of better long sequence handling 079

techniques for medical text. 080
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Dataset Document
Types

# of Samples Avg.
Tokens

Max.
TokensTrain Val Test

Smoking 2006 DS 358 40 104 1251.98 3858
Obesity 2008 DS 11552 805 7239 1920.47 4494

Assertions 2010 DS, PR 7073 1259 11013 2237.40 5805
Temporal RE DS 31513 2554 22643 1245.68 2866
RFHD 2014 LR 4243 280 2516 1194.14 4660

Cohort Selection LR 2626 1118 1118 6970.14 25637
ADE 2018 DS 36348 2346 20593 4356.43 11632

Table 1: An overview of document types used to create the dataset, along with a statistical analysis of each dataset.
DS: Discharge Summaries, PR: Progress Reports, LR: Longitudinal Records
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Figure 1: Cumulative distributions of input token
lengths for all LONGBOX datasets.

2 LongBoX081

LONGBOX contains seven clinical datasets curated082

from n2c2 NLP Research collection2:(1) Smoking083

Challenge 2006 (Uzuner et al., 2008), (2) Obe-084

sity Challenge 2008 (Uzuner, 2009), (3) Assertions085

Challenge 2010 (Uzuner et al., 2011), (4) Tempo-086

ral Relations 2012 (Sun et al., 2013), (5) Heart087

Disease 2014 (Kumar et al., 2015), (6) Cohort Se-088

lection 2018 (Stubbs et al., 2019), and (7) Adverse089

Drug Events (ADE) 2018 (Henry et al., 2020). Ta-090

ble 1 presents the type of input text, dataset splits,091

and token length statistics for each dataset, with092

further details in Appendix B.093

2.1 Qualitative Analysis094

Length Analysis: Table 1 presents the average095

and maximum input token lengths of test sets per096

dataset after tokenization with the RoBERTa-large097

tokenizer, which range from 1194-6970 and 2866-098

25637 respectively. Additionally, Figure 1 displays099

cumulative distributions of input token lengths for100

each dataset (cut off at 8k for visibility) - given a101

2https://portal.dbmi.hms.harvard.edu/projects/
n2c2-nlp/
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Figure 2: Average token length comparison between
GatorTron and RoBERTa for all LONGBOX datasets.

token length x, the Y-axis indicates the proportion 102

of inputs in the test set with token length ≤ x. 103

Despite considerable variation across datasets, the 104

maximum token limit for most LLMs (1024) is 105

within 40th percentile range for most datasets, and 106

most of instances in each dataset exceed 3k tokens. 107

Comparing input lengths under domain- 108

specific tokenizers (RoBERTa, BioMedLM, and 109

GatorTron): To assess whether clinical tokeniz- 110

ers significantly reduce text lengths over general 111

domain tokenizers, we compare text lengths post 112

tokenization by GatorTron (clinically-tailored), 113

BioMedLM (biomedically-tailored) and RoBERTa 114

(general domain). We tokenize test sets of all 115

datasets using these three tokenizers. Figure 2 116

presents average token lengths for the test set of 117

each dataset (on the X-axis) from LONGBOX. It is 118

evident that the clinical tokenizer generates shorter 119

token lengths compared to the biomedical and gen- 120

eral domain tokenizers, though differences are of- 121

ten small. We also observe that average token 122

lengths for biomedical vs. general tokenizer are 123

nearly similar. Notably, difference between average 124

token lengths for clinical vs. biomedical or general 125

tokenizers becomes larger as input length increases, 126

particularly observed in cohort selection. 127
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Enc.+Dec. Models Dec. Models
Dataset FLAN-T5 In-BoXBART SciFive Clinical-T5 GPT-Neo BioGPT BioMedLM LLaMA-2

Smoking 2006 55.77 58.65 60.58 64.41 3.85 56.73 2.89 38.46
Obesity 2008 68.28 71.86 71.86 70.55 51.50 33.21 71.86 84.78

Assertions 2010 68.86 67.95 67.83 68.17 61.07 63.77 67.83 73.09
Temporal RE 56.53 56.36 56.03 56.27 38.10 10.75 37.29 54.22
RFHD 2014 64.99 66.64 64.58 65.57 58.59 11.34 44.34 74.76

Cohort Selection 45.53 47.67 41.05 47.41 51.23 53.43 58.95 47.41
ADE 2018 19.07 17.62 19.22 18.56 9.70 4.96 8.79 23.97

Table 2: Performance of Enc.+Dec. and Dec. models on LONGBOX. All results are presented in %.

3 Experiments and Results128

3.1 Experimental Setup129

Models: We benchmark eight models from two130

architecture families: (i) four Encoder (Enc.) +131

Decoder (Dec.) models (FLAN-T5-Large from132

general domain; SciFive-Large, In-BoxBART, and133

Clinical-T5-Large from medical domain), and (ii)134

four Decoder (Dec.) only models (LLaMA-2-7B135

and GPT-Neo-1.3B from general domain; BioGPT-136

1.5B and BioMedLM-2.7B from medical domain).137

In addition, we evaluate two long sequence models.138

The first one is LongT5-Large, which enables a139

T5 encoder (Raffel et al., 2020) to more efficiently140

handle long sequences by leveraging local-global141

attention sparsity patterns. The second is Fusion-142

in-Decoder (FiD), which breaks each input into143

smaller chunks, encodes them using an encoder-144

decoder model and then fuses encoded chunks in145

the decoder while generating output. We experi-146

ment with both SciFive and Clinical-T5 as the base147

encoder-decoder models for FiD.148

Experimental Details: For all the models, we re-149

framed all the datasets as text generation tasks and150

provide every (input, output) pair in text-to-text for-151

mat. However, when training Dec. models using152

this setting (except for LLaMA-2), we observe poor153

performance in majority cases on classification and154

relation extraction - they either produce malformed155

labels or just generate continuations for the input156

text instead of generating the output label. While157

we did not investigate this deeper, this indicates158

that long inputs might be particularly problematic159

for Dec. models. Based on these observations,160

we further investigate a different setup for Dec.161

models (except LLaMA-2 since it achieves good162

performance in above setting) on these tasks: the163

final prediction is made by first encoding the in-164

put, then applying a classification head to the last165

token. Results are presented in Appendix C. All166

Enc.+Dec. and Dec. models have an input length167

of 1024 tokens, while LongT5 and FiD are evalu-168

ated with three different token lengths: 2048, 3072, 169

and 4096. More details are presented in App. E. 170

Metrics: For all classification and relation extrac- 171

tion tasks in LONGBOX, we report performance 172

using the Accuracy metric. However, for RFHD 173

2014, which is the only dataset for multi-label clas- 174

sification, we use the F1-score metric. For Dec. 175

models, we report lenient accuracy for all tasks, 176

which post-processes predictions to exclude any un- 177

necessary text generated aside from the predicted 178

label to determine the final accuracy. 179

3.2 Results 180

Table 2 presents the performance of all general and 181

medical domain LLMs (baseline models) bench- 182

marked on LONGBOX, while Tables 3 and 4 show 183

the performance of the two long sequence tech- 184

niques we test. 185

Baseline Models: Table 2 shows that overall, av- 186

erage performance of all benchmarked models on 187

LONGBOX is low (∼ 52%). Among Enc.+Dec. 188

models, medical LLMs generally outperform gen- 189

eral domain models on most datasets (five of seven), 190

and are competitive with each other. For Dec. only 191

models, we see the reverse - LLaMA-2 outperforms 192

medical LLMs on most datasets (five of seven). We 193

also observe that all models consistently exhibit 194

lower scores on datasets with higher input lengths 195

such as ADE 2018 and Cohort Selection (see Table 196

1 for lengths), indicating that long input techniques 197

could help. Lastly, as model size increases, we see 198

that capability to handle longer texts improves; for 199

instance LLaMA-2 (7B) improves results on five of 200

seven datasets, compared to other models (<2.7B). 201

Long Sequence Techniques: From Table 3 and 202

Table 4, we see that adding more input context pro- 203

vides mixed results - only improving performance 204

over baseline models on some datasets. We also 205

observe that performance on many datasets contin- 206

ues to improve with increasing input length (from 207

2048 to 4096 tokens). We further qualitatively 208

analyze the mixed performance of long sequence 209
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FiD (w/SciFive) FiD (w/ClinicalT5)
Dataset 2048 3072 4096 2048 3072 4096

Smoking 2006 60.26 0.32% ↓ 62.03 1.45% ↑ 64.42 3.84% ↑ 56.73 3.53% ↓ 60.58 1.45% ↓ 60.58 3.84% ↓
Obesity 2008 64.82 7.04% ↓ 71.32 0.54% ↓ 73.15 1.29% ↑ 64.36 0.46% ↓ 73.00 1.68% ↑ 74.20 1.05% ↑

Assertions 2010 67.14 0.69% ↓ 66.95 0.88% ↓ 66.71 1.12% ↓ 66.71 0.43% ↓ 66.92 0.03% ↓ 67.06 0.35% ↑
Temporal RE 58.81 2.78% ↑ 60.17 4.14% ↑ 63.21 7.18% ↑ 58.37 0.44% ↓ 60.53 0.36% ↑ 63.79 0.58% ↑
RFHD 2014 70.65 5.98% ↑ 76.16 11.6% ↑ 78.60 14.0% ↑ 60.65 10.0% ↓ 65.46 10.7% ↓ 68.76 9.84% ↓

Cohort Selection 48.66 7.61% ↑ 46.87 5.82% ↑ 44.28 3.23% ↑ 48.12 0.54% ↓ 46.51 0.36% ↓ 46.33 2.23% ↑
ADE 2018 17.58 1.64% ↓ 29.15 9.93% ↑ 46.94 27.7% ↑ 17.73 0.15% ↑ 29.36 0.21% ↓ 47.07 0.13% ↑

Table 3: Performance of long document techniques, FiD (w/SciFive) and FiD (w/ClinicalT5), on LONGBOX. All
results are presented in %. Green indicates improvement and red indicates degradation in performance comparison
between the SciFive vs. FiD (w/SciFive) and FiD (w/ClinicalT5) vs. FiD (w/SciFive).

LongT5
Dataset 2048 3072 4096

Smoking 2006 53.85 10.6% ↓ 58.65 5.76% ↓ 55.77 8.64% ↓
Obesity 2008 71.87 0.01% ↑ 76.79 4.93% ↑ 77.73 5.87% ↑

Assertions 2010 67.85 1.01% ↓ 68.07 0.79% ↓ 67.76 1.10% ↓
Temporal RE 60.73 4.20% ↑ 57.96 1.43% ↑ 72.89 15.4% ↑
RFHD 2014 45.07 21.6% ↓ 45.32 21.3% ↓ 44.44 22.2% ↓

Cohort Selection 56.35 0.54% ↑ 57.70 10.1% ↑ 48.30 0.63% ↑
ADE 2018 18.12 1.10% ↓ 17.83 1.39% ↓ 46.58 27.4% ↑

Table 4: Performance of long document technique
LongT5 on LONGBOX. All results are presented in %.
Green indicates improvement and red indicates degra-
dation in performance compared to the best performing
Enc.+Dec. model from Table 2.

techniques.210

Clinical vs Biomedical Base Models for FiD: Ta-211

ble 3 shows that clinical pretraining shows marginal212

improvements over using FiD with a biomedical213

base model on some datasets with the largest in-214

put token length (4096). We also observe that FiD215

(w/ClinicalT5) shows mixed performance on many216

datasets for 2048 and 3072 input token lengths.217

3.3 Qualitative Analysis218

Why is LONGBOX difficult for long document219

models? We first perform a qualitative error anal-220

ysis on one dataset on which long input techniques221

provide no improvement over baselines: cohort se-222

lection. We randomly sample 50 cases which both223

techniques get wrong and observe three categories224

of errors. The first one is caused due to very few225

and/or late occurrences (i.e., outside our maximum226

length of 4096 tokens) of informative cues needed227

for the task. The second one stems from a lack of228

awareness of EHR document structure (e.g., fam-229

ily history does not contain conditions present in230

current patient) or ability to deal with longitudinal231

records (e.g., later test results override earlier ones).232

The third category is not caused due to input length, 233

but rather consists of errors caused by the presence 234

of comorbidities, similar symptoms, etc., which 235

require precise clinical inference. 236

Why do models lag behind human performance? 237

Despite mixed results, long document techniques 238

do improve perfomance on some datasets, but lag 239

behind human performance. We analyze 50 ran- 240

domly sampled error cases from one dataset (obe- 241

sity 2008) and observe the same three error cate- 242

gories, with ∼80% errors falling into the third cat- 243

egory (requiring precise clinical inference). This 244

indicate two potential avenues to push performance 245

on LONGBOX: (i) exploring relevant sentence se- 246

lection in addition to increased context length, and 247

(ii) developing pretraining/finetuning techniques to 248

equip models with the ability to handle document 249

structure and longitudinality. 250

4 Conclusions 251

We introduced LONGBOX, a collection of seven 252

carefully curated clinical datasets, aimed to com- 253

prehensively and systematically investigate perfor- 254

mance of clinical LMs on long texts. LONGBOX 255

covers three task types: text classification, rela- 256

tion extraction and multi-label classification and 257

various input types like longitudinal records and 258

discharge summaries. We benchmark the perfor- 259

mance of eight general and medical domains LLMs 260

on LONGBOX, and show that they do not achieve 261

good performance. We also investigate two long 262

sequence techniques and our results reveal that 263

though these methods provide some benefit, there is 264

substantial room for improvement. We believe that 265

LONGBOX can serve as an important benchmark 266

for developing long sequence techniques tailored 267

to the clinical domain. 268
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Limitations269

Currently, LONGBOX is limited in terms of task270

variety since it primarily consists of different types271

of classification tasks. This is largely because it is272

challenging to find shareable datasets across vari-273

ous task types in the clinical domain, but we plan274

to further increase task variety in this benchmark.275

Additionally, we hope to expand our analysis to in-276

clude the most recent large language models such277

as GPT-4 and ChatGPT on LONGBOX. Our ob-278

servation that existing long document models still279

struggle on LONGBOX, also suggests that it may280

be interesting to conduct detailed analysis of differ-281

ent aspects such as model understanding of clinical282

document structure and better clinical tokenization,283

which we have left to future work.284

References285

Sidney Black, Stella Biderman, Eric Hallahan, Quentin286
Anthony, Leo Gao, Laurence Golding, Horace287
He, Connor Leahy, Kyle McDonell, Jason Phang,288
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-289
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and290
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-291
source autoregressive language model. In Proceed-292
ings of BigScience Episode #5 – Workshop on Chal-293
lenges & Perspectives in Creating Large Language294
Models, pages 95–136, virtual+Dublin. Association295
for Computational Linguistics.296

Samuel Cahyawijaya, Bryan Wilie, Holy Lovenia, Huan297
Zhong, MingQian Zhong, Yuk-Yu Nancy Ip, and298
Pascale Fung. 2022. How long is enough? explor-299
ing the optimal intervals of long-range clinical note300
language modeling. In Proceedings of the 13th In-301
ternational Workshop on Health Text Mining and302
Information Analysis (LOUHI), pages 160–172, Abu303
Dhabi, United Arab Emirates (Hybrid). Association304
for Computational Linguistics.305

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-306
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi307
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.308
2022. Scaling instruction-finetuned language models.309
arXiv preprint arXiv:2210.11416.310

Zican Dong, Tianyi Tang, Lunyi Li, and Wayne Xin311
Zhao. 2023. A survey on long text modeling with312
transformers. arXiv preprint arXiv:2302.14502.313

Quentin Fournier, Gaétan Marceau Caron, and Daniel314
Aloise. 2021. A practical survey on faster and lighter315
transformers. ACM Computing Surveys.316

Mandy Guo, Joshua Ainslie, David Uthus, Santiago On-317
tanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei Yang.318
2022. LongT5: Efficient text-to-text transformer for319
long sequences. In Findings of the Association for320

Computational Linguistics: NAACL 2022, pages 724– 321
736, Seattle, United States. Association for Compu- 322
tational Linguistics. 323

Sam Henry, Kevin Buchan, Michele Filannino, Amber 324
Stubbs, and Ozlem Uzuner. 2020. 2018 n2c2 shared 325
task on adverse drug events and medication extraction 326
in electronic health records. Journal of the American 327
Medical Informatics Association, 27(1):3–12. 328

Gautier Izacard and Edouard Grave. 2021. Leveraging 329
passage retrieval with generative models for open do- 330
main question answering. In Proceedings of the 16th 331
Conference of the European Chapter of the Associ- 332
ation for Computational Linguistics: Main Volume, 333
pages 874–880, Online. Association for Computa- 334
tional Linguistics. 335

Amy JH Kind and Maureen A Smith. 2008. Documen- 336
tation of mandated discharge summary components 337
in transitions from acute to subacute care. Advances 338
in patient safety: new directions and alternative ap- 339
proaches (Vol. 2: culture and redesign). 340

Vishesh Kumar, Amber Stubbs, Stanley Shaw, and 341
Özlem Uzuner. 2015. Creation of a new longitudinal 342
corpus of clinical narratives. Journal of biomedical 343
informatics, 58:S6–S10. 344

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy- 345
anov. 2020. Pretrained language models for biomedi- 346
cal and clinical tasks: Understanding and extending 347
the state-of-the-art. In Proceedings of the 3rd Clini- 348
cal Natural Language Processing Workshop, pages 349
146–157, Online. Association for Computational Lin- 350
guistics. 351

Yikuan Li, Ramsey M Wehbe, Faraz S Ahmad, Hanyin 352
Wang, and Yuan Luo. 2022. Clinical-longformer 353
and clinical-bigbird: Transformers for long clinical 354
sequences. arXiv preprint arXiv:2201.11838. 355

Qiuhao Lu, Dejing Dou, and Thien Nguyen. 2022. Clin- 356
icalT5: A generative language model for clinical 357
text. In Findings of the Association for Computa- 358
tional Linguistics: EMNLP 2022, pages 5436–5443, 359
Abu Dhabi, United Arab Emirates. Association for 360
Computational Linguistics. 361

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng 362
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022. 363
Biogpt: generative pre-trained transformer for 364
biomedical text generation and mining. Briefings 365
in Bioinformatics, 23(6). 366

Mihir Parmar, Swaroop Mishra, Mirali Purohit, Man 367
Luo, Murad Mohammad, and Chitta Baral. 2022. In- 368
BoXBART: Get instructions into biomedical multi- 369
task learning. In Findings of the Association for Com- 370
putational Linguistics: NAACL 2022, pages 112–128, 371
Seattle, United States. Association for Computational 372
Linguistics. 373

Cheng Peng, Xi Yang, Aokun Chen, Kaleb E Smith, 374
Nima PourNejatian, Anthony B Costa, Cheryl Martin, 375
Mona G Flores, Ying Zhang, Tanja Magoc, et al. 376

5

https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://aclanthology.org/2022.louhi-1.19
https://aclanthology.org/2022.louhi-1.19
https://aclanthology.org/2022.louhi-1.19
https://aclanthology.org/2022.louhi-1.19
https://aclanthology.org/2022.louhi-1.19
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2022.findings-naacl.55
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2021.eacl-main.74
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2022.findings-emnlp.398
https://doi.org/10.18653/v1/2022.findings-emnlp.398
https://doi.org/10.18653/v1/2022.findings-emnlp.398
https://doi.org/10.18653/v1/2022.findings-emnlp.398
https://doi.org/10.18653/v1/2022.findings-emnlp.398
https://doi.org/10.18653/v1/2022.findings-naacl.10
https://doi.org/10.18653/v1/2022.findings-naacl.10
https://doi.org/10.18653/v1/2022.findings-naacl.10
https://doi.org/10.18653/v1/2022.findings-naacl.10
https://doi.org/10.18653/v1/2022.findings-naacl.10


2023. A study of generative large language model377
for medical research and healthcare. arXiv preprint378
arXiv:2305.13523.379

Long N Phan, James T Anibal, Hieu Tran, Shaurya380
Chanana, Erol Bahadroglu, Alec Peltekian, and Gré-381
goire Altan-Bonnet. 2021. Scifive: a text-to-text382
transformer model for biomedical literature. arXiv383
preprint arXiv:2106.03598.384

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine385
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,386
Wei Li, and Peter J Liu. 2020. Exploring the limits387
of transfer learning with a unified text-to-text trans-388
former. The Journal of Machine Learning Research,389
21(1):5485–5551.390

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori391
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,392
Mor Geva, Jonathan Berant, and Omer Levy. 2022.393
SCROLLS: Standardized CompaRison over long lan-394
guage sequences. In Proceedings of the 2022 Con-395
ference on Empirical Methods in Natural Language396
Processing, pages 12007–12021, Abu Dhabi, United397
Arab Emirates. Association for Computational Lin-398
guistics.399

Yuqi Si and Kirk Roberts. 2021. Three-level hierarchi-400
cal transformer networks for long-sequence and mul-401
tiple clinical documents classification. arXiv preprint402
arXiv:2104.08444.403

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-404
davi, Jason Wei, Hyung Won Chung, Nathan Scales,405
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,406
et al. 2022. Large language models encode clinical407
knowledge. arXiv preprint arXiv:2212.13138.408

Amber Stubbs, Michele Filannino, Ergin Soysal,409
Samuel Henry, and Özlem Uzuner. 2019. Cohort410
selection for clinical trials: n2c2 2018 shared task411
track 1. Journal of the American Medical Informatics412
Association, 26(11):1163–1171.413

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.414
Evaluating temporal relations in clinical text: 2012415
i2b2 challenge. Journal of the American Medical416
Informatics Association, 20(5):806–813.417

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,418
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,419
Sebastian Ruder, and Donald Metzler. 2021. Long420
range arena: A benchmark for efficient transformers.421
In International Conference on Learning Representa-422
tions.423

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-424
zler. 2022. Efficient transformers: A survey. ACM425
Computing Surveys, 55(6):1–28.426

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-427
bert, Amjad Almahairi, Yasmine Babaei, Nikolay428
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti429
Bhosale, et al. 2023. Llama 2: Open founda-430
tion and fine-tuned chat models. arXiv preprint431
arXiv:2307.09288.432

Özlem Uzuner. 2009. Recognizing obesity and comor- 433
bidities in sparse data. Journal of the American Med- 434
ical Informatics Association, 16(4):561–570. 435

Özlem Uzuner, Ira Goldstein, Yuan Luo, and Isaac Ko- 436
hane. 2008. Identifying patient smoking status from 437
medical discharge records. Journal of the American 438
Medical Informatics Association, 15(1):14–24. 439

Özlem Uzuner, Brett R South, Shuying Shen, and 440
Scott L DuVall. 2011. 2010 i2b2/va challenge on 441
concepts, assertions, and relations in clinical text. 442
Journal of the American Medical Informatics Associ- 443
ation, 18(5):552–556. 444

A Venigalla, J Frankle, and M Carbin. 2022. Biomedlm: 445
a domain-specific large language model for biomedi- 446
cal text. MosaicML. Accessed: Dec, 23:3. 447

6

https://aclanthology.org/2022.emnlp-main.823
https://aclanthology.org/2022.emnlp-main.823
https://aclanthology.org/2022.emnlp-main.823
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k


A Related Work448

Prior work in the general domain has developed449

benchmarks to evaluate the ability of transformer-450

based models to handle long sequence tasks (Tay451

et al., 2021; Shaham et al., 2022). These bench-452

marks motivated the design of several techniques453

capable of handling long input sequences (see454

Dong et al. (2023); Tay et al. (2022); Fournier455

et al. (2021) for detailed surveys), which can456

broadly be divided into two categories: (i)457

architecture-focused approaches (e.g., developing458

sparse or hierarchical attention mechanisms), and459

(ii) data-focused approaches (e.g., chunking or sub-460

selecting input). However, most of these methods461

have not been systematically and broadly tested in462

the clinical domain due to the lack of a comprehen-463

sive benchmark which we try to address.464

In the clinical domain, some prior work has465

explored architecture-focused long document ap-466

proaches (Si and Roberts, 2021; Li et al., 2022;467

Cahyawijaya et al., 2022), however, their evalua-468

tion is limited to a handful of tasks. LONGBOX,469

on the other hand, covers a broad range of tasks470

and datasets in the clinical domain with longer in-471

put token lengths (> 5k in many cases) for more472

comprehensive and systematic evaluation.473

B Benchmark Details474

We provide a comprehensive overview of all475

datasets in LONGBOX, along with descriptions of476

diverse document types that were annotated to cre-477

ate these datasets.478

B.0.1 Document Types479

Discharge Summaries are clinical notes contain-480

ing details about why a person was admitted, di-481

agnosis, medical regimen and response to their di-482

agnosis, medical condition at discharge time, and483

after discharge care such as medications to continue484

at home (Kind and Smith, 2008). These summaries485

are in long text format but often not organized.486

Progress Reports are clinical documents that487

form the basis of the next plan of treatment. They488

consist of assessment, diagnosis, planning, inter-489

vention, and evaluation sections.490

Longitudinal Records are clinical documents491

that aggregate information from various sources in492

the health care system.493

B.0.2 Dataset Overview 494

Smoking 2006 (Uzuner et al., 2008): Given dis- 495

charge summaries for patients, the task is to cat- 496

egorize the smoking status of a patient into: (1) 497

Past Smoker, (2) Current Smoker, (3) Smoker, (4) 498

Non-Smoker, and (5) Unknown. This dataset was 499

released as part of the n2c2 challenge in 2006. 500

Obesity 2008 (Uzuner, 2009): Based on dis- 501

charge summaries, the task is to determine the pres- 502

ence of 15 different diseases such as asthma, and 503

diabetes, which are potential indicators of obesity. 504

The goal here is to categorize the presence of dis- 505

ease into: (1) Present, (2) Absent, (3) Questionable, 506

and (4) Unmentioned. This dataset was released as 507

part of the n2c2 challenge in 2008. 508

Assertions 2010 (Uzuner et al., 2011): Given 509

discharge summaries as well as progress reports 510

of patients, the task is to classify the occurrence 511

of a concept into 6 categories: (1) Present, (2) Ab- 512

sent, (3) Hypothetical, (4) Possible, (5) Associated 513

with someone else, and (6) Conditional. The con- 514

cept can be medical problems, treatments, and tests. 515

This dataset was released as part of the n2c2 chal- 516

lenge in 2010. 517

Temporal Relations 2012 (Sun et al., 2013): The 518

dataset consists of discharge summaries. Given a 519

clinically significant event and time entity, the task 520

is to find the type of relationship between them - 521

BEFORE (event happens before given temporal ex- 522

pression), AFTER (event happens after given tem- 523

poral expression), SIMULTANEOUS (event hap- 524

pens on given temporal expression), OVERLAP 525

(event overlaps with temporal expression), BE- 526

GUN_BY (event started on given temporal expres- 527

sion), ENDED_BY (event ended on given temporal 528

expression), DURING (event happens during given 529

temporal expression), and BEFORE_OVERLAP 530

(event started before and lasts during given tempo- 531

ral expression). This dataset was released as part 532

of the n2c2 challenge in 2012. 533

Heart Disease 2014 (Kumar et al., 2015): This 534

dataset consists of longitudinal medical records. 535

The task here is to find indicators of a given condi- 536

tion in the text and classify them into "Present" and 537

"Not present". For instance, the indicator for Di- 538

abetes can be different aspects such as the patient 539

mentioning having diabetes, high glucose, and high 540

HBA1c levels. This dataset was released as part of 541

the n2c2 challenge in 2014. 542
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Dataset RoBERTa Clinical-Longformer Clinical-BigBird

512 2048 3072 4096 2048 3072 4096

Smoking 2006 61.54 63.46 56.73 59.62 78.85 80.77 82.69
Obesity 2008 71.86* 71.86* 71.86* 71.86* 71.86* 71.86* 71.86*

Assertions 2010 67.84* 72.52 67.84* 75.00 67.84* 67.84* 77.46
Temporal RE 54.01* 54.01* 54.01* 54.01* 55.75 54.01* 58.3

Cohort Selection 58.95* 58.95* 56.08 58.95* 58.95* 58.95* 57.87
ADE 2018 17.65* 17.65* 17.65* 18.01 17.65* 17.65* 17.65*

Table 5: Performance of RoBERTa-large, Clinical-Longformer, and Clinical-BigBird models on LONGBOX. All
results are presented in %. * denotes that the model has only generated labels corresponding to the majority classes.

Cohort Selection (Stubbs et al., 2019): In this543

dataset, the goal is to classify whether a patient544

meets or does not meet specific criteria for partici-545

pation in clinical trials. Clinical trials have certain546

criteria for including a patient in the trial group.547

The dataset includes 13 defined criteria such as548

MAJOR-DIABETES (Major diabetes-related com-549

plication), ALCOHOL-ABUSE (Current alcohol550

use over weekly recommended limits), and EN-551

GLISH (Patient must speak English). This dataset552

was released as part of the n2c2 challenge in 2018.553

ADE 2018 (Henry et al., 2020): Given discharge554

summaries, the task here is to classify the rela-555

tionship between a drug and another related en-556

tity such as Strength-Drug (e.g., 20mg), Dosage-557

Drug (e.g., 1 tab per day), Duration-Drug (e.g., 5-558

day course), Frequency-Drug (e.g., every 4-6 hrs),559

Form-Drug (e.g., tablet, capsule), Route-Drug (e.g.,560

intraperitoneal, IM), Reason-Drug (reason/disease561

for which the medication is prescribed), and ADE-562

Drug (side effect caused by the drug). This was563

another dataset released as part of the n2c2 chal-564

lenge in 2018.565

C Additional Results - Dec. Models566

In this section, we provide results for our further567

investigation on a different setup for Dec. models568

on LONGBOX: the final prediction is made by first569

encoding the input, then applying a classification570

head to the last token. Results are presented in571

Table 6. From the Table 6, it is evident that apply-572

ing a classification head to the last token improve573

the model performances in majority tasks by large574

margin.575

D Additional Results - Long Sequence576

Clinical Models577

In this section, we present an evaluation of long se-578

quence clinical models - Clinical LongFormer and579

Dataset GPT-Neo BioGPT BioMedLM

Smoking 2006 58.65 54.8% ↑ 59.62 2.89% ↑ 50.58 47.69% ↑
Obesity 2008 73.08 21.58% ↑ 71.86 38.65% ↑ 71.75 0.11% ↓

Assertions 2010 70.87 9.8% ↑ 67.63 3.86% ↑ 66.01 1.82% ↓
Temporal RE 46.37 8.27% ↑ 48.54 37.79% ↑ 48.96 11.67% ↑
RFHD 2014 34.13 24.46% ↓ 2.9 8.44% ↓ 33.98 10.36% ↑

Cohort Selection 55.90 4.67% ↑ 51.52 1.91% ↓ 46.60 12.35% ↓
ADE 2018 21.95 12.25% ↑ 17.46 12.5% ↑ 17.29 8.5% ↑

Table 6: Comparison of different approach for Dec.
models on LONGBOX w.r.t. Table 2. All results are
presented in %.

Clinical BigBird (Li et al., 2022). Given that these 580

models are based on the RoBERTa encoder-only 581

architecture, we compare their performance against 582

the RoBERTa-large model. It’s well-known that 583

smaller models are susceptible to class imbalance, 584

and our findings reflect this trend: in the majority 585

of cases, these models predominantly predict la- 586

bels corresponding to the majority class only. Our 587

evaluation specifically focuses on single-label tasks 588

within the LONGBOX. As our primary objective is 589

to assess these models on the LONGBOX and em- 590

phasize the necessity of our benchmark, we intend 591

to conduct further experiments aimed at enhancing 592

their performance in future. 593

E Additional Experimental Setup 594

For better comparability, we use the same hyperpa- 595

rameter settings for all runs: training is run for 3 596

epochs, with a batch size of 32 and an initial learn- 597

ing rate of 5e-5. The experiments were conducted 598

on A6000 and A100 NVIDIA GPUs. 599
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