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ABSTRACT

Transformer architectures have achieved remarkable success in various domains.
While efficient alternatives to Softmax Attention have been widely studied, the
search for more expressive mechanisms grounded in theoretical insight—even
at greater computational cost—has been relatively underexplored. In this work,
we bridge this gap by proposing Local Linear Attention (LLA), a novel attention
mechanism derived from nonparametric statistics through the lens of test-time re-
gression. First, we show that LLA offers theoretical advantages over Linear and
Softmax Attention for associative memory via a bias-variance trade-off analysis.
Next, we address its computational challenges and propose two memory-efficient
primitives to tackle the Θ(n2d) and Θ(nd2) complexity. We then introduce Flash-
LLA, a hardware-efficient, blockwise algorithm that enables scalable and paral-
lel computation on modern accelerators. In addition, we implement and profile a
customized inference kernel that significantly reduces memory overheads. Finally,
we empirically validate the advantages and limitations of LLA on test-time regres-
sion, in-context regression, associative recall and state tracking tasks. Experiment
results demonstrate that LLA effectively adapts to non-stationarity, outperform-
ing strong baselines in test-time training and in-context learning, and exhibiting
promising evidence for its scalability and applicability in large-scale models.

1 INTRODUCTION

Transformer-based architectures have dominated modern AI systems and powered breakthroughs
across various fields. The core computation primitive–Softmax Attention (Vaswani et al., 2023),
adaptively processes and aggregates contextual information. Recent research on architecture inno-
vation has proposed numerous variants of attention mechanism such as Linear Attention (LA) (Yang
et al., 2025b;a; Siems et al., 2025; Sun et al., 2023; Ma et al., 2024; Liu et al., 2024; Katharopoulos
et al., 2020; Yang et al., 2024) and state space models (SSMs) (Gu et al., 2022a;b; Gu & Dao, 2024;
Dao & Gu, 2024; Poli et al., 2023). While these methods offer remarkable efficiency improvements
on long sequences, they often incur a performance penalty compared to Softmax Attention (Bick
et al., 2025; Jelassi et al., 2024). Meanwhile, many of the design choices such as gating and for-
getting factor (Yang et al., 2025a; Lin et al., 2025; Gers et al., 2000; Yang et al., 2023) are often
guided by heuristics or empirical results, lacking a principled understanding. Conversely, the search
for more expressive attention mechanisms, even at an additional computational cost, has been rela-
tively under-explored. Recently, test-time regression (Wang et al., 2025) unifies the design choices
of different attention variants, indicating that the attention mechanism can be viewed as a test-time
optimizer for layer-specific regression problems. A natural question arises: can we systematically
improve the Softmax Attention mechanism from the perspective of test-time regression?

In this work, we propose local linear attention (LLA), an upgrade to Softmax Attention derived from
local linear regression. Our contributions are summarized as follows:

• We systematically analyze the design space of attention mechanisms within the test-time
regression framework and propose LLA. We provide theoretical comparison of LLA with
Softmax Attention and LA family from the perspectives of bias-variance trade-off and
demonstrate its provable advantage in associative recall capability.
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• We provide a detailed discussion on the computation of LLA and overcome the Θ(n2d)
and Θ(nd2) memory complexity with two optimizations, where n is the sequence length
and d is the dimension. We then introduce FlashLLA, a blockwise and hardware-efficient
algorithm to parallelize the computation on modern accelerators. In addition, we implement
and profile a customized inference kernel with significant memory reduction.

• We conduct extensive experiments on synthetic tasks including test-time regression, in-
context regression, associative recall and state tracking to validate the advantages and lim-
itations of LLA compared to strong baselines.

1.1 RELATED WORKS.

Linear Attention and State Space Models. Due to the quadratic computational cost and linear
memory consumption of the softmax attention mechanism for autoregressive sequence modeling,
efficient attention mechanisms such as LA (Yang et al., 2025b;a; Siems et al., 2025; Sun et al., 2023;
Ma et al., 2024; Liu et al., 2024; Yang et al., 2024) and SSMs (Gu et al., 2022b;a; Gu & Dao, 2024;
Dao & Gu, 2024; Poli et al., 2023) were proposed in search of more efficient alternatives for long-
context sequence generation. These methods maintain a constant sized hidden state (Katharopoulos
et al., 2020) during decoding and update it like a linear RNN. This state update behavior is also re-
ferred as fast-weight programming (Schmidhuber, 1992; Schlag et al., 2021). Essentially, MesaNet
(von Oswald et al., 2025) is a LA variant that preconditions the hidden state and achieves optimal
regression objectives among linear models.

In-Context Learning by Optimization. A growing body of work suggests that attention mecha-
nism implicitly performs optimization algorithms to achieve in-context learning (Garg et al., 2023;
Akyürek et al., 2022; von Oswald et al., 2023; Kirsch et al., 2024; Zhang et al., 2024; Mahankali
et al., 2023; Ahn et al., 2023; Dai et al., 2023). For example, Mesa optimization (von Oswald
et al., 2023) suggested that the attention layer inherently performs or approximates optimization
steps during the forward pass. This behavior is particularly evident in LA and SSMs, as the hidden
state update can be interpreted as performing gradient descent to solve a linear regression objective
(Wang et al., 2025; Liu et al., 2024). MesaNet (von Oswald et al., 2025) is a one-step convergent
algorithm for such a problem as the objective accepts a closed-form solution.

Hardware Efficient Attention. Prior works have focused on efficient attention implementation
on modern hardwares to alleviate memory and computation overheads. FlashAttention (Dao et al.,
2022; Dao, 2023) performs a block-wise online softmax to reduce I/O latency. Several other ap-
proaches, including NSA (Yuan et al., 2025), SeerAttention (Gao et al., 2024), MoBA (Lu et al.,
2025), and Block Sparse Attention (Xiao, 2025), leverage sparsity to lower the effective computa-
tional cost while preserving GPU utilization. Flash Linear Attention (Yang et al., 2023) provides a
hardware-friendly formulation of linear attention through chunk-wise computation.

1.2 NOTATION.

We use upper-case letters to denote matrices and lower-case letters to denote vectors. For a matrix X ,
we denote its Frobenius norm as ∥X∥F and the Hadamard product as⊙. For a vector x, we denote its
Euclidean norm as ∥x∥2. Furthermore, define rsum(X) = X1 for matrix X and bcast(x) = x1⊤

for vector x, where 1 is a vector of ones. We use the abbreviation brsum(x) = bcast(rsum(x)).

2 BEYOND LOCAL CONSTANT ESTIMATE

In this section, we first revisit the test-time regression interpretation for the attention mechanism
(Wang et al., 2025). Then, we analyze the associative recall capacity and show the inherent limita-
tions of LA and Softmax Attention. Lastly, we introduce the formulation for LLA.

2.1 ATTENTION AS TEST-TIME REGRESSION

In test-time regression framework, the attention mechanism is interpreted as a layer-specific re-
gression solver. The goal is to approximate an unknown regression function f : Rd 7→ Rd using
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historical key-value pairs. To be specific, given a hypothesis space F and a position 1 ≤ i ≤ n, an
estimator f̂i ∈ F is fitted on the datasetDi = {(kj , vj) ∈ Rd×Rd}ij=1, where the attention keys kj
serve as the features and attention values vj as the labels. The prediction is made at a query qi ∈ Rd,
which is treated as a test data point.

Linear Attention as Parametric Regression. Parametric model constrains the function class F
to a set of functions defined by a finite-dimensional parameter θ ∈ Θ. The most fundamental
instantiation is the linear regression, which sets F = {fθ(x) = Wx + b | θ = (W, b),W ∈
Rd×d, b ∈ Rd}. We omit the intercept b for simplicity. At each position i, the parameter Wi is
estimated by solving the following least square problem on the training dataset Di,

min
W
L(W ;Di) =

1

2

i∑
j=1

γij∥vj −Wkj∥22 + λ∥W∥2F , (1)

where γij ∈ R is a weighting factor and λ ≥ 0 is the ridge regularization penalty. For appropriate
regularization, objective equation 1 admits a closed-form optimal solution. MesaNet (von Oswald
et al., 2025; 2024) hardcodes this solution for the case γij = 1, where the prediction is given by,

f̂Mesa(qi) = Ŵ Mesa
i qi =

( i∑
j=1

vjk
⊤
j︸ ︷︷ ︸

Si

)( i∑
j=1

kjk
⊤
j + λI︸ ︷︷ ︸

Hi

)−1

qi. (2)

Across different position i, the weight W Mesa
i can be updated recurrently by maintaining two statis-

tics Si and Hi with Θ(d2) memory. This allows MesaNet to be interpreted as a linear RNN with two
recurrent states. To avoid the expensive matrix inversion, vanilla LA brutally approximates the pre-
condition matrix Hi ≈ I in equation equation 2, leading to a suboptimal solution of the least square
problem. It can also be shown that LA variants and SSMs such as GLA (Yang et al., 2024), RetNet
(Sun et al., 2023), RWKV (Peng et al., 2024; 2025) and Mamba (Gu & Dao, 2024; Dao & Gu, 2024)
can be derived by the approximation Hi ≈ I with different weighting schemes γij . Besides exact
solutions, vanilla LA and variants such as DeltaNet (Yang et al., 2025b) and Gated DeltaNet (Yang
et al., 2025a) can be interpreted as performing one step of first order stochastic gradient descent on
weight W . We refer readers to (Wang et al., 2025) and tables in (Peng et al., 2025; Yang et al.,
2025a) for detailed derivations and how each model is implemented.

Softmax Attention is Non-Parametric. Non-parametric regression makes minimal structural as-
sumptions on the function class F . A canonical example is the kernel regression, where the estima-
tor f̂ is defined directly from the data in a way that depends on the query point. Specifically, for a
query vector qi, let F(qi) denote the local function class around qi. The local regression objective
is defined as:

min
f∈F(qi)

L(f ;Di) =
1

2

i∑
j=1

wij∥vj − f(kj)∥22, (3)

where wij = Kh(qi, kj) ∈ R is a query-dependent weight that measures the locality of the training
point kj to the query qi. The simplest instantiation is the constant model, where F(qi) = {fθ(x) =
θ ∈ Rd,∀x ∈ Rd}. Solving objective equation 3 with this function class yields:

f̂(qi) =

i∑
j=1

sijvj , sij =
wij∑i

j′=1 wij′
(4)

Consider an RBF kernel wij = exp(−∥kj − qi∥2/h) with bandwidth h = 2
√
d, the estimator

equation 4 exactly recovers the softmax attention when QK normalization (Dehghani et al., 2023;
Wortsman et al., 2023; Team, 2024) is applied, since in this case wij ∝ exp(q⊤i kj/

√
d) and the

common constant factor cancels in the division. It is also known as the Nadaraya-Watson (NW)
kernel regression (Nadaraya, 1964; Watson, 1964; Bierens, 1988) in statistics literature. We note that
QK normalization is not strictly necessary to represent practical Softmax Attention as the additional
term can naturally serve as positional encoding (Press et al., 2022), and the scale effectively tunes
the bandwidth h in a data-dependent manner.
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2.2 LEARNING BEHAVIOR OF ASSOCIATIVE RECALL

Attention mechanisms are often evaluated by the associative memory capacity (Zhong et al., 2025;
Behrouz et al., 2025; Ramsauer et al., 2021). Specifically, given a training set of key-value pairs
{(kj , vj)}ij=1, the model is expected to retrieve the value vj associated with kj when queried at
q = kj . This objective can be exactly captured by the Mean Square Error (MSE). For example, the
retrieval error in vanilla LA is given by,

MSELA
i =

1

i

i∑
j=1

∥Sikj − vj∥2 =
1

i

i∑
j=1

∥(k⊤j kj − 1)vj +
∑
j′ ̸=j

vj′k
⊤
j′kj∥2, (5)

The first term in the summation is the signal bias and can be avoid by QK normalization. The second
term is the interference from other key-value pairs. Deltaformer (Zhong et al., 2025) quantitatively
analyze this error by the inverse of signal-to-noise ratio SNR−1, which is essentially a normalized
version of MSE. In classic literature, MSE decomposition allows us to analyze the approximation
and generalization error of the model and the corresponding bias-variance trade-off.

Irreducible Approximation Error of Global Linear Model. Recall that global linear models
correspond to solving a least square problem equation 1 over the hypothesis space F = {fθ(x) =
Wx+b}. When the ground truth function f is not global linear, any estimator f̂ ∈ F will suffer from
a non-vanishing approximation error due to model misspecification. In contrast, the local constant
model is a nonparametric estimator that does not impose structural assumptions on the function class
except for smoothness or regularity. Consequently, the approximation error vanishes asymptotically
with proper assumptions. In fact, we have the following separation result between global linear (GL)
and local constant (NW) estimators:

Proposition 2.1. Let (Xi, Yi)
n
i=1 be i.i.d., Xi ∈ Rd supported on a bounded set D ⊂ Rd, and

Yi = f(Xi) + εi ∈ Rdy with E[εi | Xi] = 0 and E[ε2i | Xi] = σ2(Xi). Let f̂GL denote a global-
linear estimator and f̂NW the local-constant (NW) estimator with optimal bandwidth. Under mild
assumptions, if f is not globally linear, then

E
∫
D

||f̂GL(x)− f(x)||2dx = Ω(1) , E
∫
D

||f̂NW(x)− f(x)||2dx = O(n−3/(d+3)).

Irreducible Boundary Bias of Local Constant Model. Despite the appealing convergent prop-
erty of local constant model, it suffers when predicting near the boundary of the data support, par-
ticularly with symmetric kernels like RBF. This phenomenon becomes more pronounced in high-
dimension and likely to occur more frequently in autoregressive prediction. Local polynomial re-
gression is a standard remedy in nonparametric statistics to address this issue. In Section 2.3, we
will introduce LLA as a natural adaptation of local linear regression. In fact, we have the following
separation result between local constant (NW) and local linear (LL) estimators:

Proposition 2.2. Under the setting of Proposition 2.1, let f̂NW and f̂LL denote local-constant and
local-linear estimators with their respective optimal bandwidths. Under mild assumptions, if f has
sufficiently large normal gradient along the boundary of D, then

E
∫
D

||f̂NW(x)− f(x)||2dx = Ω(n−3/(d+3)) , E
∫
D

||f̂LL(x)− f(x)||2dx = O(n−4/(d+4)).

The proof of proposition 2.1 and 2.2 are provided in Appendix A and B correspondingly.

2.3 LOCAL LINEAR ATTENTION

Formulation. For a query qi, instantiate the local function class F(qi) = {fθ(x) = b +W (x −
qi) | θ = (W, b),W ∈ Rd×d, b ∈ Rd}. The regularized local linear regression objective is,

min
f∈F(qi)

L(f ;Di) =
1

2

i∑
j=1

wij∥vj − b−W (kj − qi)∥2 + λ∥W∥2F , (6)

4
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where wij are query-dependent kernel weights and λ ≥ 0 is a ridge penalty. This objective also
admits a closed-form solution for the intercept b and weight W . Importantly, at test time, the predic-
tion is only made at f̂(qi) = b̂i. Thus it suffices to derive the formulation for the intercept. Define
zij = kj − qi and the following query-specific statistics,

ωi =

i∑
j=1

wij ∈ R, µi =

i∑
j=1

wijzij ∈ Rd, Σi =

i∑
j=1

wijzijz
⊤
ij + λI ∈ Rd×d. (7)

Also denote ρi = Σ−1
i µi ∈ Rd. The optimal intercept can be computed as follows,

f̂(qi) = b̂i =

i∑
j=1

sijvj , sij = wij

1− z⊤ijρi

ωi − µ⊤
i ρi

. (8)

Similar to maintaining Hi in MesaNet, LLA requires capturing the precondition matrix Σi. How-
ever, a key difference is that Hi is built on global statistics that are independent of the query, whereas
Σi is constructed from features centered around the specific query qi for each position 1 ≤ i ≤ n.
Consequently, LLA requires a KV cache of size Θ(nd) similar to Softmax Attention, rather than
constant-size recurrent states as in the LA family.

LLA Interpolates Linear and Softmax Attention. A more interpretable form of equation 8 can
be obtained by decomposing the prediction into two components. Suppose that the weight matrix
Ŵi is given prior to solving equation 6, then the optimal intercept can be expressed as,

b̂i =

i∑
j=1

sij(vj − Ŵikj) + Ŵiqi, sij =
wij∑i

j′=1 wij′
. (9)

The first term is a local constant regression to predict the residuals vj−Ŵikj , while the second term
is a linear prediction based on Ŵi. The formulation recovers LLA if Ŵi is obtained by optimally
solving equation 6. However, by allowing suboptimal estimation, one can construct Ŵi as a recurrent
state similar to LA. This decomposition reveals how LLA interpolates between Linear and Softmax
Attention and provides a template for designing new algorithms.

3 PRACTICAL ALGORITHM

In this section, we provide a detailed discussion of the computation involved in LLA. We high-
light two major challenges in naı̈ve implementations and develop a practical block-wise algorithm
FlashLLA that scales efficiently on modern accelerators such as GPUs.

3.1 MEMORY EFFICIENT PRIMITIVES

Avoid Pairwise Materialization. The first bottleneck is the evaluation of vectors zij = kj − qi
for every 1 ≤ j ≤ i ≤ n, which requires Θ(n2d) memory to materialize. This pairwise difference
is later used in the formulation of µi and Σi defined in equation 7 as well as the inner product
z⊤ijρi in equation 8. For both cases, explicit materialization of zij can be avoid by algebraically
separating the contributions of kj and qi to the final result. Specifically, the statistics µi and Σi can
be reformulated in terms of intermediate quantities that are independent of the query and can then
be transformed to recover the original centered statistics:

µ̃i =

i∑
j=1

wijkj ∈ Rd, Σ̃i =

i∑
j=1

wijkjk
⊤
j + λI ∈ Rd×d (10)

µi = µ̃i − ωiqi, Σi = Σ̃i − µ̃iq
⊤
i − qiµ̃

⊤
i + ωiqiq

⊤
i (11)

The computation in equation 10 and equation 11 only requires vectors kj and qi individually, reduc-
ing the memory cost to Θ(nd). The same principle applies to computing inner products of the form
z⊤ijxi = k⊤j xi − qixi for any vector xi ∈ Rd. The matrix operator relative matrix multiplication
(relmm) for this optimization as follows,

relmm(X,Q,K) := XK⊤ − brsum(X ⊙Q). (12)

5
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This operator is invoked once in the forward computation with xi = ρi, but appears multiple times
in the backward with other variables. Further details on the backward are provided in Appendix D.

Matrix-Free Inversion via Conjuagte Gradients. The second bottleneck arises in solving linear
systems of the form Σ−1

i xi for some vector xi ∈ Rd. Directly inverting Σi for every 1 ≤ i ≤ n
incurs a prohibitive Θ(nd2) memory. Following the approach in MesaNet (von Oswald et al., 2025),
we exploit the sum-of-rank-one structure of Σi and solve the linear system iteratively using the
conjugate gradient (CG) method (Hestenes & Stiefel, 1952). The key insight is that CG only evaluate
the matrix-vector product Σip for a search direction p ∈ Rd without explicit matrix materialization:

Σip =

i∑
j=1

wij(k
⊤
j p)kj − (q⊤i p)µ̃i − (µ̃⊤

i p)qi + (ωiq
⊤
i p)qi + λp. (13)

Each term only involves inner products or weighted sums over keys and the query, both of which
can be computed efficiently using batched matrix multiplication with Θ(nd) memory. This CG
operation of Σi is invoked once in the forward computation with xi = µi and twice in the backward
computation with other variables. Further details on the CG algorithm are provided in C.

3.2 PARALLEL FORM AND BLOCKWISE ALGORITHM

Matrix Formulation. We first express the key components of the LLA forward pass in matrix
form. Let Q,K, V ∈ Rn×d be the query, key, and value matrices respectively for a given layer and
head. This function applies a causal mask to the input tensor using the tril operator that preserves
the lower-triangular matrix. Then the output O ∈ Rn×d can be computed as follows,

W = tril(exp(QK⊤/h)), M = WK − brsum(W )⊙Q (14)
R = CGSolve(M,Q,K, λ), δ = rsum(W )− rsum(M ⊙R) (15)

O =

(
1− relmm(R,Q,K)

bcast(δ)
⊙W

)
V, (16)

where W ∈ Rn×n is the matrix of kernel weight wij , M ∈ Rn×d stores the first-order statistics µi,
R ∈ Rn×d contains the solution to the linear systems Σ−1

i µi for every 1 ≤ i ≤ n, and CGSolve(·)
invokes the CG algorithm that construct Σi implicitly and solve these systems in parallel. The
division and subtraction are performed element-wise. The single-head computation can be naturally
extended to multi-head the same way as in standard multi-head attention mechanisms.

Blockwise Algorithm. Denote Br, Bc as the block size for queries and keys/values along the
sequence length dimension and r, c as the block index. Denote Qr ∈ RBr×d and Kc, Vc ∈ RBc×d

as the block-wise representations. The forward pass of FlashLLA is summarized in Algorithm 1.
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Figure 1: FlashLLA re-
duces working set memory to
Θ(nd). The figure shows the
profiling result for d = 128,
OOM points are omitted.

Since the statistics equation 7 for each query are computed inde-
pendently, the forward pass of LLA can be naturally made parallel
for batched queries. Therefore, the algorithm proceeds by iterat-
ing over query blocks r. Within each query block, the iteration
over key/value blocks has three passes. (i) The first pass (line 6-12)
corresponds to accumulating the statistics Mr, ωr in an online fash-
ion. Similar to online softmax (Ye, 2023; Milakov & Gimelshein,
2018), we maintain a running maximum mr to ensure numerical
stability when computing the kernel weights. This trick is valid as
the computation equation 8 is homogeneous in wij . (ii) The second
pass (line 15) is encapsulated in the CGSolve(·) operator (see Ap-
pendix C for details). (iii) The third pass (line 17-22) computes the
final output Or using the pre-computed results and the values Vc. To
save computation in backward pass, we also store the intermediate
Rr and denominator δr alongside the output into HBM.

We implement and benchmark the algorithm 1 in a custom Triton kernel (∼500 lines of Python)
across a range of dimensions and batch sizes on a single NVIDIA H200 GPU. Figure 1 demonstrate
the quadratic dependency and quickly runs out of memory for naı̈ve method. In contrast, the block-
wise Triton kernel significantly reduces the working set and scales linearly with sequence length,
making it hardware-efficient and feasible for long-context and large batch training or inference.
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Algorithm 1 FlashLLA Forward Pass

Require: Matrices Q,K, V in HBM, block sizes Br, Bc, regularization λ, bandwidth h.
1: Divide Q into ⌈n/Br⌉ blocks of size Br and K,V into ⌈n/Bc⌉ blocks of size Bc.
2: Divide output O,R into ⌈m/Br⌉ blocks of size Br.
3: for r = 1 to ⌈m/Br⌉ do
4: Load Qr from HBM to SRAM.
5: Initialize on-chip: M (0)

r ← 0 ∈ RBr×d, ω
(0)
r ← 0 ∈ RBr ,m

(0)
r ← −∞ ∈ RBr

6: for c = 1 to ⌈n/Bc⌉ do
7: Load Kc from HBM to SRAM.
8: Compute W = QrK

⊤
c /h and m = max(m

(c−1)
r ,rowmax(W )).

9: Compute αr = exp(m
(c−1)
r −m), W = exp(W − bcast(m)) and update m

(c)
r = m.

10: Compute ω
(c)
r = α

(c)
r ⊙ ω

(c−1)
r + rsum(W )

11: Compute M
(c)
r = bcast(α(c)

r )⊙M
(c−1)
r +WKc.

12: end for
13: Initialize on-chip: O(0)

r ← 0 ∈ RBr×d, R
(0)
r ← 0 ∈ RBr×d

14: Compute Mr = M
(last)
r − brsum(W )⊙Qr.

15: Compute Rr = CGSolve(Mr, Qr,K,M
(last)
r , ω

(last)
r , λ).

16: Compute δr = ω
(last)
r − rsum(Mr ⊙Rr).

17: for c = 1 to ⌈n/Bc⌉ do
18: Load Kc, Vc from HBM to SRAM.
19: Compute W = exp(QrK

⊤
c /h− bcast(m(last)

r )).
20: Compute S = (1− relmm(Rr, Qr,Kc))⊙W/bcast(δr).
21: Compute O

(c)
r = O

(c−1)
r + SVc.

22: end for
23: end for
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Position
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102

L
os

s/
D

im

Segment Size 64

256 512 768
Position

Segment Size 256

256 512 768
Position

Segment Size 512

256 512 768
Position

Segment Size 1024

LLA Attn Mesa LA Random

Figure 2: Test-time regression performance on a piecewise-linear task. The figures demonstrate
position-wise MSE for d = 64 with S ∈ {64, 256, 512, 1024}. Results are averaged over 10,000
independently sampled sequences; LLA outperforms other baselines and benefits from more in-
segment data; MesaNet excels only before the first shift. The y-axis uses a logarithmic scale.

4 EMPIRICAL RESULTS

Test-Time Regression on Non-Stationary Data. We first devise a synthetic piecewise-linear re-
gression task to isolate the test-time adaptation capabilities of different attention mechanisms di-
rectly without training the query, key and value projections. Each sample is a length-L sequence par-
titioned into L/S contiguous segments with S being the segment size. For each c ∈ {1, . . . , L/S},
keys ki ∈ Rd are drawn from a segment-specific distribution Pc supported on a distinct cone in the
input space (see Appendix E for construction details). The corresponding values vi are generated by
a segment-specific linear function vi = Acki+ϵi for i ∈ {(c−1)S+1, . . . , cS}where Ac ∼ N (0, I)
and ϵi ∼ N (0, δ2I). This design ensures the generated data {(ki, vi)}Li=1 has non-stationary input
distribution and conditional mapping fc(k) = Ack.

We evaluate a single layer of each candidate model, including LLA, Softmax Attention, vanilla LA
(Katharopoulos et al., 2020), MesaNet (von Oswald et al., 2025) as well as a random predictor.
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Figure 3: The advantage of
LLA scales with the data di-
mension d. Both axes use a
logarithmic scale.

As this is a test-time only evaluation, we exclude mechanisms that
require training to adapt. We set L = 1024 and sweep over
different segment sizes S and input dimensions d. Performance
is measured by the position-wise MSE ℓi = ∥f̂(ki) − vi∥22 for
i ∈ {1, . . . , L} to capture the adaptation capability along the se-
quence. We also investigate the scaling behavior by evaluating the
MSE ratio

∑L
j=1 ℓ

Model
j /

∑L
j=1 ℓ

LLA
j for each model compared to

LLA across different values of d and S. The results are summarized
in Figure 2. LLA consistently outperforms other mechanisms as
more non-stationarity is observed, even though MesaNet achieves
higher performance in the first segment. Meanwhile, LLA con-
tinues to improve within each segment whereas Softmax Attention
does not benefit from more in-distribution data. Moreover, the ad-
vantage of LLA scales favorably with data dimensionality (Figure 3), indicating the potential for
adaptation to larger models and datasets.

In-Context Regression on Non-Stationary Data. We next evaluate the models’ ability to perform
in-context regression on non-stationary, piecewise-linear data. The data generation process follows
the same principle as in the test-time regression task. The data points {xi ∈ Rdx} are generated
from segment-specific distributions Pc and the target is given by yi = Acxi + ϵi ∈ Rdy for i ∈
{(c − 1)S + 1, . . . , cS}, where Ac ∼ N (0, Idy×dx

/dx) and ϵi ∼ N (0, δ2Idy
). Query x′ ∈ Rdx

is randomly sampled from the segment distributions Pc. Each in-context regression prompt X is
constructed by concatenating L shuffled input-target pairs with L′ queries:

X =

(
x1 x2 · · · xL x′

1 · · · x′
L′

y1 y2 · · · yL 0 · · · 0

)
∈ R(dx+dy)×(L+L′). (17)

In contrast to the test-time regression setting, the query, key and value projections are parameterized.
The model fθ : Rdx+dy → Rdy is trained to predict the target Y , where the label to each query is
generated by y′i = Acx

′
i. Specifically, for a dataset Dtrain = {(X(b), Y (b))}Bb=1, we minimize the

MSE loss L(θ;Dtrain) on the query tokens and report the test error L(θ∗;Dtest) after training.

We compare LLA against several strong baselines, including Softmax Attention, Mamba (Gu & Dao,
2024; Dao & Gu, 2024), GLA (Yang et al., 2024), Hyena (Poli et al., 2023) and Gated DeltaNet
(Yang et al., 2025b;a). We fix the dimension dx = dy = 32 and query number L′ = 16 for all
sweeps over segment sizes and evaluate two-layer models without MLPs. The results in Figure 4a
demonstrate similar trends as in the test-time regression task, where LLA consistently outperforms
other baselines across all configurations, particularly with smaller segment sizes.

In-Context Associative Recall. In-context recall is a fundamental capability of language models
which requires the model to retrieve relevant information from the context based on the query. We
adopt the MQAR task in Zoology (Arora et al., 2023) to evaluate this ability. Specifically, given
two alphabets Ak,Av and a set of key-value pairs (ki, vi) ∈ Ak ×Av , the set {ki 7→ vi} defines a
many-to-one key-value association. The model is prompted with a sequence of key-value pairs and
then queried with keys sampled from the context to predict the corresponding value.

As indicated in (Wang et al., 2025), a single short convolution layer is sufficient to solve next-token
recall tasks. Therefore, we disable short convolution in all baselines to ensure fair comparison. We
set ∥Ak ∪ Av∥ = 8k and sweep over different sequence lengths and number of KV pairs. The test
recall accuracy results in Figure 4b indicate that the advantages of LLA can be effectively trans-
ferred to discrete token prediction tasks. Additionally, we also observe different learning dynamics
between LLA and Gated DeltaNet in this task. The results are discussed in Appendix E.3.

Permutation State-Tracking. We then test models’ state-tracking ability by permutation state-
tracking task. Given an initial assignment of items to positions, a sequence of swap instructions, and
query positions. The model is trained to predict the item at each query position after all swaps. Each
example is constructed as

p1= a1, p2= a2, . . . , pN= aN︸ ︷︷ ︸
initial state

# i1 j1, i2 j2, . . . , iS jS︸ ︷︷ ︸
swap instruction

# q1= o1, . . . qN ′= oN ′︸ ︷︷ ︸
query + answer

.
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Figure 4: Figure a and b shown for models with d = 128 and 2 attention heads. Each point represents
the best performance achieved across training hyperparameters, averaged over 3 random seeds.
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Figure 5: Test Accuracy of
State Tracking. Results show
the best score averaged over 3
random seeds.

Here pn ∈ {1, . . . , N} denotes position n; an ∈ A is the item
initially assigned to n; each (is, js) ∈ {1, . . . , N}2 is a swap in-
struction exchanging the items at positions is and js; and q is the
queried position. The target is the item at position q after applying
all S swaps. We include explicit delimiter tokens #, =, and , for
structure.

We draw the number of swaps as S ∼ Uniform(N/6, N/3) and
set |A| = 8k for each example. The results in Figure 5 show that
LLA achieves test accuracy on par with Softmax Attention across
N . This outcome is expected from a complexity-theoretic perspec-
tive: constant-depth Softmax Attention is no more expressive than
constant-depth threshold circuits TC0 and has limited ability to real-
ize unbounded-depth state-tracking as N grows (Hahn, 2020; Mer-
rill & Sabharwal, 2023). By Eqs. 7 and 8, LLA augments Softmax Attention with a query-specific
first-order correction computed via a constant number of parallel algebraic passes (weighted sum,
inner product, inverse), which adds at most a constant extra circuit layer. Its performance therefore
matches the theoretical limits of Softmax Attention, explaining the results in Figure 5.

5 LIMITATIONS AND FUTURE DIRECTIONS

High Computation and I/O Intensity. Despite the significant reduction in memory consumption,
LLA’s computational cost remains substantially higher than that of Softmax Attention, primarily
due to the matrix inversion involved in the computation. Exploring approximations to reduce the
computation is an important direction for future work. Furthermore, while FlashLLA achieves the
same Θ(nd + n2) I/O complexity as in FlashAttention when the number of CG iterations is set as
a constant (which is sufficient in practice). the constant factor is still higher due to the additional
reads and writes required by the iterative solver. Incorporating hardware-aware optimizations, such
as sliding windows or sparsity, could further reduce I/O complexity.

Kernel Development and Evaluation on LLMs. This work evaluates LLA on synthetic and
moderate-scale tasks; its efficacy on large language models remains an ongoing question. Training
LLMs with LLA using PyTorch implementation is infeasible due to its high computational and
memory complexity. Therefore significant engineering efforts are required to stabilize and optimize
the forward and backward kernel. Additionally, the numerical sensitivity of the matrix inversion
poses a challenge for developing low precision kernels without sacrificing performance.

Efficient Interpolation of Linear and Softmax Attention. As shown in equation 9, LLA pro-
vides an optimal interpolation between Linear and Softmax Attention in solving the regression ob-
jective. And the formulation also provides a template to design algorithm for better computational
efficiency while still retain strong estimation capabilities and potentially even improve upon the cir-
cuit complexity of Softmax Attention. For instance, future work could explore the integration of
state-of-the-art Linear Attention architectures such as DeltaNet and Mamba using this template.
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REPRODUCIBILITY STATEMENT

In Appendix E, we provide detailed instructions, configurations and additional experimental results
for reproducing all the experiments in Section 4. The proofs of theoretical results 2.1 and 2.2 are pro-
vided in Appendix A and B, respectively. The PyTorch implementation and FlashLLA Triton
inference kernel are available in the supplementary code.
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A APPENDIX: PROOF OF PROPOSITION 2.1

Let (Xi, Yi)
n
i=1 be i.i.d. with Xi ∈ Rd supported on a bounded domain D ⊂ Rd with density p, and

Yi = f(Xi) + εi ∈ Rdy , E[εi | Xi] = 0, E[ε2i | Xi] = σ2(Xi).

The global linear estimator at x ∈ D is

f̂GL(x) = θ̂⊤(1, x⊤)⊤,

where θ̂ ∈ Rd+1 minimizes the empirical squared loss over the global affine class.

Let K : Rd → [0,∞) be a bounded, compactly supported, radially symmetric kernel with∫
K(u) du = 1. For a symmetric p.d. bandwidth matrix H = Hn ≻ 0 with a constant condition-

number upper bound κ1, write

KH(u) := |H|−1/2 K(H−1/2u), ∥H∥ → 0, n|H|1/2 →∞.

The NW estimator at x ∈ D is

f̂NW(x) =
1⊤WY

1⊤W1
,

where W := Diag
(
KH(Xi − x)

)
, 1 := (1, . . . , 1)⊤∈ Rn and Y := (Y1, . . . , Yn) ∈ Rn×dy .

To make the analysis easier, we assume the following smoothness requirements.
Assumption A.1. The domain D has C2 boundary (defined as ∂D) with principal curvatures uni-
formly bounded by κ2.
Assumption A.2. The density function p of X satisfies p ∈ C1(D). For all dimensions j ∈
{1, . . . , dy}, the function f satisfies fj ∈ C2(D), and the variance function σ2 satisfies σ2

j ∈ C(D).

We also assume that the kernel K has easy-to-handle support.
Assumption A.3. K is radial, compactly supported in the unit ball Bd := {u ∈ Rd : ||u|| ≤ 1} =:
supp(K).

Throughout, E[·] denotes expectation with respect to the randomness of the training sample Sn :=
{(Xi, Yi)}ni=1, while

∫
D
(·) dx denotes the Lebesgue integral over the spatial domain D. Because

E
∫
D

∥f̂(x)− f(x)∥2 dx =

dy∑
j=1

E
∫
D

(
f̂j(x)− fj(x)

)2
dx,

the output dimension dy only induces a summation across components and does not affect the order;
hence, without loss of generality, we take dy = 1 below.

A.1 INTEGRAL ERROR ESTIMATION OF GLOBAL LINEAR REGRESSION

We consider the global affine class

G :=
{
gθ(x) = β0 + β⊤x : θ = (β0, β

⊤)⊤ ∈ R1+d
}
.

Lemma A.1. If f /∈ G, there exists a constant A∗
D > 0 such that for every n,

E
[ ∫

D

(
f̂GL(x)− f(x)

)2
dx

]
≥ A⋆

D.

Proof. Let L2(D, dx) := {h : D → R with
∫
D
h(x)2 dx < ∞} endowed with inner product

⟨h1, h2⟩ =
∫
D
h1(x)h2(x) dx. The set G is a finite-dimensional linear subspace and hence closed

in L2(D, dx). By the Projection Theorem, the L2(D, dx)-orthogonal projection of f onto G exists
and is unique:

g† ∈ argmin
g∈G

∥f − g∥2L2(D) = argmin
g∈G

∫
D

(
f(x)− g(x)

)2
dx.
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Set A⋆
D := ∥f − g†∥2L2(D). If f /∈ G, then f − g† ̸= 0 in L2(D) and thus A⋆

D > 0.

Fix an arbitrary realization Sn := (Xi, Yi)
n
i=1. Since f̂GL(·;Sn) ∈ G, the optimality of g† yields∫

D

(
f̂GL(x;Sn)− f(x)

)2
dx ≥ inf

g∈G

∫
D

(
g(x)− f(x)

)2
dx = A⋆

D.

This inequality holds for every sample Sn. Taking expectation over the training data proves the
claim.

A.2 POINT-WISE ERROR ESTIMATION OF LOCAL CONSTANT REGRESSION

In this section we will estimate the point-wise mean-squared-error of NW estimator, whose expres-
sions are given by

MSENW(x) := E
[(

f̂NW(x)− f(x)
)2
| {Xi}ni=1

]
=
(
E
[
f̂NW(x)− f(x) | {Xi}ni=1

])2
︸ ︷︷ ︸

BiasNW(x)2

+E
[(

f̂NW(x)− E
[
f̂NW(x) | {Xi}ni=1

])2
| {Xi}ni=1

]
︸ ︷︷ ︸

VarNW(x)

.

When estimating at x ∈ D, the kernel KH maps the translated domain (D − x) into supp(K)
via the scaling H−1/2. The mapped set differs depending on whether x lies in the interior of D or
near ∂D. This geometric difference drives a larger boundary error for NW, which will underlie the
performance gap between NW and LL. We formalize the mapped kernel domain and the boundary
layer.
Definition A.1 (Exact kernel domain and boundary layer.). For any x ∈ D and bandwidth H , the
exact kernel domain is

Dx,H := H−1/2(D − x) ∩ supp(K) = {u ∈ Bd : x+H1/2u ∈ D}.
Define the boundary layer by

B(H) := {x ∈ D : Dx,H ̸= supp(K) }.

We use the following kernel-moment shorthands.
Definition A.2 (Exact kernel moments). For all x ∈ D and bandwidth H , we define

µ⋆
0(x,H) :=

∫
Dx,H

K(u) du, µ⋆
1(x,H) :=

∫
Dx,H

uK(u) du, µ⋆
2(x,H) :=

∫
Dx,H

uu⊤K(u) du.

Define normalized moments µ̄⋆
r(x,H) := µ⋆

r(x,H)/µ⋆
0(x,H).

Then we are ready to estimate the bias and variance using H and n.
Lemma A.2. Under Assumption A.2, we have

BiasNW(x) = ∇f(x)⊤H1/2µ̄⋆
1(x,H) + Op(∥H∥), VarNW(x) = Θp(

1

n|H|1/2 )

uniformly for all H ∈ Hn, where Hn := {H = h2B : h ∈ [n−a, n−b], B ≻ 0, |B| = 1, κ(B) ≤
κ1} and 0 < b < a < 1.

Proof. Defining f := (f(X1), . . . f(Xn))
⊤, for any fixed point x0 ∈ D, we have

BiasNW(x0) = (1⊤W1)−11⊤W (f − f(x0)1).

Specifically,

n−1(1⊤W1) = n−1
n∑

i=1

KH(Xi − x0), n−11⊤W (f − f(x0)1) = n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0)).
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By Chebyshev’s inequality, for any fixed H ,

n−1
n∑

i=1

KH(Xi − x0) =

∫
D

KH(x− x0)p(x)dx+Op

(
n−1

√
n

∫
D

K2
H(x− x0)p(x)dx

)
.

By Theorem 1 in (Fan et al., 1996), this bound holds uniformly over H ∈ Hn after multiplying the
stochastic term by

√
log n. Hence,

n−1
n∑

i=1

KH(Xi − x0) =

∫
D

KH(x− x0)p(x)dx+Op

(
n−1

√
n log n

∫
D

K2
H(x− x0)p(x)dx

)

=

∫
Dx0,H

K(u)p(x0 +H1/2u)du+ op(1) = p(x0)µ
∗
0(x,H) + op(1)

(18)
uniformly for H ∈ Hn.

Similarly,

n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0))

=

∫
D

KH(x− x0)p(x)(f(x)− f(x0))dx+Op

(
n−1

√
n log n

∫
D

K2
H(x− x0)(f(x)− f(x0))2p(x)dx

)

=

∫
Dx0,H

K(u)p(x0 +H1/2u)(f(x0 +H1/2u)− f(x0))du+ op(||H||)

=

∫
Dx0,H

K(u)(p(x0) +∇p(x0)H
1/2u+O(||H||))(∇f(x0)

⊤H1/2u+O(||H||))du+ op(||H||)

= p(x0)∇f(x0)
⊤H1/2µ∗

1(x0, H) +∇p(x0)H
1/2µ∗

2(x0, H)H1/2∇f(x0) + op(||H||)
= p(x0)∇f(x0)

⊤H1/2µ∗
1(x0, H) +Op(||H||)

(19)
uniformly for all H ∈ Hn.

Combining Equations 18, 19, we have

BiasNW(x0) = ∇f(x0)
⊤H1/2µ̄⋆

1(x0, H) + Op(∥H∥)
uniformly for all H ∈ Hn.

Then we calculate variance

VarNW(x0) = (1⊤W1)−1(1⊤Σ1)(1⊤W1)−1

where Σ := diag(K2
H(Xi − x0)σ

2(Xi)). Analogously to equation 18,

n−1(X⊤ΣX) = n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi)

=

∫
D

K2
H(x− x0)σ

2(x)p(x)dx+Op

(
n−1

√
n log n

∫
D

K4
H(x− x0)σ4(x)p(x)dx

)

= |H|−1/2

∫
Dx0,H

K2(u)σ2(x0 +H1/2u)p(x0 +H1/2u)du+Op

(√
log n

n
|H|−3/4

)

= |H|−1/2

∫
Dx0,H

K2(u)σ2(x0)p(x0)du(1 + op(1)) +Op

(√
log n

n
|H|−3/4

)

= |H|−1/2σ2(x0)p(x0)

∫
Dx0

,H

K2(u)du(1 + op(1))

(20)

uniformly for all H ∈ Hn.
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Combining Equations 18, 20, we have that

VarNW(x) = Θp(
1

n|H|1/2 )

holds uniformly for all H ∈ Hn.

A.3 INTEGRAL ERROR ESTIMATION OF LOCAL CONSTANT REGRESSION

Here we calculate the integral error for NW estimator. From Lemma A.2 we have that for any
x ∈ D, the pointwise bias of NW estimator is

BiasNW(x) = ∇f(x)⊤H1/2µ̄⋆
1(x,H) + Op(∥H∥).

By symmetry of the kernel K, the first moment µ̄⋆
1(x,H) = 0 if and only if x /∈ B(H). Roughly,

BiasNW(x) = O(∥H1/2∥) when x ∈ B(H) and BiasNW(x) = O(∥H∥) when x /∈ B(H). Hence it
is important to bound

∫
B(H)

MSENW(x) dx and
∫
D\B(H)

MSENW(x) dx separately. We first define
a smooth substitute for the boundary layer B(H).
Definition A.3 (Uniform Boundary Layer). For any bandwidth H and α ∈ (0, 1), the uniform
boundary layer of D is

C(H,α) := {x = y − te(y) : y ∈ ∂D, t ∈ [0, αhn(y)]}
where for any y ∈ ∂D, we define e(y) as the inward unit normal at y, and define hn(y) :=√

e(y)⊤H e(y) .

We now show that one can choose a constant α ∈ (0, 1) (independent of H) that “sandwiches”
B(H) between C(H,α) and C(H,α−1).
Lemma A.3. Under Assumptions A.1, A.3, there exists α ∈ (0, 1) such that for all sufficiently small
H , we have

C(H,α) ⊂ B(H) ⊂ C(H,α−1).

Proof. We prove the claim with α = min
(
1
2 ,

1
2κ

−1/2
1

)
.

Step 1: C(H,α) ⊂ B(H). Let ϕ denote the signed distance to ∂D (positive inside D). For x =
y − te(y) ∈ C(H,α) and any v ∈ Rd, the standard expansion (using the shape operator Sy) gives

ϕ(x+ v) = −t+ vn − 1
2v

⊤
T SyvT +O(∥v∥3),

where vn := v⊤e(y) and vT := (I−e(y)e(y)⊤)v. By Assumption A.1, ∥Sy∥ is uniformly bounded.

Define
u := κ

−1/2
1 hn(y)H

−1/2e(y) ∈ Rd.

Then

∥u∥2 = κ−1
1 hn(y)

2 e(y)⊤H−1e(y) = κ−1
1

(
e(y)⊤He(y)

)(
e(y)⊤H−1e(y)

)
1

≤ κ−1
1 κ(H) ≤ 1,

since κ(H) ≤ κ1 by assumption. Hence u ∈ supp(K) (Assumption A.3). Using the expansion
with v = H1/2u and bounded curvature,

ϕ
(
x+H1/2u

)
= −t+ u⊤H1/2e(y) +O(∥H∥3/2) = −t+ κ

−1/2
1 hn(y) +O(∥H∥3/2).

Since t ≤ αhn(y) and α ≤ 1
2κ

−1/2
1 , for sufficiently small H we have ϕ(x + H1/2u) > 0, i.e.,

x + H1/2u /∈ D. Thus there exists u ∈ supp(K) with u /∈ Dx,H , i.e., Dx,H ̸= supp(K), so
x ∈ B(H).

Step 2: B(H) ⊂ C(H,α−1). Let x = y − te(y) ∈ B(H). By definition, there exists u ∈ supp(K)
with x+H1/2u /∈ D, i.e.,

ϕ(x+H1/2u) = −t+ u⊤H1/2e(y) +O(∥H∥) > 0.

Hence

t < u⊤H1/2e(y) +O(∥H∥) ≤ ∥u∥
√

e(y)⊤He(y) +O(∥H∥) ≤ hn(y) +O(∥H∥).
For sufficiently small H , this yields t < α−1hn(y) (since α−1 ≥ 2), so x ∈ C(H,α−1).
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With C(H,α−1) in hand, we bound the integrated variance and squared bias of the NW estimator.
Lemma A.4. Under Assumptions A.1, A.2, and A.3, we have, uniformly for all H ∈ Hn,∫

D

Bias2NW(x) dx = Op

(
∥H∥3/2

)
and

∫
D

VarNW(x) dx = Θ
(
n−1|H|−1/2

)
.

Proof. ∫
D

Bias2NW(x)dx =

∫
B(H)

Bias2NW(x)dx+

∫
D\B(H)

Bias2NW(x)dx

= Op(||H||)
∫
B(H)

dx+Op(||H2||)

≤ Op(||H||)
∫
C(H,α−1)

dx+Op(||H2||)

= Op(||H||)
∫
∂D

∫ hn(y)
α

0

dtdS(y) +Op(||H2||)

= Op(||H3/2||),
since hn(y) =

√
e(y)⊤He(y) = Θ(∥H∥1/2) uniformly under bounded condition number.

For the variance, Lemma A.2 gives VarNW(x) = Θp(n
−1|H|−1/2) pointwise (uniformly over H ∈

Hn). Integrating over D (whose volume is constant) preserves the order:∫
D

VarNW(x)dx =

∫
D

Θ(n−1|H1/2|−1)dx = Θ(n−1|H1/2|−1).

A.4 PROOF OF PROPOSITION 2.1

Combining Lemmas A.1, A.4, we obtain the final conclusion.
Theorem A.1 (Precise statement of Proposition 2.1). Under Assumptions A.1, A.2, A.3, if the func-
tion f to be estimated is not within the the global affine class G,then

E
∫
D

MSEGL(x) dx = Ω(1) and E
∫
D

MSENW(x) dx = O
(
n−3/(d+3)

)
,

where f̂NW uses the optimal bandwidth H ∈ Hn.

Proof. The lower bound for MSEGL follows directly from Lemma A.1.

For NW, Lemma A.4 and the definition ofHn imply∫
D

Bias2NW(x) dx = Op(h
3),

∫
D

VarNW(x) dx = Θ
(
n−1h−d

)
uniformly for h ∈ [n−a, n−b] (since ∥H∥ = Θ(h2) and |H|1/2 = Θ(hd) under bounded condition
number). Hence ∫

D

MSENW(x) dx = Op

(
h3 +

1

nhd

)
= Op

(
n−3/(d+3)

)
,

at the minimizer h = n−1/(d+3) ∈ [n−a, n−b] of h3 + (nhd)−1.

B APPENDIX: PROOF OF PROPOSITION 2.2

The local linear estimator at x ∈ D is
f̂LL(x) = (X⊤WX)−1X⊤WY ,

where

X :=

[
1 . . . 1

X1 − x0 . . . Xn − x0

]⊤
.

Here we inherit Assumptions A.1, A.2, A.3 and continue to set dy = 1 as in Appendix A.
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B.1 POINT-WISE ERROR ESTIMATION

We have already derived the point-wise error of the local constant estimator in Lemma A.4. We now
do the same for the local linear estimator.

Lemma B.1. Under Assumption A.2, we have, uniformly for all H ∈ Hn,

BiasLL(x) = Op(∥H∥), VarLL(x) = Op

( 1

n|H|1/2
)
,

where Hn := {H = h2B : h ∈ [n−a, n−b], B ≻ 0, |B| = 1, κ(B) ≤ κ1} with constants
0 < b < a < 1.

Proof. For any fixed point x0 ∈ D, we have

BiasLL(x0) = e1(X
⊤WX)−1X⊤W (f −X(f(x0),∇f(x0)

⊤)⊤)

=
1

2
e1(X

⊤WX)−1X⊤W (Q+ op(tr(H)))

where Q = [(X1 − x)⊤Hf (X1 − x), . . . , (Xn − x)⊤Hf (Xn − x)]⊤.

VarLL(x0) = e1(X
⊤WX)−1(X⊤ΣX)(X⊤WX)−1e⊤1

where Σ := diag(K2
H(Xi − x0)σ

2(Xi)).

n−1(X⊤WX) =

[
n−1

∑n
i=1 KH(Xi − x0) n−1

∑n
i=1 KH(Xi − x0) (Xi − x0)

⊤

n−1
∑n

i=1 KH(Xi − x0) (Xi − x0) n−1
∑n

i=1 KH(Xi − x0) (Xi − x0)(Xi − x0)
⊤

]

n−1(X⊤ΣX) =

[
n−1

∑n
i=1 K

2
H(Xi − x0)σ

2(Xi) n−1
∑n

i=1 K
2
H(Xi − x0)σ

2(Xi)(Xi − x0)
⊤

n−1
∑n

i=1 K
2
H(Xi − x0)σ

2(Xi)(Xi − x0) n−1
∑n

i=1 K
2
H(Xi − x0)σ

2(Xi)(Xi − x0)(Xi − x0)
⊤

]

n−1X⊤W (f −X(f(x0),∇f(x0)
⊤)⊤)

=

[
n−1

∑n
i=1 KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)

⊤(Xi − x0))
n−1

∑n
i=1 KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)

⊤(Xi − x0))(Xi − x0)

]
By the same uniform LLN and

√
log n arguments used in the proof of Lemma A.2, we have uni-

formly over H ∈ Hn:

n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi) = |H|−1/2σ2(x0)p(x0)R0(x0, H)(1 + op(1))

n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi)(Xi − x0)
⊤

= σ2(x0)p(x0)|H|−1/2R1(K)H1/2 +Op

(
(

√
log n

n
|H|−3/4 + 1)H1/21

)

n−1
n∑

i=1

KH(Xi − x0) = p(x0)µ
∗
0(x0, H) + op(1)

n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi)(Xi − x0)(Xi − x0)
⊤

= σ2(x0)p(x0)|H|−1/2H1/2R2(K)H1/2 + op

(
|H|−1/2H

)
19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

n−1
n∑

i=1

KH(Xi − x0)(Xi − x0)
⊤ = p(x0)µ

∗
1(x0, H)⊤H1/2 +Op(H1)

n−1
n∑

i=1

KH(Xi − x0)(Xi − x0)(Xi − x0)
⊤ = Op(H)

n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)
⊤(Xi − x0)) = p(x0)µ2(K)tr (HHf (x0)) + op(tr(H))

n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)
⊤(Xi − x0))(Xi − x0) = Op(H

3/21),

where

R0(x0, H) =

∫
Dx0,H

K2(u)du, R1(x0, H) =

∫
Dx0,H

K2(u)udu, R2(x0, H) =

∫
Dx0,H

K2(u)uu⊤du.

Then we have the expression of every element in all matrices. A standard blockwise inversion
therefore yields

BiasLL(x) = Op(∥H∥), VarLL(x) = Op(
1

n|H|1/2 ).

uniformly over H ∈ Hn, proving the claim.

B.2 INTEGRAL ERROR ESTIMATION

From Lemma A.2 we have that for any x ∈ D, the pointwise bias of local constant estimator is

BiasNW(x) = ∇f(x)⊤H1/2µ̄⋆
1(x,H) + Op(∥H∥).

By symmetry of the kernel K, the first moment satisfies µ̄⋆
1(x,H) = 0 if and only if x /∈ B(H).

We will show that if f has a sufficiently large normal gradient on a measurable subset of ∂D, then∫
B(H)

Bias2NW(x)dx will have a dominant order Θ(∥H3/2∥).

We begin by lower-bounding |∇f(x)⊤H1/2µ̄⋆
1(x,H)|, to do which we first lower-bound

e(y)⊤H1/2µ̄∗
1(y − te(y), H).

Lemma B.2. Under Assumption A.1, A.3, there exists α ∈ (0, 1), c∗ > 0 and C∗ > 0 such that for
all sufficiently small H and all y ∈ ∂D, all t ∈ [0, αhn(y)],

|e(y)⊤H1/2µ̄∗
1(y − te(y), H)| ≥ c∗hn(y) ||µ̄∗

1(y − te(y), H)|| ≤ C∗.

Proof. Recall Dx,H = {u ∈ Bd : x +H1/2u ∈ D}. For x = y − te(y) with y ∈ ∂D, choose an
orthogonal Q(y) such that Q(y)H1/2e(y) = hn(y) ed. Define the rotated domain

D̃y,t,H := { v ∈ Bd : y − te(y) +H1/2Q(y)v ∈ D }.

Define the corresponding moments on D̃y,t,H :

µ⋆
0,v(y, t,H) :=

∫
D̃y,t,H

K(u) du, µ⋆
1,v(y, t,H) :=

∫
D̃y,t,H

uK(u) du, µ̄⋆
1,v(y, t,H) :=

µ⋆
1,v(y, t,H)

µ⋆
0,v(y, t,H)

.

Then

µ⋆
0,v(y, t,H) = µ⋆

0(x,H), Q(y)µ⋆
1,v(y, t,H) = µ⋆

1(x,H), Q(y) µ̄⋆
1,v(y, t,H) = µ̄⋆

1(x,H),

and hence
e(y)⊤H1/2µ̄⋆

1(x,H) = hn(y) e
⊤
d µ̄

⋆
1,v(y, t,H). (21)

By the standard signed-distance expansion with shape operator Sy (Assumption A.1), for v ∈ Rd,

ϕ
(
y − te(y) +H1/2Q(y)v

)
= −t+ hn(y) vd − 1

2z
⊤
T SyzT +O(∥H∥3/2),
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where zT := (I − e(y)e(y)⊤)H1/2Q(y)v and ∥Sy∥ is uniformly bounded. Therefore

y − te(y) +H1/2Q(y)v ∈ D ⇐⇒ vd <
t

hn(y)
+O(∥H∥1/2),

so
D̃y,t,H =

{
v ∈ Bd : vd <

t

hn(y)
+O(∥H∥1/2)

}
.

Consequently,

µ⋆
0,v(y, t,H) =

∫
D̃y,t,H

K(v) dv

=

∫
Rd−1

dv1:d−1

∫ t/hn(y)

−
√

1−
∑d−1

i=1 v2
i

K(v1:d−1, vd) dvd + O(∥H∥1/2)

≥
∫
Rd−1

dv1:d−1

∫ 0

−
√

1−
∑d−1

i=1 v2
i

K(v1:d−1, vd) dvd + O(∥H∥1/2).

Using positivity and boundedness of K on Bd, there exist 0 < C < D <∞ such that

C < µ⋆
0,v(y, t,H) < D. (22)

Similarly,

e⊤d µ
⋆
1,v(y, t,H) =

∫
D̃y,t,H

vdK(v) dv

=

∫
Rd−1

dv1:d−1

∫ t/hn(y)

−
√

1−
∑d−1

i=1 v2
i

vd K(v1:d−1, vd) dvd + O(∥H∥1/2)

=: g
(

t
hn(y)

)
+O(∥H∥1/2).

Note g(0) < 0 and g(τ) decreases as τ ↓ 0. Choose α = α1 ∈ (0, 1) with g(α1) < 0. Then for all
t ∈ [0, α1hn(y)],

e⊤d µ
⋆
1,v(y, t,H) ≤ g(α1) +O(∥H∥1/2) < 0. (23)

Combining equation 22–equation 23, for small H ,∣∣e⊤d µ̄⋆
1,v(y, t,H)

∣∣ = |e⊤d µ⋆
1,v(y, t,H)|

µ⋆
0,v(y, t,H)

≥ |g(α1)|
2D

.

Using equation 21 yields the first bound with c∗ := |g(α1)|/(2D). The second bound follows from
boundedness of K and supp(K) ⊂ Bd.

Since the leading term of BiasNW(x) is ∇f(x)⊤H1/2µ̄⋆
1(x,H), the lower bound on

|e(y)⊤H1/2µ̄⋆
1(y − te(y), H)| alone does not guarantee order Θ(∥H1/2∥); we also require a suffi-

ciently large normal derivative of f along ∂D.
Definition B.1 (Extreme boundary gradient class). For any domain D and constants m and M ,
we define a class of functions E(D,m,M), where f ∈ E(D,m,M) iff there exist a measurable
Γ ⊂ ∂D with S(Γ) > 0 and constants m, M such that |∂ef(y)| ≥ m and ||∇T f(y)|| < M where
∂ef(y) = ∇f(y)⊤e(y) and ∇T f(y) = (I − e(y)e(y)⊤)∇f(y).

Then we can prove that if the function to be estimated is within E(D,m,M) where m and M are
specifically chosen constants that are independent of H , the NW has an integral squared bias with
high order.
Lemma B.3. Under Assumptions A.1, A.2, and A.3, if f ∈ E(D,m,M) with

c2∗ κ
−1
1 m2 − 2c∗ κ

−1/2
1 C∗ mM ≥ C1 > 0,

then uniformly over H ∈ Hn,∫
D

Bias2NW(x) dx = Ωp(∥H∥3/2) and
∫
D

VarNW(x) dx = Ωp

(
n−1|H|−1/2

)
.
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Remark. It is easy to construct f and D satisfying Assumptions A.1, A.2 and f ∈ E(D,m,M).
For example, on D = {(x1, x2) : x

2
1 + x2

2 ≤ 1}, f(x1, x2) =
√
c1κ1

2c∗
(x2

1 + x2
2) works with suitable

m,M .

Proof. We first lower-bound bias. Choosing α as the minimum α given by Lemmas A.3, B.2, we
have∫

Bias2NW(x)dx ≥
∫
B(H)

Bias2NW(x)dx ≥
∫
C(H,α)

Bias2NW(x)dx

=

∫
∂D

∫ αhn(y)

0

Bias2NW(y − te(y))det (I − tSy) dtdS(y)

≥ C2

∫
Γ

∫ αhn(y)

0

(
(∇f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H))2 + Op(||H3/2||)
)
dtdS(y),

(24)

where the last inequality is derived from Lemma A.2 and the boundedness of Sy from Assumption
A.1.

For all t ∈ αhn(y) and all η ∈ (0, 1),(
∇f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H)
)2

(a)
=
(
∂ef(y − te(y))e(y)⊤H1/2µ̄⋆

1(y − te(y), H) +∇T f(y − te(y))⊤H1/2µ̄⋆
1(y − te(y), H)

)2
(b)

≥ (1− η)
(
∂ef(y − te(y))e(y)⊤H1/2µ̄⋆

1(y − te(y), H)
)2
− η−1

(
∇T f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H)
)2

(c)

≥ (1− η)(∂ef(y − te(y)))2h2
n(y)c

2
∗ − η−1||∇T f(y − te(y)||2C2

∗ ||H||
= (1− η)(∂ef(y))

2h2
n(y)c

2
∗ − η−1||∇T f(y)||2C2

∗ ||H||+O(||H3/2||)
≥
(
(1− η)m2c2∗κ

−1
1 − η−1M2C2

∗
)
||H||+O(||H3/2||).

Here (a) uses the fact∇f = ∂ef(y)e(y)+∇T f(y), (b) uses the fact (A+B)2 ≥ (1−η)A2−η−1B2

for all η ∈ (0, 1), (c) uses Lemma B.2.

Setting η =
MC∗κ

1/2
1

mc∗
, we have(
∇f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H)
)2

≥
(
(1− η)m2c2∗κ

−1
1 − η−1M2C2

∗
)
||H||+O(||H3/2||)

=
(
c2∗κ

−1
1 m2 − 2c∗κ

−1/2
1 C∗mM

)
||H||+O(||H3/2||)

≥ C1||H||++O(||H3/2||).

(25)

Combining Equations 24, 25, we have that

∫
Bias2NW(x)dx ≥ αC2

(
C1||H|| + Op(||H3/2||)

)∫
Γ

hn(y)dS(y) = Ωp(||H3/2||).

The last equation holds because hn(y) ≥ κ−1
1 ||H1/2||. Using Lemma A.2, it is straightforward to

show that ∫
Ω

VarNW(x)dx = Ωp(n
−1|H1/2|−1).

We then show that local linear regression enjoys strictly lower bias than NW on all functions.

Lemma B.4. Under Assumptions A.1, A.2, A.3, we have
∫
D
Bias2LL(x)dx = Op(||H2||) and∫

D
VarLL(x)dx = Op(n

−1|H1/2|−1) uniformly hold for all H ∈ Hn.
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Proof. It is straightforward from Lemma B.1.

Then it is easy to prove the final conclusion.
Theorem B.1 (Precise statement of Proposition 2.2). Under Assumptions A.1, A.2, A.3, if the func-
tion f to be estimated is within E(D,m,M) where

c2∗κ
−1
1 m2 − 2c∗κ

−1/2
1 C∗mM ≥ C1 > 0,

we have E
∫
D
MSENW(x)dx = Ω(n−3/(d+3)) and E

∫
D
MSELL(x)dx = O(n−4/(d+4)), where

both f̂NW and f̂LL are at their optimal bandwidth H ∈ Hn.

Proof. According to Lemma B.3 and the definition of Hn, we have that we have∫
D
Bias2NW(x)dx = Ωp(h

3) and
∫
D
VarNW(x)dx = Ωp(n

−1h−d) uniformly hold for all h ∈
[n−a, n−b]. So we have∫

D

MSENW(x)dx = Ωp(h
3 +

1

nhd
) = Ωp(n

−3/(d+3))

even for optimal H ∈ Hn. The last equality holds because h = n−1/(d+3) ∈ [n−a, n−b] is the
minimizer of h3 + (nhd)−1.

According to Lemma B.4, we have that∫
D

MSELL(x)dx = Op(h
4 +

1

nhd
) = Op(n

−4/(d+4))

for the optimal H ∈ Hn. According to the definition of Ωp and Op, it is straightforward to deduce
the conclusion.

C APPENDIX: CONJUGATE GRADIENT SOLVER

The Conjugate Gradient (CG) method (Hestenes & Stiefel, 1952) is an iterative algorithm for solving
systems of linear equations with symmetric positive-definite matrices. As described in Section 3,
we solve the linear systems with matrix Σi for blocks of queries in parallel:

Σixi = yi, for i ∈ {(r − 1)Br + 1, . . . , rBr} (26)

In the FlashLLA forward algorithm 1, CG is applied within each row block, with Qr,Mr,mr, ωr

being the block quantities, Xr being the solution to be computed and Yr being the right-hand side.
We use the simplest initialization Xr ← 0 for CG. Hence the initial residual ri is set to be yi, i.e.,
R(0) ← Yr in Algorithm 2.

The core computation is the matrix-vector product Σipi for the search vectors pi computed in the
lines 4-10. The result is stored in matrix ΣP . This operation has high I/O intensity due to the re-
quirement to stream through the entire K matrix in HBM during each CG iteration. Consequently,
controlling the number of iterations is crucial for both the efficiency and convergence. While maxi-
mal iteration number T ≤ d can be manually set, further considerations are necessary to ensure the
numerical stability and performance.

First, the convergence and convergent rate of CG are greatly influenced by its spectral condition.
However, the conditioning varies significantly across positions. For example, for early tokens, the
matrix Σi is low-rank and requires relatively large λ to maintain positive definiteness. To address
this, we make the regularization λ learnable and data-dependent:

λi = sigmoid(Wλxi). (27)

The dimension of the weight Wλ ∈ Rd×dλ controls the granularity of the regularization. Setting
dλ = d enables per-dimensional regularization, though empirically set dλ = dh suffices, where dh
denotes the head dimension.

Additionally, since the CG solves multiple systems in parallel, different system converge at different
iterations. To prevent the numerical issues from affecting early converged system, we employ an
active mask that disables iterations for systems whose residual norm fall below the tolerance ϵ.
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Algorithm 2 FlashLLA CG Solver

Require: Variables K in HBM, Xr, Yr, Qr,Mr,mr, ωr in SRAM, block sizes Bc, regularization
λ, tolerance ϵ, max iterations T , bandwidth h.

1: Initialize on-chip: R(0) ← Yr ∈ RBr×d, P (0) ← Yr ∈ RBr×d.
2: for t = 1 to T do
3: Initialize on-chip: Σ(0)

P ← 0 ∈ RBr×d.
4: for c = 1 to ⌈n/Bc⌉ do
5: Load Kc from HBM to SRAM.
6: Compute W = exp(QrK

⊤
c /h− bcast(mr)).

7: Compute Σ
(c)
P = Σ

(c−1)
P + (W ⊙ P (t−1)Kc)Kc.

8: end for
9: Compute PQ = brsum(Yr ⊙Qr) and PM = brsum(P (t−1) ⊙Mr).

10: Compute Σ
(last)
P = Σ

(last)
P − PQ ⊙Mr − PM ⊙Qr + bcast(ωr)⊙ PQ ⊙Qr + λYr

11: Compute n = rsum(R(t−1) ⊙R(t−1)) and check convergence.
12: Compute α = n/rsum(P (t−1) ⊙ Σ

(last)
P ).

13: Compute X(t) = X(t−1) + bcast(α)⊙ P (t−1).
14: Compute R(t) = R(t−1) − bcast(α)⊙ Σ

(last)
P .

15: Compute β = rsum(R(t) ⊙R(t))/n.
16: Compute P (t) = R(t) + β ⊙ P (t−1).
17: end for
18: return Xr as the solution of ΣiX = Pi for i in the block.

D APPENDIX: BACKWARD DERIVATION

This section provides the detailed derivation of the backward pass. Defining the following variables:

b̂i =

i∑
j=1

sijvj =

i∑
j=1

wij
nij

δi
vj , gi =

∂L
∂b̂i
∈ Rd (28)

γij = g⊤i vj =
∂L
∂sij

, βi =
1

δi

i∑
j=1

γijsij , cij =
γijwij

δi
(29)

The gradient of the loss with respect to vj is given by:

∂L
∂vj

=

n∑
i=j

sijgi, ∆V = S⊤G (30)

The gradient of qi and kj is related to sij , which can be broken down into wij and zij path in the
computation graph. The partial gradients of the loss with respect to wij , zij are given by:

∂L
∂wij

=
∂L
∂sij

∂sij
∂wij

+
∂L
∂ωi

∂ωi

∂wij
+

∂L
∂µi

⊤ ∂µi

∂wij
+Tr

(
∂L
∂Σi

⊤ ∂Σi

∂wij

)
(31)

=
γijnij

δi
− βi + z⊤ij

∂L
∂µi

+ z⊤ij
∂L
∂Σi

zij (32)

∂L
∂zij

=
∂L
∂sij

∂sij
∂zij

+
∂L
∂µi

⊤ ∂µi

∂zij
+Tr

(
∂L
∂Σi

⊤ ∂Σi

∂wij

)
(33)

= −cijρi + wij
∂L
∂µi

+ 2wij
∂L
∂Σi

zij (34)
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Then the partial gradients of the loss with respect to kj and qi are given by:

∂L
∂kj

=

n∑
i=j

∂L
∂wij

∂wij

∂kj
+

∂L
∂zij

∂zij
∂kj

=

n∑
i=j

∂L
∂wij

wij

h
qi +

∂L
∂zij

(35)

∂L
∂qi

=

i∑
j=1

∂L
∂wij

∂wij

∂qi
+

∂L
∂zij

∂zij
∂qi

=

i∑
j=1

∂L
∂wij

wij

h
kj −

∂L
∂zij

(36)

In order to compute the partial gradients of µi and Σi, denote

ui = Σ−1
i

i∑
j=1

cijzij = Σ−1
i

[ i∑
j=1

cijkj −
( i∑
j=1

cij

)
qi

]
(37)

which can be computed with existing Conjugate Gradient solver 2. Then

∂L
∂µi

=

i∑
j=1

∂L
∂nij

∂nij

∂µi
+

∂L
∂δi

∂δi
∂µi

= −ui + 2βiρi (38)

∂L
∂Σi

=

i∑
j=1

∂L
∂nij

∂nij

∂Σi
+

∂L
∂δi

∂δi
∂Σi

= −1

2
ρi

∂L
∂µi

⊤
+

1

2
uiρ

⊤
i (39)

We denote the following variables:

∆µ = −U + 2bcast(β)⊙R (40)

We can materialize the gradient of wij for every i, j pair and then perform the reduction.

wij
∂L
∂wij

= γijsij + wijz
⊤
ij

∂L
∂µi

+ wijz
⊤
ij

∂L
∂Σi

zij (41)

We omit the Q,K in the relmm for simplicity, then the gradient of wij can be computed as:

∆W = Γ⊙ S +W ⊙ (−bcast(β) + relmm(∆µ)−
1

2
relmm(∆µ)⊙ relmm(R) (42)

+
1

2
relmm(U)⊙ relmm(R)) (43)

Then we can compute the gradient of kj and qi through wij branch as follows:

∆K
W =

1

h
∆⊤

WQ, ∆Q
W =

1

h
∆WK (44)

For the zij path, we avoid materializing the third-order tensor by performing the reduction internally,

n∑
i=j

∂L
∂zij

=

n∑
i=j

−cijρi +
n∑

i=j

wij
∂L
∂µi

+ 2

n∑
i=j

wij
∂L
∂Σi

zij (45)

i∑
j=1

∂L
∂zij

=

i∑
j=1

−cijρi +
i∑

j=1

wij
∂L
∂µi

+ 2

i∑
j=1

wij
∂L
∂Σi

zij (46)

Then we can compute the gradient of the loss with respect to zij as follows:

∆K
Z = −C⊤R+W⊤∆µ − (W ⊙ relmm(∆µ))

⊤R+ (W ⊙ relmm(R))⊤U (47)

∆Q
Z = −brsum(C)⊙R+ brsum(W )⊙∆µ (48)
− brsum(W ⊙ relmm(∆µ))⊙R+ brsum(W ⊙ relmm(R))⊙ U (49)

Hence the gradient of the loss with respect to kj and qi can be computed as:

∆K = ∆K
W +∆K

Z , ∆Q = ∆Q
W +∆Q

Z (50)
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Figure 6: Test-time regression with across all input dimension d and segment size S.

E APPENDIX: EXPERIMENTS

E.1 PIECEWISE LINEAR DATA GENERATION.

Let n = 2m be the number of segment with n = log2 n ≤ d. For each section index c ∈ {1, . . . , n},
define a sign pattern Sc = (sc,1, sc,2, . . . , sc,m) ∈ {−1,+1}m by reading the least-significant bits
of c. For each segment in each sample, draw Z ∼ N (0, Id) and construct the data X ∈ Rd by
flipping the first m coordinate of Z:

Xj =

{
Sc,j |Zj |, j ≤ m

Zj , j > m
(51)

As the result, the constructed segment is a truncated Gaussian conditioned to lie in the cone Cc =
{x ∈ Rd : sc,jxj ≥ 0, j = 1, . . . ,m} where Ci ∩Cj = ∅. Denote Tc(Z) = (Sc⊙ |Z1:m|, |Zm+1:d|)
and segment distribution Pc, we have

X ∼ Pc ⇐⇒ X
d
= Tc(Z) (52)

E.2 TRAINING CONFIGURATION

Test-Time Regression. This experiment evaluates test-time adaptation without training any model
parameters. We sweep over input dimension d ∈ {8, 16, 32, 64, 128} and segment size S ∈
{8, 16, 32, 64, 128, 256, 512, 1024} with fixed sequence length L = 1024. Performance is evalu-
ated by averaging the mean squared error over 10,000 independently generated sequences.

In-Context Regression. We fix the input and output dimensions at dx = dy = 32. For each ran-
dom seed, we generate 100,000 training examples with noise level δ = 0.1 and 1,000 test examples
with δ = 0 (noiseless evaluation). For each sequence length L ∈ {64, 128, 256, 512}, we sweep
over segment size S ∈ {L/8, L/4, L/2, L} and learning rate {5 × 10−5, 10−4, 5 × 10−4, 10−3}.
All models are trained with the AdamW optimizer (β1, β2) = (0.9, 0.999), weight decay 0.1, batch
size 256, for a maximum of 100 epochs.

In-Context Associative Recall. We fix the vocabulary size |Ak∪Av| = 8,192. For each sequence
length L ∈ {64, 128, 256, 512}, we sweep over the number of key-value pairs {L/16, L/8, L/4}
and learning rate {10−4, 5× 10−4, 10−3}. We generate 20,000, 40,000, and 60,000 training exam-
ples and 1,000 test examples each for the respective key-value pair counts. Training uses AdamW
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with (β1, β2) = (0.9, 0.999), weight decay 0.1, batch size 256, for a maximum of 32 epochs. Short
convolution and feature map are disabled for all models.

Permutation State Tracking. We fix the vocabulary size |A| = 8,192. For each random seed,
we generate 100,000 training examples and 1,000 test examples. For each position count N ∈
{16, 24, 48, 96}, we sample the number of instructions S ∼ Uniform(N/6, N/3) and use 8 queries
per example. We sweep over learning rate {10−4, 5×10−4, 10−3}. Models are trained with AdamW
(β1, β2) = (0.9, 0.999), weight decay 0.1, batch size 256, for a maximum of 64 epochs.

E.3 ADDITIONAL EXPERIMENT RESULTS

In Figure 6, we provide the full test-time regression results across all input dimension d and seg-
ment size S. The advantages of LLA scales with the dimension d and nonstationarity. In practical
settings, as the dimensionality increases, it is less likely to do exact query q = kj as in this synthetic
experiment. Consequently, kernel selectivity becomes less pronounced when noise is present in
query points, limiting the potential advantages of both softmax attention and LLA compared to the
ideal conditions of this synthetic experiment. Nevertheless, the overall performance trends remain
consistent with our main findings.

Figure 7 shows complete associative recall results across all sequence lengths L. For visual clarity,
we average results across different numbers of key-value pairs for each sequence length and plot the
trajectory of the best score for each model. Gated DeltaNet exhibits distinctive training dynamics
characterized by an extended plateau phase with minimal loss improvement, followed by an abrupt
transition to significantly lower test loss and corresponding rapid accuracy improvement. The timing
of this transition is highly sensitive to hyperparameters such as learning rate and dataset size.

In contrast, LLA demonstrates consistent, gradual improvement in test accuracy with a correspond-
ing smooth decrease in test loss throughout training, mirroring the behavior of Softmax Attention
but more powerful. This stable convergence pattern remains robust across a wide range of learn-
ing rates and dataset sizes. The marked difference in optimization dynamics suggests fundamental
differences in how these models navigate the loss landscape and converge to solutions.
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Figure 7: Test accuracy curves for associative recall across all sequence lengths L (averaged over 3
random seeds). Results for different numbers of key-value pairs are averaged within each sequence
length for visual clarity

27


	Introduction
	Related Works.
	Notation.

	Beyond Local Constant Estimate
	Attention as Test-Time Regression
	Learning Behavior of Associative Recall
	Local Linear Attention

	Practical Algorithm
	Memory Efficient Primitives
	Parallel Form and Blockwise Algorithm

	Empirical Results
	Limitations and Future Directions
	Appendix: Proof of Proposition 2.1
	Integral Error Estimation of Global Linear Regression
	Point-wise Error Estimation of Local Constant Regression
	Integral Error Estimation of Local Constant Regression
	Proof of Proposition 2.1

	Appendix: Proof of Proposition 2.2
	Point-wise Error Estimation
	Integral Error Estimation

	Appendix: Conjugate Gradient Solver
	Appendix: Backward Derivation
	Appendix: Experiments
	Piecewise Linear Data Generation.
	Training Configuration
	Additional Experiment Results


