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Abstract

Data attribution methods play a crucial role in understanding machine learning1

models, providing insight into which training data points are most responsible for2

model outputs during deployment. However, current state-of-the-art approaches3

require a large ensemble of as many as 300,000 models to accurately attribute4

model predictions. These approaches therefore come at a high computational cost,5

are memory intensive, and are hard to scale to large models or datasets. In this6

work, we focus on a minimalist baseline that relies on the image features from7

a pretrained self-supervised backbone to retrieve images from the dataset. Our8

method is model-agnostic and scales easily to large datasets. We show results on9

CIFAR-10 and ImageNet, achieving strong performance that rivals or outperforms10

state-of-the-art approaches at a fraction of the compute or memory cost. Contrary11

to prior work, our results reinforce the intuition that a model’s prediction on one12

image is most impacted by visually similar training samples. Our approach serves13

as a simple and efficient baseline for data attribution on images.14

1 Introduction15

The effectiveness of a machine learning system’s performance hinges on the quality, diversity, and16

relevance of the data it is trained on [11, 28]. In various real-world machine learning systems, for17

example in healthcare or finance, we often ask questions like, “Which training samples influenced18

this prediction?" or “How sensitive is this model’s prediction to changes in the training data?"19

Counterfactual insights enable us to assess the impact of hypothetical changes in the data distribution,20

which in turn helps us understand the basis of the model’s decisions and how to change the decision21

in the event of an error.22

These questions motivate research on data attribution methods, which focus on understanding which23

data points most strongly influence a model’s outputs. Data attribution methods have been applied24

to applications such as debugging model biases [16, 24, 27], fairness assessment [2], and active25

learning [21]. In principle, data attribution can be done perfectly by a brute-force leave-k-out strategy;26

simply train the model from scratch many times, removing k data points each time. The user can27

then examine the impact of each data point by examining how the corresponding ablated model28

differs from the original. Clearly, this procedure is intractable for any realistic problem as there are29

innumerable subsets, and training even a single machine learning model can be almost prohibitively30

expensive. The goal of data attribution research therefore is to approximate this gold standard metric31

as closely as possible while simultaneously using as little computation as possible. As such, the field32

of data attribution is all about trade-offs between accuracy, runtime, and memory.33

Existing data attribution approaches gain insights into model behaviors by scraping information34

from the learning algorithm, such as logits [16] or gradients [18, 24]. Despite this, these techniques35

still require re-training multiple models on different data subsets, or other compute and memory36
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Figure 1: Our proposed baseline approach for data attribution achieves high performance while
improving computational efficiency. Figure (a) shows the wall-clock time on an RTX A6000 GPU
on the x-axis and memory requirements in GBs on the y-axis respectively (see Appendix A.1 for
details). Figure (b) shows performance on two metrics measuring the method’s accuracy to make
counterfactual predictions (details about the metrics are discussed in Section 2.1.)

intensive strategies for better efficacy [16, 7, 18, 24]. Current data attribution approaches quickly37

become intractable as datasets become larger [1, 24] and applications become more realistic, such as38

attribution for LLMs [10].39

In this work, we present a simple approach that outperforms the current state of the art in terms of40

compute-accuracy trade-offs, and often in terms of raw performance numbers as well. Given a test41

image, we use the feature space of a single self-supervised model to retrieve similar images, revealing42

a compelling association between data attribution and visual similarity. In contrast to existing43

methods that involve unwieldy model ensembles and extensive computation, our approach shifts the44

spotlight directly onto the data. Building on prior research, we focus on counterfactual prediction45

[16, 24] for evaluating data attribution techniques. Based on the intuition that data inherently shapes46

model behavior, our method does not use any information about the model training process, and47

yet still rivals the performance of state-of-the-art approaches that do, while using a tiny fraction48

of the computational resources. Our work shows that, contrary to previous work [16, 24], feature49

representations can serve as a robust baseline for data attribution methods.50

2 Problem Setting51

We first define our notation and then discuss evaluation criteria used for data attribution approaches.52

We borrow notation and evaluation criteria from Ilyas et al. [16] and Park et al. [24].53

Notation: Let S = {z1, z2, . . . zn} denote a set of training samples. Each sample zi ∈ S represents54

zi = (xi, yi), where xi signifies the input image and yi represents the associated ground truth label.55

We use zt to denote an arbitrary evaluation sample not present in the training set. We denote a data56

attribution approach as a function τ(z, S) ∈ Rn. This function operates on any sample z and a57

training set S, generating a score for each sample within the set S. These scores highlight the relative58

positive or negative impact of individual training samples on the classification of the input sample z.59

2.1 Evaluating Attribution Methods60

Recent research primarily concentrates on evaluating the performance of data attribution methods61

through the lens of their capacity to provide accurate counterfactual predictions [24, 16]. While62

these metrics can be computationally demanding, they represent a valuable proxy for assessing the63
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Figure 2: Self-supervised features are more effective than supervised and are best compared
using an ESVM. Self-supervised features from MoCo can be used to find smaller data support than
standard supervised features. For a larger fraction of test samples, ESVM distance is more effective
than ℓ2 distance at ranking train images to select smaller data removal support.

effectiveness of attribution approaches. In our work, we replicate the approach presented in Ilyas et64

al. [16] and focus on data brittleness. Data brittleness metrics leverage attribution techniques to65

answer the following question: “To what extent are model predictions sensitive to modifications in66

the training data?” Hence, these metrics serve as a means of estimating counterfactual scenarios. To67

quantify data brittleness, we focus on two distinct types of data support for a validation sample zt.68

We explain these below:69

Data Removal Support: The smallest subset Rr, that when removed from the training set S, causes70

an average training run of the model to misclassify zt.71

Data Mislabel Support: The smallest training subset Rm, whose mislabeling causes an average72

training run of the model to misclassify zt. For each training sample in Rm, we change the labels to73

the second-highest predicted class for zt.74

For a validation sample zt and a data attribution approach τ(z, S), we rank the training samples based75

on decreasing order of positive influence on zt. Then, based on the ranking, we iteratively select76

and modify a subset of training data. We perform this search, over different subsets to compute the77

smallest training subset that can cause zt to be misclassified. Ilyas et al. [16] check only subsets with78

certain discrete sizes to keep costs manageable. We instead propose to perform a bisection search to79

approximate the search for the smallest subset, yielding more accurate results. The exact algorithm80

and details are discussed in Appendix A.4.81

Intuitively, a better data attribution approach should find a smaller subset of training samples that can82

misclassify zt. We estimate these metrics over a set of validation samples and plot the cumulative83

distribution (CDF), which represents the probability that a sample’s label can be flipped as a function84

of the data subset size. In Fig. 1, we compare the Area Under Curve (AUC) of the CDF for the85

metrics described above across our approach and other attribution methods.86

Linear Datamodeling Score (LDS) is another related metric used for the evaluation of data attribution87

methods [16, 24]. LDS metric focuses on counterfactual predictions for arbitrary changes in training88

data. In contrast, data brittleness serves to quantify the accuracy of counterfactual predictions using89

targeted changes to training data based on a specific validation sample. Thus, the latter metric serves90

as a better proxy for the data attribution method’s usefulness as a debugging tool. In this work, we91

emphasize performance on data brittleness and provide results for the LDS metric in Appendix A.8.92

3 Our Approach & Baselines93

3.1 Our Design Choices94

Our approach utilizes a neural network to extract features from a validation sample zt and each95

training sample in S. Then, we compute attribution scores by measuring the distance in feature space96
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between zt and each training sample in S. Prior works have tried similar approaches and claimed97

them to be ineffective for counterfactual estimation [24, 16]. Below, we describe various components98

of our approach that affect performance.99

Feature extractor. We find that the learning paradigm used to train a feature extractor heavily100

influences the estimation of data support. For example, embeddings from a ResNet-9 trained using a101

self-supervised learning objective (MoCo, [14]) can be used to find smaller support sets than the same102

model trained in a supervised manner (See ℓ2 MoCo vs ℓ2 Supervised in Fig. 2). With the exception103

of DINO [3], all self-supervised feature extractors perform better than their supervised counterpart104

(see Appendix A.2 Fig. 6). We found that MoCo features outperform other self-supervised approaches105

in both data removal support and mislabeling support scenarios, leading us to select a MoCo model106

as our preferred feature extractor.107

Subset of train images. In Appendix A.3 Fig. 8, we show that choosing a support set from training108

images of class the same class y as the target zt = (x, y) is critical, i.e. given a target image of an109

airplane, we only rank airplane training images.110

Distance function. When measuring the distance between two embeddings, Euclidean distance (ℓ2)111

is a common choice [16, 24]. However, we find that measuring distance as distance to the hyperplane112

of an Exemplar SVM (ESVM) improves image similarity [22]. To compute this metric, we train113

a linear SVM using one positive sample (the target embedding) and treat all other samples (the114

remaining embeddings of the same class) as negative samples. In this way, the decision boundary,115

and consequently the distance function, is defined largely by unique dimensions of the target with116

respect to all embeddings of the same class. In Fig. 2, we demonstrate how using distance to the117

hyperplane of an ESVM yields better removal support estimates than ℓ2 distance.118

3.2 Baselines119

Datamodels [16]: In the Datamodeling framework, the end-to-end training and evaluation of deep120

neural networks is approximated with a parametric function. Surprisingly, optimizing a linear function121

is enough to predict model outputs reasonably well, when given a training data subset. By collecting122

a large dataset of subset-output pairs, [16] demonstrate that such a linear mapping can accurately123

predict the correct-class margin. Datamodels were shown to be effective at counterfactual predictions124

but are prohibitively expensive, requiring the training of hundreds of thousands of models (300,000125

in the original work) to generate optimal subset-output data. Unfortunately, this limitation makes126

Datamodeling intractable for all but small toy problems.127

TRAK [24]: By approximating models with a kernel machine, Tracing with the Randomly-projected128

After Kernels (TRAK) makes progress toward reducing the computational cost of data attribution by129

reducing dimensionality with random projections and ensembling over multiple models. However,130

the method tends to only work well with more than a dozen model checkpoints and a large projection131

dimension for the model gradients, the storage of which can surpass 80GB when using a ResNet-9 on132

CIFAR-10. Compared to Datamodels, TRAK gains in runtime are paid for in storage space.133

4 Experiments134

4.1 Experimental Setup135

Training Setup: For CIFAR-10 [20], we train ResNet-9 1 and MobileNetV2 [26] models. We136

randomly selected 100 validation samples, in a class-balanced manner for our brittleness metrics. For137

CIFAR-10, we remove or mislabel a maximum of 1280 training samples for each validation sample.138

Our training setup is similar to [16]. For ImageNet [6], we train ResNet-18 [15] models. We randomly139

selected 30 validation samples, from a subset of validation samples that are not misclassified by 4140

ResNet-18 models on average. For ImageNet, removed or mislabeled a maximum of 1000 training141

samples for each validation sample. For our approach, we always use a single model. We denote142

baselines using N models as Datamodels (N) or TRAK (N). Details about the baselines and our setup143

are provided in Appendix A.9.144

1https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
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Figure 3: Our baseline approach uses only a single model and outperforms TRAK and Datamod-
els using 20 and 10,000 models for data brittleness metrics. We plot the cumulative distribution for
data brittleness metrics on 100 random CIFAR-10 test samples using various attribution approaches.
We outperform TRAK (20) [24] and Datamodels (10K) [16] for data removal support. We also beat
TRAK (100) and perform equivalent to Datamodels (300K) for data mislabel support.

Figure 4: Compared to instances of Datamodels and TRAK, we check whether our data support
estimates are smaller, equal, or larger for all 100 CIFAR-10 validation samples. For 32 samples,
our approach can find smaller data mislabel support compared to Datamodels (300K). Even for data
removal, our approach can find an equivalent support estimate to Datamodels (300K) for 14 samples.

4.2 CIFAR-10 Data Brittleness145

In Fig. 3, we present the distribution of estimated data removal values for CIFAR-10. Our findings146

reveal that employing a single model with a MoCo backbone [14] for data removal support proves147

more effective than employing Datamodels with 10,000 models and TRAK with 20 models. Our148

approach and Datamodels (10K) identify that 23% samples can be misclassified by removing fewer149

than 500 (example-specific) training samples while TRAK (20) can only identify 16%. For support150

sizes up to 1280 images, our approach identifies 55% of validation samples, whereas TRAK (20) and151

Datamodels (10K) can only identify 28% and 31% samples respectively.152

In Fig. 3, we also depict the distribution of estimated data mislabel support for CIFAR-10. Here, our153

approach outperforms TRAK (100) and approaches the performance of Datamodels (300K). Here,154

our approach identifies 47% of CIFAR-10 validation samples that can be misclassified by mislabeling155

less than 30 training samples! In contrast, TRAK (100) performs poorly identifying only 20% of156
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Figure 5: Our method yields better upper bounds on support size compared to TRAK-4, which
requires more storage than the ImageNet dataset itself. We estimate data removal support for 30
random ImageNet validation samples and plot the CDF of estimates.

these samples. DataModels (300K) can identify 50% of validation samples marginally surpassing our157

performance.158

In Fig. 4, we further inspect how well our baseline approach works for each validation sample. We159

compare the individual estimated support sizes for all 100 samples using our approach versus other160

baselines. Our estimated data removal support is smaller than those of Datamodels (50K) for 16%161

of the samples. For 44% of the samples our data removal estimates match TRAK and Datamodels162

(50K). For data mislabel support, our approach finds a smaller support estimate than Datamodels and163

TRAK for 32% and 79% of the validation samples.164

While our baseline approach cannot outperform Datamodels (300K) on data removal, our performance165

on the data mislabel support is nearly the same. Our baseline approach of using a single self-166

supervised model can thus serve as a simple, compute, and storage-efficient alternative to estimate167

data brittleness.168

4.3 ImageNet Data Brittleness169

In Fig. 5, we show our results for data removal on ImageNet. Our results show that for 4 and 16170

of the 30 validation samples our estimated data removal support is less than 16 and 130 training171

samples respectively. In contrast, TRAK (1) and TRAK (4) do not scale well to ImageNet at all172

and provide much looser data removal estimates. We again emphasize that even scaling to TRAK173

with 10 models would require around 400 GB of storage space, by our estimate. This highlights the174

scalability of our baseline approach where a single self-supervised MoCo backbone can provide more175

accurate data removal estimates than other existing data attribution methods.176

4.4 Other Experiments177

In A.6, we discuss how attribution scores from our approach and other baselines transfer across178

architectures. In A.5, we discuss the role of visual similarity across different attribution approaches.179

5 Conclusion180

Data attribution approaches are computationally expensive and can be prone to inaccuracy. While181

these approaches exhibit promise and capability, their scalability to large-scale models remains182

uncertain. Our work highlights the importance of visual similarity as a baseline for counterfactual183

estimation, providing valuable insights into data attribution. Our approach demonstrates scalability184

and accuracy, particularly in attributions for ImageNet, where it outperforms other state-of-the-185

art methods while maintaining manageable compute and storage requirements. Remarkably, our186

approach achieves these results without any reliance on training setup details, target model parameters,187

or architectural specifics. Our work shows that strong data attribution can be achieved solely based188

on knowledge of the training set.189
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A Appendix269

A.1 Compute Time and Storage Requirements270

For our compute time estimates, we use NVIDIA RTX A6000 GPUs and 4 CPU cores. We describe271

how we estimate the wall-clock time, and storage requirements for each method below -272

• Datamodels: We only take into account the storage and compute cost of training models.273

The additional cost of estimating datamodels from the trained models, requires solving274

linear regression whose computational costs are negligible compared to training the models.275

For compute and storage requirement estimates, we train 100 ResNet-9 models on random276

50% subsets of CIFAR-10 and extrapolate to estimate the training time and storage required277

for 10,000 and 50,0000 models shown in Fig. 1.278

• TRAK: We use the authors’ original code 2 to train, and compute the projected gradients279

for CIFAR-10 using ResNet-9 Models using a projection dimension of 20480. For storage280

requirements, we take into account storage used by model weights, and the projected281

gradients. The results in Fig. 1, show the compute and storage using 10, 20 and 100 models.282

• Ours: We use Lightly library 3 benchmark code to train a MoCo model using a ResNet-18283

backbone on CIFAR-10 for 800 epochs. The results in Fig. 1 show the wall-clock training284

time for the model, and extracting the features from CIFAR-10 and the storage requirements285

for model weights.286

To calculate the storage requirements, we factor in the storage space necessary for retaining the287

trained model weights, as they are essential for computing influence on new validation samples across288

all attribution methods.289

A.2 Additional Self-Supervised Features290
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Figure 6: We estimate data removal support for 100 random CIFAR-10 test samples and plot the CDF
of estimates.

In addition to utilizing features from MoCo in Section 3, we test our choice of distance function291

on ResNet-18 features from other self-supervised methods trained on CIFAR-10. In particular, we292

evaluate BYOL [9], SimCLR [5], and DINO [3] at estimating data removal support in Fig. 6 and293

mislabel support in Fig. 7. With the exception of DINO, self-supervised features from BYOL and294

SimCLR outperform the supervised baseline at estimating data removal support. Additionally, we see295

that in all cases using ESVM distance is more effective than using ℓ2 distance to compare features.296

2https://github.com/MadryLab/trak
3https://github.com/lightly-ai/lightly
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Figure 7: We estimate data mislabel support for 100 random CIFAR-10 test samples and plot the
CDF of estimates.

A.3 Additional Justification for Chosen Subset of Train Images297

For a target sample zt, data attribution approaches rank the training samples based on decreasing298

order of positive influence on zt. For our method, a design choice was whether to rank training299

samples from all classes or from a selected subset of the training data. One reasonable subset was to300

select training samples from the same class as the target test sample. In Fig. 8, we show that selecting301

from the same class is more effective when estimating britteness scores. We maintain this choice for302

all our experiments.303
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Figure 8: Choosing removal support from all training images is less effective than selecting from the
same class as the target image.

A.4 Computing Data Support304

We use bisection search to estimate data support. The use of bisection search is supported by the305

observation that several data attribution approaches are additive [24], where the importance of a306

subset of training samples is defined as the sum of each of the samples in the subset. To compute data307

removal support, we remove M samples (chosen using each attribution method) from the training308

data and log whether the resulting model misclassifies the target sample. For data mislabeling support,309

we mislabel M samples (chosen using each attribution method) from the training data and assign a310

new label corresponding to the highest incorrect logit.311

A detailed summary of our bisection search is in Algorithm 1. A key step is312

CounterfactualTest(f, S, Iattr[: M ]) which returns the average classification of Ntest indepen-313
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dent training runs where fθ is trained on the subset R = {zi|zi ∈ S and i /∈ Iattr[: M ]}. In other314

words, for computing data removal support, fθ is trained on a subset of S that does not include the315

first M indices of Iattr. For computing mislabeling data support, the only difference is that rather316

than removing the first M indices of Iattr, we relabel those samples with the class of the highest317

incorrect-class logit, following [16].318

Algorithm 1 Bisection Search for Computing Data Support
Input: Target sample, zt = (xt, yt)
Input: Training set, S, and a list of top k training set indices Iattr ordered by the attribution method
τ(z, S)
Input: Model fθ
Input: Search budget, Nbudget

Input: Number of times to test classification, Ntest

Output: Nsupport, size of the smallest training subset R ⊂ S such that fθ misclassifies xt on average
1: L← 0
2: H← |Iattr|
3: M← H
4: Cavg ← CounterfactualTest(f, S, Iattr[: M ])
5: if Cavg > 0.5 then
6: return -1 ▷ Nsupport is larger than k
7: end if
8: Nsupport ←M
9: while Nbudget > 0 do

10: Nbudget ← Nbudget − 1
11: M ← (L+H)/2
12: Cavg ← CounterfactualTest(f, S, Iattr[: M ])
13: if Cavg > 0.5 then
14: L←M
15: else
16: H ←M
17: Nsupport ← min(M,Nsupport)
18: end if
19: end while
20: return Nsupport

For bisection search across all attribution methods, we use a search budget of 7. For the CIFAR-10319

data brittleness metrics, we aggregate predictions over 5 independently trained models. Thus, to320

evaluate a single validation sample, we train 35 models (7 budget × 5 models) for a total of 3500 (35321

× 100 samples) models for a data brittleness metric. On ImageNet, we don’t aggregate predictions322

and only train a single model. Hence, to evaluate a single validation sample on Imagenet, we train323

7 models per sample, and a total of 210 models for evaluating a data brittleness metric. Due to the324

large training cost on ImageNet, we only show results for data removal support. We explicitly point325

out that these costs are incurred only for analysis of these data attribution methods (see Section 2).326

Our attribution approach is in comparison, extremely cheap to compute.327

A.5 Role of Visual Similarity328

In Fig. 9, we plot the most similar training images according to Datamodels, TRAK, and our method.329

Given that our approach relies on comparing MoCo features from the same class as the target image,330

it makes sense that the closest training images are visually similar. On the other hand, the most331

similar training images found by Datamodels [16] and TRAK [24] show more variability. Despite the332

variability of most similar train images, Datamodels (300K) outperforms all other methods in the333

counterfactual tasks assessed in Fig. 3, hinting at the importance of additional contributing factors.334

Still, our method underscores the significant impact of relying solely on visual similarity, essentially335

showing that a significant fraction of data attribution can be achieved without knowledge of the336

learning algorithm, based only on knowledge of the training set.337
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Figure 9: Our attribution method consistently selects the most visually similar training images
by design. In each row, we plot the same target test image (Index 31), followed by ten most similar
training images according to each attribution method.

0 200 400 600 800 1,000 1,200

0

0.5

1

Number of Training Samples Removed

Fr
ac

.o
fC

IF
A

R
-1

0
M

is
cl

as
si

fie
d

Datamodels (300K models)
Datamodels (50K models)
Datamodels (10K models)
TRAK (100 models)
TRAK (20 models)
TRAK (10 models)
Ours (1 model)

Figure 10: Our baseline approach is model agnostic and performs well across different architec-
tures. We evaluate how attribution scores transfer from one architecture transfer to another. We use
ResNet-9 scores for TRAK and DataModels and estimate data removal support for MobileNetV2.
For our approach, we use the same ResNet-18 backbone.

A.6 Transfer to different architecture338

Datamodels and TRAK utilize information tied to the model architecture such as gradients or logits339

from an ensemble of models. However, different neural network architectures are known to exploit340

similar biases and output similar predictions [23, 29]. In order to better understand how data may341

be shaping these biases we test how well attribution scores from these approaches transfer to other342

architectures. Since our approach does not use any information about the model architecture and only343

leverages the data, we expect our baseline approach to transfer across different architectures.344

In Fig. 10, we compare TRAK, Datamodels, and our attribution scores and evaluate them on a345

MobileNetV2 architecture [26]. The results show that our approach using ResNet-18 continues to346

predict accurate data removal estimates surpassing TRAK (100) and Datamodels (50K), which suffer347

a large degradation in performance. Datamodels (300K) also suffer degradation in performance348

but provide tighter estimates than our approach. This suggests that while simply relying on visual349
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similarity may be useful for efficiently predicting counterfactuals, additional biases within the350

architecture may also have an influence.351

A.7 Other Related Work352

Data attribution methods should produce accurate counterfactual predictions about model outputs.353

Although a counterfactual can be addressed by retraining the model, employing this straightforward354

approach becomes impractical when dealing with large models and extensive datasets. To address355

this problem, data attribution methods perform various approximations.356

The seminal work on data attribution of Koh et al. [18] proposes attribution via approximate influence357

functions. More specifically, Koh et al. [18] identify training samples most responsible for a given358

prediction by estimating the effect of removing or slightly modifying a single training sample. But359

being a first-order approximation, influence function estimates can vary wildly with changes to360

network architecture and training regularization [1]. Nevertheless, approximating influence functions361

is reasonably inexpensive and has recently also been attempted for multi-billion parameter models362

[10].363

Measuring empirical influence has also been attempted through construction of subsets of training364

data that include/exclude the target sample [7]. In a related approach, TracIn [25] and Gradient365

Aggregated Similarity (GAS) [12, 13] estimate the influence of each sample in training set S on the366

test example zt by measuring the change in loss on zt from gradient updates of mini-batches. While367

TracIn can predict class margins reasonably well, the method struggles at estimating data support.368

Other methods for influence approximation include metrics based on representation similarity [30, 4].369

Another related line of work has utilized Shapley values to ascribe value to data, but since Shapley370

values often require exponential time to compute, approximations have been proposed [8, 17]. In371

general, there seems to be a recurring tradeoff: methods that are computationally efficient tend to be372

less reliable, whereas sampling-based approaches are more effective but require training thousands373

(or even tens of thousands) of models.374

A.8 Linear Datamodeling Score375

Let τ(z, S) : Z ×Zn → Rn be a data attribution method that, for any sample z ∈ Z and a training376

set S assigns a score to every training sample indicating its importance to the model output. Consider377

a training set S = {z1, z2 . . . zn}, and a model output function fθ(z). Let {S1, ..., Sm|Si ⊂ S} be m378

random subsets of the training set S, each of size α · n for some α ∈ (0, 1). The linear datamodeling379

score (LDS) is defined as:380

LDS(τ(z, S)) = ρ({fθ(Sj)(z) | j ∈ [m]}, {τ(z, S) ·Sj | j ∈ [m]}) (1)

where ρ denotes Spearman rank correlation [19], θ(Sj) denotes model parameters after training on381

subset Sj , and Sj
is the indicator vector of the subset Sj . Unlike data brittleness metrics, LDS382

accounts for samples with positive as well as negative influence.383

To compute LDS scores, for our model output function fθ(z), we use the correct class margin. This
is defined as:

fθ(z) = (logit for correct class)− (highest incorrect logit)

Our approach cannot directly be applied to compute LDS scores, as for a validation sample zt we384

only focus on training samples with the most positive impact. We propose a simple modification to385

our approach. We assign a score to each training data based on the inverse of signed l2 distance. The386

sign is based on whether the label for the training sample matches zt. We then threshold our scores,387

such that all scores beyond the top-5% are zero leading to sparser attribution scores. The sparsity388

prior has been shown to be effective for data attribution [16, 24].389

In Table 1, we present a comparison of LDS scores using our baseline approach, TRAK and390

Datamodels. Although our baseline was not initially designed for direct LDS score approximation, a391

simple adaptation demonstrates comparable performance to TRAK (5) on CIFAR-10. TRAK with a392

larger ensemble of models can achieve higher LDS scores. The Datamodels framework was optimized393

for this objective and trained as a supervised learning task, using tens of thousands of models. Hence,394

it achieves a better correlation with LDS.395
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Models Used LDS Scores

Datamodels
300,000 0.56
50,000 0.43
10,000 0.24

TRAK

100 0.22
20 0.15
10 0.12
5 0.08

Ours 1 0.08

Table 1: We compare LDS scores for our approach with other baselines on CIFAR-10. Our proposed
approach can perform equivalent to TRAK with 5 models.

It is important to highlight that while Datamodels and TRAK outperform our baseline in terms396

of LDS with extensive model ensembles, this metric provides limited insights into understanding397

machine learning models. Our baseline approach excels in data brittleness metrics, offering a faithful398

representation of which training samples provide the most positive influence for a test sample.399

A.9 Baselines and Our Experimental Setup400

For TRAK scores on CIFAR-10, we train 100 ResNet-9 models and use a projection dimension of401

20480. For TRAK on ImageNet, we train 4 ResNet-18 models and use a projection dimension of402

4096. Computing TRAK scores using 4 models already requires 160 GB of storage space, hence403

we refrain from using a larger ensemble. For Datamodels, we download the pre-trained weights404

optimized using outputs from 300K ResNet-9 models with 50% random subsets.4 We also download405

the binary masks and margins to train our own Datamodels on outputs from 10K and 50K ResNet-9406

models, using another 10K models for validation. Since Datamodels are extremely compute-intensive407

we cannot include them as a baseline on ImageNet.408

For our baseline approach to train self-supervised models, we use the Lightly library 5. We train409

a ResNet-18 model using MoCo [14] for 800 epochs on CIFAR-10, using the Lightly benchmark410

code.6 On ImageNet, we download a pre-trained ResNet-50 model trained using MoCo.7411

4https://github.com/MadryLab/datamodels-data
5https://github.com/lightly-ai/lightly
6https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html
7https://github.com/facebookresearch/moco
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