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Abstract
Multi-modal learning has become increasingly popular due to its ability to leverage1

information from different data sources. Recently, CLIP has emerged as an effective2

approach that employs vision-language contrastive pretraining to learn joint image3

and text representations and exhibits remarkable performance in zero-shot learning4

and text-guided natural image generation. Despite the huge practical success of5

CLIP, its theoretical understanding remains elusive. In this paper, we formally6

study transferrable representation learning underlying CLIP and demonstrate how7

features from different modalities get aligned. We also analyze its zero-shot transfer8

performance on the downstream tasks. Inspired by our analysis, we propose a9

new CLIP-type approach, which achieves better performance than CLIP and other10

state-of-the-art methods on benchmark datasets.11

1 Introduction12

Recently, CLIP (Radford et al., 2021) emerged as a milestone work that leverages vision-language con-13

trastive pretraining to jointly learn image and text embeddings, using the vast amounts of image-text14

data available on the web. This approach has achieved remarkable success in zero-shot transfer (Lei Ba15

et al., 2015). Inspired by CLIP’s groundbreaking zero-shot capabilities, subsequent studies (Yao16

et al., 2022; Li et al., 2022; Mu et al., 2022; Goel et al., 2022; Zhai et al., 2022; Alayrac et al., 2022)17

emerged with the primary objective of further enhancing CLIP’s zero-shot performance. Despite18

the empirical success of CLIP in zero-shot transfer, the theoretical understanding of how it works19

remains elusive.20

This paper delves into the mechanisms through which CLIP learns transferable representations and21

demonstrates how such representations ensure successful zero-shot transfer for downstream tasks.22

We present our theoretical result for transferable representation learning in CLIP and summarize our23

contributions as follows.24

• We theoretically examine transferable representation learning in CLIP. Our analysis shows that if a25

near-optimal network is obtained on the training data, features from different modalities become26

aligned, enabling zero-shot learning if appropriate prompts are issued.27

• Building upon our general theoretical findings, we delve deeper into specific cases. We illustrate28

how multi-modal learning aligns different features and reveal when the learned features obtained29

by CLIP can outperform those obtained through naive square loss.30

• We conduct experiments on real data to confirm our theoretical predictions. Furthermore, inspired31

by our theoretical findings, we propose a new regularization technique for CLIP that effectively32

leads to improved zero-shot performance.33

2 Problem Setting and Preliminaries34

2.1 Data Distribution35

In our paper, we focus on the setting where the image x and the text y are conditionally independent36

given the shared feature z.37
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Assumption 2.1. Let (x,y) be generated from the joint distribution Dx×y. We assume z to be38

a shared feature of x,y satisfying x ⊥ y|z, and further denote (x,y, z) that follows the joint39

distribution Dx×y×z with marginal distributions Dx×z,Dy×z. We further assume z to be a discrete40

and sparse random variable z ∈ V = {v1, . . . ,vK} with pk := P(z = vk).41

2.2 Learning via Contrastive Loss42

The CLIP architecture has three main components: (i) an image encoder network g that can encode43

the image x into the embedding g(x) ∈ Rd; (ii) a text encoder network h that can encode the44

text y into an embedding vector h(y) ∈ Rd; and (iii) a score function f(x,y) = sim(g,h) that45

measures the similarity between the image x and the text y given their embeddings g,h
(
e.g.,46

f(x,y) = ⟨g(x),h(y)⟩
)
. During the training, we will sample a batch of image-captions pairs47

S′ = {xi,yi}Bi=1 ⊆ S. The contrastive loss in CLIP aims to align the image representation g(x) and48

text representations h(y) by minimizing the empirical version of the following population loss,49

LDB (f, τ) = E
[
log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+ E
[
log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]
, (2.1)

where τ > 0 is a temperature parameter and the expectation is taken with respect to all B random50

pairs (xt,yt) i.i.d. sampled from Dx×y. Therefore, CLIP learns the score function f with the51

corresponding representations g and h by minimizing LDB (f, τ). In fact, we can divide the training52

dataset S into n batches ∪k∈[n]Sk. Further discussion of problem setting is deferred to Appendix B.53

3 Zero-shot Transfer54

The key idea of CLIP is to pull the embeddings of positive image-text pairs together while pushing the55

embeddings of negative pairs apart. For the data pair (x,y′) generated with x ∼ Dx|z,y
′ ∼ Dx|z′ ,56

(x,y′) is a positive pair if z = z′ and a negative pair if z ̸= z′.57

Assumption 3.1 ((α, β, γ)-Completeness). There exists a score function f∗ bounded by 1 (i.e.,58

|f∗| ≤ 1) with f∗ = sim(g∗,h∗) satisfying the following properties,59

• For any z ̸= z′, let x ∼ Dx|z,y ∼ Dy|z,x
′ ∼ Dx′|z′ ,y′ ∼ Dy′|z′ . With probability at least 1− α,60

we have f∗(x′,y) ≤ f∗(x,y)− γ and f∗(x,y′) ≤ f∗(x,y)− γ.61

• Let (x,y, z) ∼ Dx×y×z, assume E(y,z)

[
Varx|z(f∗(x,y))

]
,E(x,z)

[
Vary|z(f∗(x,y))

]
≤ β.62

Further discussion on Assumption 3.1 can be found in Appendix G. In the zero-shot transfer task, we63

have K prompts {yk, k ∈ [K]} where yk ∼ Dy|vk
. For a new image x generated from Dx, we want64

to predict the label of the shared feature z in x. The following theorem provides the guarantee of65

zero-shot transfer learning for CLIP.66

Theorem 3.2 (Informal). Suppose Assumption 3.1 hold and we can find an ϵ approximate minimum67

f̂ ∈ F with respect to the temperature τ such that f̂ is bounded by M and68

LDB (f̂ , τ) ≤ LDB (f∗, τ) + ϵ. (3.1)

For the zero-shot downstream task, we calculate the similarity score f̂(x,yk) for all k ∈ [K] and pick69

the indices of the top-r scores within the set {f̂(x,yk)} as the predictions of the image x. The top-r70

error is bounded by ϵ′/ log(1 + r), where ϵ′ = (CB + 2) ·
[
ϵ+ Cτ−1MBα+ Cτ−1(βMB)1/3 +71

2B exp(−γ/τ)
]

and C = Õ(1), CB = Õ(maxk p
−1
k /B).72

A formal discussion is presented in Appendix G and H. Next, we will introduce a specific problem to73

illustrate how CLIP can learn transferable features with distinguishable margins, which is hard to74

achieve by simple square loss.75

Definition 3.3 (A Case Study). Let shared feature z ∈ RK1 be random variable uniformly drawn from76

the set V = {v1, . . . ,vK} where ∥vk∥2 = 1, maxk ̸=k′⟨vk,v
′
k⟩ = 1 − γ. Let ξ ∈ RK2 , ζ ∈ RK377

be unique random features satisfying ∥ξ∥2, ∥ζ∥2 ≤ R and are mutually independent given z. The78

image-text pair is generated as79

x = G

[
z
ξ

]
= G1z+G2ξ, y = H

[
z
ζ

]
= H1z+H2ζ,
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where G ∈ Rd1×(K1+K2) is the image dictionary with full rank (K1 +K2), H ∈ Rd2×(K1+K3) is80

the text dictionary with full rank (K1 +K3).81

We verify Assumptions 3.1 for the specified distribution in Appendix H. The following theorem gives82

convergence guarantees for CLIP and provides the upper bound of its zero-shot transfer error.83

Theorem 3.4. For sufficiently large n, set the learning rate η = O(ϵτ2∥G∥−2∥H∥−2
2 (1 + R)−4),84

gradient descent can find Ŵ within 4∥W(0) − W∗∥2F /(ηϵ) iterations such that LDB (f̂ , τ) ≤85

LDB (f∗, τ) + ϵ where f̂ = ⟨Ŵx,y⟩. In addition, the top-r zero-shot transfer error is bounded by86

ϵ′/ log(1 + r), where ϵ′ = (CB + 2) ·
[
ϵ+ 2B exp(−γ/τ)

]
and CB = Õ(K/B).87

Square Loss Fails Zero-Shot Learning. Suppose square loss E[∥g(x)− y∥22] is used to learn the88

embedding g, We find that even if we can train with population risk and get the Bayesian optimal89

predictor, the learned representation g is not suitable for the zero-shot transfer. We consider the data90

introduced in Definition 3.3 for the following.91

Theorem 3.5. The Bayesian optimal representation g is g(x) = H

[
z

E[ζ|z]

]
.92

The following corollary formally states the negative result.93

Corollary 3.6. For the distribution in Definition 3.3 with H =

[
I
0

]
, margin γ < 1/3, text unique94

feature ζ ∈ RK3 drawn from {e1, e2} with probability 1/3, 2/3 respectively. Then, the zero-shot95

top-1 error is at least 1/(3K) under various similarity scores, including cosine similarity.96

Remark 3.7. By Theorem 3.4, we can achieve arbitrarily small top-1 error by CLIP as long as ϵ and97

τ are sufficiently small. However, for the representation learned from the square loss, the top-1 error98

is at least a constant even if we can achieve the Beyasian optimal predictor.99

4 Learn Better Representation via Regularization100

In Corollary 3.2, we know that CLIP can achieve a small error for zero-shot transfer tasks. In this101

section, we investigate how large the margin can be achieved between different features z’s. Under102

the same condition of Corollary 3.2, we present the following corollary.103

Corollary 4.1. Suppose the result of Theorem G.1 holds for the learned similarity function f̂ . We104

calculate the similarity score f̂(x,yk) for all k ∈ [K]. Then with probability at least 1 − 4ϵ′, the105

top-1 result gives the correct answer with a margin τ .106

Here, the margin depends on the temperature parameter τ . Note that we only achieve the margin107

with τ instead of γ guaranteed in the Assumption 3.1. This indicates a theoretical gap in the learned108

margin.109

Theorem 4.2. Under the same condition as Theorem 3.4, there exists a special case with initialization110

W(0), such that when we train the model with polynomial iterations T = poly(η−1, ϵ, d1, d2), with111

probability at least 0.99, the top-1 result can only give the correct answer with a margin Õ(τ).112

Such a phenomenon also exists in real data: the margin will decrease when temperature τ decreases113

(see Figure 1). To obtain a larger margin, we propose to use the following regularization,114

R(f) = − 1

|S|
∑

(x,y)∈S

f(x,y).

The following theorem shows that the regularization can improve the margin.115

Theorem 4.3. Under the same condition as Theorem 4.2, with sufficiently small τ and appropriately116

chosen λ, within polynomial iterations T = poly(η−1, ϵ, d1, d2), we can find a score function f̂ with117

large margin. In particular, with a probability of at least 0.99, the top-1 result gives the correct label118

with a margin Ω̃(γ).119

5 Experiments120

Datasets. For performance evaluation, we consider Conceptual Captions 3M (CC3M) (Sharma121

et al., 2018) and MSCOCO (Chen et al., 2015) as the pretraining datasets, in alignment with prior122

literature (Li et al., 2022; Goel et al., 2022).123
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Architectures. We consider the same setting for experiments on all baseline CLIP-objectives.124

Following the original CLIP paper, we employ ResNet (He et al., 2016) as the image encoder and the125

Transformer architecture (Vaswani et al., 2017) as the text encoder. We use pre-trained weights for126

both encoders. Detailed hyperparameters and additional experiments are presented in Appendix E.127

5.1 Effect of Temperature on Margin128

In support of our theoretical discussions in Corollary 4.1 and Theorem 4.2 that find the positive129

correlation between the margin and the temperature parameter, we conduct real data experiments. In130

Figure 1, we examine the margin distribution of CLIP models trained at varying temperatures. The131

margin is considered as the difference between a diagonal value and an off-diagonal value within132

a batch: f(xi,yi)− f(xj ,yi) and f(xi,yi)− f(xi,yj). We collect the margins of untrained and133

trained CLIP models on all batches within the MSCOCO training dataset.134

As depicted in Figure 1, a CLIP model with random initialization at the projection layers has margins135

normally distributed near zero, whereas trained models exhibit positive margins, signifying successful136

training. Furthermore, we consider CLIP models trained at fixed temperature values of 0.07 and137

0.01. As observed in the figure, the margin distribution shifts to the left as temperature τ decreases,138

suggesting that an extremely small τ leads to small margins, aligning with the results in Corollary 4.1.139

5.2 Zero-shot Transfer140
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Figure 1: The distribution of the margins
with regard to CLIP models trained at
different temperature values. Margin is
computed within each batch of the data.

To confirm Theorem 4.3, we investigate the advantages of141

incorporating our regularization term during training by142

evaluating zero-shot transfer accuracy and linear probing143

on various datasets. We consider the following training144

objectives when adding our regularization: (1) the original145

CLIP (Radford et al., 2021), and (2) CyCLIP (Goel et al.,146

2022) with cross-modal and in-modal consistency regular-147

izations, adopting the same hyperparameters for the reg-148

ularizations as outlined in Goel et al. (2022). All models149

are trained on CC3M using the same model architecture,150

batch size, and optimizer settings. Further experimental151

details are provided in Appendix E.152

In Table 1, we present the zero-shot test accuracy of CLIP153

models trained with the original CLIP objective and the154

CyCLIP objective. Firstly, we demonstrate the model’s155

performance when training solely on the regularization156

term (L2) and compare to that of the CLIP objective. In alignment with our Corollary 3.6, we can157

observe on real data that training exclusively on the L2 objective leads to a large error and even158

random guessing on the zero-shot datasets. Combining with our theoretical analysis, we show that a159

naive square loss fails to learn transferable representations. In the context of multi-modal learning,160

contrastive loss is important. Moreover, confirming our result from Theorem 4.3, incorporating161

the regularization term into the contrastive objective effectively enhances performance across the162

majority of zero-shot transfer tasks. It improves over the baseline on 5 out of 6 datasets by a good163

margin. The best performance achieved by adding regularization to the CLIP objective outperforms164

its original objective by 3.62% on CIFAR10 and by 2.06% on average of all datasets.165

Table 1: Zero-shot top-1 accuracy (%). Notably, adding the regularization term successfully improves
the baselines on 5 out of the 6 datasets.

CIFAR10 CIFAR100 STL10 Food101 ImageNetV2 DTD Average

Reg 10.04 1.05 9.95 1.08 0.11 2.07 3.47
CLIP 63.85 31.17 90.35 8.39 20.24 21.22 39.20

CyCLIP 60.71 28.87 89.98 9.72 19.66 20.21 38.19
CLIP+Reg 67.47 33.33 92.64 12.14 22.36 19.63 41.26

6 Conclusion166

In this paper, we rigorously investigated the theoretical underpinnings of transferable representation167

learning in CLIP We provided insights through specific cases and corroborated our theory with168

empirical evidence. Lastly, we proposed a regularization term grounded in our theoretical findings to169

enhance CLIP’s performance in zero-shot transfer.170
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A Related Work309

Vision-Language Pre-Training. While labeled data are expensive and relatively scarce, images310

paired with text descriptions are available in much larger volumes (Thomee et al., 2016). Conse-311

quently, numerous studies (Gomez et al., 2017; Sariyildiz et al., 2020; Desai and Johnson, 2021;312

Zhang et al., 2022; Liang et al., 2023) have focused on leveraging free-form natural language su-313

pervision to learn visual representations. Recently, CLIP (Radford et al., 2021) and ALIGN (Jia314

et al., 2021) have emerged as prominent works extending contrastive learning to the vision-language315

pre-training framework. Built upon CLIP’s success, several studies (Pham et al., 2021; Gao et al.,316

2022; Saito et al., 2022) have refined CLIP’s contrastive methodology to better learn from web-scale317

image-text data. Notably, FILIP (Yao et al., 2022) introduces a fine-grained contrastive loss tailored318

for transformer architectures. DeCLIP (Li et al., 2022) and SLIP (Mu et al., 2022) additionally319

incorporate single-modality self-supervised learning. CyCLIP (Goel et al., 2022) introduces two320

regularizing terms enforcing cross-modal and in-modal consistency. LiT (Zhai et al., 2022) and321

Flamingo (Alayrac et al., 2022) consider training from pre-trained single-modality models. In our322

empirical validation of theoretical findings, we employ the same setting and train from pre-trained323

image and text encoders.324

Theory of self-supervised learning. To understand self-supervised learning, numerous studies have325

been conducted, particularly focusing on unimodal contrastive learning, a widely used self-supervised326

learning approach rooted in data augmentation (Saunshi et al., 2019; Tsai et al., 2020; Mitrovic327

et al., 2020; Tian et al., 2020; Wang and Isola, 2020; Tosh et al., 2021a,b; HaoChen et al., 2021;328

Wen and Li, 2021; Saunshi et al., 2022). In multimodal learning, theoretical explanation has been329

explored in several studies (Zadeh et al., 2020; Huang et al., 2021; Lee et al., 2020; Nakada et al.,330

2023). These works have established that multimodal learning can surpass unimodal learning in331

terms of performance. For instance, Lee et al. (2020) employed square loss prediction to learn332

image representations under certain conditional independence assumptions, offering generalization333

performance guarantees. Meanwhile, Nakada et al. (2023) examined CLIP within specific linear334

representation settings and emphasized its correlation with singular value decomposition (SVD). We335

note that, these related works have not considered the zero-shot transfer mechanism and thus can’t336

adequately explain the zero-shot transfer capability of CLIP.337

B Preliminaries338

Notation. We use lowercase letters, lowercase boldface letters, and uppercase boldface letters339

to denote scalars, vectors, and matrices, respectively. For a vector x, we use ∥x∥2 to denote its340

Euclidean norm. For a matrix W, we use ∥W∥F to denote its Frobenius norm. Given two sequences341

{xn} and {yn}, we denote xn = O(yn) if |xn| ≤ C1|yn| for some absolute positive constant342

C1, xn = Ω(yn) if |xn| ≥ C2|yn| for some absolute positive constant C2, and xn = Θ(yn) if343

C3|yn| ≤ |xn| ≤ C4|yn| for some absolute constants C3, C4 > 0. We also use Õ(·) to hide344

logarithmic factors of d in O(·). Additionally, we denote xn = poly(yn) if xn = O(yDn ) for some345

positive constant D, and xn = polylog(yn) if xn = poly(log(yn)). We also denote by xn = o(yn)346

if limn→∞ xn/yn = 0. Finally we use [N ] to denote the index set {1, . . . , N}. In the function space,347

let Br(f) denote the ball of radius r centered at f , with the metrics ∥ · ∥∞. A set C is the covering348

of function class F with radius r, if and only if F ⊆ ∪f∈CBr(f). The covering number of F with349

radius r is the minimum cardinality of any covering of F , denoted as N (F , r).350

Loss function of CLIP.351

LS′(f, τ) =
1

B

∑
i∈S′

− log

(
exp

(
f(xi,yi)/τ

)∑
j∈S′ exp

(
f(xj ,yi)/τ

))+
1

B

∑
i∈S′

− log

(
exp

(
f(xi,yi)/τ

)∑
j∈S′ exp

(
f(xi,yj)/τ

))
=

1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xj ,yi)− f(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xi,yj)− f(xi,yi)

]
/τ

))
, (B.1)

where τ > 0 is a temperature parameter. The training loss LS′ over a single epoch can be viewed as352

the empirical version of (2.1).353

Remark B.1. In Assumption 2.1, the assumption of conditional independence is frequently made354

in the analysis of self-supervised learning (Saunshi et al., 2019; Lee et al., 2021) and dimension355
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reduction algorithms (Fukumizu et al., 2004, 2009). Under the premise that x,y are conditionally356

independent (CI) given z, it can be posited that any additional patterns found within x|z and y|z357

should be interpreted as unique features. Notably, in the absence of discrete and sparse constraints,358

a suitable z can always be found, given that one could simply assign z = x or z = y. From359

the generative model’s point of view, Assumption 2.1 naively holds when the data are from some360

generator with x = T1(z, ξ) and y = T2(z, ζ) where ξ ⊥ ζ|z.361

Given the population loss in (2.1), the following theorem shows that the empirical loss ÊS(f, τ) :=362

(1/n)
∑

k∈[n] LSk
(f, τ) concentrates on the population loss when n is large enough.363

Theorem B.2. Suppose δ ∈ (0, 1) and n ≥ (8τ−1ϵ−2M logB) log(2N (F , ϵ/8M)/δ), then with364

probability at least 1− δ, we have365

|L̂S(f, τ)− LDB (f, τ)| ≤ ϵ

for all function f ∈ F and |f | ≤ M , where N (F , ϵ) is the covering number of F .366

Theorem B.2 shows that the generalization gap |L̂S(f, τ)−LDB (f, τ)| approaches zero as the number367

of batches n increase. In practice, the batch size is limited by the GPU’s memory and is smaller than368

the number of batches (or the number of training examples). Therefore, instead of letting the batch369

size B go to infinity like in prior studies (Wang and Isola, 2020; Pham et al., 2021), we keep the batch370

size B as a constant in (2.1) and Theorem B.2 to enable the analysis of CLIP even for small batches.371

Pham et al. (2021) also provided the generalization gap for CLIP. However, their result is for B → ∞372

and a loss function without the log term, i.e., exp
(
f(xi,yi)/τ

)
/
(∑

j∈S′ exp
(
f(xj ,yi)/τ

))
.373

C Discussion on the Margin374

In Assumption 3.1, we introduce the (α, β, γ) completeness. In this section, we will discuss how to375

verify the assumption and formally measure the quality of the learned function.376

Sample two independent tuple (x,y, z) ∼ Dx×y×z and (x′,y′, z′) ∼ Dx×y×z, we introduce a377

measure as follows.378

αγ = P
(
z ̸= z′, f(x,y)− f(x,y′) ≤ γ

)
+ P

(
z ̸= z′, f(x,y)− f(x′,y) ≤ γ

)
By Assumption 3.1, we know that we want to find a large γ with small αγ .379

However, in real applications, we can access Dx×y but have little knowledge of the model V and the380

latent variable z. Thus, we introduce another measure α̂γ as follows,381

α̂γ = P
(
f(x,y)− f(x,y′) ≤ γ

)
+ P

(
f(x,y)− f(x′,y) ≤ γ

)
α̂γ differs from the αγ since we didn’t extinguish different classes in the probability. Therefore we382

can easily calculate α̂γ without observe z. Besides, we have the following upper and low bounds,383

which show that α̂γ can approximate αγ .384

Theorem C.1. Let γ ≥ 0, then we have that385

α̂γ ≥ αγ ≥ α̂γ −
∑

k∈[K]

p2k.

where pk is the probability of the classes in Assumption 2.1. Besides the second inequality become386

exact equality for γ = 0.387

Proof.

α̂γ = P
(
f(x,y)− f(x,y′) ≤ γ

)
+ P

(
f(x,y)− f(x′,y) ≤ γ

)
= P

(
z ̸= z′, f(x,y)− f(x,y′) ≤ γ

)
+ P

(
z ̸= z′, f(x,y)− f(x′,y) ≤ γ

)
︸ ︷︷ ︸

=αγ

+ P
(
z = z′, f(x,y)− f(x,y′) ≤ γ

)
+ P

(
z = z′, f(x,y)− f(x′,y) ≤ γ

)
︸ ︷︷ ︸

ApproximateError

.
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The Approximate Error has a naive lower bound of 0 and we can upper bound it as follows388

P
(
z = z′, f(x,y)− f(x,y′) ≤ γ

)
= P

(
f(x,y)− f(x,y′) ≤ γ|z = z′

)
· P(z = z′)

≤ P
(
f(x,y)− f(x,y′) ≤ 0|z = z′

)
· P(z = z′)

= 1/2
∑

k∈[K]

p2k.

were the the inequality is due to fact that γ ≥ 0 and the last equality is because y′ and y are symmetric389

give z = z′. Finally, the inequality is an exact equality for γ = 0.390

By Theorem C.1, αγ and α̂γ are close to each other if maxk∈[K] pk is small, since391 ∑
k∈[K]

p2k ≤
∑

k∈[K]

pk · max
k∈[K]

pk = max
k∈[K]

pk ·
( ∑

k∈[K]

pk

)
= max

k∈[K]
pk.

Relation with the Figure 2: α̂γ has a strong relationship with Figure 2, where we have plot the392

distribution of f(x,y)− f(x,y′) and f(x,y)− f(x′,y). The figure can be viewed as the figure of393

the probability density function and α̂γ can be viewed as the cumulative probability function which is394

the integral of probability mass smaller than γ. From Figure 2, we can deduce that the CLIP learned395

with regularization has consistently smaller α̂γ for all γ ≥ 0.396

D Discussion on the Trainable Temperature Parameter τ397

This section considers the setting where the temperature τ is also trainable with the following loss.398

LDB (f, τ) = E
[
log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+ E
[
log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]
.

Suppose τ is clipped to be within the range [τmin, τmax], it is natural to assume that we can obtain399

function f̂ with temperature τ̂ ∈ [τmin, τmax] such that400

LDB (f̂ , τ̂) ≤ min
τ∈[τmin,τmax]

LDB (f∗, τ) + ϵ (D.1)

= LDB (f∗, τ̂) + ϵ−
(
LDB (f∗, τ̂)− min

τ∈[τmin,τmax]
LDB (f∗, τ)

)
(D.2)

= LDB (f∗, τ̂) + ϵ̃ (D.3)

where ϵ̃ = ϵ −
(
LDB (f∗, τ̂) − minτ∈[τmin,τmax] LDB (f∗, τ)

)
≤ ϵ. Since ϵ̃ is smaller than ϵ, we401

can get smaller ϵ′ in Theorem G.1, and thus get smaller top-r error in zero-shot transfer task by402

Corollary 3.2. This observation implies that the representation (f̂ , τ̂) found by trainable temperature403

can be better than the representation (f̂ ′, τ̂) found with fixed temperature τ̂ .404

E Additional Experiment Results405

We consider the same model architecture as CLIP (Radford et al., 2021) and consider ResNet-406

50 (He et al., 2016) as the image encoder and transformer (Vaswani et al., 2017) achitecture as the407

text encoder. Specifically, we use pre-trained weights for the encoders for faster convergence in408

training. We follow the code framework in Shariatnia (2021) and use pre-trained ResNet-50 from the409

PyTorch Image Models library (Wightman, 2019) and pre-trained DistilBERT from the Huggingface410

Transformers library (Wolf et al., 2020). We further have linear projection layers on both image and411

text encoder as the same as in CLIP and consider embedding dimension of 512. As we are training at412

small-scale data with pre-trained encoders, we follow Shariatnia (2021) and use AdamW optimizer413

with learning rate 1e-4 on the image encoder, 1e-5 on the text encoder, and 1e-3 on the projection414

layers, with weight decay coefficient 1e-3. Our code is provided anonymously on Github1.415

1https://anonymous.4open.science/r/CLIP_theory-BC8F/README.md
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E.1 Effect of Temperature on Margin416

Setup. For lightweight exploration in section 5.1, we use the training dataset from MSCOCO (Chen417

et al., 2015) Image Captioning Task as the data for vision-language contrastive pre-training. Specifi-418

cally, the dataset contains 82, 783 images where each image is coupled with 5 captions. We consider419

each image-caption pair as a data example in pre-training and therefore arrive at 413, 915 pre-training420

data pairs. We further randomly split the data to keep 20% of the data as validation set and stops421

training as the contrastive loss on validation data no longer decreases to avoid overfitting on the small422

dataset.423

Margin. Given a training data batch, the margin is consider as the difference between a diagonal424

value and an off-diagonal value: f(xi,yi)− f(xj ,yi) and f(xi,yi)− f(xi,yj). We consider CLIP425

models trained at fixed temperature τ = 0.07 and τ = 0.01. We note that 0.07 is the default value for426

τ to start training in CLIP and 0.01 is the clamping value (equivalently as the maximum logit scale of427

4.6052.) In Figure 1, we collected the margins from all batches of size 64 in the MSCOCO training428

data, where the data is randomly shuffled.429

Additional Experiments. Here, we additionally compare the margin distribution of CLIP trained at430

temperature τ = 0.01, without or with our regularization term. We could observe that the margin431

distribution shifts to the right with the regularization term, which alleviates the negative influence of432

an extremely small temperature value.

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
Margin

1

2

3

4

Co
un

t (
10

5 )

original
+reg

Figure 2: The distribution of the margins with regard to CLIP models trained τ = 0.01 with or
withour regularization. Margin is computed within each batch of the data.

433

E.2 Zero-shot Transfer and Linear Probing434

Setup. In the evaluation of zero-shot transfer and linear probing, we use CC3M (Sharma et al., 2018)435

as the pre-training dataset, which contains around 3, 318, 332 image-caption pairs gathered from the436

web. While some URLs are broken so that we cannot download the images, we eventually reached437

a pre-training dataset of 2, 786, 288 data pairs. When training CLIP models, we use the default438

coefficients of CyCLIP regularization terms of λ1 = 0.25 and λ2 = 0.25. For our regularization439

term, we use a coefficient of λ = 0.1. As in CLIP, we set the temperature τ from 0.07, equivalently440

having maximum logit scale at 2.6593. Lastly, we use a training batch size of 32 and trained for 8441

epochs in the results reported in section 5.2.442

Table 2: Summary of datasets used for zero-shot transfer and linear probing.

Dataset Classes Class Description

CIFAR10 10 Categories of animals and vehicles
CIFAR100 100 Categories of objects including animals, foods, vehicles and people
STL10 10 Categories of animals and vehicles
Food101 101 Categories of foods/dishes
ImageNetV2 1000 Categories of objects including animals, foods, vehicles and people
DTD 47 Categories of textures
Flowers102 102 Categories of flower species
Oxford-IIIT Pet 37 Categories of cats and dogs

Evaluations. As similar in previous works (Radford et al., 2021; Yao et al., 2022; Mu et al., 2022;443

Goel et al., 2022), we consider the following image classification tasks for zero-shot transfer and444

linear probing: CIFAR10/100 (Krizhevsky, 2009), STL10 (Coates et al., 2011), Food101 (Bossard445

et al., 2014), ImageNetV2 (Recht et al., 2019), DTD (Describable Textures,Cimpoi et al. (2014)),446

Flowers102 (Nilsback and Zisserman, 2008) and Oxford-IIIT Pet (Parkhi et al., 2012). The dataset447
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statistics are reported in Table 2. For zero-shot transfer, we use the same prompt engineering and448

ensembling as the original CLIP and report the top-1 accuracy. For linear probing, as the same449

in CLIP, we train a logistic regression classifier on the image embeddings generated by the image450

encoder of pre-trained CLIP models on the training data from the considered datasets. The classifiers451

are all trained to convergence and we report the test accuracy on each of the test dataset of the tasks.452

We note that, due to the limitation of the training data CC3M, the zero-shot test accuracy of all453

CLIP-objectives on Flowers102 and Oxford-IIIT Pet are near random guesses. Therefore, we omit454

these datasets for zero-shot transfer.455

Additional Experiments. In Table 3, we report the results of linear probing, where logistic regression456

classifiers are fitted to the embeddings learned by the image encoders of our compared models.457

This table offers an assessment of the visual representation learning for each training objective.458

Similarly supporting Corollary 3.6, training on the regularization term only results in learning bad459

representations that yield unsatisfactory performances on linear probing. Moreover, in alignment460

with Theorem 4.3, we observe that adding the regularization term consistently improves CLIP’s461

performance across various datasets by an average of 1.54%.
Table 3: Linear probing accuracy (%). All logistic regression models are trained till convergence.
Adding our regularization term to CLIP provides decent improvements across all datasets. On
CyCLIP, we also makes improvements on the majority of datasets.

CIFAR10 CIFAR100 STL10 Food101 DTD Flowers OxfordPets Average

Reg 14.09 2.17 17.86 1.73 3.40 2.18 4.12 6.51
CLIP 87.30 66.03 93.26 62.8 56.70 70.24 72.91 72.75

CyCLIP 86.31 63.93 93.69 61.57 56.86 70.56 70.46 71.91
CLIP+Reg 88.49 66.16 94.98 63.39 57.66 72.21 77.13 74.29

462

We additionally report the zero-shot transfer results of the original CLIP objective and adding our463

regularziation term, on a different visual encoder architecture of TinyViT (Wu et al., 2022) with464

pre-trained weights from Huggingface.
Table 4: Zero-shot top-1 accuracy (%). Notably, adding the regularization term successfully improves
the baselines on 5 out of the 6 datasets.

CIFAR10 CIFAR100 STL10 Food101 ImageNetV2 DTD Average

CLIP 52.02 15.57 81.89 7.92 16.91 11.80 31.02
CLIP+Reg 53.30 19.67 83.76 7.99 16.06 11.53 32.05

465

F Proof of Results in Section 2466

Proof of Theorem B.2. We first prove that LS′(f, τ) is upper bounded by 4M logB/τ .467

LS′(f, τ) =
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xj ,yi)− f(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xi,yj)− f(xi,yi)

]
/τ

))

≤ 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
(
2M/τ

))
+

1

B

∑
i∈S′

log

( ∑
j∈S′

exp
(
2M/τ

))
= 4M logB/τ. (F.1)

where the inequality is by the fact the |f | ≤ M . On the other hand, we have that468

LS′(f, τ) =
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xj ,yi)− f(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f(xi,yj)− f(xi,yi)

]
/τ

))

≥ 2

B

∑
i∈S′

log

(
exp

([
f(xi,yi)− f(xi,yi)

]
/τ

))
≥ 0.
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where the inequality is because Exp function is greater than 0. Therefore we have proved that469

LS′(f, τ) ∈ (0, 4M log(B)/τ ]. For all f1, f2 ∈ F and any batch S′ with size B, we have that470

LS‘(f1, τ)− LS′(f2, τ) =
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xj ,yi)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f2(xj ,yi)− f2(xi,yi)

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xi,yj)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f2(xi,yj)− f2(xi,yi)

]
/τ

))

≤ 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xj ,yi)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xj ,yi)− f1(xi,yi)− 2∥f1 − f2∥∞

]
/τ

))

+
1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xi,yj)− f1(xi,yi)

]
/τ

))

− 1

B

∑
i∈S′

log

( ∑
j∈S′

exp
([
f1(xi,yj)− f1(xi,yi)− 2∥f1 − f2∥∞

]
/τ

))
= 4∥f1 − f2∥∞/τ.

Similarly, we can get another direction LS′(f2, τ) − LS′(f1, τ) ≤ 4∥f1 − f2∥∞/τ , which yields471

to |LS′(f2, τ) − LS′(f1, τ)| ≤ 4∥f1 − f2∥∞/τ . Taking the expectation gives that |LDB (f2, τ) −472

LDB (f1, τ)| ≤ 4∥f1 − f2∥∞/τ . By the definition of the covering set, the function class F can473

be covered by K subsets B1, . . . ,BK , that is F = B1 ∪ . . . ∪ BK , where K = N (F , τϵ/16) and474

B1, . . .BK are the balls of the radius τ · ϵ/16 centered at f1, . . . , fK . Then we have that475

PS∼Dn

[
sup
f∈F

∣∣LDB (f, τ)− L̂S(f, τ)
∣∣ ≥ ϵ

]
≤

∑
k∈[K]

PS∼Dn

[
sup
f∈Bk

∣∣LDB (f, τ)− L̂S(f, τ)
∣∣ ≥ ϵ

]

≤
∑

k∈[K]

PS∼Dn

[∣∣LDB (fk, τ)− L̂S(fk, τ)
∣∣ ≥ ϵ/2

]

=
∑

k∈[K]

PS∼Dn

[∣∣LDB (fk, τ)− (1/n)
∑
i∈[n]

LSi
(fk, τ)

∣∣ ≥ ϵ/2

]

≤ 2K exp
(
− nϵ2τ

8M logB

)
= 2N (F , τϵ/16) exp

(
− nϵ2τ

8M logB

)
, (F.2)

the first inequality is by union bound, the second is by triangle inequality, and the476

third is by Hoeffding’s inequality and (F.1). Finally, plugging the condition n ≥477

(8τ−1ϵ−2M logB) log(2N (F , ϵ/8M)/δ) into (F.2) we have that478

PS∼Dn

[
sup
f∈F

∣∣LDB (f, τ)− L̂S(f, τ)
∣∣ ≥ ϵ

]
≤ δ,

which completes the proof.479
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G Transferrable Representation Learning480

Discussion on Assumption 3.1. In simple terms, Assumption 3.1 is made on the data distribution to481

allow the existence of good encoding functions g∗ and h∗. Specifically, the first bullet guarantees482

that the data with different z, the underlying shared feature, is well distinguishable with margin γ. If483

the data from different z does not satisfy this condition, the majority of the diagonal term f(xi,yi) in484

(B.1) can be smaller than the off-diagonal term f(xj ,yi), which is not favored by the mechanism of485

CLIP. In other words, all encoding functions may yield higher similarity score for negative pairs than486

positive pairs The second bullet requires the similarity score within each underlying shared feature487

not vary too much, which is naturally satisfied if the learned embeddings g(x),h(y) are consistent488

and do not vary too much given the same z.489

Theorem G.1 (Formal). Suppose Assumption 3.1 hold and we can find an ϵ approximate minimum490

f̂ ∈ F with respect to the temperature τ such that f̂ is bounded by M and491

LDB (f̂ , τ) ≤ LDB (f∗, τ) + ϵ. (G.1)

Then the following results hold:492

1. For (x, z) ∼ Dx×z, {yk ∼ Dy|vk
, k ∈ [K]}, let y∗ =

∑
k∈[K] 1(z = vk)yk, we have493

E
[
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]
≤ ϵ′. (G.2)

2. For (y, z) ∼ Dy×z,{xk ∼ Dx|vk
, k ∈ [K]}, let x∗ =

∑
k∈[K] 1(z = vk)xk, we have494

E
[
log

( ∑
k∈[K]

exp
([
f̂(xk,y)− f̂(x∗,y)

]
/τ

))]
≤ ϵ′. (G.3)

3. For (x,y, z) ∼ Dx×y×z, variance E(y,z)

[
Varx|z(f̂(x,y))

]
+ E(x,z)

[
Vary|z(f̂(x,y))

]
≤495

16M2ϵ′.496

where ϵ′ = (CB+2) ·
[
ϵ+Cτ−1MBα+Cτ−1(βMB)1/3+2B exp(−γ/τ)

]
and C = Õ(1), CB =497

Õ(maxk p
−1
k /B).498

Remark G.2. Theorem G.1 establishes a soft margin between CLIP’s learned embeddings on data of499

different z’s. For instance, if an image x has a shared feature z = v1, we have its accurate description500

y∗ =
∑

k∈[K] 1(z = vk)yk = y1. From (G.2), it follows that log
(∑

k∈[K] exp
([
f̂(x,yk) −501

f̂(x,y1)
]
/τ

))
is small. This can only occur when f̂(x,yk) < f̂(x,y1) for all k ≥ 2, i.e., the502

trained model always yield higher similarity score for this image-text pair as compared to all other503

texts generated on different topics. This outcome aligns with the expectation that image-text pairs504

with the same shared feature will yield the highest similarity score.505

Remark G.3 (Choice of temperature parameter). In Theorem G.1, when the data is well separated506

(i.e., α, β = 0), a smaller temperature will invariably lead to a smaller ϵ′ and, consequently, better507

performance. In practice, τ is typically set to be 0.01, a sufficiently small value that ensures the term508

exp(−γ/τ) is less than 0.0000454 for γ = 0.1. However, when the data is nonseparable (i.e., α and509

β exceed 0), a balance must be struck between the terms related to τ . As a consequence, τ should not510

be too small. A reasonable choice would be τ = O(γ/ log(B/ϵ)).511

Remark G.4 (Batch size). In Theorem G.1, while we do not demand an increasing batch size B,512

our analysis does suggest a preference for larger batch sizes, as they can reduce the constant CB and513

consequently ϵ′.514

Lemma G.5. For bj ≥ 0, j ∈ [m], we have that515

log

(
1 +

∑
j∈[m]

bj

)
≤

∑
j∈[m]

log(1 + bj).

Proof. Notice that516

Πj∈[J](1 + bj) ≥ 1 +
∑
j∈[J]

bj .

Taking the logarithm over both sides completes the proof.517
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Lemma G.6. Suppose that a1, . . . am are i.i.d random variable sample lies in [−R,R] where R ≥ 1,518

with mean µ := E[a1] and variance σ2 := E[(a1 − E[a1])2]. Then we have that519

E[log
( m∑

i=1

exp(a)
)
≥ log(m) + µ+

m− 1

4mR2
σ2.

Proof. Let ā =
[∑m

i=1 ai
]
/m520

log
( m∑

i=1

exp(ai)
)
= log(m) +

1

m

m∑
i=1

ai + log
( 1

m

m∑
i=1

exp(a− ā)
)

≥ log(m) +
1

m

m∑
i=1

ai + log
(
1 +

1

3mR2

m∑
i=1

[a− ā]2
)

≥ log(m) +
1

m

m∑
i=1

ai +
1

4mR2

m∑
i=1

[a− ā]2.

where the first inequality is by exp(t) ≥ 1 + t+ t2/(3R2),∀t ∈ [−R,R], the second inequality is521

due to log(1 + t) ≥ 3t/4,∀t ∈ [0, 1/3].522

523

Lemma G.7. Suppose f∗ is the function that satisfies Assumption 3.1, then we have that524

LDB (f∗, τ) ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ 6MBα/τ + 3 3

√
6MBβ/τ + 2B exp(−γ/τ)

Proof. Let the event Et be the case that either i) zt = z1 and |f∗(xt,y1) − f∗(x1,y1)| ≤ ρ or ii)525

zt ̸= z1 and f∗(xt,y1)− f∗(x1,y1) ≤ −γ. We also denote the complementary set of Et to be Ec
t .526

By Assumption 3.1, we have that527

P(Et, zt = z1) ≤ β/ρ2

P(Et, zt ̸= z1) ≤ α.

the first inequality is by Chebyshev’s inequality, and the second is by margin assumption. Therefore,528

we have that P(Ec
t ) ≤ α+ β/ρ2. Next, let us decompose LDB (f∗, τ) into three parts,529

LDB (f∗, τ) = E
[
log

( ∑
t∈[B]

1(zt ̸= z1)1(Et) exp
([
f∗(x1,yt)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(Ec
t ) exp

([
f∗(x1,yt)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1)1(Et) exp
([
f∗(x1,yt)− f∗(x1,y1)

]
/τ

))]

+ E
[
log

( ∑
t∈[B]

1(zt ̸= z1)1(Et) exp
([
f∗(xt,y1)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(Ec
t ) exp

([
f∗(xt,y1)− f∗(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1)1(Et) exp
([
f∗(xt,y1)− f∗(x1,y1)

]
/τ

))]

≤ 2E
[
log

(
1 +B exp

(
− γ/τ

)
+

∑
t≥2

1(Ec
t ) exp

(
2M/τ

)
+
∑
t≥2

1(zt = z1) exp
(
ρ/τ

))]

≤ 2E
[
log

(
1 +B exp

(
− γ/τ

))]
︸ ︷︷ ︸

I1

+
∑
t≥2

2E
[
log

(
1 + 1(Ec

t ) exp
(
2M/τ

))]
︸ ︷︷ ︸

I2
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+ 2E
[
log

(
1 +

∑
t≥2

1(zt = z1) exp
(
ρ/τ

))]
︸ ︷︷ ︸

I3

(G.4)

where the first inequality is by Assumption 3.1, the second inequality is due to Lemma G.5. Next, we530

will bound I1, I2, I3 separately.531

I1 ≤ B exp(−γ/τ), (G.5)

where the inequality is due to the fact that log(1 + x) ≤ x.532

I2 = E
[
1(Ec

t ) log

(
1 + exp

(
2M/τ

))]
≤ P(Ec

t )
3M

τ
= (α+ β/ρ2) · 3M

τ
. (G.6)

where the first equality is due to log
(
1 + 1(Ec

t ) exp
(
2M/τ

))
= 0) when 1(Ec

t ) = 0, the first533

inequality is due to log
(
1+exp

(
2M/τ

))
≤ 3M/τ . The last inequality is due to P(Ec

t ) ≤ α+β/ρ2.534

I3 ≤ E
[
log

(
exp

(
ρ/τ

)
+

∑
t≥2

1(zt = z1) exp
(
ρ/τ

))]

= ρ/τ + E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
. (G.7)

where the inequality is because 1 ≤ exp(ρ/τ).535

Plugging (G.5), (G.6) and (G.7) into (G.4) gives that,536

LDB (f∗, τ) ≤ 2B exp(−γ/τ) + 6MBα/τ + 6MBβ/(τρ2) + 2ρ/τ + 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]

≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ 6MBα/τ + 3 3

√
6MBβ/τ + 2B exp(−γ/τ),

where the second inequality is by choosing ρ = 3
√
6MBβ.537

Proof of Theorem G.1. First by Lemma G.7, we have that538

LDB (f̂ , τ) ≤ LDB (f∗, τ) + ϵ ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ ϵ′ (G.8)

where ϵ′ = ϵ+ 6MBα/τ + 3 3
√
6MBβ/τ + 2B exp(−γ/τ). Notice that539

LDB (f̂ , τ) = E
[
log

( ∑
t∈[B]

exp
([
f̂(x1,yt)− f̂(x1,y1)

]
/τ

))]
︸ ︷︷ ︸

I1

+ E
[
log

( ∑
t∈[B]

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]
︸ ︷︷ ︸

I2

(G.9)

Next, we prove the bullets in Theorem G.1 one by one.540

First and Second Bullet in Theorem G.1: Denote the event E as the case that for all t ≥ 1, zt ̸= z1,541

which is the event that CLIP favored. We first lower bound I1.542

I1 = E
[
log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]
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= E
[
log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+

∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

≥ E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
1(Ec) log

( ∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

= E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

( ∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

≥ E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

( ∑
t∈[B]

1(zt = z1) exp
(
E
[
f̂(xt,y1)− f̂(x1,y1)

∣∣zt, z1]/τ))]

= E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]. (G.10)

where the first inequality is because when E holds
∑

t∈[B] 1(zt = z1) exp
([
f̂(xt,y1) −543

f̂(x1,y1)
]
/τ

)
= 1 when Ec holds

∑
t∈[B] 1(zt ̸= z1) exp

([
f̂(xt,y1)−f̂(x1,y1)

]
/τ

)
≥ 0, the last544

second equality is because when E holds
∑

t∈[B] 1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
= 1,545

the second inequality is because LogSumExp function is convex, and the last equality is due to546

E[
[
f̂(xt,y1)− f̂(x1,y1)

]
|zt, z1] = 0 when zt = z1. Similarly, we can prove547

I2 ≥ E
[
1(E) log

( ∑
t∈[B]

1(zt ̸= z1) exp
([
f̂(x1,yt)− f̂(x1,y1)

]
/τ

)
+ 1

)]

+ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]. (G.11)

Notice that when event E holds, zt ̸= z1 holds for all t ≥ 2. Therefore, plugging the (G.10) and548

(G.11) into (G.9) gives,549

E
[
1(E) log

(∑
t≥2

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)]
≤ ϵ′ (G.12)

E
[
1(E) log

(∑
t≥2

exp
([
f̂(x1,yt)− f̂(x1,y1)

]
/τ

)
+ 1

)]
≤ ϵ′. (G.13)

(G.14)

Let us compute the probability of E given z1. Let z1 = v1 without loss of generality, we have that550

P(E|z = v1) = (1− p1)
B−1.

Therefore P(E|z = v1) is always positive and is greater than 1/2 as long as B ≤ 1/p1.551

Next, consider the following situation. Given z1 = v1, we generate sequence z′1, . . . , z
′
L with length552

L = ⌈log(2K)/(B − 1)min pk⌉(̇B − 1) , such that each z′1, . . . , z
′
L are generated from Dz|z̸=v1

.553
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The probability that the sequence includes vk is554

1− (1− pk/(1− pk))
L ≥ 1− (1− pk)

L ≥ 1− exp(−Lpk) ≥ 1− exp(−Lmin pk).

Therefore the probability that the sequence can cover all the other K − 1 classes is at least555

1−K exp(−Lmin pk) ≥ 1/2.

Then we look deeper into556

E
[
log

(∑
t≥2

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z2 ̸= v1, . . . , zK ̸= v1

]
.

We can introduce L/(B − 1) copies x(l)
t with l ∈ [L/(B − 1)] for t ≥ 2, then we have that557 (

L/(B − 1)
)
· E

[
log

(∑
t≥2

exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z2 ̸= v1, . . . , zK ̸= v1

]

= E
[∑

l

log

(∑
t≥2

exp
([
f̂(x

(l)
t ,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z
(l)
2 , . . . , z

(l)
K ̸= v1

]

≥ E
[
log

(∑
l

∑
t≥2

exp
([
f̂(x

(l)
t ,y1)− f̂(x1,y1)

]
/τ

)
+ 1

)∣∣∣∣z1 = v1, z
(l)
2 , . . . , z

(l)
K ̸= v1

]

≥ E
[
log

( ∑
k∈[K]

exp
([
f̂(xk,y)− f̂(x∗,y)

]
/τ

))∣∣∣∣z = v1

]
. (G.15)

where the first inequality is by Lemma G.5, the second inequality is by the fact that the Exp function558

is greater than 0, and the xk,x
∗ in the last line are the ones that defined in Theorem G.1. Plugging559

(G.15) into (G.12) and applying total expectation completes the proof for the second bullet. The560

proof for the first bullet is the same.561

Third Bullet in Theorem G.1: By the third equality in (G.10), we have that562

I1 ≥ E
[
log

( ∑
t∈[B]

1(zt = z1) exp
([
f̂(xt,y1)− f̂(x1,y1)

]
/τ

))]

= E
[
E
[
log

( ∑
t∈[B]

1(zt = z1) exp
(
f̂(xt,y1)/τ

))∣∣∣∣z1, . . . , zB]]− E[f̂(x1,y1)/τ ]

≥ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]+ E

[ ∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣− 1

4M2
∣∣∣{t ∈ [B]

∣∣∣zt = z1

}∣∣∣Varx1|z1
(f̂(x1,y1))

]
.

(G.16)

where the inequality is by Lemma G.6. Next we will We analyze the distribution of
{
t ∈ [B]

∣∣∣zt =563

z1

}
. Without loss of generality, fix z1 = v1. We know that the probability that

{
t ∈ [B]

∣∣∣zt =564

z1

}
≥ 2 is565

1− P(z2 ̸= z1) · . . . · P(zB ̸= z1) ≥ 1− (1−min pk)
B−1 ≥ min{0.25 ∗min pk · (B − 1), 0.25},

the last inequality holds since the strictly increasing function F (s) = 1− (1−min pk)
s is 0 at s = 0566

and have derivative lower bounded by 0.25 when s ≤ 1/min pk. Therefore we can further lower567

bound (G.16) as follows,568

I1 ≥ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]+ E
[
min{0.25 ∗min pk · (B − 1), 0.25}

8M2
Varx1|z1

(f̂(x1,y1))

]
Similarly, we can prove that569

I2 ≥ E
[
log

(∣∣∣{t ∈ [B]
∣∣∣zt = z1

}∣∣∣)]+ E
[
min{0.25 ∗min pk · (B − 1), 0.25}

8M2
Vary1|z1

(f̂(x1,y1))

]
.

Plugging the bound of I1, I2 into (G.9) completes the proof for the third bullet of Theorem G.1.570
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H Proof of the Results in Section 3571

Corollary H.1. Suppose the result of Theorem G.1 holds for the learned similarity function f̂ . Then572

we calculate the similarity score f̂(x,yk) for all k ∈ [K] and pick the indices of the top-r scores573

within the set {f̂(x,yk)} as the predictions of the image x. Then the top-r error is bounded by574

ϵ′/ log(1 + r).575

Proof of Corollary H.1. For (x, z) ∼ Dx×z, {yk ∼ Dy|vk
, k ∈ [K]}, let y∗ =

∑
k∈[K] 1(z =576

vk)yk. Denote E to be the event that the top-r choice gives the wrong prediction. Then we have that,577

ϵ′ ≥ E
[
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log(1 + r)

]
= P(E) log(1 + r),

where the first inequality is by the first bullet of Theorem G.1, the second inequality is due to578

the fact that log
(∑

k∈[K] exp
([
f̂(x,yk) − f̂(x,y∗)

]
/τ

))
> 0, the last inequality is due to579

log

(∑
k∈[K] exp

([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))
≥ log(1 + r) since there are at least r + 1 number580

of f̂(x,yk) are greater than f̂(x,y∗) if the prediction is wrong. Therefore, we have that P(E) ≤581

ϵ′/ log(1 + r) which completes the proof.582

Remark H.2. The result in Corollary H.1 can be generalized to out-of-distribution zero-shot transfer.583

For example, we can deal with the case where the distribution of the prompts Dy|vk
and the image584

distribution Dx are shifted. As long as the χ2 distance between the shifted distributions is bounded,585

we can provide a top-r error guarantee.586

Discussion for out-of-distribution zero shot learning. The result in Corollary H.1 can be generalized587

to out-of-distribution zero-shot transfer learning. For example, we can deal with the case where the588

distribution of the prompts Dy|vk
and the image distribution Dx are shifted. In particular, let us589

consider the case that the distribution of the prompts is shifted to D′
y|vk

and the image distribution Dx590

is shifted to D′
x. Then the original joint cumulative distribution function function P (x, z,y1, . . . ,yK)591

is shifted to Q(x, z,y1, . . . ,yK). Suppose Q is absolutely continuous with respect to P , and the592

Pearson χ2 distance is bounded593 ∫ (
dQ

dP
− 1

)2

dP ≤ C.

Then we have that594 ∫ √√√√log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))
dQ

=

∫ √√√√log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))(dQ

dP

)
dP

≤

√√√√∫
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))
dP ·

√∫ (
dQ

dP

)2

dP

=
√
(C + 1)ϵ′,
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where the first inequality is by Cauchy Schwartz inequality and the last equality is due to595 ∫ (
dQ
dP

)2

dP =
∫ (

dQ
dP − 1

)2

dP + 1 = C + 1. Then we can follow a similar analysis in the596

proof of Corollary H.1 and have that top-r test error is smaller than
√

(C + 1)ϵ′/ log(1 + r). There-597

fore, if the χ2 distance between the shifted distributions is bounded, we can still provide a top-r error598

guarantee. It is worth noting the bound for out-of-distribution zero-shot learning is looser. If we want599

to do a more general zero shot analysis, we may need to add more data structure in Assumption 3.1.600

Lemma H.3 (Completeness). There exist a score function f∗(x,y) = ⟨W∗x,y⟩ with W∗ ∈ Rd2×d1601

satisfying602

• |f∗| ≤ 1,603

• For (x,y, z) ∼ Dx×y×z, variance E(y,z)

[
Varx|z(f∗(x,y))

]
= E(x,z)

[
Vary|z(f∗(x,y))

]
= 0,604

• Let x ∼ Dx|z,y ∼ Dy|z,x
′ ∼ Dx′|z′ ,y′ ∼ Dy′|z′ where z ̸= z′. With probability 1, we have that605

f∗(x′,y) ≤ f∗(x,y)− γ and f∗(x,y′) ≤ f∗(x,y)− γ.606

Proof of Lemma H.3. We can construct W∗ = H(H⊤H)−1P(G⊤G)−1G⊤, where P ∈607

R(K1+K2)×(K1+K3) is the projection matrix
[
I 0
0 0

]
with rank K1.608

It is easy to verify that H⊤W∗G = P. Therefore we have that609

⟨W∗x,y′⟩ = ⟨z, z′⟩.
Then applying ∥vk∥2 = 1, ⟨vk,v

′
k⟩ ≤ 1− γ,∀k ̸= k′ completes the proof .610

Lemma H.4. ∥∇LS(fW, τ)∥F ≤ L where L = 2τ−1∥G∥2∥H∥2(R2 + 1).611

Proof. First, we have that612

∥∇W⟨Wx,y⟩∥F = ∥xy⊤∥F ≤ ∥x∥2∥y∥2 ≤ ∥G∥2∥H∥2(R2 + 1).

Therefore we have that ∥∇LS(fW, τ)∥F ≤ 2τ−1∥G∥2∥H∥2(R2 + 1) since LogSumExp function613

is an 1-Lipschitz function.614

Proof of Theorem 3.4. By the gradient update rule, we have that615

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F
= 2η⟨∇L̂S(W

(t), τ),W(t) −W∗⟩ − η2∥∇L̂S(W
(t), τ)∥2F

≥ 2ηL̂S(W
(t), τ)− 2ηL̂S(W

∗, τ)− η2L2. (H.1)
Take the telescope sum of (H.1) from 0 to T − 1 we have that616 ∑T−1

t=0 L̂S(W
(t), τ)

T
≤ L̂S(W

∗, τ) + ηL2 +
∥W(0) −W∗∥2F − ∥W(T ) −W∗∥2F

2ηT

≤ L̂S(W
∗, τ) + ϵ/4 + ϵ/4

= L̂S(W
∗, τ) + ϵ/2,

where the second inequality is by η ≤ ϵ/(4L2) and T = 4∥W(0) −W∗∥2F /(ηϵ). Therefore, there617

exist t′ ≤ T − 1 such that L̂S(W
(t′), τ) ≤ L̂S(W

∗, τ) + ϵ/2. Let T̂ to be the first time that618

L̂S(W
(T̂ ), τ) ≤ L̂S(W

∗, τ)+ ϵ/2. Again take telescope sum of (H.1) from 0 to T̂ − 1, we have that619

∥W(T̂ ) −W∗∥2F ≤ 2ηT̂ L̂S(W
∗, τ)− 2ηT̂

T̂−1∑
t=0

L̂S(W
(t), τ) + 2η2L2T̂ + ∥W(0) −W∗∥2F

≤ −ηT̂ ϵ+ 0.5ηT̂ ϵ+ ∥W(0) −W∗∥2F
≤ ∥W(0) −W∗∥2F ,

where the second inequality is due to the definition of T̂ , the last inequality is due to −0.5ηT̂ ϵ ≤ 0.620

Therefore, within T = 4∥W(0) − W∗∥2F /(ηϵ) we can find Ŵ = W(T̂ ) such that L̂S(Ŵ, τ) ≤621

L̂S(W
∗, τ) + ϵ/2 and622

∥W(T̂ )∥2F ≤ 2∥W∗∥F + ∥W(0)∥2F
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where the inequality is by triangle inequality. Therefore, for any x,y623

f̂(x,y) = ⟨W∗x,y⟩+ ⟨Ŵ −W∗x,y⟩

≤ 1 + ∥Ŵ −W∗∥F ∥xy⊤∥F
≤ 1 + ∥Ŵ −W∗∥F ∥G∥2∥H∥2(R2 + 1)

≤ 1 + ∥W∗ −W(0)∥F ∥G∥2∥H∥2(R2 + 1).

Therefore the function f̂ is bonded by M = 1 + ∥W∗ −W(0)∥F ∥G∥2∥H∥2(R2 + 1). Moreover,624

the function f̂ must belong to the class F = {⟨Wx,y⟩|∥W∥F ≤ 2∥W∗∥F + ∥W(0)∥2F }. Since the625

linear function class F has finite covering the set N (F , ϵ) (Bartlett and Mendelson, 2002; Zhang,626

2002), by Theorem B.2 we know that when n ≥ (8τ−1ϵ−2M logB) log(2N (F , ϵ/32M)/δ), with627

probability at least 1− δ we have that628

|L̂S(f̂ , τ)− LDB (f̂ , τ)| ≤ ϵ/4

|L̂S(f
∗, τ)− LDB (f∗, τ)| ≤ ϵ/4.

Thus, we can conclude that629

L̂DB (f̂ , τ)− L̂DB (f∗, τ) ≤ L̂S(f̂ , τ)− L̂S(f
∗, τ) + |L̂S(f̂ , τ)− LDB (f̂ , τ)|

+ |L̂S(f
∗, τ)− LDB (f∗, τ)|

≤ ϵ/2 + ϵ/4 + ϵ/4

= ϵ.

where the first inequality is by the triangle inequality, the second inequality is by the bounded gap630

between empirical and population loss.631

Proof of Theorem 3.5.

E
[
∥g(x)− y∥22

∣∣∣z] = E
[
∥g(x)− E[y|z] + E[y|z]− y∥22

∣∣∣z]
= E

[
∥g(x)− E[y|z]∥22

∣∣∣z]+ E
[
∥E[y|z]− y∥22

∣∣∣z]
where the second equality is due to x ⊥ y|z and E

[
E[y|z]−y

∣∣∣z] = 0. Then taking a total expectation632

over both sides over z gives that633

E
[
∥g(x)− y∥22

]
= E

[
∥g(x)− E[y|z]∥22

]
+ E

[
∥y − E[y|z]∥22

]
≥ E

[
∥y − E[y|z]∥22

]
.

Obviously, E
[
∥g(x)− y∥22

]
achieves global minima when634

g(x) = E[y|z] = H

[
z

E[ζ|z]

]
.

This function g is also achievable. We can construct function g2(z) = H

[
z

E[ζ|z]

]
, and projection635

function g1(x) = z that is linear. Then we can define g = g2 ◦ g1.636

Proof of Corollary 3.6. Since ζ is independent with z, we have that637

g(x) = H

[
z

E[ζ|z]

]
= 1/3 ·

[
z
e1
0

]
+ 2/3 ·

[
z
e2
0

]
.

Besides, we have that638

y′ = H

[
z′

ζ′

]
=

[
z′

ζ′

0.

]
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Inner product similarity. We have that f(x,y′) = ⟨z, z′⟩+ 1/3 + 1/3 · 1(ζ′ = e2). Since margin639

γ < 1/3. There exist j, k such that ⟨vj ,vk⟩ > 2/3. Then for z = vj , we will sample K prompt640

y1, . . . ,yK . When yj =

[
vj

e1
0.

]
and yk =

[
vk

e2
0.

]
, we have that641

f(x,yj) = 4/3 < ⟨vj ,vk⟩+ 2/3 = f(x,yk),

which leads to the wrong top-1 prediction. The key insight behind this consequence is that f(x,y′) =642

⟨z, z′⟩+ 1/3 + 1/3 · 1(ζ′ = e2) is greatly influenced by the unique feature ζ. A similar case also643

exists for z = vk with yj =

[
vj

e2
0.

]
and yk =

[
vk

e1
0.

]
. The probability that the above event occurs is at644

least 2/K · 1/3 · 2/3 = 4/(9K) ≥ 1/(3K). Therefore, the test error is at least 1/(3K).645

Cosine similarity. Notice that ∥g(x)∥2 =
√
1 + 1/9 + 4/9 =

√
14/3, and ∥y∥2 = 1, therefore the646

cosine similarity is proportional to inner product similarity with factor
√
14/3. Thus, the test error is647

still at least 1/(3K).648

L2 similarity. We have that f(x,y′) = −∥z − z′∥22 − 8/9 + 2/3 · 1(ζ′ = e2). Since margin649

γ < 1/3. There exist j, k such that ∥vj − vk∥22 < 2/3. Then for z = vj , we will sample K prompt650

y1, . . . ,yK . When yj =

[
vj

e1
0.

]
and yk =

[
vk

e2
0.

]
, we have that651

f(x,yj) = −8/9 < −∥vj ,vk∥22 + 2/3 = f(x,yk),

which leads to the wrong top-1 prediction. The key insight behind this consequence is that f(x,y′) =652

−∥z− z′∥22 − 8/9 + 2/3 · 1(ζ′ = e2) is greatly influenced by the unique feature ζ. A similar case653

also exists for z = vk with yj =

[
vj

e2
0.

]
and yk =

[
vk

e1
0.

]
. The probability that the above event occurs654

is at least 2/K · 1/3 · 2/3 = 4/(9K) ≥ 1/(3K). Therefore, the test error is at least 1/(3K).655

656

I Proof of Results in Section 4657

Proof of Corollary 4.1. For (x, z) ∼ Dx×z, {yk ∼ Dy|vk
, k ∈ [K]}, let y∗ =

∑
k∈[K] 1(z =658

vk)yk. Denote E to be the event that the top-1 choice gives the wrong prediction or the margin is659

smaller than τ . Then we have that,660

ϵ′ ≥ E
[
log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log

( ∑
k∈[K]

exp
([
f̂(x,yk)− f̂(x,y∗)

]
/τ

))]

≥ E
[
1(E) log(1 + exp(−1))

]
= P(E) log(1 + e−1),

where the first inequality is by the first bullet of Theorem G.1, the second inequality is due to661

the fact that log
(∑

k∈[K] exp
([
f̂(x,yk) − f̂(x,y∗)

]
/τ

))
> 0, the last inequality is due to662

log

(∑
k∈[K] exp

([
f̂(x,yk) − f̂(x,y∗)

]
/τ

))
≥ log(1 + e−1) since there exists at least one663

similarity score f̂(x,yk) greater than f̂(x,y∗)− τ with yk ̸= y∗. Therefore, we have that P(E) ≤664

ϵ′/ log(1 + e−1) ≤ 4ϵ′ which completes the proof.665

Discussion of Theorem 4.2. The reason is that softmax function L(a) = log(
∑

i exp(ai)) is convex666

but not strongly convex and has an exponential-decaying tail. Once the score function f with667

the features g and h achieves the margin of order Ω(τ), the gradient will exponentially decrease.668

Therefore, the weight will not be updated effectively.669
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Proof of Theorem 4.2. Consider the simplest setting where ξ and ζ are all zero vectors, and we can670

access to the population loss and its gradient (notice that we are constructing the negative example).671

We will show that even under this ideal setting, the learned score function with corresponding672

representations may not achieve a margin greater than Õ(τ). Notice that673

∇WEDBL(f, τ) = ∇WE
[
log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+∇WE
[
log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]

= E
[
∇W log

( ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

))]

+ E
[
∇W log

( ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

))]

= E
[ ∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)∑
s exp

([
f(x1,ys)− f(x1,y1)

]
/τ

) (yt − y1)x
⊤
1

]

+ E
[ ∑
t∈[B]

exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)∑
s exp

([
f(xs,y1)− f(x1,y1)

]
/τ

)y1(xt − x1)
⊤
]

= E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)∑
s exp

([
f(x1,ys)− f(x1,y1)

]
/τ

) (yt − y1)x
⊤
1

]

+ E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)∑
s exp

([
f(xs,y1)− f(x1,y1)

]
/τ

) y1(xt − x1)
⊤
]

where the last inequality is by xt = x1 and yt = y1 when zt = z1. Therefore suppose function f can674

achieve a margin greater than log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ , we have that the gradient675 ∥∥∥∇WEDBL(f, τ)

∥∥∥
F

≤ 2∥G∥2∥H∥2(R2 + 1) · E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)∑
s exp

([
f(x1,ys)− f(x1,y1)

]
/τ

) ]

+ 2∥G∥2∥H∥2(R2 + 1) · E
[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)∑
s exp

([
f(xs,y1)− f(x1,y1)

]
/τ

) ]

≤ 2∥G∥2∥H∥2(R2 + 1) · E
[
1(zt ̸= z1)

∑
t∈[B]

exp
([
f(x1,yt)− f(x1,y1)

]
/τ

)
+ 2∥G∥2∥H∥2(R2 + 1) · E

[ ∑
t∈[B]

1(zt ̸= z1) exp
([
f(xt,y1)− f(x1,y1)

]
/τ

)]
≤ 0.25τ∥G∥−1

2 ∥H∥−1
2 (R2 + 1)−1η−1T−1, (I.1)

is very small. Now suppose the SGD trajectory start at W(0) = 2 log
(
16∥G∥22∥H∥22(R2 +676

1)2Bτ−1ηT
)
· (τ/γ)W∗. Obviously the score function with weight W(0) achieve a margin677

2 log
(
16∥G∥22∥H∥22(R2 +1)2Bτ−1ηT

)
τ . Suppose there exists a time t ≤ T such that ⟨W(t)x,y⟩678

can achieve margin larger than 3 log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ or can achieve margin679

larger than log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ . Then there must exist a first time t < t′ such680
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that the margin at time t lies outsize the range between log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ681

and 3 log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ . By definition of t (margin gap), we know that there682

exist x,y such that |⟨W(t)x,y⟩ − ⟨W(0)x,y⟩| > τ . On the other hand, we have that683 ∣∣⟨W(t)x,y⟩ − ⟨W(0)x,y⟩
∣∣ ≤ ∥W(t) −W(0)∥F ∥xy⊤∥F
≤ 2∥G∥2∥H∥2(R2 + 1)∥W(t) −W(0)∥F
≤ 2∥G∥2∥H∥2(R2 + 1) · ηT · 0.25τ∥G∥−1

2 ∥H∥−1
2 (R2 + 1)−1η−1T−1

≤ 0.5τ,

a contradiction! Therefore, such a t doesn’t exist. The score function learned by SGD within T684

iterations can’t achieve a margin greater than 3 log
(
16∥G∥22∥H∥22(R2 + 1)2Bτ−1ηT

)
τ .685

Theorem I.1 (Formal statement of Theorem 4.3). Under the same condition as Theorem 3.4, with686

ζ = 0. (This problem setting includes the special case considered in Theorem 4.2.) Let ϵ ≤687

λγ2 min pk/(3200∥H∥22) and τ ≤ γ/ log(γ2 min pk/(6400B∥H∥22)), within polynomial iterations,688

we can find a score function f̂ with large margin. In particular, with a probability of at least 0.99, the689

top-1 result gives the correct label with a margin of at least 0.5γ.690

Proof. For simplicity, consider the case that we can access the population loss and its gradient, i.e.,691

n → ∞. The regularized loss then becomes,692

Lnew = LDB (f, τ) + λE[∥g(x)− h(y)∥22].

Since the new loss is still convex and even strongly convex. By applying the same technique in the693

proof of the Theorem 3.4, within polynomial iterations, we can find Lnew(f, τ, λ) ≤ Lnew(f∗, τ, λ)+694

ϵ. Besides,695

Lnew(f∗, τ, λ) = LDB (f∗, τ) ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ 2B exp(−γ/τ)

where the first equality is by plugging in W∗ = H(H⊤H)−1P(G⊤G)−1G⊤,g(x) = Wx,h(y) =696

y , the inequality is by Lemma G.7. Thus we have that697

LDB (f, τ) + λE[∥g(x)− h(y)∥22] ≤ 2E
[
log

( ∑
t∈[B]

1(zt = z1)

)]
+ ϵ′,

where ϵ′ = ϵ + 2B exp(−γ/τ). By (G.10) and (G.11), we know that LDB (f, τ) ≥698

2E
[
log

(∑
t∈[B] 1(zt = z1)

)]
. Therefore, we can conclude that699

E[∥g(x)− h(y)∥22] ≤ ϵ′/λ ≤ γ2 min pk/(1600∥H∥22),

where the last inequality is by choose ϵ ≤ λγ2 min pk/(3200∥H∥22) and τ ≤700

γ/ log(γ2 min pk/(6400B∥H∥22)). Then by Chebyshev’s inequality, for any z, with probability701

1− 0.01 we have ∥g(x)− h(y)∥2 ≤
√
100max p−1

k E[∥g(x)− h(y)∥22] ≤ γ/(4∥H∥2). Then for702

any y′ that has the different shared feature from y (i.e., z′ ̸= z) we have that703

⟨g(x),h(y′)⟩ − ⟨g(x),h(y)⟩
≤ ⟨h(y),h(y′)⟩ − ⟨h(y),h(y)⟩+ ∥g(x)− h(y)∥2 · (∥h(y′)∥2 + ∥h(y)∥2)
≤ −γ + γ/2

≤ −γ/2,

where the first inequality is by triangle inequality, the second inequality is by ∥g(x) − h(y)∥2 ≤704

γ/(4∥H∥2) and ∥h(y′)∥2 = ∥h(y)∥2 ≤ ∥H∥2 since ζ = 0.705
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