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ABSTRACT

Natural language prompt optimization, or prompt engineering, has emerged as a
powerful technique to unlock the potential of Large Language Models (LLMs)
for various tasks. While existing methods primarily focus on maximizing a sin-
gle task-specific performance metric for LLM outputs, real-world applications
often require considering trade-offs between multiple objectives. In this work,
we address this limitation by proposing an effective technique for multi-objective
prompt optimization for LLMs. Specifically, we propose ParetoPrompt, a rein-
forcement learning (RL) method that leverages dominance relationships between
prompts to derive a policy model for prompts optimization using preference-based
loss functions. By leveraging multi-objective dominance relationships, Pareto-
Prompt enables efficient exploration of the entire Pareto front without the need for
a predefined scalarization of multiple objectives. Our experimental results show
that ParetoPrompt consistently outperforms existing algorithms that use specific
objective values. ParetoPrompt also yields robust performances when the objec-
tive metrics differ between training and testing.

1 INTRODUCTION

Advancements in Large Language Models (LLMs) have attracted significant interest due to their re-
markable capabilities across various natural language processing (NLP) tasks. Prompting, a method
that utilizes a natural language prefix or context to guide the LLMs to complete a desired task, allow-
ing us to utilize LLMs’ capabilities without re-training LLMs (Wei et al., 2022; Wen et al., 2024;
Reynolds & McDonell, 2021). However, crafting effective prompts often necessitates significant
manual efforts, requiring expertise in both LLMs and the specific task domains (Wang et al., 2024).

Prompt optimization emerged as a powerful solution, leveraging algorithms to automate the search
for optimal prompts. These algorithms encompass diverse techniques such as gradient-based opti-
mization (Wen et al., 2024), reinforcement learning (RL) (Deng et al., 2022; Zhang et al., 2022),
evolutionary algorithms (Zhou et al., 2022), beam search (Pryzant et al., 2023), and inverse RL (Sun
et al., 2023). These methods typically formulate prompt optimization focusing on single objectives,
aiming to optimize a single chosen performance metric, such as accuracy or fluency. In real-world
applications, however, prompt effectiveness often involves trade-offs between multiple objectives.
For example, a prompt designed for text style transform may need to balance style consistency with
content accuracy, while a prompt for summarizing factual topics may need to consider both infor-
mativeness and conciseness.

Unlike single-objective formulations (Wen et al., 2024) where we may obtain a clear “best” prompt,
in multi-objective prompt optimization problems with multiple conflicting objectives, there is not a
single prompt that excels in all objectives simultaneously. Instead, we aim for a set of prompts from
the so-called Pareto front, which represents the best possible trade-offs between these objectives. To
search for and maximally cover the Pareto front, optimization algorithms—including RL or evolu-
tionary algorithms often utilize an indicator function or reward function to evaluate the quality of
prompts. These solution strategies translate the multi-objective performance into a single value that
reflects how good a set of prompts is, for example, via the weighted sum of objectives, S metric or
Hypervolume of the dominated region (Baumann & Kramer, 2024), and product of multiple objec-
tives (Jafari et al., 2024). The introduction of these indicator/reward functions in ad-hoc ways helps
guide prompting towards the Pareto front. But it also imposes rigid assumptions about the trade-offs
between objectives, which oversimplifies the nuanced preferences involved in text generation. For
example, the weighted sum of objectives assumes the linear trade-offs between objectives and the
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weight is predefined. While S-metric assumes a uniform preference across all regions of the objec-
tive space. Some objective of text generation can be measured by various metrics, such as fluency by
perplexity or grammaticality, each of which may have non-linear relationships. The previously men-
tioned weighted sum and S-metric fail to capture these complexities, as they overlook the possibility
of different preferences arising from evaluating the same objective by varying metrics.

In this study, rather than using a scalar metric to describe the multi-objective performance of
prompts, we propose to guide the prompt search by comparing pairs of prompts based on funda-
mental principles of multi-objective problems. Specifically, if one prompt dominates another, the
dominating prompt is considered more preferable. Conversely, if a pair of prompts do not dominate
each other, then we do not prioritize one over the other. This approach ignores the specific objec-
tive values of the prompts. While discarding specific values might seem to reduce the algorithm’s
effectiveness, two key factors motivate our approach. First, in language generation tasks, accurate
and reliable evaluation of absolute objective values is often unavailable or unreliable. Relative pref-
erences, on the other hand, are more accessible and robust in handling the inherent vagueness in
evaluation objectives. Second, using dominance relationships avoids imposing assumptions on the
underlying structure of the objectives. This also eliminates the need to assume the additive contri-
butions of objectives, uniform preferences across regions, or biases introduced by reference points.

Based on these motivations, we propose ParetoPrompt, a novel multi-objective prompt optimiza-
tion method driven by preference based RL. In our formulation, prompts are generated by a policy
model. During each iteration, the algorithm samples pairs of prompts for the same input instance and
compares their dominance relationship, then update the policy model accordingly. The algorithm
can be combined with various types of RL-based prompt generation methods, such as direct text to-
ken generation from language models (Deng et al., 2022; Wu et al., 2022), or using RL-trained edit
agents (Zhang et al., 2022). We have conducted experiments comparing ParetoPrompt with com-
peting baselines. Our results clearly show that, despite solely based on dominance relationships,
ParetoPrompt achieves better or comparable performance than the algorithms relying on specific
objective values. Additionally, our method demonstrates robust performance even when the training
metric differs from the evaluation metrics used during testing.

2 RELATED WORK

We first review existing research on Prompt Optimization and Multi-objective Optimization for
LLMs, including the relevant recent work on Direct Preference Optimization (DPO).

2.1 PROMPT OPTIMIZATION

Prompting has become a prevalent approach for guiding LLMs towards specific tasks within the NLP
domain. Soft prompting techniques require access to the latent embeddings, limiting their applica-
bility in closed-source LLMs (Li & Liang, 2021). Natural language prompt optimization leverages
optimization algorithms to generate effective text prompts without modifying LLM parameters (Wen
et al., 2024; Deng et al., 2022; Zhang et al., 2022; Zhou et al., 2022; Pryzant et al., 2023; Sun et al.,
2023). For instance, (Lin et al., 2024) relies on learning a reward model trained on human preference
data and then optimizes the reward model to find the optimal prompt. (Fernando et al., 2023; Guo
et al., 2023) employ evolutionary algorithms for single-objective prompt optimization. However, a
majority of these works focus on single-objective optimization formulations.

2.2 MULTI-OBJECTIVE OPTIMIZATION FOR LANGUAGE MODELS

The field of multi-objective optimization has been explored for both prompt optimization and LLM
fine-tuning. Baumann & Kramer (2024) proposed an Evolutionary Algorithm (EA) where LLMs
perform “crossover” and “mutation” operations on prompts during the optimization process. Jafari
et al. (2024) adapted various scalar reward functions (e.g., HyperVolume Indicator, Expected prod-
uct of objectives) for multi-objective prompt optimization using RL. Jang et al. (2023) introduced a
method for fine-tuning LLMs for multiple objectives by training separate policy models and merging
their parameters for personalized preferences. Zhou et al. (2023) proposed Multi-Objective Direct
Preference Optimization (MODPO), an RL-free algorithm extending Direct Preference Optimiza-
tion (DPO) for datasets with multiple dimensional preference. They prioritised preferences with
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weight vectors and derived a multi-objective preference reward function. Our work distinguishes
itself from these previous efforts by utilizing dominance preference signals between prompt pairs,
avoiding the need for predefined scalar metrics or reward functions, which often introduce ad-hoc
assumptions of the objectives.

2.3 DIRECT PREFERENCE OPTIMIZATION

DPO (Rafailov et al., 2024) offers an alternative to RL for fine-tuning pre-trained language models.
It utilizes human preference data directly for updates instead of training a reward model like in Rein-
forcement Learning from Human Feedback (RLHF). Azar et al. (2024) proposed Identity Preference
Optimization (IPO), a generalization of DPO, that replaces a non-decreasing function related to the
Bradley-Terry model (Bradley & Terry, 1952) with the identity function, which mitigates overfitting
issues in DPO. The prompt optimization problem is different from the DPO fine-tuning problem.
Prompt optimization depends on the specific task and language model in use, leading to the lack
of a widely accepted general prompt dataset for prompt optimization. Therefore, we adopt a RL
approach to interact with the task-specific language model, enabling us to learn the most effective
prompts for particular problems. Our work utilizes the DPO/IPO reward function for dominance
preference data in a multi-objective optimization framework.

3 PARETO PROMPT OPTIMIZATION

We now present ParetoPrompt (Fig. 1), for prompt optimization that aims to cover the corresponding
Pareto front of multi-objective NLP tasks with pre-trained LLMs.
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Figure 1: ParetoPrompt Iteration: ParetoPrompt trains a policy model to generate diverse and
“Pareto optimal” prompts for an instance x. In each iteration, the policy model samples a pair
of prompts. Based on the dominance relationships of their outputs, it calculates either the dominant
or non-dominant loss, which is used to update policy model.

3.1 MULTI-OBJECTIVE PROMPT OPTIMIZATION

We consider the problem of generating Pareto optimal prompts to improve desired responses from a
task-specific LLM, denoted as T . Given an input instance x, which can be reviews, queries or code,
our objective is to design the prompts to guide the task-specific LLM towards generating high-quality
responses y. Achieving high quality response y can involve multiple, sometimes conflicting, objec-
tives. Denote these objectives as O(x, y) = [o1(x, y), ..., on(x, y)], where each element, oi(x, y)
represents a specific quality metric, such as relevance, fluency and/or creativity. These metrics can
be automatically estimated using various techniques, for example based on the BLEU Score, Gram-
matical Error Rate, and Semantic Distance, or evaluated by another LLM (Zhang et al., 2023).

We aim to train a policy model πθ, using RL to generate prompts that approach the Pareto front. The
policy model takes input x and generates corresponding prompts z with the probability πθ(z|x).
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Here the prompt z refers to the text provided to the task-specific LLM to generate the response
y = T (z). This includes both the instruction or query and any context provided before the the
model’s generated output. The simplest form of a prompt involves adding prefix text tokens in front
of the input x (Deng et al., 2022). A prompt z is considered “Pareto optimal” if there exists no other
prompt that can improve one objective in O(x, y) without degrading at least one other objective.
Mathematically, for two prompts z1 and z2, if O(x, T (z1)) ⪯ O(x, T (z2)), and O(x, T (z1)) ̸=
O(x, T (z2)), then z1 is “Pareto dominated” by z2. Therefore, a prompt is “Pareto optimal” if it is
not dominated by any other prompt. Finding such prompts allows us to obtain the best trade-off
prompts considering multiple conflicting objectives.

The Pareto front represents the set of all Pareto optimal prompts, i.e. the set of prompts that “Pareto
dominate” all the other prompts but mutually incomparable. In guiding the search for the Pareto
front by RL training of the policy model, a common approach is to use a scalarization function that
transforms the multi-objective problem into a standard single-objective problem. While convenient
for training, these functions can impose oversimplified assumptions about the objective structure
and limit the exploration of the entire Pareto front. The most common function is the weighted
sum function, which prioritizes the solutions that maximize a pre-defined linear combination of
objectives, neglecting potentially valuable parts of the Pareto front. Similarly, the hypervolume
indicator (Zitzler et al., 2001), while rewards improvement in all objectives simultaneously, it may
prioritize points that contribute most to the overall hypervolume increase, potentially neglecting
areas with smaller hypervolume contributions. Furthermore, the preference of hypervolume may
vary based on the choice of the reference point, introducing bias in the search process (Ishibuchi
et al., 2017). Consequently, although using a sclarization function provides guidance in approaching
the Pareto front in RL, it can also introduce bias in the search, limiting the algorithm’s capability to
cover the whole Pareto front.

In the following subsections, we introduce an innovative reward function for multi-objective prompt
optimization. This approach leverages dominance relationships between prompts to guide the pol-
icy model towards the Pareto front. By doing so, we eliminate the need for predefined preferences
imposed by traditional scalarization functions, allowing for a more flexible and comprehensive ex-
ploration of the solution space.

3.2 DOMINANCE PREFERENCE-BASED LOSS FUNCTION

Given an input instance x, we consider the dominance preference between two prompts zw and zl
based on their corresponding outputs yw and yl. Specifically, if O(x, yw) ⪰ O(x, yl), we define
zw to be dominance preferable prompt over zl, we denote as zw ⪰ zl for brevity. We define a
data pair (x, zw, zl) as dominance preference data, where zw dominates zl in terms of the resulting
outputs. This data serves as the foundation for directly learning the policy model that generates
Pareto optimal prompts.

Rafailov et al. (2024) introduced Direct Preference Optimization (DPO), a method that updates the
policy model based on preference data without training a separate reward model. Since policy model
πθ is guided by the reward function, they showed that the reward function is implicitly connected to
the policy model. This connection can be expressed as rθ(x, z) ∝ log πθ(z|x)

πref(z|x) , where πref denotes a
reference model. This reference model serves as a baseline or starting point for learning preferences,
and it is typically chosen as an initialized model or a pre-trained model.

DPO utilizes a loss function derived from the Bradley-Terry model for preference modeling:

lDPO(zw, zl;x) = − log σ [βh(zw, zl;x)] , (1)

where β is a scaling hyperparameter, σ is the logistic sigmoid function and h is the reward difference
between zw and zl as defined:

h(zw, zl;x) = log
πθ(zw|x)
πref(zw|x)

− log
πθ(zl|x)
πref(zl|x)

. (2)

This loss function lDPO increases the reward for the dominating prompt zw and decreases the reward
for the dominated prompt zl, thereby promoting the generation of zw.

Extended from DPO, Identity Preference Optimization (IPO) (Azar et al., 2024) replaces the non-
decreasing function related to the Bradley-Terry model by the identity function, resulting in a simpler
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loss function:

lIPO(zw, zl;x) =

[
h(zw, zl;x)−

τ−1

2

]2
, (3)

where τ is a regularization hyperparameter, controlling h(zw, zl;x) the reward difference between
zw and zl. DPO aims to maximize the difference to infinity, leading to overfitting to the preference
dataset. In contrast, IPO aims to make the difference close to τ−1

2 , therefore mitigating the risk of
overfitting. The comparison of lDPO and lIPO as functions of h(zw, zl;x) is shown in Fig. 2.

𝜖 𝜏!"

2

Figure 2: Comparison of loss functions, where lDPO and lIPO
increase h(zw, zl;x), the reward gap between dominant and
dominated prompt pairs; while lnd reduces the reward gap
between non-dominant pairs to near zero.

Both DPO and IPO losses utilize
dominance preference data to update
the policy model, aligning prompt
generation with the dominance rela-
tionship between outputs. Note that
dominance preference data is inde-
pendent of specific objective values,
so it remains robust against scaling
or monotonic transformation of ob-
jectives.

3.3 NON-DOMINATED
LOSS FUNCTION

Based on preference update with
dominance preference data, we are
able to generate Pareto optimal
prompts. However, there is no mechanism guaranteeing the coverage of the entire Pareto front.
We therefore propose a non-dominated loss function based on the non-dominated data to encour-
age the policy model to generate diverse prompts to explore different trade-offs on the entire Pareto
front.

Given a data pair (x, z1, z2), it is possible that the corresponding outputs y1 and y2 are mutually
non-dominated (incomparable), which we denote z1 ∼ z2 and call (x, z1, z2) non-dominated data.
For these cases we do not expect a strong preference for either prompt. We want the policy model
to assign similar likelihood in generating them. However, there should still be some tolerance for
small likelihood differences between non-dominated prompts; otherwise, the loss function would
force the model to assign identical likelihoods to all prompts. Therefore, we define a loss function
that penalizes large differences in the rewards of z1 and z2, but tolerates small difference for non-
dominated prompt pairs:

lnd(z1, z2;x) = λmax(|h(z1, z2;x)| − ϵ, 0), (4)

where λ is a scaling hyperparameter, and ϵ is the tolerance of the difference between the reward
function values. Note that as |h(z1, z2;x)| =

∣∣∣log πθ(z1|x)
πθ(z2|x) − log πref(z1|x)

πref(z2|x)

∣∣∣, the reward function
difference actually reflects the deviation between the policy model πθ and the reference model πref
in generating non-dominated prompts. Therefore, this loss function only becomes effective after
the policy updates lead to the difference exceeding the threshold ϵ. This ensures that the policy
prioritizes learning dominant prompts first before focusing on diversifying non-dominated prompts.

The curve of lnd is shown in Fig. 2. From the comparison with lIPO, we can conclude that when
using lIPO and lnd as loss function terms, it’s important to set ϵ < τ−1

2 for hyperparameter selection
to let lnd take effect.

3.4 PARETOPROMPT ALGORITHM

We now describe ParetoPrompt, our proposed training algorithm, for policy model generating
Pareto-optimal prompts in detail.

The policy model leverages a pre-trained generative LLM with its latent embedding layers kept
frozen. To fine-tune the model for prompt generation, a residual adapter module, implemented as
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a Multi-Layer Perceptron (MLP), is inserted between the latent layers and the model head. The
reference model is set to be identical to the initial state of the policy model.

Briefly, we denote either the DPO or IPO loss function as ld, then the overall loss function for
ParetoPrompt is:

L(πθ;πref) = E(z1,z2;x)∼πref

[
ld(z1, z2;x)1(z1 ⪰ z2) + ld(z2, z1;x)1(z1 ⪯ z2)

+lnd(z1, z2;x)1(z1 ∼ z2)
]
. (5)

The training process is as follows (Fig. 1):

1. Randomly sample a training instance x.
2. Use the reference model to generate a pair of prompts, z1 and z2 for x.
3. Estimate the objectives of the corresponding outputs y1 and y2 and determine their dominance

relationship, then select the either ld or lnd as loss function based on the dominance.
4. Use a gradient-based optimization algorithm (e.g., Adam) to update the policy model parame-

ters θ based on the calculated loss.
5. Periodically update the reference model to match the current state of the policy model. This

ensures that the reference model can leverage improved prompts for training as the policy model
evolves.

6. Repeat above steps for a specified number of training iterations.

Advantage of our algorithm is that by combining the dominance preference loss function with
non-dominated loss function, we encourage the policy model to generate Pareto optimal prompts
while diversify the generation to explore the entire Pareto front. While ParetoPrompt avoids mak-
ing assumptions about the multi-objective structure by not using a scalarization function, the way
that ParetoPrompt currently treats non-dominant pairs cannot provide guide for generating better
prompts as no preferences needs to be learned from them. However, in multi-objective problems,
dominant pairs become rarer and non-dominant pairs become more frequent, especially with the
increasing number of objectives, as in “many-objective’ problems. As a result, ParetoPrompt can be
inefficient in these scenarios.

4 EXPERIMENTS

To validate performance of our proposed PraretoPrompt, we apply it on both classification and text
generation tasks, with multiple objectives. We also provide analyses of the ParetoPrompt algorithms.

Baselines. We compare our proposed ParetoPrompt with the following baselines:

1. Summation (Deng et al., 2022): This RL-based algorithm uses the reward function defined by
scalarization, simply as the summation of different objectives: r(x, y) =

∑
oi(x, y).

2. Product: This RL-based algorithm defines the reward as the product of different objectives::
r(x, y) = Πoi(x, y).

3. HVI: The algorithm uses the HyperVolume Increment (HVI) as the reward function within a
RL framework. It tracks the Pareto front during training and use the hypervolume increment
bring by each prompt as the reward.

4. Reward-Guided IPO (R-IPO): This preference-based RL algorithm calculates the sum of
objectives, and determines the preference of prompt pairs based on the summation, then updates
the policy model using IPO loss in equation 3.

5. InstOptima (Yang & Li, 2023): This evolutionary algorithm utilizes the NSGA-II framework
for multi-objective optimization. The mutation and crossover operators for prompts are exe-
cuted using an LLM with corresponding operation prompts. In our experiments, we employ
LLaMa 2 (7B) for prompt operations.

6. ParetoPrompt DPO/IPO (PP-DPO/IPO): Our proposed ParetoPrompt algorithms.

4.1 FEW-SHOT TEXT CLASSIFICATION (TWO-OBJECTIVE TASK)

We conduct experiments on single-sentence classification across various datasets using token in-
filling with a BERT model (Brown, 2020). Classification is based on the probability of to-
kens corresponding to a set of verbalizers as class labels. We follow the prompt template
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[Input][Prompt][Class] as in Deng et al. (2022) and select the verbalizer token with the
highest predictive probability at the [Class] position. For few-shot classification, We only take a
small number of training samples and search for better prompts. We conduct experiments on a di-
verse set of popular few-shot classification tasks, including MR (Pang & Lee, 2005), SST-5 (Socher
et al., 2013), Yelp-5 and Yahoo (Zhang et al., 2015).

Objectives and Misaligned Metrics We define a two-objective prompt optimization problem:
besides optimizing the accuracy of the classification task, we also aim to optimize the fluency of
the prompts. Various metrics can be used to evaluate the fluency. In this set of experiments, we use
the grammatical acceptability score of RoBERTa-based-CoLA, a RoBERTa model fine-tuned for the
Corpus of Linguistic Acceptability (CoLA) task (Morris et al., 2020). We denote the score as the
CoLA score. This model is trained to classify whether a sentence is grammatically correct or not,
and we aim to maximize the CoLA score to generate fluent prompts.

Since fluency can also be quantified by the perplexity of text as calculated by a language model,
to demonstrate the robustness of ParetoPrompt against potentiallly misaligned metrics, we employ
two distinct training signals: the CoLA score and, in a separate series of experiments, the perplexity
calculated using GPT-2, while consistently take CoLA scores as the true objective in the testing
stage. We have analyzed the CoLA and Perplexity scores of the prompts used in our experiments,
and the results show a non-linear relationship between the CoLA scores and the perplexity scores.
This non-linear relationship leads to poor performance when RL algorithms, trained using specific
perplexity scores as a reward signal, while evaluated using CoLA scores. Details of the correlation
analysis can be found in Appendix A.2.

Experimental details We use RoBERTa-large (Liu et al., 2021) as the LM for classification, while
our policy model is based on DistilGPT2 (Sanh et al., 2019) with a two-layer MLP adaptor added
before the head layer. The prompt search space consists of 5 discrete tokens. For all datasets,
we randomly sample 16 samples per class for both the training and validation sets. The final per-
formance is evaluated using a sufficiently large test set. For all RL-based algorithms (excluding
InstOptima), 16 prompts are sampled for each iteration to calculate reward functions. Algorithms
using dominance relationships (R-IPO and PP-DPO/IPO) employ 8 prompt comparison pairs for
reward function calculation. Therefore, during the training, the total number of task language model
queries is: 16×class num×16×6,000. Hyperparameters for the loss functions in equations (1), (3)
and (4) are set as β = 0.5, τ = 0.5, λ = 1 and ϵ = 0.1. Each RL algorithm runs for 6K iterations for
training. For InstOptima, we intialized with a population of 16 manually designed prompts and exe-
cute 60 generations of NSGA-II, matching the computational time of the RL algorithms. During the
test stage, we generate 64 prompts for each dataset to perform a comprehensive comparison in terms
of multi-objective performances. We conduct five independent runs to obtain average performance
measures.

Experimental Results We use Hypervolume (HV) to evaluate the multi-objective performance
of classification Accuracy and the prompt CoLA score, with the reference point set at (0, 0). HV
for experiments using the CoLA score as the training signal is denoted as C-HV, while HV for
experiments using Perplexity as training signal is denoted as P-HV. The difference between the
two metrics, Diff-HV, measures the robustness of algorithm performance across these two settings.
Based on the experimental results shown in Table 1, ParetoPrompt algorithms (IPO and DPO) con-
sistently demonstrate superior performance across both C-HV and P-HV and have a small Diff-HV.
In contrast, the Diff-HV for algorithms using scalarization rewards (Summation, Product and HVI)
is significantly larger than other algorithms. That is due to the non-linear relationship between
CoLA score and perplexity not only changes the absolute reward value, but also the relative rank-
ings among prompts, leading to degraded performance. While the dominance relationships utilized
by the ParetoPrompt algorithms remain unaffected by such transformations. Notably, InstOptima
shows a small Diff-HV, partially due to its usage of NSGA-II, which relies on ranking based on
dominance relationship.

4.2 TEXT STYLE TRANSFER (THREE-OBJECTIVE TASK)

Following RLPrompt (Deng et al., 2022), we evaluate ParetoPrompt on a unsupervised text style
transform task. The goal is to rewrite an input sentence into a desired style while still keep the
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Table 1: Comparison of dominated hypervolume (HV) by different methods in the bi-objective space
defined by classification accuracy and CoLA score. “C-HV” refers to using the CoLA score as the
training signal, and “P-HV” indicates using perplexity scores as training signal. The term “Diff-
HV” represents the hypervolume difference between these two metrics. Higher values of “C-HV”
and “P-HV” are preferable, while “Diff-HV” close to 0 indicates robustness against metric change.

Dataset Metric Summation Product HVI InstOpt R-IPO PP-DPO PP-IPO

MR
C-HV 76.5(8.4) 63.3(5.2) 77.2(6.9) 70.6(9.1) 75.5(8.5) 80.9(4.3) 83.0(4.6)
P-HV 54.4(11.1) 46.5(11.2) 55.3(12.0) 67.2(0.1) 61.0(5.1) 66.8(11.5) 68.3(7.1)

Diff-HV 22.1 16.8 21.9 3.4 14.5 14.1 14.7

SST-5
C-HV 32.0(2.1) 27.4(1.3) 36.2(0.8) 31(3.7) 29.5(7.0) 34.1(2.5) 35.3(0.5)
P-HV 23.6(3.1) 20.4(1.2) 24.4(2.5) 32.6(1.9) 29.9(1.3) 34.3(0.4) 34.0(0.5)

Diff-HV 8.4 7.0 11.8 -1.6 -0.4 -0.2 1.3

Yahoo
C-HV 39.8(1.9) 27.5(1.2) 42.2(2.6) 40.7(3.9) 24.9(1.3) 47.1(1.7) 48.2(0.5)
P-HV 21.2(4.8) 17.0(7.4) 28.3 5.4 31.5(4.2) 20.6(4.3) 31.3(5.2) 35.5(2.7)

Diff-HV 18.6 10.5 13.9 9.2 4.3 15.8 12.7

Yelp-5
C-HV 35.5(2.8) 27.0(6.7) 40.4(2.6) 24.1(1.4) 40.0(3.7) 41.3(3.1) 40.6(2.1)
P-HV 21.9(2.1) 19.7(4.8) 20.5(3.1) 35.1(2.5) 37.1(4.4) 39.7(2.5) 39.8(2.3)

Diff-HV 13.6 7.3 19.9 -11.0 2.9 1.6 0.8

content similar. Two conflicting objectives are considered: style score and content similarity. We
also include include fluency of the prompts as a third objective. We conduct the task using the Yelp
sentiment dataset (Shen et al., 2017) to convert Yelp negative reviews into positive ones while main-
taining the content similarity. For example, the sentence“i will never be back” might be transformed
into “i will be back again”. The dataset consists of Yelp restaurant reviews, labelled by star ratings,
with three or above as positive and those below three as negative. We randomly select 50 negative
reviews for training, 50 for evaluation, and a separate set of 100 for testing.

Objective Settings. We adopt two model-based metrics for content similarity and sentiment posi-
tiveness evaluation. We set the content similarity objective as the content preservation reward func-
tion with the Compression, Transduction, and Creation (CTC) metric introduced in Deng et al.
(2022), which measures the embedding alignment between the input and output. The sentiment ob-
jective is defined as the sentiment probability calculated using a BERT-based classifier fine-tuned on
the Yelp dataset. For fluency objective, we kept using the CoLA scores calculated by the RoBERTa-
based-CoLA model. Compared with few shot classification, this objective setting is more challeng-
ing for prompt optimization. In few shot classification, outputs are chosen among verbalizer, while
text generation introduces greater output uncertainty. As a result, the quality of the objective signal
is noisier, making it more difficult to identify prompts that achieve good average performance. To
account for generative model randomness, we generate 128 outputs per prompt, averaging objective
values for robust prompt evaluation.

Experimental Details. We use GPT-2 XL as the LM for the style transform task, while the prompt
generation setting is the same as previous experiments. For all algorithms except InstOptima, during
the training stage, each iteration processes a minibatch size of two input negative reviews, and four
prompts are sampled for each negative review, which are then used to transform the inputs into
positive reviews. Each algorithm runs for 10K iterations for training, resulting in a total number of
language model queries equal to 128× 8× 10,000. For InstOptima, we intialized with a population
of 16 manually designed prompts and run 130 generations of NSGA-II, ensuring a comparable
running time with the RL algorithms. During the testing stage, we again generate 64 prompts for
each instance to evaluate the multi-objective performance. To ensure robustness, we conduct three
independent runs to obtain an average performance measure.

Experimental Results The performance of generated prompts in the multi-objective space of a
single run is shown in Fig. 3, providing an intuitive illustration. Additionally, Table 2 provides the
average performance across three runs with mean and standard deviation values, with all objectives
set to maximize. Each algorithm generate 64 prompts from the policy model, and the Pareto Set Size
represents the number of non-dominated prompts generated by each algorithm reflecting its ability to
generate effective prompts. Two other metrics are evaluated for the overall performance in the multi-
objective space: the Dominated HyperVolume (HV) and the Inverse Generation Distance (IGD).
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HV is the volume of the dominated region in the objective space with respect to the reference point
(0, 0, 0). IGD originally measures the average distance between the true Pareto front to the closest
points in the objective space corresponding to generated prompts by different algorithms. A lower
IGD value implies that the generated prompts achieve the performances closer to the Pareto front.
Here since the ground-truth Pareto front is unknown, the Pareto optimal prompts of the combination
of all the prompts act as the reference Pareto front.
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Figure 3: Visualization of three-objective prompt optimization results: Comparison of generated
prompts from different algorithms in the objective space, with sentiment, content similarity, and
CoLA score as objectives to be maximized. Results show that our ParetoPrompt algorithms effec-
tively explore the entire Pareto front.

Table 2: Performance Comparison for Unsupervised Sentiment Transform. Pareto Set Size repre-
sents the number of non-dominated prompts, HV measures Dominated HyperVolume, IGD indicates
distance to the Pareto front.

Metric Summation Product HVI InstOpt R-IPO PP-DPO PP-IPO
Max Style ↑ 29.8(2.6) 17.2(2.0) 33.4(6.2) 30.5(2.4) 19.6(2.8) 30.7(2.9) 36.5(5.7)

Max Content ↑ 46.7(3.0) 44.7(3.4) 52.6(4.7) 77.5(11.4) 68.0(16.6) 69.9(13.2) 82.9(17.4)
Max CoLA ↑ 0.64(0.17) 0.95(0.01) 0.95(0.01) 0.96(0.01) 0.96 (0.01) 0.98(0.0) 0.98(0.0)

Pareto Set Size ↑ 14.7(5.0) 6.6(3.1) 13.2(4.3) 11.6 (3.2) 26.8(5.4) 34.0(3.6) 34.8(10.9)
HV ↑ 572(135) 725(45) 1429(153) 1838 (228) 1166(241) 2007(242) 2406(361)
IGD ↓ 31.6(2.5) 33.7(2.8) 17.9(9.8) 17.1(3.7) 22.6(3.9) 15.7(7.6) 14.4(4.8)

From Fig. 3, we observe that Summation, Product and HVI do not perform well due to the fact
that the inaccurate reward cannot guide the search effectively. R-IPO tends to form clusters because
it lacks a mechanism to generate diverse prompts but simply exploits the preference information
provided by preference data. In contrast, our proposed ParetoPrompt algorithms (especially PP-
IPO) can cover the entire Pareto front due to the introduction of non-dominance loss. Table 2 shows
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Figure 4: Training Analysis of ParetoPrompt-IPO: Trends
in dominant vs. non-dominant prompt pair percentages, and
total, dominance, and non-dominance loss changes.

that our proposed ParetoPrompt al-
gorithms achieve higher HV and
smaller IGD, reflecting that the
prompts generated by ParetoPrompt
effectively cover the whole Pareto
front. Additionally, we observe
that PP-IPO performs better than
PP-DPO, probably because the IPO
loss does not suffer from the po-
tential overfitting issues associated
with DPO, which allows PP-IPO to
explore the search space more effi-
ciently. Overall, our ParetoPrompt
algorithms demonstrate superior per-
formances by effectively covering
the entire Pareto front with diverse
prompts.
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4.3 PARETOPROMPT TRAINING ANALYSIS

We analyze the ParetoPrompt algorithms during the training process, specifically focusing on the
text style transfer task. In the ParetoPrompt-IPO algorithm, we present the percentage change of
dominant and non-dominant prompt pairs in Fig. 4. Additionally, we include the non-dominated
loss defined in Eq. (5). The figure reveals that as training progresses, the algorithm samples more
non-dominant prompt pairs, indicating it learns to generate trade-off prompts. The non-dominated
loss starts at a value of 0 and increases as training continues. This increasing non-dominated
loss suggests that as the algorithm approaches the Pareto front, it focuses more on exploring non-
dominated prompts. Our experimental results shown in Appendix A.3 also indicate that without the
non-dominated loss, the dominate-only algorithm tends to generate prompts in clusters.

5 CONCLUSION

We have developed ParetoPrompt, a RL-based prompt optimization algorithm for multi-objective
text generation. The algorithm’s training relies solely on the multi-objective dominance relation-
ships between pairs of prompts, and requires no predefined scalarization function, thus allows us
bypass assumptions about human preferences in text evaluation. ParetoPrompt defines separate loss
functions for dominant and non-dominant prompt pairs. The combination effect of these loss func-
tions encourages the generation of Pareto-optimal prompts but diversifies the prompts to cover the
entire Pareto front. Moreover, by using only dominant relationships, the algorithm performs robustly
even when there is a mismatch between training and testing metrics. Additionally, it can incorpo-
rate preference data for training. Overall, ParetoPrompt presents a preference learning approach
for generating Pareto-optimal prompts, providing a promising direction for multi-objective prompt
optimization.

6 LIMITATION AND FUTURE WORK

As highlighted in Section 4.3, ParetoPrompt may become inefficient when addressing problems
with a large number of objectives. To address this limitation, future work can explore incorporat-
ing relaxed Pareto dominance relations (López Jaimes & Coello Coello, 2009), which extends the
definition of dominance to capture subtle preference information between non-dominant prompts.
Examples include the (1−k)-dominance relation (Farina & Amato, 2002) and the expansion relation
that controls the dominance area of solutions (Sato et al., 2007). By incorporating these relaxed re-
lations, we can potentially use the information from non-dominant pairs to guide the policy model’s
updates in many-objective cases.

REFERENCES

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Jill Baumann and Oliver Kramer. Evolutionary multi-objective optimization of large language model
prompts for balancing sentiments. In International Conference on the Applications of Evolution-
ary Computation (Part of EvoStar), pp. 212–224. Springer, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Marco Farina and Paolo Amato. On the optimal solution definition for many-criteria optimization
problems. In 2002 annual meeting of the North American fuzzy information processing society
proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622), pp. 233–238. IEEE, 2002.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
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A APPENDIX

This appendix presents supplementary materials, including the pseudo-code for the ParetoPrompt
algorithm, an analysis of CoLA and perplexity scores, and results from two-objective prompt opti-
mization experiments in text style transfer.

A.1 PSEUDO-CODE FOR PARETOPROMPT

Pseudo-code for ParetoPrompt is summarized in Algorithm 1.
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Algorithm 1 ParetoPrompt

Require: Training dataset X , Reference model πref, Loss Hyperparameters
1: Initialize policy model πθ ← πref
2: for epoch in range(num epochs) do
3: for x in X do
4: if z1 ⪰ z2 then loss = ld(z1, z2;x)
5: else if z1 ⪯ z2 then loss = ld(z2, z1;x)
6: else loss = lnd(z1, z2;x)
7: end if
8: Update πθ with gradient descent on loss
9: end for

10: if (epoch% update period) == 0 then πref ← πθ

11: end if
12: end for

A.2 ANALYSIS OF COLA AND PERPLEXITY SCORES

We analyzed the CoLA and Perplexity scores of the prompts used in our experiments. We generated
1000 prompts of 5 tokens randomly and calculate their CoLA score and perplexity. And their rela-
tionship is shown in Fig. S1. Notably, the CoLA score exhibits an approximately linear relationship
with log perplexity.

The Spearman’s Rank Correlation Coefficient between them is -0.473, indicating a moderate neg-
ative correlation. In contrast, the linear correlation coefficient is -0.253, reflecting a weak negative
linear relationship. However, when we apply a logarithmic transformation to Perplexity, the linear
correlation coefficient increases to -0.471. This suggests a non-linear relationship between CoLA
and Perplexity scores, which can be approximately described by a logarithmic transformation.
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Figure S1: Relationship between CoLA and Perplexity scores.

A.3 TEXT STYLE TRANSFER WITH TWO OBJECTIVES

We also conduct two-objective prompt optimization experiments on the text style transfer task. The
settings are the same as Sec. 4.2, except that we optimize prompts for two objectives: content
similarity and sentiment positiveness. Fig. S2 provides an intuitive illustration of the generated
prompts in the objective space, Fig. S3 also provides the average performance across five runs.
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Notably, the results shows that without the non-dominance loss, the Dominance-Only algorithms
tend to form clusters because of the lack of mechanism to diversify prompts, as shown in Fig. S2. In
contrast, ParetoPrompt can cover the entire Pareto front due to the introduction of non-dominance
loss. Fig. S3 shows that our proposed ParetoPrompt algorithms achieve higher D-HV with smaller
variance because diverse prompts lead to higher and more robust D-HV. In contrast, the compet-
ing algorithms generate prompts that cluster together, causing the D-HV varies with the cluster’s
position and resulting in larger variance. The smaller IGD of ParetoPrompt reflects it has smaller
distance from the reference Pareto front, reflecting that the prompts generated by ParetoPrompt ef-
fectively cover the whole Pareto front. Overall, our ParetoPrompt algorithm demonstrates superior
performance by effectively covering the entire Pareto front with diverse prompts.
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Figure S2: Bi-objective Prompt Optimization Illustration. Comparison of generated prompts from
different algorithms for a single instance in bi-objective space, with sentiment and content similarity
as the two objectives to be maximized. Results show that our proposed ParetoPrompt algorithms
effectively explore the entire Pareto front.
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Figure S3: Performance Comparison for Unsupervised Sentiment Transform. We compares the
performance of various algorithms in an unsupervised sentiment transform task. D-HV (higher is
better) measure Dominated HyperVolume, IGD (lower is better) indicate distance to the Pareto front.
Our ParetoPrompt surpasses competing algorithms in both metrics.
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Figure S4: Ablation performance comparison with different update period choices.
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A.4 ABLATION: REFERENCE MODEL UPDATE PERIOD

The reference model update period (in Algorithm 1 line 10) plays a crucial role in balancing the
convergence speed and stability during training. With a short update period, the reference model
closely tracks the current policy model, potentially leading to faster convergence; but such a choice
can also lead to unstable training. In contrast, a long update period can lead to more stable training.
However, the reference model may hinder the further improvement of the policy model. We conduct
an ablation study with the different reference model update periods set to 20, 200 and 500. The
results are shown in Fig. S4. From the figure, we can observe that a period of 200 achieves a good
balance between convergence speed and performance in both D-HV and IGD. This setting allows
the reference model to adapt sufficiently to guide the policy’s learning while maintaining stability
for exploration.
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