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Abstract

Retrieval augmented generation (RAG) is frequently used to mitigate hallucinations
and provide up-to-date knowledge for large language models (LLMs). However,
given that document retrieval is an imprecise task and sometimes results in erro-
neous or even harmful content being presented in context, this raises the question of
how LLMs handle retrieved information: If the provided content is incorrect, does
the model know to ignore it, or does it recapitulate the error? Conversely, when the
model’s initial response is incorrect, does it always know to use the retrieved infor-
mation to correct itself, or does it insist on its wrong prior response? To answer this,
we curate a dataset of over 1200 questions across six domains (e.g., drug dosages,
Olympic records, locations) along with content relevant to answering each question.
We further apply precise perturbations to the answers in the content that range
from subtle to blatant errors. We benchmark six top-performing LLMs, including
GPT-4o, on this dataset and find that LLMs are susceptible to adopting incorrect re-
trieved content, overriding their own correct prior knowledge over 60% of the time.
However, the more unrealistic the retrieved content is (i.e. more deviated from
truth), the less likely the model is to adopt it. Also, the less confident a model is in
its initial response (via measuring token probabilities), the more likely it is to adopt
the information in the retrieved content. We exploit this finding and demonstrate
simple methods for improving model accuracy where there is conflicting retrieved
content. Our results highlight a difficult task and benchmark for LLMs – namely,
their ability to correctly discern when it is wrong in light of correct retrieved content
and to reject cases when the provided content is incorrect. Our dataset, called
ClashEval, and evaluations are open-sourced to allow for future benchmarking on
top-performing models at https://github.com/kevinwu23/StanfordClashEval.

1 Introduction

Large language models (LLMs) are prone to hallucinations and incorrect answers [Pal et al., 2023,
Sun et al., 2024, Ahmad et al., 2023]. Additionally, they are constrained to knowledge contained
in their training corpus and are unable to answer queries about recent events or publicly restricted
information. Retrieval augmented generation (RAG) is a commonly used framework that provides
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Figure 1: A schematic of generating modified documents for each dataset. A question is posed to
the LLM with and without a reference document containing information relevant to the query. This
document is then perturbed to contain modified information and given as context to the LLM. We
then observe whether the LLM prefers the modified information or its own prior answer.

relevant retrieved content in the LLM prompt and can significantly improve model accuracy [Mao
et al., 2020, Chen et al., 2024a, Lewis et al., 2020].

Most commercial LLMs, like ChatGPT [OpenAI, 2023], Gemini [Gemini Team, 2023], and Perplex-
ity.ai, already employ RAG in their Web interfaces. For example, ChatGPT employs a Bing search,
whereas Gemini accesses Google Search results. While this can greatly enhance the model’s ability
to answer questions, it also raises concern for when the retrieved documents or webpages contain
incorrect or harmful information [Dash et al., 2023, Daws, 2020, Nastasi et al., 2023]. Indeed, exam-
ples of this behavior have already surfaced in widely deployed LLMs. For example, recent headlines
showed Google’s AI Summary recommending people to "eat rocks" or "put glue on their pizza" [Hart,
2024, Williams, 2024], presumably due to erroneous or satirical webpages being retrieved. While
stricter document filtering or improved retrieval may help reduce this occurrence, it by no means is
a cure-all against this problem. At its core, LLMs should not blindly repeat information presented
in context but should be able to arbitrate when external information conflicts with its own internal
knowledge. While the aforementioned example is one in which the retrieved document is the source
of error, the converse is also a significant problem: when the LLM insists on its own incorrect prior
answer despite correct external information.

Some studies have previously investigated the nature of this tension between a model’s internal prior
knowledge and contextual information. Longpre et al. [2021] found that LLMs exhibited a strong
preference for information in the training data even when facts in the context were substituted with
similar but incorrect information. More recently, Xie et al. [2023] showed that models can either
be highly susceptible to context or very biased towards its priors depending on how the context
is framed. Our study extends these works in two important ways. First, we present a dataset that
contains examples not only when the context is wrong and the model is right but the converse (where
the context is right but the model is wrong). This is important since a dataset that only measures the
LLM’s ability to reject wrong context can trivially excel at this task by simply always ignoring the
context. Instead, our dataset uniquely tests the LLM’s ability to arbitrate between its own parametric
knowledge and the contextual information to determine the most accurate response. Second, we
elicit a quantitative relationship between the LLM’s preference of prior or context and two important
variables: (1) the model’s confidence in its prior response (via measuring the token probabilities of
the initial response), and (2) the degree to which the contextual information provided deviates from
the reference answer. Measuring these two dynamics is important for understanding how models
transition between choosing the prior and the context and their inherent biases towards their priors or
the context.

Our contributions

• We introduce ClashEval, a question-answering benchmark dataset of over 1200 questions
spanning six domains that include the relevant contextual document for answering each
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question. The answer in each document is perturbed across a range of erroneous values,
from subtle to extreme.

• We benchmark six top-performing LLMs (GPT-4o, GPT-3.5, Llama-3-8b-instruct, Gemini
1.5, Claude Opus, and Claude Sonnet) on this dataset and report three relevant metrics.

• We provide a systematic analysis of context preference rates across three models on (1)
varying degrees of perturbation on the contextual information and (2) the token probabilities
of the prior responses.

• We propose a simple way to improve performance on ClashEval by incorporating token
probabilities.

2 Related Works

The issue of hallucination in LLMs has been explored in multiple contexts and models [Ji et al., 2023,
Kaddour et al., 2023]. As a response, RAG systems have been shown to reduce hallucination [Shuster
et al., 2021, Kang et al., 2023]. Previous works have explored automated RAG evaluation frameworks
in various settings [Es et al., 2023a, Hoshi et al., 2023, Saad-Falcon et al., 2023a, Zhang et al., 2024].
For example, some studies use LLMs to evaluate the faithfulness, answer relevance, and context
relevance of RAG systems by using GPT-3.5 as an evaluator [Es et al., 2023b, Saad-Falcon et al.,
2023b]. In another study, the authors propose metrics such as noise robustness, negative rejection,
information integration, and counterfactual robustness [Chen et al., 2024b]. Multiple studies have
shown that RAG can mislead LLMs in the presence of complex or misleading search results and that
such models can still make mistakes even when given the correct response [Foulds et al., 2024, Shuster
et al., 2021]. In relation to understanding model priors, other works have used log probabilities to
assess the LLM’s confidence in responses [Mitchell et al., 2023, Zhao et al., 2024]. However, so far
there has not been a systematic exploration of a model’s confidence (via logprobs) and the model’s
preference for RAG-provided information. Previous work has also focused on ways to address model
adherence to incorrect context. For example, Longpre et al. [2021] suggests pretraining on substituted
facts to improve future robustness and Xiang et al. [2024] proposes ensembling isolated answers
across multiple documents. In this work, we focus on the case where LLMs are available only via
inference, and only one document is being used as context.

3 Methods

3.1 Definitions and Metrics

Following the notation from Longpre et al. [2021], Xie et al. [2023], we start with a QA instance
x = (q, c) where q is the query and c is the context provided to answer the query. A model’s
prior response is r(q), where the model is asked to answer the question with only its parametric
knowledge. A model’s contextual response is r(q|c), where its response to the query is conditioned
on the provided context.

In our study, we define the following metrics:

• Accuracy = Pr
[
r(q|c) is right | c is right or r(q) is right

]
, the probability the model re-

sponds correctly given that either the context is right or the prior is right.
• Prior Bias = Pr

[
r(q|c) is wrong | c is right and r(q) is wrong

]
, the probability the model

uses its prior while the context is correct.
• Context Bias = Pr

[
r(q|c) is wrong | c is wrong and r(q) is right

]
, the probability the model

uses the context while the prior is correct.

Our main analysis consists of evaluating the RAG question-answering capabilities of six LLMs when
introducing varying levels of perturbations on the RAG documents. For this study, our dataset consists
of 1,294 total questions across 6 different domains. We evaluate the following models: GPT-4o,
GPT3.5 (gpt-3.5-turbo-0125), Llama-3 (Llama-3-7B-Instruct), Claude Opus, Claude Sonnet, and
Gemini 1.5 Flash. For our contextual responses, we use a standard prompt template that is based on
RAG prompts used on popular LLM open-source libraries, with over 800k downloads as of March
2024 (LangChain and LlamaIndex). In addition to this standard prompt, we experiment with "strict"
and "loose" prompts, with results in 6. Full prompts used are provided in our GitHub repository.
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3.2 Dataset

Dataset Name # Questions # Perturbations Example Question
Drug Dosage 249 10 What is the maximum daily dosage in mg

for extended release oxybutynin in adults
with overactive bladder?

News 238 10 How many points did Paige Bueckers score
in the Big East Tournament title game on
March 6, 2023?

Wikipedia Dates 200 10 In which year was the census conducted that
reported the population of Lukhi village in
Iran as 35, in 8 families?

Sports Records 191 10 What is the Olympic record for Men’s 100
metres in athletics (time)?

Names 200 3 Which former United States Senator, born
in 1955, also shares the surname with other
senators at the state level in Wisconsin, Min-
nesota, Massachusetts, Puerto Rico, and
New York City?

Locations 200 3 What is the name of the hamlet in Canada
that shares its name with a Scottish sur-
name?

Table 1: Statistics for each dataset, including number of questions, number of perturbations applied
to each question, and an example question.

We generate questions from six subject domains (summarized in 1. To generate a large set of question-
and-answer pairs, we extract a corpus of content webpages and then query GPT-4o to generate a
question based on the text, along with the ground truth answer and the excerpt used to generate the
question. Additionally, we select six different datasets to cover diverse knowledge domains and
difficulties. For example, news articles are included as examples of out-of-distribution questions that
cannot be answered properly without context. For each dataset below, we provide the full prompts
used to generate questions in our GitHub repository. Generated questions significantly transform the
original data and are covered under fair use; full document content may be covered under copyright,
but we provide the accompanying code to reproduce the data. As our data is sourced from the
Associated Press and Wikipedia, there is no personally identifiable information or offensive content to
our knowledge. UpToDate contains drug information and does not contain PHI or offensive content.

Drug Dosages We initially randomly sampled 500 drug information pages from UpToDate.com, a
medical reference website widely used by clinicians. To constrain the scope of questions, we specify
in the prompt that the answer must be numerical and in milligrams. To filter out generated questions
that did not meet the specified criteria (e.g. ambiguous question, incorrect units, etc.), we perform an
additional quality control step, where we ask GPT-4o to verify that the generated question fulfills all
criteria. After this step, we have 249 question-answer pairs.

Sports Records We pulled Olympic records pages from Wikipedia.org across 9 sports: athletics,
weightlifting, swimming, archery, track cycling, rowing, shooting, short-track speed skating, and
speed skating. Records are extracted in a table format, from which questions are generated for each
record entry. In total, after filtering, we extracted 191 unique questions and answers.

News Top headlines are pulled from the Associated Press RSS feed for dates ranging from 03/15/24
to 03/25/24. From an initial corpus of 1486 news articles, we use GPT-4o to generate one question per
article, instructing it to produce questions for which there is a clear numerical answer. We performed
another GPT-4o quality control step, which resulted in 238 unique question-answer pairs.
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Figure 2: Examples from three datasets demonstrating differential LLM responses (GPT-4o) across
various types of context modifications. Responses in red indicate wrong responses (different than the
answer); responses in green indicate correct responses.

Dates, Names, and Cities We begin with a random sample of 1000 articles from Huggingface’s
Wikipedia dataset (20220301.en, [Foundation]). We use GPT-4o to generate questions related to
each field (dates, names, and cities) and filter out responses where the excerpt is not exactly found in
the context. To reduce ambiguity when matching groundtruth answers, we restrict the answers to
fit certain formats. For dates, we require that the answer adheres to a four-digit year (YYYY). For
names, we require a first and last name (eg. George Washington). For cities, we remove any other
identities (eg. Seattle, not Seattle, WA). For each domain, among the remaining question-answer
pairs that fit these criteria, we randomly sample 200 for our evaluation set.

3.3 Modifying the Retrieved Documents

We perform systematic perturbations on each question/answer pair (as visualized in Figure 1. In three
datasets with numerical answers (Drug Dosages, Sports Records, Latest News), we produce ten mod-
ifications that act as multipliers on the original value: 0.1, 0.2, 0.4, 0.8, 1.2, 1.5, 2.0, 3.0, 5.0, 10.0. In
the Wikipedia Years dataset, we perform ten absolute modifications in increments of 20 years for
a range of [−100, 100]. For the Wikipedia Names and Locations, the discrete categories required
more hand-crafted levels of variation. For each, we performed three categorical perturbations via
prompting: slight, significant, and comical. We provide the full prompts used in our study in our
GitHub repository. For example, for a name like Bob Green, a slight modification implies a small
tweak to another real name (Rob Greene), whereas a significant modification produces a similar but
fictitious name (Bilgorn Grevalle), and a comical modification is an absurd variant (Blob Lawnface).
For a city name like Miami, a slight modification changes the name of the most similar city (Fort
Lauderdale), a significant modification produces a fictitious city name (Marisole), and a comical
modification produces an absurd variant (Miameme). Because of differences in how each modified
fact might appear in the retrieved text, we utilize GPT-4o to generate the perturbed excerpts for
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drug dosages and news. Each modified fact is replaced in the original retrieved text. Then, both the
question and context are posed to GPT-4, from which the answers, along with the log probabilities of
the output tokens, are collected.

4 Results

Model Chosen Prior Correct Context Correct

Claude Opus
Prior 0.585 (0.550, 0.619) 0.042 (0.027, 0.058)
Context 0.313 (0.282, 0.346) 0.901 (0.879, 0.923)
Neither 0.102 (0.082, 0.125) 0.057 (0.040, 0.075)

Claude Sonnet
Prior 0.436 (0.403, 0.469) 0.051 (0.037, 0.067)
Context 0.401 (0.374, 0.434) 0.881 (0.859, 0.903)
Neither 0.163 (0.138, 0.186) 0.068 (0.052, 0.086)

Gemini 1.5
Prior 0.388 (0.362, 0.416) 0.074 (0.058, 0.091)
Context 0.490 (0.461, 0.521) 0.860 (0.838, 0.881)
Neither 0.122 (0.103, 0.143) 0.066 (0.051, 0.082)

GPT-4o
Prior 0.327 (0.293, 0.358) 0.041 (0.027, 0.056)
Context 0.608 (0.571, 0.643) 0.903 (0.881, 0.923)
Neither 0.065 (0.047, 0.083) 0.056 (0.040, 0.072)

GPT-3.5
Prior 0.237 (0.213, 0.263) 0.057 (0.043, 0.072)
Context 0.626 (0.598, 0.657) 0.841 (0.817, 0.865)
Neither 0.137 (0.113, 0.160) 0.102 (0.082, 0.123)

Llama-3
Prior 0.208 (0.185, 0.230) 0.041 (0.029, 0.054)
Context 0.529 (0.499, 0.558) 0.793 (0.767, 0.818)
Neither 0.263 (0.236, 0.291) 0.166 (0.145, 0.191)

Table 2: We report model behavior given a subset of the data where either the prior or the context is
correct. A model exhibits prior bias by choosing its prior when only the context is correct, while it
exhibits context bias by choosing the context when only the prior is correct. We also report when
neither the prior nor context answer is used in the model response.

4.1 Prior vs. Context Conflict Resolution

In Table 2, Table 4, Table 5, and Figure 5, we report the responses for each of the six models when
only the prior is correct or only the context is correct. On one end, models like Llama-3 and GPT-3.5
are at near random accuracy at the task of discerning when to use the prior or context answer. On the
other hand, the top performing model on all three metrics is Claude Opus, with an accuracy of 74.3%,
a context bias of 15.7%, and a prior bias of 2.1%. Interestingly, while GPT-4o is the current highest
performing model on LMSYS Chatbot Area (as of June 2024), it has a higher context bias than all
other models but GPT-3.5. While Llama-3 has a lower context bias than GPT-4o, it also has a lower
accuracy because it has a higher rate of choosing neither the prior nor the context in its response.
Examples of questions and model responses are shown in 2.

4.2 Multi-document Contextual Information

We further examine how model adherence to context changes when there are more than one document.
We analyze responses from GPT-4o and Claude Opus by adding four additional documents for each
query based on embedding cosine similarity. We find that adding more contextual documents lowers
overall model accuracy and increases the rate of responses that are neither the prior nor the context
(Table 6, Table 7). At the same time, due to the lower rate of adherence to context, multi-document
RAG also reduces the context bias found in models. These findings are consistent with related works,
where models generally perform worse on longer contexts Levy et al. [2024] but multiple documents
can also protect against hallucination Xiang et al. [2024].
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Figure 3: We observe an inverse relationship between the context preference rate (y-axis) and the
amount of deviation from the prior (x-axis). Each plot visualizes absolute deviation from the reference
information (for numerical datasets, up to two log-fold changes (along with the trendline); for "Years",
the absolute number of years; for categorical datasets, a total of four modification categories) against
context preference rate.

4.3 Context Preference Rate vs. Degree of Context Modification

We consider the degree of deviation between the model’s prior response and the value contained in
the retrieved context (Figure 3). After fitting a linear model over the data, we find a clear negative
correlation between the degree of modification in the context to the context preference rate. Models
that perform stronger on ClashEval exhibit both a lower intercept and a more negative slope, indicating
higher resistance to incorrect context. For example, Claude Opus adheres to incorrect contextual
information 30% less than GPT-4o for the same degrees of modification. Interestingly, these results
suggest that each model has a different prior distribution over truthfulness across each domain.

4.4 Context Preference Rate vs. Prior Token Probability

In Figure 4, we observe a consistent negative relationship between the token probability of the
model’s prior answer and the associated RAG preference rate for all six QA datasets. To visualize an
even distribution across probabilities, we bin the probabilities into ten equidistant bins in the range of
[0.0, 1.0]. The slope indicates the effect of stronger model confidence on the model’s preference for
the information presented in the retrieved context; we observe different slopes (ranging from -0.1
to -0.45), suggesting that the effectiveness of RAG in different QA domains can be characterized
as being relatively susceptible (e.g., with Dates questions) or robust (e.g., with News questions) to
the model’s internal prior knowledge confidence. Specifically, a slope of -0.45, for instance, can
be interpreted as expecting a 4.5% decrease in the likelihood of the LLM preferring the contextual
information for every 10% increase in the probability of the model’s prior response.
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Figure 4: We additionally observe an inverse relationship between the context preference rate (y-
axis) and the model’s prior response probability (x-axis). Context preference rate is defined as the
proportion of responses that align with the information presented in the prompt as context. The
model’s prior response probability is computed from the average log probability of the response
tokens queried without context. Each plot visualizes the prior probability (grouped into 10 bins)
against the context preference rate, along with the best-fit trend line and slope. Models that allow
access to token probabilities are shown.

4.4.1 Initial Methods for Improving Prior vs. Context Conflict Resolution

Based on our observations from the relationship between the token probabilities and the rates of
preference for context, we posit that comparing token probabilities between r(q) and r(q|c) can
improve the abilities of models to resolve conflicts. In Table 3, Token Probability Correction is
done by comparing the mean token probabilities of the model’s response with and without context.
If the probability is higher for the prior than the contextual response, then we use the model’s
generation without context as its final response. Otherwise, we just use the response with context.
We find that this method improves the overall accuracy of all three models with a moderate increase
in the prior bias of each model. Next, we observe that the probability distributions between prior
responses and context-given responses are uncalibrated, where context-given response probabilities
are extremely right-tailed while prior probabilities are nearly uniform. As a simple adjustment, we
compare the percentiles rather than raw probability scores of each score, or the Calibrated Token
Probability Correction. We find that calibrated token probability correction improves all models’
overall accuracy by 14% and context bias by 20%. At the same time, this introduces more prior bias,
from 2% to 8.5%. However, this method outperforms a baseline of randomly replacing the final
response with its prior – at the same bias rate of 8.5%, the random baseline has an accuracy of 57.5%
as compared to the 75.4% from the method. While this paper focuses on developing the ClashEval
benchmark, these results suggest that probability calibration is a promising approach to reduce prior
and context bias deserving further investigation. It also is a natural baseline for future methods.
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Model Correction Accuracy ↑ Context Bias ↓ Prior Bias ↓

GPT-4o
No correction (Baseline) 0.615 (0.595, 0.636) 0.304 (0.287, 0.321) 0.021 (0.014, 0.028)
Token Probability Correction 0.693 (0.672, 0.714) 0.194 (0.177, 0.210) 0.043 (0.032, 0.053)
Calibrated Token Prob. Correction 0.754 (0.733, 0.775) 0.107 (0.093, 0.122) 0.085 (0.072, 0.098)

GPT-3.5
No correction (Baseline) 0.539 (0.521, 0.557) 0.313 (0.298, 0.328) 0.028 (0.021, 0.036)
Token Probability Correction 0.596 (0.575, 0.616) 0.253 (0.237, 0.269) 0.056 (0.046, 0.067)
Calibrated Token Prob. Correction 0.701 (0.678, 0.722) 0.110 (0.098, 0.124) 0.147 (0.132, 0.164)

Llama-3
No correction (Baseline) 0.500 (0.483, 0.515) 0.264 (0.250, 0.279) 0.021 (0.015, 0.027)
Token Probability Correction 0.556 (0.537, 0.574) 0.235 (0.220, 0.249) 0.046 (0.037, 0.055)
Calibrated Token Prob. Correction 0.649 (0.627, 0.669) 0.111 (0.099, 0.122) 0.188 (0.173, 0.204)

Table 3: For models which provide token probabilities, we evaluate the accuracy, context bias, and
prior bias under three conditions: (1) No correction, which is the baseline result from this paper, (2)
the token probability correction, and (3) the calibrated token probability correction.

5 Discussion

The ClashEval benchmark dataset and evaluations provide novel insights into how LLMs arbitrate
between their own internal knowledge and contextual information when the two are in conflict.

A key finding is that even the most advanced LLMs like GPT-4o exhibit a strong context bias,
overriding their own correct prior knowledge over 60% of the time when presented with incorrect
information in the retrieved documents. However, this bias is not absolute - the degree to which
the retrieved content deviates from truth negatively correlates with the context preference rate.
Interestingly, each LLM exhibits a different prior distribution over truthfulness across domains, such
that the same perturbation level affects each model differently. For instance, for a given magnitude
of deviation, Claude Opus adheres to incorrect contextual information 30% less often than GPT-4o.
While GPT-4o achieves state-of-the-art results on general-purpose tasks, it exhibits higher context
bias compared to smaller models like Claude Sonnet. This finding suggests that performance on
knowledge-based benchmarks may not automatically mean it is most suitable for RAG settings.
Additionally, we find that LLMs are calibrated to selectively defer to external evidence when they are
less certain about a given query. However, each model differs in how well-calibrated they are. While
strong priors are not inherently problematic, the lack of explicit expectations around how models
will decide to use contextual information remains a risk. We propose a simple method for improving
models under ClashEval, and hope that future work can improve upon this baseline.

Our analyses have several key limitations. First, RAG systems can be deployed to many more
domains than can be covered by our analyses. Second, to make our experiments tractable, our
question-generation process is strictly fact-based and does not require multi-step logic, document
synthesis, or other higher-level reasoning. Third, our dataset contains an enriched rate of contextual
errors, so the reported metrics are not meant to represent bias rates in the wild. Fourth, our proposed
token probability method only applies to models which provide probability outputs. Finally, even
though this dataset is intended to improve an LLM’s ability to provide users with accurate information,
bad actors could use such information to exploit the shortcomings of certain models described in this
paper.

As retrieval-augmented AI systems become increasingly prevalent, we hope our dataset and insights
spur further research into improving the robustness and calibration of such models. Resolving the
tension between parametric priors and retrieved information is a crucial challenge on the path to safe
and trustworthy language models.
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Model Context Bias ↓ Prior Bias ↓ Accuracy ↑
Claude Opus 0.157 (0.141, 0.174) 0.021 (0.014, 0.029) 0.743 (0.723, 0.763)
Claude Sonnet 0.201 (0.184, 0.215) 0.025 (0.018, 0.033) 0.658 (0.641, 0.678)
Gemini 1.5 0.245 (0.231, 0.260) 0.037 (0.029, 0.046) 0.624 (0.607, 0.641)
GPT-4o 0.304 (0.287, 0.321) 0.021 (0.013, 0.028) 0.615 (0.594, 0.633)
GPT-3.5 0.313 (0.298, 0.329) 0.028 (0.021, 0.036) 0.539 (0.522, 0.558)
Llama-3 0.264 (0.250, 0.280) 0.021 (0.015, 0.027) 0.500 (0.482, 0.518)

Table 4: We compare six top-performing models across three metrics. Context bias is when the model
chooses the context answer when its prior was correct. Prior bias is when the model chooses its prior
when the context answer is correct. Finally, accuracy is a straightforward measure of the fraction
of times it can produce the correct answer. We find that Claude Opus performs the best across all
metrics with a context bias rate of 0.157.

Figure 5: We plot the data from Table 4 – each model’s performance across three metrics in different
colors, along with 95% confidence intervals.
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Figure 6: Effect of different prompts using GPT-4 on context preference rate vs prior probability. The
"Strict" prompt strongly enforces literal adherence to the retrieved context, while the "Loose" prompt
encourages the model to make a reasonable judgment in light of the provided context. We observe
lower and steeper drops in context preference with the loose vs strict prompts, suggesting that prompt
wording plays a significant factor in controlling context preference. Full prompts are provided in our
GitHub repository.
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Claude Opus Acc. Without Context Acc. With Correct Context
Drugs 0.566 0.827
Locations 0.550 0.935
Names 0.400 0.995
News 0.109 0.966
Records 0.717 0.953
Years 0.490 0.980

Claude Sonnet Acc. Without Context Acc. With Correct Context
Drugs 0.534 0.775
Locations 0.405 0.930
Names 0.285 0.995
News 0.0966 0.937
Records 0.508 0.880
Years 0.215 0.980

Gemini 1.5 Flash Acc. Without Context Acc. With Correct Context
Drugs 0.213 0.735
Locations 0.325 0.920
Names 0.200 0.995
News 0.0840 0.958
Records 0.508 0.843
Years 0.205 0.990

GPT-4o Acc. Without Context Acc. With Correct Context Mean Prior Prob
Drugs 0.578 0.863 0.818
Locations 0.575 0.925 0.877
Names 0.445 0.990 0.847
News 0.0882 0.971 0.469
Records 0.628 0.921 0.498
Years 0.540 0.990 0.773
All 0.467 0.941 0.675

GPT-3.5 Acc. Without Context Acc. With Correct Context Mean Prior Prob
Drugs 0.446 0.751 0.727
Locations 0.410 0.875 0.838
Names 0.295 0.985 0.819
News 0.0630 0.908 0.232
Records 0.592 0.796 0.578
Years 0.295 0.980 0.596
All 0.344 0.879 0.573

Llama 3 Acc. Without Context Acc. With Correct Context Mean Prior Prob
Drugs 0.317 0.598 0.793
Locations 0.290 0.915 0.853
Names 0.165 0.925 0.770
News 0.0714 0.912 0.608
Records 0.377 0.524 0.757
Years 0.160 0.975 0.720
All 0.228 0.805 0.732

Table 5: Accuracy and Mean Prior Prob Comparison Across Models and Datasets
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GPT-4o
Dataset Acc. Without Context Acc. With Correct Context (k=1) Acc. With Correct Context (k=5)
Drugs 0.578 0.863 0.819
Locations 0.575 0.925 0.925
Names 0.445 0.990 0.985
News 0.088 0.971 0.924
Records 0.628 0.921 0.911
Years 0.540 0.990 0.990
All 0.467 0.941 0.922

Claude Opus
Dataset Acc. Without Context Acc. With Correct Context (k=1) Acc. With Correct Context (k=5)
Drugs 0.566 0.827 0.719
Locations 0.550 0.935 0.875
Names 0.400 0.995 0.880
News 0.109 0.966 0.853
Records 0.717 0.953 0.822
Years 0.490 0.980 0.935
All 0.463 0.939 0.843

Table 6: Accuracy comparison of GPT-4o and Claude Opus datasets without context, with correct
context for k=1, and with correct context for k=5.

Claude Opus, k=1
Prior Correct Context Correct

Prior Chosen 0.608 (0.575, 0.646) 0.042 (0.028, 0.058)
Context Chosen 0.287 (0.255, 0.318) 0.901 (0.878, 0.923)
Neither Chosen 0.105 (0.082, 0.129) 0.057 (0.039, 0.074)

Claude Opus, k=5
Prior Correct Context Correct

Prior Chosen 0.618 (0.584, 0.652) 0.067 (0.050, 0.085)
Context Chosen 0.237 (0.209, 0.267) 0.778 (0.747, 0.810)
Neither Chosen 0.145 (0.121, 0.172) 0.155 (0.130, 0.181)

GPT-4o, k=1
Prior Correct Context Correct

Prior Chosen 0.355 (0.321, 0.388) 0.041 (0.027, 0.057)
Context Chosen 0.582 (0.549, 0.617) 0.903 (0.881, 0.925)
Neither Chosen 0.064 (0.048, 0.081) 0.056 (0.039, 0.074)

GPT-4o, k=5
Prior Correct Context Correct

Prior Chosen 0.535 (0.498, 0.569) 0.044 (0.029, 0.060)
Context Chosen 0.383 (0.349, 0.416) 0.868 (0.843, 0.894)
Neither Chosen 0.082 (0.061, 0.102) 0.088 (0.069, 0.111)

Table 7: Comparison of prior and context choices between Claude Opus and GPT-4o for k=1 and k=5
documents within the context.
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