
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Adversarial ExampleQuality Assessment: A Large-scale Dataset
and Strong Baseline

Anonymous Authors

ABSTRACT
Adversarial examples (AEs), which are maliciously hand-crafted
by adding perturbations to benign images, reveal the vulnerability
of deep neural networks (DNNs) and have been used as a bench-
mark for evaluating model robustness. With great efforts have been
devoted to generating AEs with stronger attack ability, the visual
quality of AEs is generally neglected in previous studies. The lack
of a good quality measure of AEs makes it very hard to compare the
relative merits of attack techniques and is hindering technological
advancement. How to evaluate the visual quality of AEs remains
an understudied and unsolved problem. In this work, we make the
first attempt to fill the gap by presenting an image quality assess-
ment method specifically designed for AEs. Towards this goal, we
first construct a new database, called AdvDB, developed on diverse
adversarial examples with elaborated annotations. We also propose
a detection-based structural similarity index (AdvDSS) for adversar-
ial example perceptual quality assessment. Specifically, the visual
saliency for capturing the near-threshold adversarial distortions
is first detected via human visual system (HVS) techniques and
then the structural similarity is extracted to predict the quality
score. Moreover, we further propose AEQA for overall adversarial
example quality assessment by integrating the perceptual quality
and attack intensity of AEs. Extensive experiments validate that
the proposed AdvDSS achieves state-of-the-art performance which
is more consistent with human opinions.

CCS CONCEPTS
• Computing methodologies→ Appearance and texture rep-
resentations; • Theory of computation → Adversarial learn-
ing.

KEYWORDS
Adversarial attack; Adversarial examples; Image quality assessment;
Human visual system

1 INTRODUCTION
The vulnerability of deep neural networks (DNNs) to adversarial
examples, i.e., hand-crafted images that are similar-looking to clean
images but can induce dramatic changes in DNNs, has raised an
increasing threat to safe-critical applications, such as face verifica-
tion [27], object tracking [35], and self-driving [6]. This intriguing
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discovery has attracted growing attention and spawned consider-
able research for adversarial attacks. In recent years, numerous
adversarial attack methods have been proposed, including gradient-
based [5, 10, 13, 14, 18, 23, 30], optimization-based [4, 29], and
learning-based attacks [1, 24, 33].

As a general rule, adversarial attacks generate adversarial exam-
ples to fool the target model by pursuing two goals: (1) Invisibility:
Perceptually, the adversarial examples should be similar-looking
to the benign images; (2) Lethality: In the target models, the distri-
bution of generated adversarial examples should differ from that
of benign images and trigger wrong prediction behaviors of DNN
models. However, while numerous efforts are devoted to developing
adversarial examples with stronger attack ability, the perceptual
quality of adversarial examples is generally neglected. Almost all
the existing methods adopted 𝐿𝑝 -norms (e.g., 𝐿1, 𝐿2, and 𝐿∞) as
the constraint to keep the generated adversarial examples similar-
looking to the original image; however, the norm-based constraint
does not correlate with human perceptual quality since it computes
the pixel-wise error and does not include the properties of human
visual system (HVS). We present a diagnosis report of the percep-
tual quality of AEs in Table 1, where we can see that the 𝐿𝑝 -norm
cannot well-assist the perceptual quality of AEs, and different attack
strategies can produce AEs with different perceptual qualities. The
lack of good quality measurement of adversarial examples makes
it very hard to compare the relative merits of adversarial attack
techniques.

On the other hand, image quality assessment (IQA) has been an
active research topic in the last decades [7, 15, 16, 20, 25, 31, 39, 41].
An intuitive way is to directly take advantage of existing IQA met-
rics; however, most of the existing IQA metrics are designed to
capture certain distortions, such as blur and color fading for de-
fogging [7, 16], edge sharpness for super-resolution [41], content
compensation for tone-mapping [20]. Since adversarial perturba-
tions have different properties from those applications, using these
IQA metrics can lead to unsatisfied results (see the fifth row of
Table 1). Developing a new reliable metric specifically designed
for Adversarial examples remains an unsolved and challenging
problem.

In this paper, we make the first attempt to fill a gap in the litera-
ture by presenting an image quality assessment metric specifically
designed for evaluating the perceptual quality of adversarial exam-
ples. To achieve this goal, we face two challenges: First, a suitable
adversarial example quality assessment metric should reflect the
degradation of the image that is consistent with human subjective
evaluation, e.g., the mean opinion score (MOS). However, there is
no such off-the-peg dataset for evaluation; Second, the perceptual
properties of adversarial examples are unknown. Since the exist-
ing attacks have already used 𝐿𝑝 -norm constraint, the adversarial
perturbations are near-threshold (i.e., just-visible to human eyes),
which is hard to capture and quantified.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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AEQA diagnosis report

Adversarial
Examples (AEs)

Attack algorithm FGSM PGD BIM MIM PGD

𝐿2-norm constraint 0.03 0.03 0.03 0.03 0.4

Typical IQA metrics
(PSNR, NIQE) (30.07, 49.26) (35.13, 11.43) (35.51, 7.58) (31.23, 47.19) (13.45, 21.66)

AdvDSS 0.9012 0.9741 0.9625 0.9236 0.3334
MOS

(subjective evaluation) 2.9801 3.6742 3.3351 3.2220 2.0301

Table 1: A diagnosis report of adversarial examples produced by different adversarial attacks. From the table, we can have
the following observations: 1) The 𝐿2-norm constraint cannot well assist the invisibility of AEs, and different attacks with
the same 𝐿2-norm constraint still have different results; 2) The adversarial distortion is near-threshold that is just-visible to
human eyes; 3) Typical IQA metric can hardly capture the distortion in AEs, e.g., the AE produced by PGD has a better visual
quality than BIM but achieves a lower PSNR value.

To address these challenges, we first construct a new annotated
adversarial example quality assessment database, named “AdvDB",
focusing on adversarial examples with diverse perturbations, which
is the first and largest database for assessing adversarial examples.
Specifically, we collected 18, 346 adversarial examples produced by
5 dominant adversarial attack algorithms with different parameter
settings, and each image is annotated with two attributes by 11
professional subjects. Based on the AdvDB, we conducted analysis
and found that the structural information can reveal the percep-
tual quality of adversarial examples, thus we further proposed a
visual Detection-based Structural Similarity index (AdvDSS) for
assessing the perceptual quality of adversarial examples. To cap-
ture the near-threshold adversarial distortions from the perceptual
perspective, AdvDSS employs a detection scheme that incorporates
HVS technology to first compute the visual saliency error map
and then conduct structural similarity comparison to predict the
perceptual scores. Moreover, by integrating the perceptual quality
and attack strength of adversarial examples, we take a further step
and present an adversarial example quality assessment (AEQA) for
comprehensively evaluate the quality of adversarial examples.

In a nutshell, our contributions can be summarized as follows:

• We build so far, the largest annotated adversarial example
quality assessment database named "AdvDB". Specifically,
we collected 18, 346 adversarial examples produced by 5 dom-
inant adversarial attack algorithms based on 3 DNN back-
bones with different parameter settings, and each image is
annotated with two attributes by 16 professional subjects.

• Based on the data analysis of AdvDB, We propose a visual
Detection-based Structural Similarity index (AdvDSS) for
assessing the perceptual quality of adversarial examples.

• By integrating the distribution divergence of adversarial
examples, we take a further step and present a novel bench-
mark adversarial example quality assessment metric (AEQA)

for comprehensively evaluating the quality of adversarial
examples.

• Extensive experiments illustrate that our detection-based
approach achieves state-of-the-art performance and is also
consistent with human visual systems. We also investigate
various applications of AEQA in comparing and improving
existing adversarial attacks.

2 RELATEDWORK
2.1 Adversarial Attack Techniques
There have been extensive explorations for the generation of ad-
versarial attacks in the literature, which can be categorized into
gradient-based methods [10, 13, 14, 18, 23, 30], optimization-based
methods [4, 29], and learning-based methods [1, 33]. The gradient-
based methods originated from [14] where Goodfellow et al. proved
that the existence of adversarial examples is the result of the lin-
earity of DNN models and proposed Fast Gradient Sign Method
(FGSM) to generate perturbations by the model gradient change.
Following works enhance the attack ability by breaking the one-
step gradient into iterative generation [18, 23, 30], local enhance-
ment [13, 37], and data augmentation [10, 34]. The gradient-based
attacks exhibit high attack success rates but require explicit knowl-
edge about the target model (i.e., architecture and parameters). In
contrast, optimization-based adversarial attacks generate pertur-
bations via optimization algorithms. Szegedy et al. [29] proposed
L-BFGSmethod to generate adversarial examples by simultaneously
optimizing the misclassification and perceptual deviation. Carlini et
al. [4] proposed a CW attack by constraining the number of clean
examples changing, the overall degree of perturbation, and the
maximum allowed perturbed per pixel by 𝐿0, 𝐿1, and 𝐿∞ distance,
respectively. The learning-based methods utilize generative models
to directly transform original images into adversarial examples.
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Baluja et al. [1] proposed Adversarial Transformation Networks
(ATNs) to transform an original image into an adversarial example
via a generative model by simultaneously increasing the attack rate
and constraining the similarity deviation. Xiao et al. [33] further
provided AdvGAN to utilize a discriminator for better visual qual-
ity. These methods can achieve high attack success rates; however,
the perceptual quality of the generated adversarial examples is
neglected.

2.2 Image Quality Assessment
Image quality assessment (IQA) has been an active research topic
in the last decades [2, 3, 15, 19, 22, 22, 25, 28, 39]. IQA can be di-
vided into full-reference (FR)-IQA and non-reference (NR)-IQA,
with FR-IQA has a reference image and the goal is to quantify the
visual differences between reference and test images, and NR-IQA
does not include reference images and aims to produce subjective
human appreciation based on the quality of image content. Given
the purpose of quantifying the adversarial distortions over a refer-
ence image in our work, we focus on FR-IQA here. Existing FR-IQA
methods are either general-purpose methods [9, 11, 31, 39, 40] or
distortion-specific methods [7, 16, 20, 41]. In the general-purpose
methods, the assessment is conducted by extracting natural sta-
tistical characteristics of images, including traditional methods
PSNR, SSIM [31], MAD [11], FSIM [39], and deep learning based
LPIPS [40], PieAPP[25], and DISTS[9]. These methods can evaluate
the general quality of images but can not explicitly quantify certain
distortions. In contrast, the distortion-specific methods evaluate
the image quality by using the features of known distortion type,
such as FRFSIM [16] and FADE [7] for defogging, SRIF [41] for
image super-resolution, and HDR-VDP-2 [20] for tone-mapping.
Despite remarkable progress have beenmade in FR-IQA, adversarial
distortion is seldom explored in the literature.

2.3 Adversarial Example Quality Assessment
The perceptual evaluation of adversarial examples remains an open
problem in the field. To our best knowledge, there have not yet de-
veloped any metrics specifically designed for adversarial examples.
There is a prior work [12] that conducts an analysis of adversarial
example perceptual quality, where the authors built a small-sized
database and investigated the existing IQA methods in evaluat-
ing adversarial examples. However, the database only contains 13
images which is limited for evaluation, and a metric specifically
designed for adversarial examples is still lacking. In this paper, we
make the first attempt and focus on distortion-specific FR-IQA for
evaluating the perceptual quality of adversarial examples.

3 ADVDB: ADVERSARIAL EXAMPLE
ASSESSMENT DATABASE

In this section, we introduce the details of the proposed database,
including the database construction and analysis.

3.1 Database Construction
Collection. Considering our work focuses on the adversarial exam-
ples in the classification task, we choose samples from the classic
databases for classification, namely CIFAR-10/100 and ImageNet
databases. Specifically, we randomly choose 1, 500 samples from

Table 2: Parameter settings in adversarial example generation
during data collection.

Attack 𝐿𝑝 -norm Parameter Values

PGD [18] 𝐿0 , 𝐿2 , 𝐿∞ 𝜀 0.003, 0.03, 0.1, 0.4, 1.4

FGSM [14] 𝐿0 , 𝐿2 , 𝐿∞ 𝜀 0.002, 0.03, 0.06, 0.14, 0.4

BIM [30] 𝐿0 , 𝐿2 , 𝐿∞ 𝜀 0.003, 0.03, 0.06, 0.15, 0.3

MIM [10] 𝐿0 , 𝐿2 , 𝐿∞ 𝜀 0.005, 0.03, 0.06, 0.19, 0.6

Deepfool [23] 𝐿0 , 𝐿2 , 𝐿∞ overshoot 0.25, 1.0, 3.5, 36, 500

these datasets, which covers 1, 000 classes of objects with a wide
range of colors and textures under both indoor and outdoor scenes.
To make the images more applicable for generating adversarial
examples, we cropped the images into the size of 299×299 covering
the main object in the image.

Adversarial Example Generation. Having the reference images,
next we propose to generate adversarial examples by applying ad-
versarial attacks on these clean images. Five prominent attacks are
employed in this process, namely FGSM, BIM, Deepfool, PGD and
MIM attacks. Note that each attack can be tuned into different at-
tack strengths via a set of parameters. We fine-tune the parameters
of each attack to generate diverse adversarial examples, from imper-
ceptible levels to overt levels. As for the source model, we consider
Inception v3 network pre-trained on ImageNet dataset to produce
adversarial perturbations. We list the parameters used in each at-
tack in Table 2. To ensure the generated AEs have attack ability, we
filter out those AEs with correct prediction results. Consequently,
we obtain 18, 346 adversarial examples that can succesfully attack
the target model using five attacks with various parameter settings.

Annotation. We invited 11 professional researchers to perform
subjective evaluation by comparing the adversarial examples and
their corresponding reference images. The subjective software was
conducted under the same environment with a 4K Ultra HD LED
Monitor. In addition, the subjects are given instructions before the
experiments to circumvent bias in this task. As shown in Figure 1,
a customized interface is designed to render a sequence of images
simultaneously. The left image is the original reference image, and
images 1-5 are adversarial examples generated by different attack
algorithm settings in random order. The subjects are asked to give
a score from 1 to 5 for each adversarial example based on the
perceptual possibility of this image being attacked. A higher score
means that the image is perceptually abnormal, which denotes a
higher possibility that the image is perturbed. Finally, the outlier
individual score is removed and then the remaining scores are
averaged as the MOS of each adversarial example.

3.2 Data Analysis
Annotation Distribution. The AdvDB consists of 18, 346 adversar-
ial examples, covering 75 attack strategies, and quality scores from
1 to 5, as shown in Figure 2. It can be observed that the distribution
of attack strategies is even, with a slight decrease when 𝜖 ≤ 0.01.
This is because the adversarial examples cannot successfully fool
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Figure 1: Screenshot of the subjective evaluation interface.

the target model when 𝜖 is too small so we filter out these exam-
ples during database construction. From the MOS distribution, we
can see that the score [1, 2] takes a high frequency in the whole
database. It indicates that adversarial perturbations are always just-
visible to human eyes since they have already been constraint by
𝐿𝑝 -norm during generation.

FR-IQA Preference.We conduct a correlation analysis between
the subjective results and existing popular FR-IQA metrics. Specifi-
cally, we adopt the most often used metrics in image quality assess-
ment including PSNR, SSIM, NIQE, MAD, LPIPS, DISTS, and GMSD.
Also, the three widely used distance norms 𝐿1, 𝐿2, and 𝐿∞ in adver-
sarial attacks are also considered. We use Spearman’s rank order
correlation coefficient (SROCC), Pearson linear correlation coeffi-
cient (PLCC), Kendall rank order correlation coefficient (KROCC),
and root mean squared error (RMSE) to evaluate the correlations.
Note that higher SROCC, PLCC, KROCC values and lower RMSE
value denote stronger correlations. The results are shown in Fig-
ure 3. We can have three observations here: First, the 𝐿𝑝 distance
cannot well assess the perceptual quality of AEs as the 𝐿𝑝 distance
generally achieve low correlations with MOS. Second, almost all
the FR-IQA metrics have positive correlations with the obtained
subjective annotations, where most SROCC and PLCC values are
higher than 0.9. This indicates the proper design and conduction of
our subjective annotations. Third, among all the FR-IQA metrics,
SSIM has the strongest correlations with subjective evaluations for
adversarial examples, indicating that the structural information
can reveal the adversarial distortion in adversarial examples, which
inspires us to utilize the structural similarity to perform perceptual
assessment of AEs.

4 APPROACH
In this section, we introduce our approach, whose main idea is
to construct a benchmark image quality assessment metric that is
specifically designed for AEs following an overall quality metric
for comprehensively evaluating AEs from both perceptual quality
and attack intensity.
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(a) Attack strategies

(b) MOS distribution

Figure 2: Statistics of AdvDB. (a) The adversarial attack strat-
egy distribution. (b) MOS distribution of all the adversarial
examples.

4.1 Perceptual Quality Assessment of
Adversarial Examples

Design.Here our goal is to develop a perceptual quality assessment
for adversarial examples. We first revisit the formulation of AEs
which is described as:

𝑥𝑎𝑑𝑣 = 𝑥 + 𝛿, s.t. 𝑥𝑎𝑑𝑣 ∈ B𝜖 (𝑥), (1)

where 𝑥 , 𝛿 , and 𝑥𝑎𝑑𝑣 denotes clean image, adversarial perturbation,
and AE, respectively. B𝜖 (𝑥) denotes the ℓ𝑝 -norm ball centered at
𝑥 with radius 𝜖 , i.e., B𝜖 (𝑥) = {𝑥𝑎𝑑𝑣 : ∥𝑥𝑎𝑑𝑣 − 𝑥 ∥𝑝 ≤ 𝜖}. Existing
advances in adversarial attacks try to find a proper 𝛿 to make the
model loss maximized. Since the AEs are already constrained by 𝐿𝑝 -
norm, the distortions over benign images are near-threshold, which
brings challenges in evaluation. Thus we consider the design of the
metric from two aspects: (i) It should reflect the image degradation
that is consistent with MOS thus HVS should be incorporated;
(ii) It has been pointed out that human visual system tends to
locate visible differences in near-threshold distorted images for
giving the MOS while attempts to recognize image content when
faced very low-quality images. Based on this prior, we employ a
detection scheme where the visual saliency is first detected and
then the differences are further quantified by conducting structural
similarity evaluation. An overall overview of the whole process is
shown in Figure 4.

4.1.1 Visual Saliency Detection. We first conduct visual saliency
detection. This phase is composed of two steps, gamma correction
and contrast sensitivity function transformation.
GammaCorrection. Let 𝑥 denotes a clean image, and 𝑥𝑎𝑑𝑣 denotes
a corresponding adversarial example. We first transform the images
from RGB space to YCbCr space for adapting the human perceptual
system. According to the HVS theory [11], human eyes are more
sensitive to darker regions in images and less sensitive to brighter
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Figure 3: Correlations of MOS and existing FR-IQA methods
on the adversarial examples in AdvDB.
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Figure 4: Overview of the AdvDSS procedure where the visual
saliency is first detected and the structural similarity between
the AE and benign image is quantified to produce the AdvDSS
score.

regions. Thus, we employ gamma correction (GC) to preserve as
many dark details as possible in the images, which is defined as:

𝑥 = ( 𝑥

255
)𝛾 ∗ 255, (2)

where 𝛾 is empirically set to be 1
2.2 as suggested in previous works.

Note that the GC is applied to both 𝑥 and 𝑥𝑎𝑑𝑣 for better quantifi-
cation.
Contrast Sensitivity Function Transformation. Human eyes
are believed to be sensitive to the spatial frequency of images. To
account for variations in different spatial frequencies, we adopt
the contrast sensitivity function (CSF) proposed by Mannos and
Sakrison[19] with adjustments specified by Daly[8], which is cal-
culated as

𝐻 (𝑓 , 𝜃 ) =
{
𝑘 (𝑐 + 𝜆𝑓𝜃 ) exp[−(𝜆𝑓𝜃 )1.1 ], if 𝑓 ≥ 𝑓𝑝𝑒𝑎𝑘𝑐/𝑑𝑒𝑔

0.981 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (3)

Where 𝑓 is the radial spatial frequency in cycles per degree of visual
angle (i.e., 𝑐/𝑑𝑒𝑔), 𝜃 is the orientation and varies in [−𝜋, 𝜋], and
𝑓𝜃 = 𝑓 /[0.15𝑐𝑜𝑠 (4𝜃 ) + 0.85] is an orientation-based modification of
𝑓 that along the diagonal orientations to account for decreased con-
trast sensitivity. Note that we adopted the adjusted CSF which has a
lowpass by setting frequencies below 𝑓𝑝𝑒𝑎𝑘 to 0.981. Following pre-
vious works [8], the 𝑓 and 𝜃 can be computed from discrete Fourier

Classification model

JS=0.0002 JS=0.0048 JS=0.0266 JS=0.1321 JS=0.3180

Distribution 

Distribution divergence

Adversarial examples

Benign image

Figure 5: Illustration of the attack intensity quantification
using JS divergence between clean images and adversarial
examples.

transform (DFT) indices 𝑢 ∈ [−𝑀/2, 𝑀/2] and 𝑣 ∈ [−𝑁 /2, 𝑁 /2]
via:

𝑓 = [( 𝑢

𝑀/2
)2 + ( 𝑣

𝑁 /2
)2]

1
2
𝜌𝜗 tan( 𝜋

180 )
2

𝑐/𝑑𝑒𝑔, (4)

𝜃 = arctan( 𝑣
𝑢
), (5)

where 𝜌𝜗 tan( 𝜋
180 ) is the display visual resolution in units of pixels

per degree of visual angle [32]. We apply CSF to filter both the
corrected benign image and adversarial example, which can be
described as:

𝑥 ′ = F −1 [𝐻 (𝑢, 𝑣) × F [𝑥]], (6)

where F [·] and F −1 [·] are the DFT and reverse DFT respectively.
Note that for now, 𝑥 ′ and 𝑥 ′

𝑎𝑑𝑣
are linearly proportional to both per-

ceived luminance and perceived contrast. The visual saliency maps
are calculated as 𝑥 = 𝑥 − 𝑥 ′, and 𝑥𝑎𝑑𝑣 = 𝑥𝑎𝑑𝑣 − 𝑥 ′𝑎𝑑𝑣 , respectively.

4.1.2 Structural SimilarityQuantification. After the visual saliency
map is obtained, inspired by the data analysis stated in Sec. 3.2
where the structural information is shown to be able to reveal
the adversarial distortion, we use the structural similarity index
to quantify the perceived distortion. Specifically, it combines the
luminance, contrast, and structure differences between adversarial
examples and benign images and is defined as:

𝐴𝑑𝑣𝐷𝑆𝑆 = [𝑙 (𝑥, 𝑥𝑎𝑑𝑣)]𝜆1 · [𝑐 (𝑥, 𝑥𝑎𝑑𝑣)]𝜆2 · [𝑠 (𝑥, 𝑥𝑎𝑑𝑣)]𝜆3 , (7)

where 𝑙 , 𝑐 , 𝑠 denote the luminance, contrast, and structure com-
parison respectively, which can be computed from the intensity
distribution as described in [11, 31]. 𝜆1, 𝜆2, 𝜆3 represents theweights
for the three terms, where we set 𝜆1 = 1, 𝜆2 = 0.48, and 𝜆3 = 0.48.
Please refer to Sec. 5.3.2 for the parameter adjustments.

4.2 Adversarial Example Quality Assessment
Here we take a step further to develop an overall quality assessment
for adversarial examples. As the two crucial factors for adversarial
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examples are the invisibility and lethality, we consider the percep-
tual quality and attack intensity as two major terms to evaluate
the overall adversarial example quality. That is, a good adversarial
example should have good visual quality and strong attack inten-
sity. As we have AdvDSS as the perceptual quality index, we need
to quantify the attack intensity of adversarial examples. Inspired
by existing attacks [17, 36] which generates adversarial examples
by maximizing the divergence from benign images, we propose to
use the distribution divergence of adversarial examples and benign
images in the target model as the indicator to obtain the attack
intensity.

Attack Intensity Quantification. To quantify the distribution
divergence of adversarial examples and benign images for eval-
uating the attack intensity of adversarial examples, we use the
Jensen–Shannon (JS) divergence to measure the distribution di-
vergence. Specifically, we first feed 𝑥 and 𝑥𝑎𝑑𝑣 into the backbone
model 𝑓 and obtain the logits distribution 𝑝𝑥 = 𝑓 (𝑥) and 𝑝𝑥𝑎𝑑𝑣 ,
respectively. The attack intensity of 𝑥𝑎𝑑𝑣 is then computed as:

𝐷 𝐽 𝑆 = JS(𝑝𝑥 ∥𝑝𝑥𝑎𝑑𝑣 ), (8)

where the JS(·) denotes the JS divergence computation. Note that
the larger JS divergence value between adversarial example and
benign image denotes a stronger attack intensity since the adver-
sarial example can easily trigger different predictions from that of
benign image. An illustration is shown in Figure 5.

Formulation of AEQA. Combining the perceptual quality and
attack intensity, the AEQA is defined as:

𝐴𝐸𝑄𝐴 = (𝐷 𝐽 𝑆 )𝛼 (𝐴𝑑𝑣𝐷𝑆𝑆)1−𝛼 , (9)

where 𝐴𝐸𝑄𝐴 ∈ [0,∞] denotes the overall quality of an adversarial
example. A higher AEQA value indicates a better quality of adver-
sarial example. 𝛼 is the weight for adjusting the impact of attack
intensity and image quality. To achieve the balance between these
two factors, we adopt a dynamic scheme to determine 𝛼 as follows:

𝛼 =
1

1 + 𝛽1 (𝐷 𝐽 𝑆 )𝛽2
, (10)

where 𝛽1 and 𝛽2 are free parameters and we empirically set 𝛽1 = 0.8
and 𝛽2 = 0.1. By this dynamic weight determine strategy, the AEQA
pays more attention on the image perceptual quality when the
value of 𝐷 𝐽 𝑆 is large, and gives more weight on the attack intensity
when the value of 𝐷 𝐽 𝑆 is small.

5 EXPERIMENTS
5.1 Experimental Settings
Compared Baselines. We compare the proposed AdvDSS with
extensive state-of-the-art IQA metrics on AdvDB, including FR-
IQA metrics PSNR, SSIM[31], CW_SSIM[26], FSIM[39], LPIPS[40],
and LPIPS-VGG[40], and NR-IQA metrics NIQE[22], BRISQUE[21],
MUSIQ[15], and PI[3].
Evaluation Criteria.We adopted four metrics to comprehensively
evaluate our approach: SROCC, KROCC, PLCC, and RMSE. SROCC
and KROCC are employed to measure the prediction monotonicity
of IQA methods, while PLCC and RMSE are used to measure the

prediction accuracy. Note that higher SROCC, PLCC, KROCC values
and lower RMSE value denote better performance.
ImplementationDetails.Ourmethod is implementedwith Python
on an NVIDIA RTX 3060Ti. In order to measure the attack intensity
of adversarial examples, we use the backbone model i.e., Inception
v3 network pre-trained on ImageNet, which produces the adver-
sarial examples for AdvDB to generate the logits distribution of
adversarial examples and clean images. Note that the AEQA can-
not assist in the evaluation of a single adversarial example whose
source model is unknown, but in the evaluation of an adversarial
attack technique.

5.2 Main Results
Comparisons with the Existing IQA Metrics. We first compare
our AdvDSS with the existing IQA metrics in evaluating the per-
ceptual quality of adversarial examples. The tested SROCC, PLCC,
KROCC, and RMSE results are summarized in Table 3, where we
can have the following observations: 1) The NR-IQA methods in-
cluding MUSIQ, PI and BRISQUE generally do not perform well
for evaluating the perceptual quality of adversarial examples, as
the SROCC and PLCC values of these methods for Deepfool attack
are less than 0.4. There is no surprise because adversarial pertur-
bations are always near-threshold, it is hard to directly perceive
the distortions without reference images; 2) Compared to the NR-
IQA methods, the FR-IQA methods perform much better since they
use references. Among them, SSIM outperforms the other methods
and was second only to our method, suggesting that the structural
information may reveal useful perceptual attributes of adversar-
ial perturbations; 3) The SROCC, PLCC, and KROCC values of our
method are larger than all the compared methods, and for RMSE are
smaller than that of the others. This denotes that, for adversarial ex-
amples, our method is better correlated with subjective evaluation
scores than the existing IQA methods. The benefits come from both
the detection-based scheme and structural similarity evaluation in
our AdvDSS design.

We also visualize the plot distribution of objective scores versus
MOS obtained on AdvDB in Figure 6. We can see that the points
obtained by our proposed AdvDSS are more tightly distributed on
the fitted curve than other methods, which also indicates that our
method has a better consistency with the subjective evaluation
scores, and is more suitable for evaluating the perceptual quality of
AEs.

5.3 Analysis
5.3.1 Ablation Studies. Now we take a closer look at the design of
our AdvDSS. We examine the effect of each component in AdvDSS
by conducting ablation studies. Specifically, we testify AdvDSS w/o
detection scheme, w/o CSF, and w/o GC. The results are reported
in Table 4. As we can see, without the detection scheme, the perfor-
mance drops in all metrics since the adversarial distortions are near-
threshold and hard to capture. Employing the detection scheme
can improve the evaluation performance, and AdvDSS achieves the
best when equipped with both GC and CSF operations.

5.3.2 Parameter Adjustments. In our AdvDSS, the weights 𝜆1, 𝜆2,
and 𝜆3 denote the impact of luminance, contrast, and structure in the
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Table 3: Performance comparison of our AdvDSS with the state-of-the-art IQA methods for evaluating adversarial examples
produced by different adversarial attacks.

Attack Metric
IQA methods

PSNR SSIM
[31]

FSIM
[39]

NIQE
[22]

ILNIQE
[38]

LPIPS
[40]

LPIPS-VGG
[40]

CW_SSIM
[26]

MUSIQ
[40]

PI
[3]

BRISQUE
[21]

Ours

PGD [18]

SROCC 0.9268 0.9415 0.9288 0.9201 0.9415 0.9388 0.9369 0.9164 0.4988 0.8954 0.9273 0.9423
PLCC 0.9675 0.9645 0.9527 0.9555 0.9646 0.9638 0.9617 0.9295 0.6488 0.9435 0.9574 0.9685
KROCC 0.7775 0.8069 0.7844 0.7693 0.8070 0.8023 0.7994 0.7701 0.3389 0.7368 0.7856 0.8083
RMSE 0.0922 0.0963 0.1109 0.1077 0.0963 0.0973 0.1000 0.1345 0.2776 0.1209 0.1053 0.0909

FGSM [14]

SROCC 0.9387 0.9518 0.9449 0.8869 0.9518 0.9502 0.9514 0.8972 0.3154 0.8666 0.8920 0.9583
PLCC 0.9599 0.9584 0.9511 0.8638 0.9584 0.9594 0.9604 0.8817 0.5602 0.8518 0.8955 0.9685
KROCC 0.8042 0.8242 0.8118 0.7194 0.8242 0.8211 0.8234 0.7395 0.2006 0.6928 0.7290 0.8373
RMSE 0.1002 0.1020 0.1104 0.1801 0.1020 0.1008 0.0996 0.1687 0.2961 0.1872 0.1591 0.0890

BIM [30]

SROCC 0.9088 0.9397 0.9335 0.8065 0.9397 0.9370 0.9314 0.8520 0.5668 0.6977 0.8012 0.9481
PLCC 0.9320 0.9510 0.9436 0.8649 0.9510 0.9486 0.9428 0.8497 0.5980 0.7539 0.8691 0.9591
KROCC 0.7637 0.8042 0.7915 0.6318 0.8042 0.7978 0.7879 0.6815 0.4094 0.5376 0.6352 0.8204
RMSE 0.1153 0.0984 0.1054 0.1597 0.0984 0.1007 0.1061 0.1678 0.2550 0.2090 0.1574 0.0900

MIM [10]

SROCC 0.9481 0.9637 0.9571 0.9052 0.9637 0.9588 0.9613 0.9216 0.3015 0.8840 0.9150 0.9674
PLCC 0.9701 0.9716 0.9659 0.8877 0.9716 0.9673 0.9714 0.9047 0.5839 0.8796 0.9229 0.9764
KROCC 0.8249 0.8501 0.8380 0.7479 0.8501 0.8409 0.8457 0.7777 0.1906 0.7184 0.7644 0.8592
RMSE 0.0901 0.0879 0.0962 0.1710 0.0879 0.0942 0.0882 0.1582 0.3015 0.1767 0.1429 0.0801

Deepfool [23]

SROCC 0.7311 0.7320 0.7328 0.1355 0.7320 0.7337 0.7304 0.7221 0.4001 0.0717 0.0909 0.7338
PLCC 0.9420 0.9381 0.9361 0.2582 0.9381 0.9381 0.9362 0.9049 0.4842 0.1284 0.3621 0.9356
KROCC 0.5898 0.5891 0.5897 0.0991 0.5891 0.5914 0.5865 0.5820 0.2928 0.0556 0.0605 0.5923
RMSE 0.1166 0.1204 0.1222 0.3357 0.1204 0.1203 0.1221 0.1479 0.3040 0.3446 0.3239 0.1227
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Figure 6: Scatter plots of objective IQA scores versus MOS for all the adversarial examples from our AdvDB by using PSNR,
SSIM, BRISQUE, NIQE, and our AdvDSS. More visualizations are referred to Sec. C in the supplementary material.

Figure 7: Average AEQA score curve of adversarial examples generated by different attacks with different parameter settings.

evaluation of adversarial example perceptual quality, respectively.
Here we conduct experiments to discuss the efficacy of the weights
in the AdvDSS. Specifically, we set 𝜆1 = 1, and adjust 𝜆2 and 𝜆3 to
different values and show the SROCC, PLCC, KROCC and RMSE
results on the AdvDB in Table 5. Note that we set 𝜆2 and 𝜆3 as the

same value to make it applicable for the computation. As we can see,
the AdvDSS does not perform well at the beginning when 𝜆2 = 0.00
which denotes that all the three terms contribute to the AdvDSS
in evaluating the perceptual quality of adversarial examples. The
values of SROCC, PLCC, and KROCC increase and RMSE decreases
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Table 4: Results of ablation studies on each component of
the proposed AdvDSS.

Method SROCC PLCC KROCC RMSE

AdvDSS w/o detection 0.9057 0.9567 0.7749 0.1010
AdvDSS w/o GC 0.9465 0.9581 0.8136 0.1003
AdvDSS w/o CSF 0.9468 0.9579 0.8164 0.1003
AdvDSS 0.9540 0.9681 0.8313 0.0875

Table 5: The AdvDSS performance under different values of
𝜆2.

Value of 𝜆2 SROCC PLCC KROCC RMSE

0.00 0.8052 0.8344 0.6507 0.1906

0.20 0.9091 0.9606 0.7819 0.0957

0.40 0.9098 0.9615 0.7834 0.0945

0.44 0.9099 0.9615 0.7834 0.0945

0.48 0.9100 0.9616 0.7835 0.0945

0.60 0.9100 0.9615 0.7835 0.0948

0.80 0.9100 0.9610 0.7834 0.0954

1.00 0.9099 0.9603 0.7833 0.0964

Table 6: Average AEQA scores of different attacks. The attack
settings are the same as we use 𝐿2-norm and the 𝜖 is set to be
0.03 for fair comparison.

Attack technique AEQA AdvDSS DJS

BIM [30] 0.8747 0.9780 0.8096
PGD [18] 0.8570 0.9761 0.7673
FGSM [14] 0.7442 0.9386 0.6422
MIM [10] 0.7346 0.9510 0.5892

as the value of 𝜆2 increases. The peak value appears when 𝜆2 = 0.48.
We adopt this setting throughout the whole experiments.

5.4 Applications and Analysis
5.4.1 Comparison of Adversarial AttackQuality using AEQA. We
compare the quality of AEs produced by different adversarial attacks
using the proposed AEQA. Tomake a fair comparison, we select AEs
generated of different attack techniques with the 𝐿2-norm as 0.03.
The AEQA scores and their components are summarized in Table 6.
In general, the PGD and BIM achieve comparable performance as
BIM surpasses PGD by 0.02 in terms of AEQA. In contrast, FGSM
has the lowest AEQA due to its weak attack intensity and poor
perceptual quality.

5.4.2 Choosing the Best Settings for Each Attack using AEQA. It is
always hard to determine the best parameter settings, i.e., the step
𝜖 in adversarial attacks, as a larger value of 𝜖 leads to a stronger
attack intensity but can also induce severe distortions in adversarial
examples. Here we try to explore the best setting in each attack

Table 7: The attack performance of AEs generated by directly
optimizing AEQA on different datasets.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet

Attack success rate 0.9596 0.9437 0.9243

with AEQA score. Specifically, we compute the average AEQA score
of adversarial examples at different parameter settings. The results
are shown in Figure 7. As we can see, the AEQA score of each attack
increases as the 𝜖 or 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 increases and decreases before it
reaches the peak value. PGD and BIM have higher peak value than
the other three attacks because they can generate AEs with better
quality as validated in Table 6. For practical use, we can adopt the
best parameter setting for generating adversarial examples with
best quality.

5.4.3 Generating Adversarial Examples using AEQA. We also con-
duct an interesting experiment in which we try to generate AEs
by directly optimizing the AEQA. Specifically, we set the AEQA
as the objective and use L-BFGS algorithm to directly generate an
adversarial example from a clean image with high AEQA score. We
use the Inc V3 pre-trained on ImageNet as the target model and
also the backbone to compute JS-Distance. We set the iteration step
as 20 during optimization. The attacks are performed on different
datasets and the results are reported in Table 7. It can be observed
that the AEs exhibit a high attack success rate on all the datasets.
Due to the page limitation, more details and qualitative results are
referred to our supplementary material.

6 CONCLUSION AND DISCUSSION
In this paper, we have constructed the first and largest adversarial
example database, namely AdvDB, for assessing the perceptual
quality of adversarial examples. Based on AdvDB, we have pro-
posed a detection-based quality assessment approach, AdvDSS,
which employs a visual salience detection scheme to first obtain
the salience map from the HVS perspective and then quantify the
distortions by using structural similarity between adversarial ex-
amples and benign images. Also, we take a step further to propose
AEQA to conduct an overall quality assessment of adversarial ex-
amples by integrating the perceptual quality and attack intensity.
The experiments demonstrate that our method can achieve superior
performance than the existing IQA methods.
Discussion. In this work, the AdvDSS is performed in a traditional
HVS manner and did not employ deep models for two reasons: 1)
The adversarial examples have the property of transferability that
can potentially disturb other deep models; 2) The proposed method
is a simple yet powerful benchmark method that can be easy to
apply, which we believe can be set as a baseline for future research.
Limitations. The proposed database only contains gradient-based
attacks since they are the most effective attack strategies for now.
The MOS annotations can also be manually decomposed into di-
verse attributes such as contrast, color, and saturation for deep
analysis.
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