
Learning the Electronic Hamiltonian of Large Atomic Structures

Chen Hao Xia * 1 Manasa Kaniselvan * 1 Alexandros Nikolaos Ziogas 1 Marko Mladenović 1 Rayen Mahjoub 1
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Abstract
Graph neural networks (GNNs) have shown
promise in learning the ground-state electronic
properties of materials, subverting ab initio den-
sity functional theory (DFT) calculations when
the underlying lattices can be represented as small
and/or repeatable unit cells (i.e., molecules and
periodic crystals). Realistic systems are, how-
ever, non-ideal and generally characterized by
higher structural complexity. As such, they re-
quire large (10+ Å) unit cells and thousands of
atoms to be accurately described. At these scales,
DFT becomes computationally prohibitive, mak-
ing GNNs especially attractive. In this work, we
present a strictly local equivariant GNN capable
of learning the electronic Hamiltonian (H) of
realistically extended materials. It incorporates
an augmented partitioning approach that enables
training on arbitrarily large structures while pre-
serving local atomic environments beyond bound-
aries. We demonstrate its capabilities by predict-
ing the electronic Hamiltonian of various systems
with up to 3,000 nodes (atoms), 500,000+ edges,
∼28 million orbital interactions (nonzero entries
of H), and ≤0.53% error in the eigenvalue spec-
tra. Our work expands the applicability of current
electronic property prediction methods to some of
the most challenging cases encountered in compu-
tational materials science, namely systems with
disorder, interfaces, and defects.

1. Introduction
Graph neural networks (GNNs) have proven capable of
learning properties that are functions of molecular and
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atomic structures, and thus easily represented by graph-
structured data (Veličković et al., 2018). They have already
enabled new directions of research previously thought com-
putationally unaffordable. More recently, GNNs have been
applied to predict electronic-level properties. The most
general of such properties is the ground-state Hamiltonian
matrix H , which, if expressed in a localized basis, can be
decomposed into sub-matrices Hi,j that encode the cou-
pling between the sets of basis elements located on atoms i
and j. These coupling terms depend on the nature (atomic
type) and relative coordinates of the local environment.

Previous works on electronic property prediction focused
on the cases of molecules (Zhong et al., 2023; Yu et al.,
2023b; Bai et al., 2021) and ordered materials (Li et al.,
2022; Gong et al., 2023; Wang et al., 2024a) whose graph
representations are fairly small; typical molecules contain
only a few atoms and all relevant structural information in
crystalline materials can be captured by translating a small
unit cell. The electronic properties of such systems can be
computed “exactly” with density functional theory (DFT)
within a few minutes on a single CPU.

Real materials, however, are not made with the repetition
of small unit cells. The unavoidable presence of defects,
for example, doping atoms, vacancies, strain, compositional
variations, or lattice mismatch (Ducry et al., 2020; Kani-
selvan et al., 2023; Strand et al., 2018), requires large unit
cells composed of up to a few thousand atoms to capture
the associated structural disorder (Repa & Fredin, 2023).
Accurate DFT simulations of such non-ideal materials are
prohibitively expensive, even on today’s largest supercom-
puters. The prospect of applying machine learning solutions
to handle such systems is thus particularly attractive and of
high relevance in computational materials science.

Here, we adapt equivariant GNN approaches to learn the
ground-state Hamiltonian H of this more realistic class of
atomic structures. As main contributions:

• We develop a strictly local GNN-based architecture
tailored for electronic property prediction from small
to large scales. Our network leverages efficient SO(2)-
convolutions and multi-headed attention, with learn-
able embeddings for node and edges that are mapped
to diagonal (Hi,i) and off-diagonal (Hi,j) blocks.
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• We propose an efficient augmented partitioning method
that incorporates virtual nodes/edges to enable parti-
tioning of input graphs while maintaining their exact
connectivity. Arbitrarily large graphs can then be de-
composed into independent partitions that fit into GPU
memory during training without compromising the
achievable testing accuracy.

We combine our network and augmented partitioning ap-
proach to treat a custom dataset of three large atomic struc-
tures in their amorphous phase. As amorphous materials
encompass all aforementioned defect types, they are ide-
ally suited to test and validate our model. In particular,
we achieve 2.17-2.58 meV prediction accuracies on unseen
samples, matching the ranges of previous studies for ma-
terials with orders of magnitude fewer atoms (Wang et al.,
2024b). We also demonstrate how this error translates into
downstream applications by matching the eigenvalues of H
to within 0.53% relative L1 error on structures with 3,000
atoms, which require several (3.65) hours to compute using
DFT. Our work advances applications of equivariant GNNs
towards practical use cases in computational materials sci-
ence.

2. Background & related work
The electronic properties of a material refer to its set of
energy levels (ε) and wavefunctions (ψ) that electrons can
occupy. They correspond to the eigenvalues and eigenvec-
tors of the Hamiltonian matrix H describing the atomic
system of interest. This quantity is a function of the location
(relative positions {ri}) and identity (atomic numbers {Zi})
of all constituent atoms {i} ((Hohenberg & Kohn, 1964)).
Therefore, predicting the electronic properties of materi-
als consists of learning the mapping F : {ri, Zi} → H
between the atomic structure and the elements of the corre-
sponding Hamiltonian matrix, before diagonalizing H to
obtain ε and ψ (Fig. 1).

The entries of the ground-state Hamiltonian matrix H are
typically computed from first principles with DFT ((Kohn
& Sham, 1965)). In several widely used codes, the wave-
functions are expanded into a basis |φ⟩ of non-orthogonal
atomic orbitals localized around atomic positions, each
built, for example, from contracted Gaussian functions
((Kühne et al., 2020; Neese, 2011)). These orbitals trans-
form like spherical harmonics under rotation r̂ → r̂′:
Y l
m(r̂′) =

∑
m′ Dl

mm′(R)Y l
m′(r̂). Here, Y l

m is the spher-
ical harmonic of degree l and order m ∈ {−l, . . . , l}.
Dl

mm′(R) is the Wigner-D matrix of degree l correspond-
ing to the rotation R, which transforms the spherical har-
monic r̂ and r̂′ are normalized direction vectors.

The localized nature of the basis states leads to finite spa-
tial overlaps between them. The resulting Schrödinger-like

Figure 1. Schematic of the mapping between the atomic graph and
the blocks of the Hamiltonian matrix H in the localized orbital ba-
sis of choice. Each orbital block represents the couplings between
atomic orbitals on the same atom (Hi,i, diagonal) or between two
different atoms within rcut (Hi,j , off-diagonal).

equation at the core of DFT takes the form of a generalized
eigenvalue problem: Hψ = εSψ. Here, the Hamiltonian
matrix H(N×N) has entries Hi,j = ⟨φi|Ĥ(r)|φj⟩ where
Ĥ(r) is the so-called Hamiltonian operator. The Overlap
matrix S(N×N) is defined as Si,j = ⟨φi|φj⟩. They are both
coarse-grained matrices of size N =

∑
kN

k
atoms · Nk

orb,
where Natoms is the number of atoms, Norb the number of
orbitals per atom, and k indices over the different atomic
species found in the system. Note that S reduces to the iden-
tity matrix in case of an orthogonal basis |φ⟩. Otherwise, it
can be directly computed from the basis as the problem’s
physics does not influence it.

The Hamiltonian matrix can be decomposed into sub-
matrices Hi,j of size (N i

orb × N
j
orb), each describing the

interactions between all basis elements (orbitals) on atoms i
and j. Diagonal blocks (Hi,i) are the interactions between
orbitals on the same atom. When represented on a local
basis, the matrix is near-sighted; the interactions between
orbitals on different atoms decay exponentially with increas-
ing interatomic distance. Since an atomic orbital basis is
used, the sub-matrices are also equivariant under rotation
of the atomic bonds, with their transformation properties
related by the Wigner-D matrix.

2.1. Challenges unique to disordered materials

Computing the electronic properties of disordered materials
with DFT still requires defining a repeatable ‘unit cell’ that
is translated through space to construct the desired atomic
system. Periodic boundaries are applied to the surface of
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Figure 2. Illustration of the differences between ideal periodic (left)
and compositionally (middle) or structurally (right) disordered
materials, whose features can only be described by large unit cells.
In all examples, a black box delimits the smallest repeatable unit
cell, while the circles/lines correspond to atoms/bonds.

this cell to avoid dangling bonds. However, the assumed
periodicity can alter the disordered nature of the material if
the repeating unit cell is too small. If atoms can interact with
all their periodic images, non-physical phenomena may arise
such as the formation of coherent electronic states across
cells, drastically affecting the material properties. Small
unit cells thus cannot accurately represent the physics of
disordered systems. To avoid such unrealistic scenarios and
better approximate disorder, ‘large-enough’ unit cells should
be constructed, with dimensions ranging from 10 Å (Repa
& Fredin, 2023) to a few nanometers (Ducry et al., 2020).
Generating the Hamiltonian matrix H of these systems with
DFT involves tens to hundreds of self-consistent field (SCF)
loops, each requiring the diagonalization of an intermediate
H , the solution of Poisson’s equation, and the creation of
a new Hamiltonian matrix. As the first operation scales
with O(N3

atoms), analyzing electronic properties for large
disordered systems (or different representations of disorder
for the same material) is often computationally unaffordable.

2.2. Hamiltonian prediction models

Only a few studies have attempted to directly predict the
Hamiltonian matrix H of a given material with a GNN
rather than fitting its invariant quantities such as the total
energy. The key is to constrain the solution space by leverag-
ing prior knowledge of physical symmetries, e.g., rotational
equivariance of orbital blocks.

In such equivariant GNNs, the predicted Hamiltonian ro-
tates along with the input (Yu et al., 2023b; Zhang et al.,
2024; Batatia et al., 2023; Gong et al., 2023), which re-
quires maintaining SO(3)-equivariance within the model.

In other words, all network operations f acting on input
embedding xl of degree l must satisfy: f(Dl(R) · xl) =
Dl(R) · f(xl). The resulting networks are trained us-
ing Message Passing (MP), where each MP layer works
as follows: An atom i receives input messages from all
its neighboring source atoms j. Each input message goes
through convolution operations that combine features with
different l while preserving equivariance; a specific out-
put embedding xl3

ji of degree l3 can be computed through:
xl3
ji =

∑
l1,l2

xl1
j ⊗

l3
l1,l2

hl1,l2,l3Y
l2(r̂ji). Here, r̂ji is a

normalized vector indicating the direction of the edge con-
necting the atoms j and i, and h is a set of trainable weights.
The sum runs over tensor products which take xj (a source
input embedding of degree l1) and Y l2 (a filter spherical
harmonic embedding of degree l2) and produce the output
embedding:

(xl1
j ⊗

l3
l1,l2

Y l2(r̂ji))
l3
m3

=
∑

m1,m2

C(xl1
j )m1hl1,l2,l3Y

l2
m2

(r̂ji),

where C = Cl3,m3

(l1,m1),(l2,m2)
are the Clebsch-Gordan coef-

ficients that are indexed by the order m and degree l of
the input, filter, and output embeddings. The combination
of feature (x) and geometric (r̂) information along each
edge encodes both the identity and structure of the sys-
tem. These ‘Tensor Field Networks’ (TFNs) (Thomas et al.,
2018) achieve state-of-the-art accuracy on small molecule
(Yu et al., 2023b) and crystalline (Gong et al., 2023) datasets.
However, they are also computationally expensive. The net-
work training scales with O(l6max), where lmax is the max-
imum degree of the angular momentum considered. As a
consequence, E(3)-equivariant tensor product networks are
difficult to apply beyond a few atoms (Zhang et al., 2024).

Recently, the cost of training equivariant GNNs has been
significantly reduced by combining the benefits of data rota-
tion and equivariant network operations. These approaches
take advantage of the fact that when edges are rotated to
align with a fixed axis (y or z, depending on convention),
the only non-zero spherical harmonic components are those
of order m = 0. By keeping track of the bond vectors and
performing internal spherical rotations, complex SO(3) con-
volutions can thus be reduced to SO(2) linear convolution
operations (Passaro & Zitnick, 2023). Furthermore, under
these conditions, the Clebsch-Gordan coefficients exhibit a
predictable sparsity pattern (non-zero only when m3 = ±
m1). Altogether, the scaling reduces to O(l3max) (Wang
et al., 2024a), speeding up training, while allowing for
higher-order angular momenta (lmax) and more parameters
to capture finer, more complex details of the surrounding
environment. An advanced SO(2) convolution network was
developed by (Passaro & Zitnick, 2023) (eSCN), and was
further expanded by (Liao et al., 2023) (EquiformerV2)
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with the inclusion of equivariant attention. An implemen-
tation of this architecture on Hamiltonians by (Wang et al.,
2024a) achieved better performance on custom crystalline
2D-material datasets compared to previous tensor field and
invariant networks. However, the prediction of large disor-
dered structures still remains an open problem in literature.

3. Methods
We first present an equivariant architecture that is custom-
made for large-scale Hamiltonian prediction. A high-level
overview is shown in Fig. 3(a)-(b). Relevant implementa-
tion details and ablation studies are presented in Section 4
and Appendix B.

3.1. Orbital block processing

Each block Hij
αβ of the Hamiltonian matrix represents the

interaction (coupling) between the spherical harmonics of
degree lα on atom i and that of degree lβ on atom j. Mathe-
matically, it can be cast into the tensor product lα ⊗ lβ of
length (2lα+1)× (2lβ +1) between the uncoupled angular
momentum eigenstates lα and lβ . Each of these tensor prod-
ucts can be decomposed into a direct sum (⊕) of coupled an-
gular momentum eigenstates |L,M⟩, where L ranges from
|lα− lβ | to |lα+ lβ |: T (lα⊗ lβ) = |lα− lβ |⊕ ...⊕(lα+ lβ).
The transformation T from the uncoupled to the coupled
basis is performed using a matrix of Clebsch-Gordon coef-
ficients. For example, the coefficient for a specific |L,M⟩
coupled angular momentum eigenstate component is given
by:

|L,M⟩ =
+lα∑

mα=−lα

+lβ∑
mβ=−lβ

C
(L,M)

(lα,mα)(lβ ,mβ) |lα,mα⟩ |lβ ,mβ⟩ ,

Applying a rotation R to the resulting Hij
γδ then consists of

independently applying the corresponding Wigner-D trans-
formation W l

D(R) to each of its subspaces of degree l. To
minimize the number of transformations, all orbital blocks
are initially transformed into the coupled basis as a pre-
processing step (Fig. 3(a)).

3.2. Network architecture

The graph’s nodes/edges are first initialized with embed-
dings of shape (Nn, (lmax + 1)2, En)/(Ne, (lmax + 1)2,
Ee), where Nn/e is the number of nodes/edges, En/e the
dimension of the node/edge embeddings, and lmax the max-
imum degree of the features. The l = 0 channels of the
node embeddings are initialized with atomic numbers, while
those of the edge embeddings are initialized with the scalar
distance between the two connecting nodes, expanded in the
chosen basis, here, contracted Gaussian functions. All other

components are initially set to 0.

During the node update phase, each node i receives mes-
sages from all its neighbors j, consisting of the concatenated
embeddings ni, nj , and eji. To enable fast tensor prod-
uct operations in large atomic structures, we adopt eSCN
convolutions (Passaro & Zitnick, 2023), with incoming mes-
sages rotated to align with the z-axis during these operations.
Non-linearity is then introduced through a gate activation
layer. On top of this, we also include multi-headed attention
mechanisms, as in EquiformerV2 (Liao et al., 2023), which
allows our network to learn better from highly dense local
atomic environments with varying node degree. Finally, the
resulting output messages are rotated back to their original
orientations, aggregated onto the node i, and passed through
a feedforward network to update its output embedding ni

corresponding to onsite (diagonal) Hamiltonian blocks.

To learn offsite (non-diagonal) blocks, we use concepts
from the Hamiltonian prediction networks in (Gong et al.,
2023),(Wang et al., 2024a), and introduce learnable em-
beddings for every edge, defined between pairs of atoms
located within a distance rcut from each other. The updated
node embeddings are used to update the edges through a
similar process, without the attention layer. The predicted
outputs are then post-processed back into the uncoupled
basis with the reverse transformation: T−1(Hij

γδ) = Hij
αβ ,

such that they can be used to reconstruct the Hamiltonian
matrix block-by-block.

3.3. Training on augmented partitions

A notable difference between our application and that of
standard GNNs in computational materials resides in the
density of interatomic interactions. Many types of physi-
cal interactions are short-range and can be captured with
a limited receptive field (Batatia et al., 2025). However,
despite the near-sightedness property of Gaussian functions,
orbitals located on different atoms can interact with each
other over distances exceeding ∼10 Å (see Appendix F),
giving rise to specific nonzero off-diagonal blocks in the
Hamiltonian matrix. They must be taken into account by
increasing rcut. The graph representation of these structures
is thus densely connected, with > 102 edges per node.

The combination of large graphs, dense connectivity, and
large tensor representations of nodes and edges results in
high memory consumption and long computation times per
epoch during training (see Appendix H.2). If a distributed
computing environment was used, the communication of
intermediate values during the forward pass would incur
significant overhead, impeding scalability (Wan et al., 2022).
At the same time, graphs cannot be arbitrarily partitioned by
removing inter-atomic connections. Doing so misinforms
the network as it tries to fit the target data while aggregating
inputs through an incorrect/incomplete graph structure. The

4



Learning the Electronic Hamiltonian of Large Atomic Structures

Figure 3. (a) Data transformation of the Hamiltonian matrix. Blocks of orbital interactions are first extracted from H and reshaped into
input tensors, which are transformed into the coupled basis. The tensor corresponding to each node and edge is expanded into a dimension
En/Ee, and this set of initial embeddings for every node and edge is sent into (b) the node update block. The node features (nX ) are
updated using a message-passing scheme. The edge features (eX ) are updated based on the learned nX . Z refers to atomic numbers,
while rij is the set of scalar distances between atoms. (c) Illustration of how connectivity beyond the partition boundaries is incorporated
through the addition of virtual edges (ej′→i) from virtual nodes (j′) to the labeled nodes. A set of edges from labeled and virtual nodes
is shown for a single node (i) within the partition. Solid vertical lines indicate the partition boundaries, and different colors represent
different atomic species.

inability to divide the graph into batches also slows down
the training process overall.

To efficiently train graphs corresponding to large materials
while maintaining correct atomic environments and neigh-
boring edge connections, we introduce an augmented par-
titioning approach. A visual representation of it is pro-
vided in Fig. 3(c). The graph is first partitioned into sub-
graphs where the data can fit into the memory of a single
GPU. Atoms located outside of a given partition, but con-
nected to those within, are represented by virtual nodes
(Fig. 3(c) - dashed circles). They are attached to the parti-
tion through virtual edges (Fig. 3(c) - dashed lines). These
virtual nodes/edges are initialized similarly to their labeled
counterparts with input atomic numbers and distances. How-
ever, their outputs are not used. Their only purpose is to
inform each partition of its full connectivity so that the
network can then learn an accurate and generalizable ag-
gregation function during message passing. To leverage
the periodic boundaries of the material structures treated
here, we partition the input structures by dividing the graph
into ‘slices’ along the longest dimension (x-axis), retaining
edges across the y- and z-boundaries. Details about the
construction of partitions are provided in Appendix B.

As the set of virtual connections used to augment each graph
includes only the 1-hop neighborhood, the network is strictly
local. Limiting the receptive field is an approach often used
to increase scalability. As demonstrated by previous strictly
local architectures, e.g., Allegro (Musaelian et al., 2023),
information from the local environment is often sufficient
to achieve state-of-the-art prediction accuracy when inter-
actions are strongly localized and the interaction cutoff is
sufficiently large. In Appendix F, we present further details
on how the Hamiltonian matrix elements satisfy this local-
ity. To capture higher body-order information, many-body
interactions can be flexibly added into the network without
increasing the receptive field, as implemented by (Zhouyin
et al., 2024).

3.4. Dataset creation

To generate sufficiently rich training data, existing datasets
typically sample molecules at various time steps of molec-
ular dynamics (MD) trajectories (Yu et al., 2023a; Schütt
et al., 2019; Christensen & von Lilienfeld, 2020) or generate
multiple small perturbations of the atoms in a crystalline
lattice (Li et al., 2022). Here, as a representative subset
of realistic (disordered) materials, we consider amorphous
crystals and take advantage of the fact that (1) every node
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Material Structure Purpose rcut [Å] # atoms # orbitals # edges x [Å] y [Å] z [Å]

a-HfO2 1 validate 8 3,000 18,000 527,348 52.876 26.308 26.242
a-HfO2 2 train 8 3,000 18,000 533,364 52.346 26.237 26.293
a-HfO2 3 test 8 3,000 18,000 530,920 52.722 26.267 26.191
a-HfO2 3 test 12 3,000 18,000 1,792,760 52.722 26.267 26.191

a-GST 1 train/validate (6:1 split) 12 1,008 13,104 230,848 29.541 25.583 41.777
a-GST 2 test 12 1,008 13,104 226,406 25.857 29.857 41.691

a-PtGe 1 train/validate (10:1 split) 8 2,688 16,128 319,262 82.283 23.171 25.031
a-PtGe 2 test 8 2,688 16,128 319,306 82.283 23.171 25.031
a-PtGe 2 test 10 2,688 16,128 629,790 82.283 23.171 25.031

Table 1. Attributes of the generated dataset for three materials, each with its own training, validation, and test set: The [x, y, z] triplet
defines the periodic unit cell size. nnzH is the number of non-zero elements in the Hamiltonian, encompassing all orbital interactions.
Edges were defined according to an interaction distance rcut.

Figure 4. Atomic structure example for the three materials we con-
sider. In each case, the black dashed box illustrates the boundaries
of the repeating unit cell.

has a different local atomic environment, and (2) each struc-
ture contains a large sampling of different motifs. A wide
range of training data can thus be captured within a single
sample.

We generate a custom dataset for three different materials
in the amorphous (a-) phase (without long-range order): a-
HfO2, a-GeSbTe (a-GST), and a-PtGe. Besides exhibiting
features that require large unit cells to be described, these
materials are also scientifically and technologically rele-
vant: a-HfO2 is a common high-κ dielectric that can be
found in almost all transistors and integrated circuits (Chan
et al., 2008). a-GST and alloys of a-Ge show high resistance
contrasts between crystalline and amorphous phases, and
can be used as switching layers of non-volatile memory
cells (Pirovano et al., 2004; Kolobov et al., 2004; Zellweger
et al., 2024) that are fully compatible with CMOS fabrica-
tion processes. Knowing the electronic Hamiltonian of these
materials is essential to understanding the behavior of the
corresponding devices and to designing better-performing

components (Brandbyge et al., 2002). Structure examples
can be visualized in Fig. 4 for each material. The corre-
sponding structural information used for training, validation,
and testing is found in Table 1. Details behind the sample
generation are given in Appendix D. This dataset will be
made publicly available to serve as a reference for large
electronic Hamiltonian matrix predictions.

4. Results
For fair comparisons in experiments where the quantity
of training data may vary, we used a ReduceLRonPlateau
scheduler that reduces the learning rate when no further
decrease in validation loss is detected. Training is stopped
once a minimum learning rate is reached. The values of
the hyperparameters and the scheduler settings for different
experiments are discussed in Appendix C.

4.1. Ablation studies of the training approach

We study the model’s ability to generalize to different con-
figurations of large systems by predicting the Hamiltonian
matrix H of a full a-HfO2 sample (structure 3 in Table 1),
which remains unseen during the training process. For all
subsequent HfO2 experiments, the augmented partitioning
scheme is only applied during training on structure 2, while
the H of the full unseen structure is predicted during infer-
ence (structure 3). We use an rcut of 8 Å. Errors are reported
separately for nodes (ϵn) and edges (ϵe) to distinguish intra-
and inter-atomic orbital interactions, which typically have
very different magnitudes.

First, we demonstrate the improvement in accuracy result-
ing from the augmented partitioning approach introduced in
Section 3.3. In particular, we examine the influence of vir-
tual nodes/edges in Table 2. Compared to training with raw
partitions, the addition of virtual nodes and edges reduces
the node (ϵnode) and edge prediction error (ϵedge) by ∼60%
and ∼70% respectively. Such an improvement is expected,
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ϵn[mEh] ϵe[mEh]

n′ n 5.39 0.55
n′ → n 2.16 0.16

Table 2. Ablation study on the impact of virtual nodes on the pre-
diction accuracy. Testing is done on structure 3, using slices of
length tslice = 3 Å from structure 2 for training and of length
tslice = 4 Å from structure 1 for validation. The first column indi-
cates the connectivity between virtual (n′) and labeled (n) nodes.
ϵn/ϵe is the error for nodes/edges.

as raw partitions omit a large proportion of boundary edges
and thus incorrectly capture atomic neighborhoods. We note
that as tslice < rcut, the one-hop neighborhood connects all
nodes within each partition.

Next, we explore the impact of augmented partitioning on
accuracy by training on an increasingly sub-divided graph
in Table 3. The total number of labeled atoms used for
training remains the same (3,000), while the total number
of labeled edges decreases with more partitions. Despite
the different divisions ranging from 5 (tslice ≃12 Å) to
27 (tslice ≃2 Å) slices, ϵn and ϵe remain very close to
the values obtained by training with the full graph (tslice
= 52.346 Å). The prediction error is thus insensitive to
partition size. For small slices in this case, the reduced
fraction of labeled connections along the x direction does
not affect the accuracy, as the remaining data along the y
and z directions is sufficient to train the network.

tslice [Å] Nt Ne Epochs ϵn[mEh] ϵe[mEh]

∼2 27 95,398 12,143 2.43 0.23
∼3 18 141,512 17,736 2.16 0.16
∼4 14 184,730 17,726 2.24 0.16
∼8 7 320,324 13,480 2.64 0.20
∼12 5 381,504 14,251 2.75 0.19
∼52 1 533,364 17,528 2.50 0.17

Table 3. Prediction accuracy for HfO2 when the network is trained
on differently-sized partitions of the same graph (structure 2), using
1 MP layer. Nt is the number of slices, Ne is the total number of
labeled edges. The total number of labeled nodes remains constant.
The number of slices is equal to ∼L/t, where L = 52.346 Å is the
full length of structure 2. The validation set is a slice of length
tslice = 4 Å starting at x0 = 25 Å from structure 1. The models
are tested on the full unseen structure 3.

4.2. Structural disorder

We apply the same local architecture to our custom dataset
of structurally disordered (amorphous) materials (HfO2,
GST, and PtGe from Fig. 4/Table 1), which contain a range
of different atomic elements (Hf, O, Ge, Sb, Te, Pt), basis
sets (SZV, DZVP), and bonding behavior (ionic, covalent).
All models are trained using augmented partitions and tested

on full unseen structures belonging to the same material.
The results are summarized in Table 4.

The strictly local architecture trained on augmented parti-
tions performs consistently across the different test datasets.
In all cases, prediction errors remain relatively insensitive to
the partition size (Table 11 in Appendix I). Partitioning also
allows us to extend rcut further (to 12 Å for HfO2) while
remaining within GPU memory limitations, effectively en-
compassing all non-zero matrix elements. As a result, the
best achievable error for each material system ranges from
2.17 meV to 2.58 meV, for test structures containing 1000-
3000 atoms and 200,000+ to 1,792,760+ edges. These val-
ues are comparable to what a previous study obtained (2.2
meV ) using equivariant GNNs for smaller structures with
≤150 atoms per unit cell (Wang et al., 2024b).

4.3. Compositional disorder

a-HfO2 often exists in a sub-stoichiometric form (a-HfOx)
due to the presence of oxygen vacancies induced by the
growth process. The distribution of these vacancies varies
significantly from one sample to the other, introducing a
statistical component to computational studies of the HfOx

electronic properties. Accounting for these compositional
variations necessitates a distinct DFT simulation for each
stoichiometric different structure, which is computation-
ally intensive, but an ideal application of machine learning
solutions.

To demonstrate our network’s ability to treat such problems,
we train a model on a single sub-stoichiometric a-HfO1.8

structure where 10% of the oxygen atoms were replaced by
randomly distributed vacancies represented as ghost atoms.
We then use it to predict unseen full structures with a stoi-
chiometry of a-HfO1.7, a-HfO1.8, and a-HfO1.9. The ϵn and
ϵe (Table 5) remain within a small range (2.34-2.45 mEh

and 0.15-0.16mEh, respectively), regardless of the vacancy
concentration and distribution, showing that the network
generalizes very well to compositional disorder, despite be-
ing trained on only one configuration. Models trained on
other vacancy concentrations perform similarly. Their re-
sults, along with details of the vacancy implementation, can
be found in Appendix I.1.

4.4. Eigenvalue spectrum of predicted a-HfO2

Next, we assess whether the prediction accuracy of the
trained network is sufficient for practical application. For
this, we use HfO2, as it has the highest error in our experi-
ments in Table 4 and thus presents an upper bound on the
expected accuracy. We assemble the full Hamiltonian of
the HfO2 test structure using the network outputs (Hpred),
trained with 18 partitions of length tslice = ∼3 Å. We then
compute the eigenvalue spectrum of Hpred and its refer-
ence HGT , as well as the error distribution between them

7
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Material tslice[Å] Nt rcut[Å] Nn Ne ϵn[mEh] ϵe[mEh] ϵtot[mEh] ϵtot[meV ]

a-GST 5 6 12 1,008 226,406 0.97 0.08 0.09 2.40
a-PtGe 5 10 8 2,688 319,306 0.77 0.08 0.09 2.49
a-PtGe 5 10 10 2,688 629,790 0.80 0.08 0.08 2.17
a-HfO2 3 18 8 3,000 530,920 2.16 0.16 0.18 4.84
a-HfO2 3 18 12 3,000 1,792,760 2.13 0.09 0.10 2.58

Table 4. Summary of model performance when trained on amorphous GST, PtGe, and HfO2. Nn and Ne refer to the number of nodes and
edges of the test structure. respectively. Key parameters of the structures used for training, validation, and testing are given in Table 1.

Stoichiometry (x) ϵn[mEh] ϵe[mEh]
Train set Test set

1.8 1.9 2.34 0.15
1.8 1.8 2.38 0.15
1.8 1.7 2.45 0.16

Table 5. Model trained on a-HfOx=1.8 and tested on full unseen
structures with different stoichiometry (x). 18 slices of each struc-
ture, each 3 Å thick, are used for training. The training method is
identical to the one from Table 3.

(Fig. 5(a)). The predicted Hpred is able to reproduce all
eigenvalues of HGT within 0.530% relative L1 error. The
error decreases to 0.446% when eigenvalues of unoccupied
states (those situated above 0.306 Eh) are excluded. The
remaining error is carried mostly by the largest eigenvalues
and distributed around the edges of energy gaps (see Fig. 9
in Appendix F), which correspond to regimes of stronger
inter-atomic orbital coupling (Atkins & De Paula, 2009).

Figure 5. (a) Eigenvalue spectrum of the predicted (Hpred) and
reference (HGT ) Hamiltonian matrices. The alpha value indi-
cates the scatter point transparency. (Hi,j)

pred is symmetrized
before diagonalization with H = 1

2
(H + H†). The rel-

ative L1/L2 errors in the eigenvalue spectrum, computed as
(∥(E⃗)pred−(E⃗)GT ∥2norm)/(∥(E⃗)GT ∥2norm) (norm = 1, 2) where
E⃗ is the vector of eigenvalues, are shown for all eigenvalues and for
the ones corresponding only to occupied states (below 0.305 Eh).
The black dashed box indicates the bandgap.

4.5. Computational cost

Compared to full-batch training of the graph, our method
using 8 augmented slices results in a 6.5× speedup per
epoch (0.38 vs. 2.5 s) and a 7.2× decrease in memory
consumption per rank (8.59 vs. 61.68 GiB) without af-
fecting accuracy. A more complete analysis is provided in
Appendix H.2. This scaling behavior is only limited by
the overhead introduced to process the virtual nodes/edges
and by any computational load imbalance from partitioning.
Further computational improvements could be achieved by
combining the augmentation approach with optimized graph
partitioning algorithms extended to leverage periodicity.

The extension of GNN-based predictions to large mate-
rial systems could potentially save tremendous amounts
of computational time, as the inference phase scales
with O(Natoms) while DFT calculations are limited to
O(N3

atoms). While DFT calculations to obtain the HGT

of small molecules (e.g., H2O) take only a few seconds,
the same operation for a-HfO2 structures made of 3,000
atoms is computationally two orders of magnitude heav-
ier (0.04 vs. 3.65 node hours, see Appendix H). We have
thus demonstrated the applicability of GNN approaches to a
regime where exact solutions are almost entirely prohibitive
for downstream applications. The model could also serve
as an initial guess to DFT packages to reduce the number
of self-consistent field iterations that are required to obtain
converged electron densities (Unke et al., 2021).

5. Applications in Device Transport Modeling
Investigating materials at the device scale is one of the
next challenges to tackle for ML-based materials modeling
(Miret et al., 2025). Here we demonstrate that Hamiltonian
matrices predicted by our approach can serve as inputs to ab-
initio quantum transport simulations, which aim to compute
the electrical current flowing through materials under an
applied voltage bias. This is done through the solution of the
Schrödinger equation with open boundary conditions, where
the Hamiltonian matrix contains the electronic properties
of the treated device. From the produced energy-resolved
transmission function, the electrical current can be derived
via the Landauer-Büttiker formula (Brandbyge et al., 2002).
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Figure 6. TiN/a-HfO2/Ti/TiN structures with different oxygen va-
cancy distributions (top), which lead to distinct electrical transmis-
sion curves (bottom). The positions of vacant oxygen atoms in
the former are indicated with red points. The grey boxes in the
transmission plots indicate the difference in the Fermi levels of
the two contacts, created through an applied bias. Current flow
is determined primarily by the transmission through this energy
window.

As a test, we designed a typical metal-insulator-metal resis-
tive switching device by embedding the a-HfOx structure
in Fig. 4 with two metal contacts and creating a TiN/a-
HfO2/Ti/TiN stack (Kaniselvan et al., 2023). We then com-
puted its electrical current for a-HfOx layers with different
vacancy configurations. The electrical transparency of a-
HfOx is a function of its exact atomic structure as well as
its local stoichiometric variations. Initially, the stoichiomet-
ric a-HfO2 blocks current flow due to its finite band gap.
The gradual introduction of oxygen vacancies changes this
stoichiometry and introduces energy states within the band
gap which can carry current (Devices 1-2). This current is
further enhanced when defects form a filament bridging the
metallic electrodes.

We modeled this process using either a (1) DFT- or (2)
ML-generated Hamiltonian. The resulting transmission
functions and electrical current values are presented for
two TiN/a-HfOx/Ti/TiN structures in Fig. 6 and Table 6,
respectively. Training for the latter occurred on slices of
amorphous HfOx structures with a uniform distribution of
oxygen vacancies. In the test structures, these oxygen vacan-
cies have formed partial or complete conductive filaments.
We thus test whether the learned electronic structures of
isolated vacancies can be extended to the case of tight inter-
actions between them, which are responsible for the current.

While the quantitative agreement between the transmission
functions and electrical currents obtained with a DFT and
ML Hamiltonian is not perfect, it is sufficient to (1) track
the difference in current across five orders of magnitude, (2)
match physically relevant features such as the band edges
of the a-HfOx layer or localized regions with higher trans-
mission, and (3) capture the qualitative difference in elec-

trical transparency caused by different spatial distributions
of oxygen vacancies. Device simulations with a ML-based
Hamiltonian can therefore be used to understand the con-
nection between atomic structure and electrical current flow
in TiN/a-HfOx/Ti/TiN stacks. Under this level of accuracy,
the model can now also generate Hamiltonian matrices for
systems with sizes which are otherwise computationally
infeasible with DFT.

Device ϵn[mEh] ϵe[mEh] Iref [A] Ipred [A]

0 1.71 0.16 8.00 ×10−9 5.54×10−9

1 1.66 0.16 1.48×10−5 1.06×10−5

2 1.59 0.15 6.99×10−6 4.89×10−6

Table 6. Summary of prediction results and computed currents
for devices with vacancy configurations forming different filament
shapes. Devices 1-2 are as in Fig. 6.

6. Conclusion
We developed an equivariant GNN tailored to learn the elec-
tronic properties of large-scale, disordered materials, and
introduced an augmented partitioning approach to break
down and train the graphs encountered when dealing with
realistic materials. More generally, we proposed a method
to tackle the training of systems represented by large, highly
connected, and near-sighted graphs where a strictly local
environment is sufficient. Our approach can be straightfor-
wardly applied to other complex materials, or adapted to
learn their other rotationally-equivariant attributes, such as
vibrational properties, e.g., phonon dispersions (Fang et al.,
2024). The resulting network captures relevant properties of
large structures in sufficient detail to achieve few-meV ac-
curacy and reproduce the energy eigenvalues to under 0.6%
error. Further data generation, network optimization, and
enabling increased expressiveness will be the next steps.
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Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller,
K.-R., and Maurer, R. J. Unifying machine learn-
ing and quantum chemistry with a deep neural net-
work for molecular wavefunctions. Nature Communi-
cations, 10(1), November 2019. ISSN 2041-1723. doi:
10.1038/s41467-019-12875-2. URL http://dx.doi.
org/10.1038/s41467-019-12875-2.

Senent, M. L. and Wilson, S. Intramolecular basis set su-
perposition errors. International Journal of Quantum
Chemistry, 82(6):282–292, 2001. doi: https://doi.org/
10.1002/qua.1030. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/qua.1030.

Stillinger, F. H. and Weber, T. A. Computer simulation of
local order in condensed phases of silicon. Phys. Rev.
B, 31:5262–5271, Apr 1985. doi: 10.1103/PhysRevB.
31.5262. URL https://link.aps.org/doi/10.
1103/PhysRevB.31.5262.

Strand, J., Kaviani, M., Gao, D., El-Sayed, A.-M.,
Afanas’ev, V. V., and Shluger, A. L. Intrinsic charge
trapping in amorphous oxide films: status and chal-
lenges. Journal of Physics: Condensed Matter, 30(23):
233001, May 2018. ISSN 1361-648X. doi: 10.1088/
1361-648x/aac005. URL http://dx.doi.org/10.
1088/1361-648X/aac005.

Søren Smidstrup, K. S., Blom, A., Markussen, T., Wellen-
dorff, J., Schneider, J., Gunst, T., Verstichel, B.,
Khomyakov, P. A., Vej-Hansen, U. G., Brandbyge, M.,
et al. Quantumatk: An integrated platform of electronic
and atomic-scale modelling tools. J. Phys: Condens. Mat-
ter (APS), 32:015901, 2020. doi: 10.1088/1361-648X/
ab4007. URL https://iopscience.iop.org/
article/10.1088/1361-648X/ab4007.

11

http://dx.doi.org/10.1038/nmat1215
http://dx.doi.org/10.1038/nmat1215
http://dx.doi.org/10.1038/s43588-022-00265-6
http://dx.doi.org/10.1038/s43588-022-00265-6
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2306.12059
https://arxiv.org/abs/2306.12059
https://arxiv.org/abs/2502.03660
https://arxiv.org/abs/2502.03660
http://dx.doi.org/10.1002/wcms.81
http://dx.doi.org/10.1002/wcms.81
https://link.aps.org/doi/10.1103/PhysRevB.57.7556
https://link.aps.org/doi/10.1103/PhysRevB.57.7556
http://dx.doi.org/10.1109/TED.2003.823243
http://dx.doi.org/10.1109/TED.2003.823243
http://dx.doi.org/10.1002/adts.202300292
http://dx.doi.org/10.1002/adts.202300292
http://dx.doi.org/10.1038/s41467-019-12875-2
http://dx.doi.org/10.1038/s41467-019-12875-2
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.1030
https://onlinelibrary.wiley.com/doi/abs/10.1002/qua.1030
https://link.aps.org/doi/10.1103/PhysRevB.31.5262
https://link.aps.org/doi/10.1103/PhysRevB.31.5262
http://dx.doi.org/10.1088/1361-648X/aac005
http://dx.doi.org/10.1088/1361-648X/aac005
https://iopscience.iop.org/article/10.1088/1361-648X/ab4007
https://iopscience.iop.org/article/10.1088/1361-648X/ab4007


Learning the Electronic Hamiltonian of Large Atomic Structures

Tafen, D. N. and Drabold, D. A. Realistic models of
binary glasses from models of tetrahedral amorphous
semiconductors. Physical Review B, 68(16), October
2003. ISSN 1095-3795. doi: 10.1103/physrevb.68.
165208. URL http://dx.doi.org/10.1103/
PhysRevB.68.165208.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation- and translation-equivariant neural networks for
3d point clouds, 2018. URL https://arxiv.org/
abs/1802.08219.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu,
D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J.,
Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R.,
Stevens, M. J., Tranchida, J., Trott, C., and Plimpton, S. J.
LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum
scales. Comp. Phys. Comm., 271:108171, 2022. doi:
10.1016/j.cpc.2021.108171.

Unke, O., Bogojeski, M., Gastegger, M., Geiger, M., Smidt,
T., and Müller, K.-R. Se (3)-equivariant prediction of
molecular wavefunctions and electronic densities. Ad-
vances in Neural Information Processing Systems, 34:
14434–14447, 2021.

Urquiza, M. L., Islam, M. M., van Duin, A. C. T., Car-
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
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A. Loss computation during training and inference
For all experiments, a minor difference from the procedures reported in (Yu et al., 2023b) and (Schütt et al., 2019) is that we
use the Mean Squared Error (MSE) of the full output and target vectors in the coupled space to compute the fitting and
validation loss during training: LMSE(xi, x̂i) =

1
N

∑N
i=1(xi − x̂i)2, where x and x̂ are the flattened targets in the coupled

space. These targets are padded with zeros to ensure that those of different orbital interactions have the same dimensions. We
note that doing so burdens the network to learn the zero-padding in addition to the data, which can artificially increase the
number of epochs required for training. However, the computational cost of extracting padding-free data and post-processing
it at the end of each epoch is also non-negligible. For this work we therefore use the padded data during training for ease of
implementation. The final reported loss for all our results uses the Mean Absolute Error (MAE) after converting the output
and label tensors back into uncoupled space and extracting the un-padded data: LMAE(xi, x̂i) =

1
Norb

∑Norb

i=1 |xi − x̂i|

B. Augmenting graph partitions with virtual nodes
In Algorithm 1, we detail the procedure to partition the full graph G, described by the set of vertices V and edges E , into a
set of slices {G1 . . . GN} which are augmented by virtual nodes and edges. The number of labeled nodes (nni ) and the
number of labeled edges (nei ) are collected and passed to the training functions, which then omit the remainder of the outputs
(the virtual nodes and edge outputs) while computing the loss.

Algorithm 1: Augmented partitioning approach

1 Graph G(V, E) Slice x-coordinates [x1 . . . xN ] Set of subgraphs {G1 . . . GN} Numbers labeled nodes
[nn1 . . . nnN ] Numbers labeled edges [ne1 . . . n

e
N ]

2 for i← 1 to N do
3 Vi← [];
4 nni = 0;
5 for v ∈ V do
6 if v.x ∈ [xi, xi+1) then
7 Vi.append(v);
8 nni += 1;
9 end

10 end
11 E i← [];
12 nei = 0;
13 for v1 ∈ Vi do
14 for v2 ∈ Vi do
15 if v1 → v2 ∈ E then
16 E i.append(v1 → v2);
17 nei += 1;
18 end
19 end
20 end
21 for v1 ∈ Vi do
22 for v2 ∈ V \ Vi do
23 if v2 → v1 ∈ E then
24 Vi.append(v2);
25 E i.append(v2 → v1);
26 end
27 end
28 end
29 Gi(Vi, E i);
30 end
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The augmentation approach can be combined with any method of partitioning the input graph. An ideal partitioning scheme
would result in the maximal ratio of labeled nodes/edges within each sub-graph, compared to virtual nodes/edges. As we
consider structures with fully periodic boundaries in all three dimensions, a simple heuristic to leverage this periodicity is to
partition along only one dimension (x), thus maintaining all the labeled edges across the y− and z− cell boundaries of each
periodic image. This motivates the division by slices described in Algorithm 1, which can be very effective when assuming
a constant atomic density. Finding more optimal partitions that nevertheless leverage periodicity is a subject of future work.

C. Hyperparameters
We use the hyperparameters shown in Table 7 to train on all datasets. The ReduceLRonPlaeau scheduler decreases the
learning rate by the decay factor when it does not detect a further decrease in validation loss within the decay patience
tpatience. The threshold refers to the sensitivity of the scheduler to changes in validation loss. Once the minimum learning
rate is reached, the training stops.

Hyper-parameters a-HfO2/PtGe/GST dataset

Optimizer Adam
Precision single (f32)
Scheduler ReduceLROnPlateau
Initial learning rate 1× 10−4

Minimum learning rate 1× 10−5

Decay patience tpatience 500
Decay factor 0.5
Threshold 1× 10−3

Maximum degree Lmax 4
Maximum order Mmax 4
Embedding size 16
Number of attention heads Nh 2
Feedforward Network Dimension 64

Table 7. Hyper-parameters used for a-HfO2, a-PtGe and a-GST data.

D. Dataset generation
Atomic structures corresponding to materials in the amorphous phase are not straightforward to generate since they
must accurately capture the structural motifs underlying this phase and a realistic range of atomic coordination. To
accurately reproduce long-range structural disorder, the structures used must also be large enough to avoid the creation of
wavefunctions that repeat over periodic boundaries. Existing methods to do so include melt-quench (Urquiza et al., 2021),
seed-and-coordinate (Youn et al., 2014), or ‘decorate and relax’ (Tafen & Drabold, 2003) approaches.

In this work, we use melt-quench processes with molecular dynamics (MD) to evolve each of the three materials considered
from their crystalline phases, following a similar procedure as the ones described in (Kaniselvan et al., 2023) and (Urquiza
et al., 2021). We then perform a structural relaxation with CP2K code (Kühne et al., 2020) to correct for any discrepancies
between the relaxed bond lengths attained with the force field used for MD and those obtained with DFT. Due to the large
cell sizes of the a-HfO2 structures, all necessary information is contained within the Γ point (where the wavevectors kx = ky
= kz = 0). The energies at this location can be computed by directly diagonalizing H . The datasets are publicly available at
https://huggingface.co/datasets/chexia8/Amorphous-Hamiltonians.

Further details specific to each material are provided in the sections below.

D.1. a-HfO2

We generate 3 independent structures of a-HfO2 using the QuantumATK toolkit (Søren Smidstrup et al., 2020). As a first
step, we run an MD NVT simulation at 3000K for 50 ps with a step size of 1 fs. We use the MTP-HfO2-2022 potential
provided by the software. Next, we run an NPT simulation for 300 ps (and the same 1 fs step size), with an initial reservoir
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temperature of 3000K and a final temperature of 300K, for a cooling rate of 9K/ps. Finally, we anneal the structure at 300K
for 50 ps.

Due to the computational cost of using a more complete Double-ζ Valence Polarized (DZVP) basis set (VandeVondele &
Hutter, 2007), we use a simpler Single-ζ Valence (SZV) basis (VandeVondele & Hutter, 2007), which uses 4 basis functions
per Oxygen atom and 10 basis functions per Hafnium atom. The plane-wave cutoff is set to 500 Ry, while a cutoff of 60 Ry
is used for mapping the Gaussian-type orbitals onto the grid. We use the PBE functional for the exchange-correlation energy
(Perdew et al., 1997). To accurately capture the band gap of a-HfO2, we apply the Hubbard correction (Anisimov et al.,
1991) of U = 7 eV to the 3d orbital of Ti and the Hubbard correction of U = 10 eV to the 2p orbital of O.

D.2. Substoichiometric HfOx

We create a dataset for sub-stoichiometric HfOx structures by introducing randomly distributed oxygen vacancies into the
original, pristine HfO2 structures. The sub-stoichiometric structures are generated for x = 1.9, 1.8, and 1.7 (corresponding to
vacancy concentrations of 5%, 10%, and 15 %, respectively). Vacancies are treated as ghost atoms (atoms with no orbitals,
but with a basis set defined at their locations), to mitigate the basis set superposition error (Senent & Wilson, 2001), a known
problem related to localized basis sets. More precisely, by treating vacancies as ghost atoms, one prevents the excessive
borrowing of the basis sets from neighboring atoms by the vacancy, which improves the accuracy of the predicted electronic
properties. These ghost atoms are assigned an atomic number of 0.

D.3. a-GST

We use two amorphous GST-124 (Ge(SbTe2)2) structures containing 1008 atoms for training and validation. The first
structure is extracted from the MD simulation of GST-124 crystallization, provided by (Yuxing Zhou, 2023) (Supplementary
Material). The initial geometry for the second structure is a perfectly crystalline GST-124 structure, taken from Materials
Project database (Jain et al., 2013). The amorphous structure is then generated through a standard melt-quench procedure,
consisting of atomic position randomization at 3000K for 20 ps, cooling to the melting point of 600K at a rate of 1014K.s–1,
holding for 30 ps, quenching to 300K at a rate of 2.5×1013K.s–1, and finally, annealing at 300K for 50 ps. Both amorphous
structures are obtained via MD simulations in LAMMPS (Thompson et al., 2022), equipped with the QUIP library for
Gaussian Approximation Potential (GAP) (Csányi et al., 2007). The corresponding Hamiltonian matrices are obtained
using CP2K, where we run calculations with the DZVP basis, the plane-wave cutoff of 300 Ry, the Gaussian-type orbitals
mapping cutoff of 50 Ry, and the PBE functional.

D.4. a-PtGe

To generate the PtGe structures, germanium structures are taken from the Materials Project database (Jain et al., 2013). This
is followed by an NVT melt-quench process using LAMMPS and Stillinger-Weber parameters (Stillinger & Weber, 1985;
Nordlund et al., 1998; Wang & Stroud, 1988). The structures are heated to a melting temperature of 5000K at a rate of 0.47
1012K.s–1, kept at the melting temperature for 20000 ps (structure 1) or 22000 ps (structure 2), quenched at a rate of 4.7
1012K.s–1, and finally annealed at 300K for 100 ps. Using the Atomic Simulation Environment (ASE) tool (Hjorth Larsen
et al., 2017), 1/3 of the Ge atoms are replaced by Pt atoms. The cell of the alloy is then stretched to match the cell of a
PtGe2 structure (taken from the Materials Project and optimized using CP2K). Fixed-volume geometry relaxation is then
performed on the PtGe alloy. For the structural optimization, as well as for the H and S generation, SZV basis set and PBE
exchange-correlation functionals are used. We apply a plane-wave cutoff of 1000 Ry and a cutoff for Gaussian-type orbitals
mapping of 70 Ry.

E. Atomic bonding environments in the amorphous phase
We use the example of a-HfO2 to investigate the structural differences between samples generated from different starting
melt-quench processes. In Fig. 7 we plot the O-coordination of each Hf atom and the radial distribution function g(r)
(where r is the inter-atomic distance) for each of the three structures. The distribution in the coordination and dispersion of
the peaks in g(r) indicates the amorphous nature of the three structures. Variations between them appear as perturbations in
these two quantities. To gain more insights into how different the structures are, we additionally plot the spatially resolved
O-coordination of Hf atoms along the longest, x coordinate for the three structures, as well as the distributions of outliers
(Hf atoms with very low and very high O-coordination) in three-dimensional space. These outliers are situated at different
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locations in different structures, demonstrating a significant degree of dissimilarity among the structures.

Figure 7. a) O-coordination of Hf atoms (number of O atoms bonding a Hf atom) for each of the a-HfO2 structures, showing a distribution
around a coordination number of 6, and variation between the structures. b) The radial distribution function (g(r) = dn(r)

dr
Vdomain

4πr2Natoms
),

where n(r) is the number of atoms with distance r between them for the structures 1-3. (c) Spatial distribution of coordination outliers
(Hf atoms with O-coordination equal to 8 or 4) for the three structures, which are an indicator of the uniqueness of the three structures.

F. Near-sightedness of the Hamiltonian matrix
In Fig. 8, we visualize the matrix elements corresponding to the Hamiltonian of one sample of each material from the
dataset. Specifically, we show the interaction ranges at which non-zero matrix elements exist, as well as their decay with
increasing interatomic distance. When using a local basis, this near-sightedness holds strictly.

Figure 8. Summary of the Hamiltonian matrix properties for each of the materials in our custom dataset. Shown are (top row) atomic
structures, (middle row) frequency of matrix elements as a function of interatomic distances, and (bottom row) distribution of the
maximum element of each block of H as a function of interatomic distance |rij |.
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Next, using the three a-HfO2 structures in Table 1 as an example, we show the distribution of energy eigenvalues in Fig. 9 at
different values of rcut. In the second row, we zoom into the range of eigenvalues around the energy bandgap, which is
defined by the transition between occupied and unoccupied electronic states (the Fermi level EF = ∼ 0.3Eh in all cases).
Values of rcut ≥ 8Å create no noticeable difference on the eigenvalue spectra. Note that the value of rcut =∞ corresponds
to the case where no nonzero values were filtered from HGT .

Structure 1 Structure 2 Structure 3

Structure 1 Structure 2 Structure 3

Eg Eg Eg

Figure 9. Eigenvalues of the ground-truth Hamiltonian matrix, showing (top) the full eigenvalue spectrum and (bottom) the spectrum
around the bandgap, for the three structures, in the order of their appearance in Table 1.

To demonstrate the locality of long- and short-range perturbations, we introduce a single perturbation at one chosen location
in the structure and measure the mean absolute error of the onsite Hamiltonian blocks when compared to that of the
unperturbed structure. The types of perturbations introduced include translation of a hafnium atom, oxygen vacancy, and
substitution of an oxygen atom with a hafnium one, and are plotted against the distance from perturbation in Fig. 10 (a), (b),
and (c), respectively.

Figure 10. Scatter plots showing the decay of MAE with increasing distance from different perturbations, including (a) 0.1 Å translation
of a Hf atom, (b) replacement of O atom with a vacancy, and (c) replacement of O atom with Hf atom.

In all cases, the effect of the perturbation rapidly decays with increasing distance. For the case of the 0.1 Å translation,
the average onsite MAE at a distance of 8 Å away is given by 0.15 mEh. Considering the average value of an onsite
Hamiltonian block (63mEh), the perturbation only affects the matrix elements by 0.24% overall. Similarly, for vacancy and
substitution perturbations, the matrix elements of atoms located 8 Å away only changed by 0.18% and 0.12% respectively.
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This implies that for our chosen cutoff of 8 Å, perturbations occurring outside of the radius surrounding the atom have a
negligible effect on its Hamiltonian matrix elements. This also indicates that the electronic structure of that atom can be
learned using information from the local atomic environment.

G. Cutoff radius and connectivity
We now explore the minimal graph connectivity that can be used by the network to accurately learn relevant features of
HfO2. To do this we use the slice partition approach introduced in Section 3.3, using 18 slices of length tslice = 3 Å to
train the network. Results are reported in (Table. 8). Reducing the value of rcut below 8 Å noticeably increases the error
(ϵn/e), thus demonstrating the sensitivity of H to the exact connectivity of the graph. Going from rcut = 8 Å to 12 Å ,
the edge error improves, while the node error begins to plateau, but the node degree (which is proportional to the memory
consumption of the network) grows by 1.7×. This is consistent with the negligible changes to the eigenvalue spectra with
rcut of 8 Å (Fig. 9).

rcut [Å] deg(n) deg(n)′ ϵn[mEh] ϵe[mEh] ϵtot [mEh] ϵtot [meV ]

4 21.02 10.60 2.84 0.52 0.64 17.50
6 72.41 32.01 2.27 0.26 0.29 7.98
8 177.61 49.89 2.16 0.16 0.18 4.84
10 347.16 78.85 2.18 0.12 0.12 3.38
12 590.25 138.59 2.13 0.09 0.10 2.58

Table 8. Prediction accuracy of the network with different rcut. Training was done with a single slice of length tslice = 3 Å. The edge
connectivity of the matrix is set by rcut. deg(n) is the average node degree, and deg(n)′ the reduced node degree omitting virtual node
neighbors. Note that for this value of tslice, the majority of neighbors for the average node are virtual. ϵn and ϵe are the Mean Average
Error (MAE) for nodes/edges, respectively. All units are in [×10−3Eh]. The validation loss of the model is computed from a slice of
similar length extracted from structure 1. The networks are tested on an unseen full graph (structure 3) constructed with the same rcut.

We perform a similar study on the cutoff radius of PtGe in Table 9. Increasing the cutoff radius once again increases the
overall prediction accuracy of the trained model, mostly due to improvements in edge-prediction accuracy.

Cutoff [Å] deg(n) deg(n)′ ϵn [mEh] ϵe [mEh] ϵtot [mEh] ϵtot [meV ]

4 14.28 10.00 1.08 0.26 0.33 8.96
6 50.17 27.37 0.80 0.14 0.16 4.28
8 118.71 51.57 0.77 0.08 0.09 2.49
10 234.28 84.07 0.80 0.08 0.08 2.17

Table 9. Prediction accuracy of model on amorphous PtGe material with different rcut

H. Compute environment and runtime comparisons
The training is performed with PyTorch Distributed Data Parallel (Li et al., 2020), where the graph partitions (slices) can be
distributed between GPUs.

H.1. Memory consumption of full-graph training

During the training of the full graph model, the peak memory consumption observed was 61.68 GiB on a single NVIDIA
A100 GPU. Most of the consumption does not stem from the network and the structure but from the additional memory
needed for the convolution operations.

H.2. Scalability of augmented partitioning

In Fig. 11, we show the decrease in time per epoch and resulting speedup when using the augmented partitioning approach
introduced in Section 3.3. Since the partitions are independent, the only communication involved in every epoch is a
collective to inform each GPU/rank of the loss of each other rank. The time per epoch thus decreases uniformly with the
number of slices (Nt) used.
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Despite the independence of each batch and the minimal communication per epoch, the scaling is not perfectly linear. The
deviation from an ideal speedup can be attributed to two factors:

• Load imbalance: The partitioning approach was designed to leverage the periodicity in the y- and z- direction within a
straightforward implementation. However, it is not ideal in terms of the number of cuts/number of virtual nodes/edges
required, resulting in a slightly different amount of work per rank which leads to an observable load imbalance at
higher Nt. This effect can be seen in the allocated memory per partition (Fig. 11(c)). We note that the augmented
partitioning method can be used with any standard graph-partitioning algorithm.

• Computational overhead of the virtual nodes and edges: Individual nodes and edges of the graph can be repeated in
labeled and virtual node lists. Treating the replicas introduces additional computational cost while training the network,
which increases with Nt. This overhead is maximum with the use of very small slices (large Nt), thus introducing a
trade-off between parallelism and time per epoch.

Figure 11. (a) Time per epoch and (b) speedup resulting from the use of increasing numbers of slices Nt. Median values are shown, while
the error bands are one standard deviation. Experiments were run on NVIDIA A100 GPUs with # ranks set to Nt. Measurements are only
shown up to 8 slices/8 GPUs due to limitations in available compute resources at the time of submission. The fill-between indicates the
range in runtime over the first 30 minutes of training. The dashed black line corresponds to the ideal speedup, in which case the use of Nt

slices would enable an Nt× speedup in the runtime per epoch. (c) Measured peak memory consumption as a function of the number of
partitions, where each bar corresponds to a different GPU. Variation in memory consumption between GPUs at each individual value of
Nt translates to load imbalance, which correlates with the deviation from ideal scaling shown in (b).

H.3. H2O vs HfO2 runtimes

In Section 4.5, we make a comparison between the computational cost of computing the Hamiltonian for an H2O molecule
and the HfO2 structure. To approximate the cost of generating them under the same computational conditions, we set up
CP2K simulations with a DZVP basis for H2O. The computation time per H2O molecule was 7s, when run on 12 nodes with
12-core Intel Xeon E5-2680 CPUs and NVIDIA P100 GPU, resulting in a total of 0.04 node hours. The HfO2 structures
require 3.65 node hours in the same compute environment (but distributed to 27 nodes). The difference, omitting scaling
behavior, is roughly ∼100×.

I. Additional Tests
I.1. Sub-stoichiometric hafnium oxide

Here, we provide a more detailed study on the prediction of substoichiometric HfO2, where the train/test structures contain
different vacancy fractions. 18 slices (tslice = 3 Å) were used in all cases. The results are summarized in Table 10. The ϵn and
ϵe values across different experiments lie within a small range (2.24-2.73 mEh and 0.13-10.18 mEh respectively), showing
that the network generalizes well to structures of different vacancies, regardless of which vacancy configuration it was trained
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Stoichiometry (x) ϵn [mEh] ϵe [mEh]
Training Testing

1.9 1.9 2.24 0.13
1.9 1.8 2.44 0.14
1.9 1.7 2.73 0.15
1.8 1.9 2.34 0.15
1.8 1.8 2.38 0.15
1.8 1.7 2.45 0.16
1.7 1.9 2.32 0.14
1.7 1.8 2.37 0.15
1.7 1.7 2.51 0.18

Table 10. HfOx models trained and tested with different stoichiometry (x) using augmented partitioning. 18 slices of each structure, each
3 Å thick, was used for training. The training method is identical to the one used to obtain Table 3. Models trained on HfOx=1.9 (5%),
HfOx=1.8 (10 %), and HfOx=1.7 (15% vacancies) are tested on test structures with vacancies ranging from 5% to 15%.

on. To demonstrate that the augmented partitioning approach similarly does not affect accuracy for sub-stoichiometric HfOx,
we also perform full graph training using structure 2 with 15% vacancies, and compare with the augmented partitioning
approach in Table 12. The comparison of ϵn and ϵe values between full and partitioned approaches indicates that both
approaches generalize well to different stoichiometry. These values are also close to that of stoichiometric HfO2 in Table 3.

I.2. Partitioning tests for other materials

For each material, we train the model on partitions of different thicknesses containing the same number of atoms. The
results are summarized in Table 11. The same test was also repeated on substoichiometric HfO1.7 and tested on structures
with different stoichiometry (shown in Table 12. It can be seen that augmented partitioning preserves the accuracy of
prediction for all material cases studied. For HfOx, it also preserves the model’s ability to generalize to structures of different
stoichiometry.

Material tslice[Å] Nt rcut[Å] Nn Ne ϵn[mEh] ϵe[mEh] ϵtot[mEh] ϵtot[meV ]

a-GST 30 1 12 710 138532 1.15 0.08 0.08 2.28
a-GST 5 6 12 710 48356 0.97 0.08 0.09 2.40

a-PtGe 50 1 8 1633 182372 0.77 0.08 0.08 2.26
a-PtGe 5 10 8 1633 84416 0.77 0.08 0.09 2.49

Table 11. Summary of model performance when trained on amorphous GST and PtGe structure with slices of different thicknesses. The
structures used for training, validation, and testing are displayed in Table 1. Nn and Nt refers to the total number of labeled nodes and
edges in the training set respectively.

Training method Stoichiometry (x) ϵn [mEh] ϵe [mEh]
Testing set

partitioned 1.9 2.32 0.14
partitioned 1.8 2.37 0.15
partitioned 1.7 2.51 0.18

full 1.9 3.02 0.12
full 1.8 2.54 0.11
full 1.7 2.52 0.11

Table 12. Comparison between full graph training and the augmented partitioning training using the same HfO1.7 structure with 15%
vacancies. Models are tested on structures with vacancies ranging from 5% to 15%.

I.3. Small Molecule Benchmarks

We test our backbone architecture setup on part of the MD17 benchmark (Schütt et al., 2019), which consists of small-
molecules, each with 3 (water), 9 (malondialdehyde) or 12 (uracil) atoms. The hyperparameters used are listed in Table. 14.
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Dataset Model Train Validate Test Batch size ϵtot [µEh]

water QHNet 500 500 3900 10 10.79
This work 500 500 3900 10 5.60

malondialdehyde QHNet 25,000 500 1,478 5 21.52
This work 25,000 50 1,478 5 16.60

uracil QHNet 25,000 500 4,500 5 20.12
This work 25,000 50 4,500 5 13.80

Table 13. Comparison with QHNet on MD17 benchmark dataset containing water, malondialdehyde and uracil

The number of training steps for each experiment is fixed at 200,000 to match that of QHNet in (Yu et al., 2023b) . The
results in Table 13 show that the performance of our setup is comparable to that of the baseline for all measured cases.

Hyper-parameters MD 17 dataset

Optimizer Adam
Precision double (f64)
Scheduler ReduceLROnPlateau
Criterion RMSE + MAE
Initial learning rate 1× 10−3

Minimum learning rate 1× 10−10

Number of MP Layers 2
Decay patience tpatience 50
Decay factor 0.5
Threshold 1× 10−5

Maximum degree Lmax 4
Maximum order Mmax 4
Embedding size 128
Number of attention heads Nh 2
Feedforward Network Dimension 64

Table 14. Hyper-parameters used for MD17 dataset.
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