
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOCAL LINEAR ATTENTION: AN OPTIMAL INTERPO-
LATION OF LINEAR AND SOFTMAX ATTENTION FOR
TEST-TIME REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer architectures have achieved remarkable success in various domains.
While efficient alternatives to Softmax Attention have been widely studied, the
search for more expressive mechanisms grounded in theoretical insight—even
at greater computational cost—has been relatively underexplored. In this work,
we bridge this gap by proposing Local Linear Attention (LLA), a novel attention
mechanism derived from nonparametric statistics through the lens of test-time re-
gression. First, we show that LLA offers theoretical advantages over Linear and
Softmax Attention for associative memory via a bias-variance trade-off analysis.
Next, we address its computational challenges and propose two memory-efficient
primitives to tackle the Θ(n2d) and Θ(nd2) complexity. We then introduce Flash-
LLA, a hardware-efficient, blockwise algorithm that enables scalable and paral-
lel computation on modern accelerators. In addition, we implement and profile a
customized inference kernel that significantly reduces memory overheads. Finally,
we empirically validate the advantages and limitations of LLA on test-time regres-
sion, in-context regression, associative recall and state tracking tasks. Experiment
results demonstrate that LLA effectively adapts to non-stationarity, outperform-
ing strong baselines in test-time training and in-context learning, and exhibiting
promising evidence for its scalability and applicability in large-scale models.

1 INTRODUCTION

Transformer-based architectures have dominated modern AI systems and powered breakthroughs
across various fields. The core computation primitive–Softmax Attention (Vaswani et al., 2023),
adaptively processes and aggregates contextual information. Recent research on architecture inno-
vation has proposed numerous variants of attention mechanism such as Linear Attention (LA) (Yang
et al., 2025b;a; Siems et al., 2025; Sun et al., 2023; Ma et al., 2024; Liu et al., 2024; Katharopoulos
et al., 2020; Yang et al., 2024) and state space models (SSMs) (Gu et al., 2022a;b; Gu & Dao, 2024;
Dao & Gu, 2024; Poli et al., 2023). While these methods offer remarkable efficiency improvements
on long sequences, they often incur a performance penalty compared to Softmax Attention (Bick
et al., 2025; Jelassi et al., 2024). Meanwhile, many of the design choices such as gating and for-
getting factor (Yang et al., 2025a; Lin et al., 2025; Gers et al., 2000; Yang et al., 2023) are often
guided by heuristics or empirical results, lacking a principled understanding. Conversely, the search
for more expressive attention mechanisms, even at an additional computational cost, has been rela-
tively under-explored. Recently, test-time regression (Wang et al., 2025) unifies the design choices
of different attention variants, indicating that the attention mechanism can be viewed as a test-time
optimizer for layer-specific regression problems. A natural question arises: can we systematically
improve the Softmax Attention mechanism from the perspective of test-time regression?

In this work, we propose local linear attention (LLA), an upgrade to Softmax Attention derived from
local linear regression. Our contributions are summarized as follows:

• We systematically analyze the design space of attention mechanisms within the test-time
regression framework and propose LLA. We provide theoretical comparison of LLA with
Softmax Attention and LA family from the perspectives of bias-variance trade-off and
demonstrate its provable advantage in associative recall capability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• We provide a detailed discussion on the computation of LLA and overcome the Θ(n2d)
and Θ(nd2) memory complexity with two optimizations, where n is the sequence length
and d is the dimension. We then introduce FlashLLA, a blockwise and hardware-efficient
algorithm to parallelize the computation on modern accelerators. In addition, we implement
and profile a customized inference kernel with significant memory reduction.

• We conduct extensive experiments on synthetic tasks including test-time regression, in-
context regression, associative recall and state tracking to validate the advantages and lim-
itations of LLA compared to strong baselines.

1.1 RELATED WORKS.

Linear Attention and State Space Models. Due to the quadratic computational cost and linear
memory consumption of the softmax attention mechanism for autoregressive sequence modeling,
efficient attention mechanisms such as LA (Yang et al., 2025b;a; Siems et al., 2025; Sun et al., 2023;
Ma et al., 2024; Liu et al., 2024; Yang et al., 2024) and SSMs (Gu et al., 2022b;a; Gu & Dao, 2024;
Dao & Gu, 2024; Poli et al., 2023) were proposed in search of more efficient alternatives for long-
context sequence generation. These methods maintain a constant sized hidden state (Katharopoulos
et al., 2020) during decoding and update it like a linear RNN. This state update behavior is also re-
ferred as fast-weight programming (Schmidhuber, 1992; Schlag et al., 2021). Essentially, MesaNet
(von Oswald et al., 2025) is a LA variant that preconditions the hidden state and achieves optimal
regression objectives among linear models.

In-Context Learning by Optimization. A growing body of work suggests that attention mecha-
nism implicitly performs optimization algorithms to achieve in-context learning (Garg et al., 2023;
Akyürek et al., 2022; von Oswald et al., 2023; Kirsch et al., 2024; Zhang et al., 2024; Mahankali
et al., 2023; Ahn et al., 2023; Dai et al., 2023). For example, Mesa optimization (von Oswald
et al., 2023) suggested that the attention layer inherently performs or approximates optimization
steps during the forward pass. This behavior is particularly evident in LA and SSMs, as the hidden
state update can be interpreted as performing gradient descent to solve a linear regression objective
(Wang et al., 2025; Liu et al., 2024). MesaNet (von Oswald et al., 2025) is a one-step convergent
algorithm for such a problem as the objective accepts a closed-form solution.

Hardware Efficient Attention. Prior works have focused on efficient attention implementation
on modern hardwares to alleviate memory and computation overheads. FlashAttention (Dao et al.,
2022; Dao, 2023) performs a block-wise online softmax to reduce I/O latency. Several other ap-
proaches, including NSA (Yuan et al., 2025), SeerAttention (Gao et al., 2024), MoBA (Lu et al.,
2025), and Block Sparse Attention (Xiao, 2025), leverage sparsity to lower the effective computa-
tional cost while preserving GPU utilization. Flash Linear Attention (Yang et al., 2023) provides a
hardware-friendly formulation of linear attention through chunk-wise computation.

1.2 NOTATION.

We use upper-case letters to denote matrices and lower-case letters to denote vectors. For a matrix X ,
we denote its Frobenius norm as ∥X∥F and the Hadamard product as⊙. For a vector x, we denote its
Euclidean norm as ∥x∥2. Furthermore, define rsum(X) = X1 for matrix X and bcast(x) = x1⊤

for vector x, where 1 is a vector of ones. We use the abbreviation brsum(x) = bcast(rsum(x)).

2 BEYOND LOCAL CONSTANT ESTIMATE

In this section, we first revisit the test-time regression interpretation for the attention mechanism
(Wang et al., 2025). Then, we analyze the associative recall capacity and show the inherent limita-
tions of LA and Softmax Attention. Lastly, we introduce the formulation for LLA.

2.1 ATTENTION AS TEST-TIME REGRESSION

In test-time regression framework, the attention mechanism is interpreted as a layer-specific re-
gression solver. The goal is to approximate an unknown regression function f : Rd 7→ Rd using

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

historical key-value pairs. To be specific, given a hypothesis space F and a position 1 ≤ i ≤ n, an
estimator f̂i ∈ F is fitted on the datasetDi = {(kj , vj) ∈ Rd×Rd}ij=1, where the attention keys kj
serve as the features and attention values vj as the labels. The prediction is made at a query qi ∈ Rd,
which is treated as a test data point.

Linear Attention as Parametric Regression. Parametric model constrains the function class F
to a set of functions defined by a finite-dimensional parameter θ ∈ Θ. The most fundamental
instantiation is the linear regression, which sets F = {fθ(x) = Wx + b | θ = (W, b),W ∈
Rd×d, b ∈ Rd}. We omit the intercept b for simplicity. At each position i, the parameter Wi is
estimated by solving the following least square problem on the training dataset Di,

min
W
L(W ;Di) =

1

2

i∑
j=1

γij∥vj −Wkj∥22 + λ∥W∥2F , (1)

where γij ∈ R is a weighting factor and λ ≥ 0 is the ridge regularization penalty. For appropriate
regularization, objective equation 1 admits a closed-form optimal solution. MesaNet (von Oswald
et al., 2025; 2024) hardcodes this solution for the case γij = 1, where the prediction is given by,

f̂Mesa(qi) = Ŵ Mesa
i qi =

(i∑
j=1

vjk
⊤
j︸ ︷︷ ︸

Si

)(i∑
j=1

kjk
⊤
j + λI︸ ︷︷ ︸

Hi

)−1

qi. (2)

Across different position i, the weight W Mesa
i can be updated recurrently by maintaining two statis-

tics Si and Hi with Θ(d2) memory. This allows MesaNet to be interpreted as a linear RNN with two
recurrent states. To avoid the expensive matrix inversion, vanilla LA brutally approximates the pre-
condition matrix Hi ≈ I in equation equation 2, leading to a suboptimal solution of the least square
problem. It can also be shown that LA variants and SSMs such as GLA (Yang et al., 2024), RetNet
(Sun et al., 2023), RWKV (Peng et al., 2024; 2025) and Mamba (Gu & Dao, 2024; Dao & Gu, 2024)
can be derived by the approximation Hi ≈ I with different weighting schemes γij . Besides exact
solutions, vanilla LA and variants such as DeltaNet (Yang et al., 2025b) and Gated DeltaNet (Yang
et al., 2025a) can be interpreted as performing one step of first order stochastic gradient descent on
weight W . We refer readers to (Wang et al., 2025) and tables in (Peng et al., 2025; Yang et al.,
2025a) for detailed derivations and how each model is implemented.

Softmax Attention is Non-Parametric. Non-parametric regression makes minimal structural as-
sumptions on the function class F . A canonical example is the kernel regression, where the estima-
tor f̂ is defined directly from the data in a way that depends on the query point. Specifically, for a
query vector qi, let F(qi) denote the local function class around qi. The local regression objective
is defined as:

min
f∈F(qi)

L(f ;Di) =
1

2

i∑
j=1

wij∥vj − f(kj)∥22, (3)

where wij = Kh(qi, kj) ∈ R is a query-dependent weight that measures the locality of the training
point kj to the query qi. The simplest instantiation is the constant model, where F(qi) = {fθ(x) =
θ ∈ Rd,∀x ∈ Rd}. Solving objective equation 3 with this function class yields:

f̂(qi) =

i∑
j=1

sijvj , sij =
wij∑i

j′=1 wij′
(4)

Consider an RBF kernel wij = exp(−∥kj − qi∥2/h) with bandwidth h = 2
√
d, the estimator

equation 4 exactly recovers the softmax attention when QK normalization (Dehghani et al., 2023;
Wortsman et al., 2023; Team, 2024) is applied, since in this case wij ∝ exp(q⊤i kj/

√
d) and the

common constant factor cancels in the division. It is also known as the Nadaraya-Watson (NW)
kernel regression (Nadaraya, 1964; Watson, 1964; Bierens, 1988) in statistics literature. We note that
QK normalization is not strictly necessary to represent practical Softmax Attention as the additional
term can naturally serve as positional encoding (Press et al., 2022), and the scale effectively tunes
the bandwidth h in a data-dependent manner.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 LEARNING BEHAVIOR OF ASSOCIATIVE RECALL

Attention mechanisms are often evaluated by the associative memory capacity (Zhong et al., 2025;
Behrouz et al., 2025; Ramsauer et al., 2021). Specifically, given a training set of key-value pairs
{(kj , vj)}ij=1, the model is expected to retrieve the value vj associated with kj when queried at
q = kj . This objective can be exactly captured by the Mean Square Error (MSE). For example, the
retrieval error in vanilla LA is given by,

MSELA
i =

1

i

i∑
j=1

∥Sikj − vj∥2 =
1

i

i∑
j=1

∥(k⊤j kj − 1)vj +
∑
j′ ̸=j

vj′k
⊤
j′kj∥2, (5)

The first term in the summation is the signal bias and can be avoid by QK normalization. The second
term is the interference from other key-value pairs. Deltaformer (Zhong et al., 2025) quantitatively
analyze this error by the inverse of signal-to-noise ratio SNR−1, which is essentially a normalized
version of MSE. In classic literature, MSE decomposition allows us to analyze the approximation
and generalization error of the model and the corresponding bias-variance trade-off.

Irreducible Approximation Error of Global Linear Model. Recall that global linear models
correspond to solving a least square problem equation 1 over the hypothesis space F = {fθ(x) =
Wx+b}. When the ground truth function f is not global linear, any estimator f̂ ∈ F will suffer from
a non-vanishing approximation error due to model misspecification. In contrast, the local constant
model is a nonparametric estimator that does not impose structural assumptions on the function class
except for smoothness or regularity. Consequently, the approximation error vanishes asymptotically
with proper assumptions. In fact, we have the following separation result between global linear (GL)
and local constant (NW) estimators:

Proposition 2.1. Let (Xi, Yi)
n
i=1 be i.i.d., Xi ∈ Rd supported on a bounded set D ⊂ Rd, and

Yi = f(Xi) + εi ∈ Rdy with E[εi | Xi] = 0 and E[ε2i | Xi] = σ2(Xi). Let f̂GL denote a global-
linear estimator and f̂NW the local-constant (NW) estimator with optimal bandwidth. Under mild
assumptions, if f is not globally linear, then

E
∫
D

||f̂GL(x)− f(x)||2dx = Ω(1) , E
∫
D

||f̂NW(x)− f(x)||2dx = O(n−3/(d+3)).

Irreducible Boundary Bias of Local Constant Model. Despite the appealing convergent prop-
erty of local constant model, it suffers when predicting near the boundary of the data support, par-
ticularly with symmetric kernels like RBF. This phenomenon becomes more pronounced in high-
dimension and likely to occur more frequently in autoregressive prediction. Local polynomial re-
gression is a standard remedy in nonparametric statistics to address this issue. In Section 2.3, we
will introduce LLA as a natural adaptation of local linear regression. In fact, we have the following
separation result between local constant (NW) and local linear (LL) estimators:

Proposition 2.2. Under the setting of Proposition 2.1, let f̂NW and f̂LL denote local-constant and
local-linear estimators with their respective optimal bandwidths. Under mild assumptions, if f has
sufficiently large normal gradient along the boundary of D, then

E
∫
D

||f̂NW(x)− f(x)||2dx = Ω(n−3/(d+3)) , E
∫
D

||f̂LL(x)− f(x)||2dx = O(n−4/(d+4)).

The proof of proposition 2.1 and 2.2 are provided in Appendix A and B correspondingly.

2.3 LOCAL LINEAR ATTENTION

Formulation. For a query qi, instantiate the local function class F(qi) = {fθ(x) = b +W (x −
qi) | θ = (W, b),W ∈ Rd×d, b ∈ Rd}. The regularized local linear regression objective is,

min
f∈F(qi)

L(f ;Di) =
1

2

i∑
j=1

wij∥vj − b−W (kj − qi)∥2 + λ∥W∥2F , (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where wij are query-dependent kernel weights and λ ≥ 0 is a ridge penalty. This objective also
admits a closed-form solution for the intercept b and weight W . Importantly, at test time, the predic-
tion is only made at f̂(qi) = b̂i. Thus it suffices to derive the formulation for the intercept. Define
zij = kj − qi and the following query-specific statistics,

ωi =

i∑
j=1

wij ∈ R, µi =

i∑
j=1

wijzij ∈ Rd, Σi =

i∑
j=1

wijzijz
⊤
ij + λI ∈ Rd×d. (7)

Also denote ρi = Σ−1
i µi ∈ Rd. The optimal intercept can be computed as follows,

f̂(qi) = b̂i =

i∑
j=1

sijvj , sij = wij

1− z⊤ijρi

ωi − µ⊤
i ρi

. (8)

Similar to maintaining Hi in MesaNet, LLA requires capturing the precondition matrix Σi. How-
ever, a key difference is that Hi is built on global statistics that are independent of the query, whereas
Σi is constructed from features centered around the specific query qi for each position 1 ≤ i ≤ n.
Consequently, LLA requires a KV cache of size Θ(nd) similar to Softmax Attention, rather than
constant-size recurrent states as in the LA family.

LLA Interpolates Linear and Softmax Attention. A more interpretable form of equation 8 can
be obtained by decomposing the prediction into two components. Suppose that the weight matrix
Ŵi is given prior to solving equation 6, then the optimal intercept can be expressed as,

b̂i =

i∑
j=1

sij(vj − Ŵikj) + Ŵiqi, sij =
wij∑i

j′=1 wij′
. (9)

The first term is a local constant regression to predict the residuals vj−Ŵikj , while the second term
is a linear prediction based on Ŵi. The formulation recovers LLA if Ŵi is obtained by optimally
solving equation 6. However, by allowing suboptimal estimation, one can construct Ŵi as a recurrent
state similar to LA. This decomposition reveals how LLA interpolates between Linear and Softmax
Attention and provides a template for designing new algorithms.

3 PRACTICAL ALGORITHM

In this section, we provide a detailed discussion of the computation involved in LLA. We high-
light two major challenges in naı̈ve implementations and develop a practical block-wise algorithm
FlashLLA that scales efficiently on modern accelerators such as GPUs.

3.1 MEMORY EFFICIENT PRIMITIVES

Avoid Pairwise Materialization. The first bottleneck is the evaluation of vectors zij = kj − qi
for every 1 ≤ j ≤ i ≤ n, which requires Θ(n2d) memory to materialize. This pairwise difference
is later used in the formulation of µi and Σi defined in equation 7 as well as the inner product
z⊤ijρi in equation 8. For both cases, explicit materialization of zij can be avoid by algebraically
separating the contributions of kj and qi to the final result. Specifically, the statistics µi and Σi can
be reformulated in terms of intermediate quantities that are independent of the query and can then
be transformed to recover the original centered statistics:

µ̃i =

i∑
j=1

wijkj ∈ Rd, Σ̃i =

i∑
j=1

wijkjk
⊤
j + λI ∈ Rd×d (10)

µi = µ̃i − ωiqi, Σi = Σ̃i − µ̃iq
⊤
i − qiµ̃

⊤
i + ωiqiq

⊤
i (11)

The computation in equation 10 and equation 11 only requires vectors kj and qi individually, reduc-
ing the memory cost to Θ(nd). The same principle applies to computing inner products of the form
z⊤ijxi = k⊤j xi − qixi for any vector xi ∈ Rd. The matrix operator relative matrix multiplication
(relmm) for this optimization as follows,

relmm(X,Q,K) := XK⊤ − brsum(X ⊙Q). (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This operator is invoked once in the forward computation with xi = ρi, but appears multiple times
in the backward with other variables. Further details on the backward are provided in Appendix D.

Matrix-Free Inversion via Conjuagte Gradients. The second bottleneck arises in solving linear
systems of the form Σ−1

i xi for some vector xi ∈ Rd. Directly inverting Σi for every 1 ≤ i ≤ n
incurs a prohibitive Θ(nd2) memory. Following the approach in MesaNet (von Oswald et al., 2025),
we exploit the sum-of-rank-one structure of Σi and solve the linear system iteratively using the
conjugate gradient (CG) method (Hestenes & Stiefel, 1952). The key insight is that CG only evaluate
the matrix-vector product Σip for a search direction p ∈ Rd without explicit matrix materialization:

Σip =

i∑
j=1

wij(k
⊤
j p)kj − (q⊤i p)µ̃i − (µ̃⊤

i p)qi + (ωiq
⊤
i p)qi + λp. (13)

Each term only involves inner products or weighted sums over keys and the query, both of which
can be computed efficiently using batched matrix multiplication with Θ(nd) memory. This CG
operation of Σi is invoked once in the forward computation with xi = µi and twice in the backward
computation with other variables. Further details on the CG algorithm are provided in C.

3.2 PARALLEL FORM AND BLOCKWISE ALGORITHM

Matrix Formulation. We first express the key components of the LLA forward pass in matrix
form. Let Q,K, V ∈ Rn×d be the query, key, and value matrices respectively for a given layer and
head. This function applies a causal mask to the input tensor using the tril operator that preserves
the lower-triangular matrix. Then the output O ∈ Rn×d can be computed as follows,

W = tril(exp(QK⊤/h)), M = WK − brsum(W)⊙Q (14)
R = CGSolve(M,Q,K, λ), δ = rsum(W)− rsum(M ⊙R) (15)

O =

(
1− relmm(R,Q,K)

bcast(δ)
⊙W

)
V, (16)

where W ∈ Rn×n is the matrix of kernel weight wij , M ∈ Rn×d stores the first-order statistics µi,
R ∈ Rn×d contains the solution to the linear systems Σ−1

i µi for every 1 ≤ i ≤ n, and CGSolve(·)
invokes the CG algorithm that construct Σi implicitly and solve these systems in parallel. The
division and subtraction are performed element-wise. The single-head computation can be naturally
extended to multi-head the same way as in standard multi-head attention mechanisms.

Blockwise Algorithm. Denote Br, Bc as the block size for queries and keys/values along the
sequence length dimension and r, c as the block index. Denote Qr ∈ RBr×d and Kc, Vc ∈ RBc×d

as the block-wise representations. The forward pass of FlashLLA is summarized in Algorithm 1.

1k2k 4k 8k 16k
Sequence Length

4k

64k

128k

M
em

or
y

U
sa

ge
(M

B
)

FlashLLA

Näıve

20

40

60

B
at

ch
S

iz
e

Figure 1: FlashLLA re-
duces working set memory to
Θ(nd). The figure shows the
profiling result for d = 128,
OOM points are omitted.

Since the statistics equation 7 for each query are computed inde-
pendently, the forward pass of LLA can be naturally made parallel
for batched queries. Therefore, the algorithm proceeds by iterat-
ing over query blocks r. Within each query block, the iteration
over key/value blocks has three passes. (i) The first pass (line 6-12)
corresponds to accumulating the statistics Mr, ωr in an online fash-
ion. Similar to online softmax (Ye, 2023; Milakov & Gimelshein,
2018), we maintain a running maximum mr to ensure numerical
stability when computing the kernel weights. This trick is valid as
the computation equation 8 is homogeneous in wij . (ii) The second
pass (line 15) is encapsulated in the CGSolve(·) operator (see Ap-
pendix C for details). (iii) The third pass (line 17-22) computes the
final output Or using the pre-computed results and the values Vc. To
save computation in backward pass, we also store the intermediate
Rr and denominator δr alongside the output into HBM.

We implement and benchmark the algorithm 1 in a custom Triton kernel (∼500 lines of Python)
across a range of dimensions and batch sizes on a single NVIDIA H200 GPU. Figure 1 demonstrate
the quadratic dependency and quickly runs out of memory for naı̈ve method. In contrast, the block-
wise Triton kernel significantly reduces the working set and scales linearly with sequence length,
making it hardware-efficient and feasible for long-context and large batch training or inference.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 FlashLLA Forward Pass

Require: Matrices Q,K, V in HBM, block sizes Br, Bc, regularization λ, bandwidth h.
1: Divide Q into ⌈n/Br⌉ blocks of size Br and K,V into ⌈n/Bc⌉ blocks of size Bc.
2: Divide output O,R into ⌈m/Br⌉ blocks of size Br.
3: for r = 1 to ⌈m/Br⌉ do
4: Load Qr from HBM to SRAM.
5: Initialize on-chip: M (0)

r ← 0 ∈ RBr×d, ω
(0)
r ← 0 ∈ RBr ,m

(0)
r ← −∞ ∈ RBr

6: for c = 1 to ⌈n/Bc⌉ do
7: Load Kc from HBM to SRAM.
8: Compute W = QrK

⊤
c /h and m = max(m

(c−1)
r ,rowmax(W)).

9: Compute αr = exp(m
(c−1)
r −m), W = exp(W − bcast(m)) and update m

(c)
r = m.

10: Compute ω
(c)
r = α

(c)
r ⊙ ω

(c−1)
r + rsum(W)

11: Compute M
(c)
r = bcast(α(c)

r)⊙M
(c−1)
r +WKc.

12: end for
13: Initialize on-chip: O(0)

r ← 0 ∈ RBr×d, R
(0)
r ← 0 ∈ RBr×d

14: Compute Mr = M
(last)
r − brsum(W)⊙Qr.

15: Compute Rr = CGSolve(Mr, Qr,K,M
(last)
r , ω

(last)
r , λ).

16: Compute δr = ω
(last)
r − rsum(Mr ⊙Rr).

17: for c = 1 to ⌈n/Bc⌉ do
18: Load Kc, Vc from HBM to SRAM.
19: Compute W = exp(QrK

⊤
c /h− bcast(m(last)

r)).
20: Compute S = (1− relmm(Rr, Qr,Kc))⊙W/bcast(δr).
21: Compute O

(c)
r = O

(c−1)
r + SVc.

22: end for
23: end for

256 512 768
Position

10−4

10−1

102

L
os

s/
D

im

Segment Size 64

256 512 768
Position

Segment Size 256

256 512 768
Position

Segment Size 512

256 512 768
Position

Segment Size 1024

LLA Attn Mesa LA Random

Figure 2: Test-time regression performance on a piecewise-linear task. The figures demonstrate
position-wise MSE for d = 64 with S ∈ {64, 256, 512, 1024}. Results are averaged over 10,000
independently sampled sequences; LLA outperforms other baselines and benefits from more in-
segment data; MesaNet excels only before the first shift. The y-axis uses a logarithmic scale.

4 EMPIRICAL RESULTS

Test-Time Regression on Non-Stationary Data. We first devise a synthetic piecewise-linear re-
gression task to isolate the test-time adaptation capabilities of different attention mechanisms di-
rectly without training the query, key and value projections. Each sample is a length-L sequence par-
titioned into L/S contiguous segments with S being the segment size. For each c ∈ {1, . . . , L/S},
keys ki ∈ Rd are drawn from a segment-specific distribution Pc supported on a distinct cone in the
input space (see Appendix E for construction details). The corresponding values vi are generated by
a segment-specific linear function vi = Acki+ϵi for i ∈ {(c−1)S+1, . . . , cS}where Ac ∼ N (0, I)
and ϵi ∼ N (0, δ2I). This design ensures the generated data {(ki, vi)}Li=1 has non-stationary input
distribution and conditional mapping fc(k) = Ack.

We evaluate a single layer of each candidate model, including LLA, Softmax Attention, vanilla LA
(Katharopoulos et al., 2020), MesaNet (von Oswald et al., 2025) as well as a random predictor.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

8 16 32 64 128
Dimension

10−2

100

102

104

106

108

R
at

io

Attn

LA

Mesa

Random

200

400

600

800

1000

S
eg

m
en

t
S

iz
e

Figure 3: The advantage of
LLA scales with the data di-
mension d. Both axes use a
logarithmic scale.

As this is a test-time only evaluation, we exclude mechanisms that
require training to adapt. We set L = 1024 and sweep over
different segment sizes S and input dimensions d. Performance
is measured by the position-wise MSE ℓi = ∥f̂(ki) − vi∥22 for
i ∈ {1, . . . , L} to capture the adaptation capability along the se-
quence. We also investigate the scaling behavior by evaluating the
MSE ratio

∑L
j=1 ℓ

Model
j /

∑L
j=1 ℓ

LLA
j for each model compared to

LLA across different values of d and S. The results are summarized
in Figure 2. LLA consistently outperforms other mechanisms as
more non-stationarity is observed, even though MesaNet achieves
higher performance in the first segment. Meanwhile, LLA con-
tinues to improve within each segment whereas Softmax Attention
does not benefit from more in-distribution data. Moreover, the ad-
vantage of LLA scales favorably with data dimensionality (Figure 3), indicating the potential for
adaptation to larger models and datasets.

In-Context Regression on Non-Stationary Data. We next evaluate the models’ ability to perform
in-context regression on non-stationary, piecewise-linear data. The data generation process follows
the same principle as in the test-time regression task. The data points {xi ∈ Rdx} are generated
from segment-specific distributions Pc and the target is given by yi = Acxi + ϵi ∈ Rdy for i ∈
{(c − 1)S + 1, . . . , cS}, where Ac ∼ N (0, Idy×dx

/dx) and ϵi ∼ N (0, δ2Idy
). Query x′ ∈ Rdx

is randomly sampled from the segment distributions Pc. Each in-context regression prompt X is
constructed by concatenating L shuffled input-target pairs with L′ queries:

X =

(
x1 x2 · · · xL x′

1 · · · x′
L′

y1 y2 · · · yL 0 · · · 0

)
∈ R(dx+dy)×(L+L′). (17)

In contrast to the test-time regression setting, the query, key and value projections are parameterized.
The model fθ : Rdx+dy → Rdy is trained to predict the target Y , where the label to each query is
generated by y′i = Acx

′
i. Specifically, for a dataset Dtrain = {(X(b), Y (b))}Bb=1, we minimize the

MSE loss L(θ;Dtrain) on the query tokens and report the test error L(θ∗;Dtest) after training.

We compare LLA against several strong baselines, including Softmax Attention, Mamba (Gu & Dao,
2024; Dao & Gu, 2024), GLA (Yang et al., 2024), Hyena (Poli et al., 2023) and Gated DeltaNet
(Yang et al., 2025b;a). We fix the dimension dx = dy = 32 and query number L′ = 16 for all
sweeps over segment sizes and evaluate two-layer models without MLPs. The results in Figure 4a
demonstrate similar trends as in the test-time regression task, where LLA consistently outperforms
other baselines across all configurations, particularly with smaller segment sizes.

In-Context Associative Recall. In-context recall is a fundamental capability of language models
which requires the model to retrieve relevant information from the context based on the query. We
adopt the MQAR task in Zoology (Arora et al., 2023) to evaluate this ability. Specifically, given
two alphabets Ak,Av and a set of key-value pairs (ki, vi) ∈ Ak ×Av , the set {ki 7→ vi} defines a
many-to-one key-value association. The model is prompted with a sequence of key-value pairs and
then queried with keys sampled from the context to predict the corresponding value.

As indicated in (Wang et al., 2025), a single short convolution layer is sufficient to solve next-token
recall tasks. Therefore, we disable short convolution in all baselines to ensure fair comparison. We
set ∥Ak ∪ Av∥ = 8k and sweep over different sequence lengths and number of KV pairs. The test
recall accuracy results in Figure 4b indicate that the advantages of LLA can be effectively trans-
ferred to discrete token prediction tasks. Additionally, we also observe different learning dynamics
between LLA and Gated DeltaNet in this task. The results are discussed in Appendix E.3.

Permutation State-Tracking. We then test models’ state-tracking ability by permutation state-
tracking task. Given an initial assignment of items to positions, a sequence of swap instructions, and
query positions. The model is trained to predict the item at each query position after all swaps. Each
example is constructed as

p1= a1, p2= a2, . . . , pN= aN︸ ︷︷ ︸
initial state

i1 j1, i2 j2, . . . , iS jS︸ ︷︷ ︸
swap instruction

q1= o1, . . . qN ′= oN ′︸ ︷︷ ︸
query + answer

.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

8 16 32 64
Segment Size

0.00

0.25

0.50

0.75

1.00

T
es

t
L

os
s

Sequence Length 64

16 32 64 128
Segment Size

Sequence Length 128

32 64 128 256
Segment Size

Sequence Length 256

LLA Attn Gated Deltanet Hyena Mamba GLA

(a) Test Error of In-Context Regression.

51
2-

12
8

51
2-

64

51
2-

32

25
6-

64

25
6-

32

25
6-

16

12
8-

32

12
8-

16
12

8-
8

64
-1

6
64

-8
64

-4

(Sequence Length - KV Number)

0

25

50

75

100

A
cc

u
ra

cy

Recall Accuracy
LLA

Attn

Gated DeltaNet

Mamba

Hyena

GLA

(b) Test Accuracy of Associative Recall.

Figure 4: Figure a and b shown for models with d = 128 and 2 attention heads. Each point represents
the best performance achieved across training hyperparameters, averaged over 3 random seeds.

12 24 48 96
Number of Positions

0

20

40

60

80

100

A
cc

u
ra

cy

State-Tracking Test Accuracy

LLA

Attn

Gated DeltaNet

Mamba

Hyena

GLA

Figure 5: Test Accuracy of
State Tracking. Results show
the best score averaged over 3
random seeds.

Here pn ∈ {1, . . . , N} denotes position n; an ∈ A is the item
initially assigned to n; each (is, js) ∈ {1, . . . , N}2 is a swap in-
struction exchanging the items at positions is and js; and q is the
queried position. The target is the item at position q after applying
all S swaps. We include explicit delimiter tokens #, =, and , for
structure.

We draw the number of swaps as S ∼ Uniform(N/6, N/3) and
set |A| = 8k for each example. The results in Figure 5 show that
LLA achieves test accuracy on par with Softmax Attention across
N . This outcome is expected from a complexity-theoretic perspec-
tive: constant-depth Softmax Attention is no more expressive than
constant-depth threshold circuits TC0 and has limited ability to real-
ize unbounded-depth state-tracking as N grows (Hahn, 2020; Mer-
rill & Sabharwal, 2023). By Eqs. 7 and 8, LLA augments Softmax Attention with a query-specific
first-order correction computed via a constant number of parallel algebraic passes (weighted sum,
inner product, inverse), which adds at most a constant extra circuit layer. Its performance therefore
matches the theoretical limits of Softmax Attention, explaining the results in Figure 5.

5 LIMITATIONS AND FUTURE DIRECTIONS

High Computation and I/O Intensity. Despite the significant reduction in memory consumption,
LLA’s computational cost remains substantially higher than that of Softmax Attention, primarily
due to the matrix inversion involved in the computation. Exploring approximations to reduce the
computation is an important direction for future work. Furthermore, while FlashLLA achieves the
same Θ(nd + n2) I/O complexity as in FlashAttention when the number of CG iterations is set as
a constant (which is sufficient in practice). the constant factor is still higher due to the additional
reads and writes required by the iterative solver. Incorporating hardware-aware optimizations, such
as sliding windows or sparsity, could further reduce I/O complexity.

Kernel Development and Evaluation on LLMs. This work evaluates LLA on synthetic and
moderate-scale tasks; its efficacy on large language models remains an ongoing question. Training
LLMs with LLA using PyTorch implementation is infeasible due to its high computational and
memory complexity. Therefore significant engineering efforts are required to stabilize and optimize
the forward and backward kernel. Additionally, the numerical sensitivity of the matrix inversion
poses a challenge for developing low precision kernels without sacrificing performance.

Efficient Interpolation of Linear and Softmax Attention. As shown in equation 9, LLA pro-
vides an optimal interpolation between Linear and Softmax Attention in solving the regression ob-
jective. And the formulation also provides a template to design algorithm for better computational
efficiency while still retain strong estimation capabilities and potentially even improve upon the cir-
cuit complexity of Softmax Attention. For instance, future work could explore the integration of
state-of-the-art Linear Attention architectures such as DeltaNet and Mamba using this template.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In Appendix E, we provide detailed instructions, configurations and additional experimental results
for reproducing all the experiments in Section 4. The proofs of theoretical results 2.1 and 2.2 are pro-
vided in Appendix A and B, respectively. The PyTorch implementation and FlashLLA Triton
inference kernel are available in the supplementary code.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning, 2023. URL https://arxiv.org/
abs/2306.00297.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Ré. Zoology: Measuring and improving recall in efficient language mod-
els, 2023. URL https://arxiv.org/abs/2312.04927.

Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A journey
through test-time memorization, attentional bias, retention, and online optimization, 2025. URL
https://arxiv.org/abs/2504.13173.

Aviv Bick, Eric Xing, and Albert Gu. Understanding the skill gap in recurrent language models:
The role of the gather-and-aggregate mechanism, 2025. URL https://arxiv.org/abs/
2504.18574.

H. J. Bierens. The nadaraya–watson kernel regression function estimator. Working Paper 1988-58,
Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam, Amsterdam,
1988.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
learn in-context? language models implicitly perform gradient descent as meta-optimizers, 2023.
URL https://arxiv.org/abs/2212.10559.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality, 2024. URL https://arxiv.org/abs/2405.21060.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International conference on machine learning,
pp. 7480–7512. PMLR, 2023.

Jianqing Fan, Irène Gijbels, Tien-Chung Hu, and Li-Shan Huang. A study of variable bandwidth
selection for local polynomial regression. Statistica Sinica, pp. 113–127, 1996.

Yizhao Gao, Zhichen Zeng, Dayou Du, Shijie Cao, Peiyuan Zhou, Jiaxing Qi, Junjie Lai, Hayden
Kwok-Hay So, Ting Cao, Fan Yang, et al. Seerattention: Learning intrinsic sparse attention in
your llms. arXiv preprint arXiv:2410.13276, 2024.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes, 2023. URL https://arxiv.org/abs/
2208.01066.

10

https://arxiv.org/abs/2306.00297
https://arxiv.org/abs/2306.00297
https://arxiv.org/abs/2312.04927
https://arxiv.org/abs/2504.13173
https://arxiv.org/abs/2504.18574
https://arxiv.org/abs/2504.18574
https://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2405.21060
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural computation, 12(10):2451–2471, 2000.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022a. URL https://arxiv.org/abs/2111.00396.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your
hippo: State space models with generalized orthogonal basis projections, 2022b. URL https:
//arxiv.org/abs/2206.12037.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying, 2024. URL https://arxiv.org/
abs/2402.01032.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236.

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers, 2024. URL https://arxiv.org/abs/2212.
04458.

Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer: Softmax
attention with a forget gate, 2025. URL https://arxiv.org/abs/2503.02130.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State
space models are amortized online learners, 2024. URL https://arxiv.org/abs/2407.
14207.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length, 2024. URL https://arxiv.org/abs/2404.08801.

Arvind Mahankali, Tatsunori B. Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention, 2023. URL
https://arxiv.org/abs/2307.03576.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

Maxim Milakov and Natalia Gimelshein. Online normalizer calculation for softmax, 2018. URL
https://arxiv.org/abs/1805.02867.

E. A. Nadaraya. On estimating regression. Theory of Probability and Its Applications, 9(1):141–142,
1964.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, Kranthi Kiran GV,
Jan Kocoń, Bartłomiej Koptyra, Satyapriya Krishna, Ronald McClelland Jr., Jiaju Lin, Niklas
Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu, Cahya Wirawan, Stanisław
Woźniak, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie
Zhu. Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence, 2024. URL
https://arxiv.org/abs/2404.05892.

11

https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2402.01032
https://arxiv.org/abs/2402.01032
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2212.04458
https://arxiv.org/abs/2212.04458
https://arxiv.org/abs/2503.02130
https://arxiv.org/abs/2407.14207
https://arxiv.org/abs/2407.14207
https://arxiv.org/abs/2404.08801
https://arxiv.org/abs/2307.03576
https://arxiv.org/abs/1805.02867
https://arxiv.org/abs/2404.05892

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan
Wilce, Johan S. Wind, Tianyi Wu, Daniel Wuttke, and Christian Zhou-Zheng. Rwkv-7 ”goose”
with expressive dynamic state evolution, 2025. URL https://arxiv.org/abs/2503.
14456.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models, 2023. URL https://arxiv.org/abs/2302.10866.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation, 2022. URL https://arxiv.org/abs/2108.12409.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff,
David Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter.
Hopfield networks is all you need, 2021. URL https://arxiv.org/abs/2008.02217.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers, 2021. URL https://arxiv.org/abs/2102.11174.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992. doi: 10.1162/neco.1992.4.1.131.

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
Grazzi. Deltaproduct: Improving state-tracking in linear rnns via householder products, 2025.
URL https://arxiv.org/abs/2502.10297.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent, 2023. URL https://arxiv.org/abs/2212.07677.

Johannes von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Blaise Agüera y Ar-
cas, Max Vladymyrov, Razvan Pascanu, and João Sacramento. Uncovering mesa-optimization
algorithms in transformers, 2024. URL https://arxiv.org/abs/2309.05858.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maximil-
ian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans, Rif A.
Saurous, Guillaume Lajoie, Charlotte Frenkel, Razvan Pascanu, Blaise Agüera y Arcas, and João
Sacramento. Mesanet: Sequence modeling by locally optimal test-time training, 2025. URL
https://arxiv.org/abs/2506.05233.

Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework
for designing sequence models with associative memory, 2025. URL https://arxiv.org/
abs/2501.12352.

G. S. Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A, 26
(4):359–372, 1964.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

12

https://arxiv.org/abs/2503.14456
https://arxiv.org/abs/2503.14456
https://arxiv.org/abs/2302.10866
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2008.02217
https://arxiv.org/abs/2102.11174
https://arxiv.org/abs/2502.10297
https://arxiv.org/abs/2307.08621
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2212.07677
https://arxiv.org/abs/2309.05858
https://arxiv.org/abs/2506.05233
https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2501.12352

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guangxuan Xiao. Statistics behind block sparse attention. https://guangxuanx.com/
blog/block-sparse-attn-stats.html, 2025.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear atten-
tion transformers with hardware-efficient training, 2024. URL https://arxiv.org/abs/
2312.06635.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule, 2025a. URL https://arxiv.org/abs/2412.06464.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear trans-
formers with the delta rule over sequence length, 2025b. URL https://arxiv.org/abs/
2406.06484.

Zihao Ye. From online softmax to flashattention. Course notes for ”ML for ML Systems” (CSE
599M), University of Washington, Spring 2023, May 2023. URL https://courses.cs.
washington.edu/courses/cse599m/23sp/notes/flashattn.pdf. Online; Uni-
versity of Washington.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Shu Zhong, Mingyu Xu, Tenglong Ao, and Guang Shi. Understanding transformer from the per-
spective of associative memory, 2025. URL https://arxiv.org/abs/2505.19488.

13

https://guangxuanx.com/blog/block-sparse-attn-stats.html
https://guangxuanx.com/blog/block-sparse-attn-stats.html
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2412.06464
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf
https://courses.cs.washington.edu/courses/cse599m/23sp/notes/flashattn.pdf
https://arxiv.org/abs/2505.19488

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX: PROOF OF PROPOSITION 2.1

Let (Xi, Yi)
n
i=1 be i.i.d. with Xi ∈ Rd supported on a bounded domain D ⊂ Rd with density p, and

Yi = f(Xi) + εi ∈ Rdy , E[εi | Xi] = 0, E[ε2i | Xi] = σ2(Xi).

The global linear estimator at x ∈ D is

f̂GL(x) = θ̂⊤(1, x⊤)⊤,

where θ̂ ∈ Rd+1 minimizes the empirical squared loss over the global affine class.

Let K : Rd → [0,∞) be a bounded, compactly supported, radially symmetric kernel with∫
K(u) du = 1. For a symmetric p.d. bandwidth matrix H = Hn ≻ 0 with a constant condition-

number upper bound κ1, write

KH(u) := |H|−1/2 K(H−1/2u), ∥H∥ → 0, n|H|1/2 →∞.

The NW estimator at x ∈ D is

f̂NW(x) =
1⊤WY

1⊤W1
,

where W := Diag
(
KH(Xi − x)

)
, 1 := (1, . . . , 1)⊤∈ Rn and Y := (Y1, . . . , Yn) ∈ Rn×dy .

To make the analysis easier, we assume the following smoothness requirements.
Assumption A.1. The domain D has C2 boundary (defined as ∂D) with principal curvatures uni-
formly bounded by κ2.
Assumption A.2. The density function p of X satisfies p ∈ C1(D). For all dimensions j ∈
{1, . . . , dy}, the function f satisfies fj ∈ C2(D), and the variance function σ2 satisfies σ2

j ∈ C(D).

We also assume that the kernel K has easy-to-handle support.
Assumption A.3. K is radial, compactly supported in the unit ball Bd := {u ∈ Rd : ||u|| ≤ 1} =:
supp(K).

Throughout, E[·] denotes expectation with respect to the randomness of the training sample Sn :=
{(Xi, Yi)}ni=1, while

∫
D
(·) dx denotes the Lebesgue integral over the spatial domain D. Because

E
∫
D

∥f̂(x)− f(x)∥2 dx =

dy∑
j=1

E
∫
D

(
f̂j(x)− fj(x)

)2
dx,

the output dimension dy only induces a summation across components and does not affect the order;
hence, without loss of generality, we take dy = 1 below.

A.1 INTEGRAL ERROR ESTIMATION OF GLOBAL LINEAR REGRESSION

We consider the global affine class

G :=
{
gθ(x) = β0 + β⊤x : θ = (β0, β

⊤)⊤ ∈ R1+d
}
.

Lemma A.1. If f /∈ G, there exists a constant A∗
D > 0 such that for every n,

E
[∫

D

(
f̂GL(x)− f(x)

)2
dx

]
≥ A⋆

D.

Proof. Let L2(D, dx) := {h : D → R with
∫
D
h(x)2 dx < ∞} endowed with inner product

⟨h1, h2⟩ =
∫
D
h1(x)h2(x) dx. The set G is a finite-dimensional linear subspace and hence closed

in L2(D, dx). By the Projection Theorem, the L2(D, dx)-orthogonal projection of f onto G exists
and is unique:

g† ∈ argmin
g∈G

∥f − g∥2L2(D) = argmin
g∈G

∫
D

(
f(x)− g(x)

)2
dx.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Set A⋆
D := ∥f − g†∥2L2(D). If f /∈ G, then f − g† ̸= 0 in L2(D) and thus A⋆

D > 0.

Fix an arbitrary realization Sn := (Xi, Yi)
n
i=1. Since f̂GL(·;Sn) ∈ G, the optimality of g† yields∫

D

(
f̂GL(x;Sn)− f(x)

)2
dx ≥ inf

g∈G

∫
D

(
g(x)− f(x)

)2
dx = A⋆

D.

This inequality holds for every sample Sn. Taking expectation over the training data proves the
claim.

A.2 POINT-WISE ERROR ESTIMATION OF LOCAL CONSTANT REGRESSION

In this section we will estimate the point-wise mean-squared-error of NW estimator, whose expres-
sions are given by

MSENW(x) := E
[(

f̂NW(x)− f(x)
)2
| {Xi}ni=1

]
=
(
E
[
f̂NW(x)− f(x) | {Xi}ni=1

])2
︸ ︷︷ ︸

BiasNW(x)2

+E
[(

f̂NW(x)− E
[
f̂NW(x) | {Xi}ni=1

])2
| {Xi}ni=1

]
︸ ︷︷ ︸

VarNW(x)

.

When estimating at x ∈ D, the kernel KH maps the translated domain (D − x) into supp(K)
via the scaling H−1/2. The mapped set differs depending on whether x lies in the interior of D or
near ∂D. This geometric difference drives a larger boundary error for NW, which will underlie the
performance gap between NW and LL. We formalize the mapped kernel domain and the boundary
layer.
Definition A.1 (Exact kernel domain and boundary layer.). For any x ∈ D and bandwidth H , the
exact kernel domain is

Dx,H := H−1/2(D − x) ∩ supp(K) = {u ∈ Bd : x+H1/2u ∈ D}.
Define the boundary layer by

B(H) := {x ∈ D : Dx,H ̸= supp(K) }.

We use the following kernel-moment shorthands.
Definition A.2 (Exact kernel moments). For all x ∈ D and bandwidth H , we define

µ⋆
0(x,H) :=

∫
Dx,H

K(u) du, µ⋆
1(x,H) :=

∫
Dx,H

uK(u) du, µ⋆
2(x,H) :=

∫
Dx,H

uu⊤K(u) du.

Define normalized moments µ̄⋆
r(x,H) := µ⋆

r(x,H)/µ⋆
0(x,H).

Then we are ready to estimate the bias and variance using H and n.
Lemma A.2. Under Assumption A.2, we have

BiasNW(x) = ∇f(x)⊤H1/2µ̄⋆
1(x,H) + Op(∥H∥), VarNW(x) = Θp(

1

n|H|1/2)

uniformly for all H ∈ Hn, where Hn := {H = h2B : h ∈ [n−a, n−b], B ≻ 0, |B| = 1, κ(B) ≤
κ1} and 0 < b < a < 1.

Proof. Defining f := (f(X1), . . . f(Xn))
⊤, for any fixed point x0 ∈ D, we have

BiasNW(x0) = (1⊤W1)−11⊤W (f − f(x0)1).

Specifically,

n−1(1⊤W1) = n−1
n∑

i=1

KH(Xi − x0), n−11⊤W (f − f(x0)1) = n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0)).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

By Chebyshev’s inequality, for any fixed H ,

n−1
n∑

i=1

KH(Xi − x0) =

∫
D

KH(x− x0)p(x)dx+Op

(
n−1

√
n

∫
D

K2
H(x− x0)p(x)dx

)
.

By Theorem 1 in (Fan et al., 1996), this bound holds uniformly over H ∈ Hn after multiplying the
stochastic term by

√
log n. Hence,

n−1
n∑

i=1

KH(Xi − x0) =

∫
D

KH(x− x0)p(x)dx+Op

(
n−1

√
n log n

∫
D

K2
H(x− x0)p(x)dx

)

=

∫
Dx0,H

K(u)p(x0 +H1/2u)du+ op(1) = p(x0)µ
∗
0(x,H) + op(1)

(18)
uniformly for H ∈ Hn.

Similarly,

n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0))

=

∫
D

KH(x− x0)p(x)(f(x)− f(x0))dx+Op

(
n−1

√
n log n

∫
D

K2
H(x− x0)(f(x)− f(x0))2p(x)dx

)

=

∫
Dx0,H

K(u)p(x0 +H1/2u)(f(x0 +H1/2u)− f(x0))du+ op(||H||)

=

∫
Dx0,H

K(u)(p(x0) +∇p(x0)H
1/2u+O(||H||))(∇f(x0)

⊤H1/2u+O(||H||))du+ op(||H||)

= p(x0)∇f(x0)
⊤H1/2µ∗

1(x0, H) +∇p(x0)H
1/2µ∗

2(x0, H)H1/2∇f(x0) + op(||H||)
= p(x0)∇f(x0)

⊤H1/2µ∗
1(x0, H) +Op(||H||)

(19)
uniformly for all H ∈ Hn.

Combining Equations 18, 19, we have

BiasNW(x0) = ∇f(x0)
⊤H1/2µ̄⋆

1(x0, H) + Op(∥H∥)
uniformly for all H ∈ Hn.

Then we calculate variance

VarNW(x0) = (1⊤W1)−1(1⊤Σ1)(1⊤W1)−1

where Σ := diag(K2
H(Xi − x0)σ

2(Xi)). Analogously to equation 18,

n−1(X⊤ΣX) = n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi)

=

∫
D

K2
H(x− x0)σ

2(x)p(x)dx+Op

(
n−1

√
n log n

∫
D

K4
H(x− x0)σ4(x)p(x)dx

)

= |H|−1/2

∫
Dx0,H

K2(u)σ2(x0 +H1/2u)p(x0 +H1/2u)du+Op

(√
log n

n
|H|−3/4

)

= |H|−1/2

∫
Dx0,H

K2(u)σ2(x0)p(x0)du(1 + op(1)) +Op

(√
log n

n
|H|−3/4

)

= |H|−1/2σ2(x0)p(x0)

∫
Dx0

,H

K2(u)du(1 + op(1))

(20)

uniformly for all H ∈ Hn.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Combining Equations 18, 20, we have that

VarNW(x) = Θp(
1

n|H|1/2)

holds uniformly for all H ∈ Hn.

A.3 INTEGRAL ERROR ESTIMATION OF LOCAL CONSTANT REGRESSION

Here we calculate the integral error for NW estimator. From Lemma A.2 we have that for any
x ∈ D, the pointwise bias of NW estimator is

BiasNW(x) = ∇f(x)⊤H1/2µ̄⋆
1(x,H) + Op(∥H∥).

By symmetry of the kernel K, the first moment µ̄⋆
1(x,H) = 0 if and only if x /∈ B(H). Roughly,

BiasNW(x) = O(∥H1/2∥) when x ∈ B(H) and BiasNW(x) = O(∥H∥) when x /∈ B(H). Hence it
is important to bound

∫
B(H)

MSENW(x) dx and
∫
D\B(H)

MSENW(x) dx separately. We first define
a smooth substitute for the boundary layer B(H).
Definition A.3 (Uniform Boundary Layer). For any bandwidth H and α ∈ (0, 1), the uniform
boundary layer of D is

C(H,α) := {x = y − te(y) : y ∈ ∂D, t ∈ [0, αhn(y)]}
where for any y ∈ ∂D, we define e(y) as the inward unit normal at y, and define hn(y) :=√

e(y)⊤H e(y) .

We now show that one can choose a constant α ∈ (0, 1) (independent of H) that “sandwiches”
B(H) between C(H,α) and C(H,α−1).
Lemma A.3. Under Assumptions A.1, A.3, there exists α ∈ (0, 1) such that for all sufficiently small
H , we have

C(H,α) ⊂ B(H) ⊂ C(H,α−1).

Proof. We prove the claim with α = min
(
1
2 ,

1
2κ

−1/2
1

)
.

Step 1: C(H,α) ⊂ B(H). Let ϕ denote the signed distance to ∂D (positive inside D). For x =
y − te(y) ∈ C(H,α) and any v ∈ Rd, the standard expansion (using the shape operator Sy) gives

ϕ(x+ v) = −t+ vn − 1
2v

⊤
T SyvT +O(∥v∥3),

where vn := v⊤e(y) and vT := (I−e(y)e(y)⊤)v. By Assumption A.1, ∥Sy∥ is uniformly bounded.

Define
u := κ

−1/2
1 hn(y)H

−1/2e(y) ∈ Rd.

Then

∥u∥2 = κ−1
1 hn(y)

2 e(y)⊤H−1e(y) = κ−1
1

(
e(y)⊤He(y)

)(
e(y)⊤H−1e(y)

)
1

≤ κ−1
1 κ(H) ≤ 1,

since κ(H) ≤ κ1 by assumption. Hence u ∈ supp(K) (Assumption A.3). Using the expansion
with v = H1/2u and bounded curvature,

ϕ
(
x+H1/2u

)
= −t+ u⊤H1/2e(y) +O(∥H∥3/2) = −t+ κ

−1/2
1 hn(y) +O(∥H∥3/2).

Since t ≤ αhn(y) and α ≤ 1
2κ

−1/2
1 , for sufficiently small H we have ϕ(x + H1/2u) > 0, i.e.,

x + H1/2u /∈ D. Thus there exists u ∈ supp(K) with u /∈ Dx,H , i.e., Dx,H ̸= supp(K), so
x ∈ B(H).

Step 2: B(H) ⊂ C(H,α−1). Let x = y − te(y) ∈ B(H). By definition, there exists u ∈ supp(K)
with x+H1/2u /∈ D, i.e.,

ϕ(x+H1/2u) = −t+ u⊤H1/2e(y) +O(∥H∥) > 0.

Hence

t < u⊤H1/2e(y) +O(∥H∥) ≤ ∥u∥
√

e(y)⊤He(y) +O(∥H∥) ≤ hn(y) +O(∥H∥).
For sufficiently small H , this yields t < α−1hn(y) (since α−1 ≥ 2), so x ∈ C(H,α−1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

With C(H,α−1) in hand, we bound the integrated variance and squared bias of the NW estimator.
Lemma A.4. Under Assumptions A.1, A.2, and A.3, we have, uniformly for all H ∈ Hn,∫

D

Bias2NW(x) dx = Op

(
∥H∥3/2

)
and

∫
D

VarNW(x) dx = Θ
(
n−1|H|−1/2

)
.

Proof. ∫
D

Bias2NW(x)dx =

∫
B(H)

Bias2NW(x)dx+

∫
D\B(H)

Bias2NW(x)dx

= Op(||H||)
∫
B(H)

dx+Op(||H2||)

≤ Op(||H||)
∫
C(H,α−1)

dx+Op(||H2||)

= Op(||H||)
∫
∂D

∫ hn(y)
α

0

dtdS(y) +Op(||H2||)

= Op(||H3/2||),
since hn(y) =

√
e(y)⊤He(y) = Θ(∥H∥1/2) uniformly under bounded condition number.

For the variance, Lemma A.2 gives VarNW(x) = Θp(n
−1|H|−1/2) pointwise (uniformly over H ∈

Hn). Integrating over D (whose volume is constant) preserves the order:∫
D

VarNW(x)dx =

∫
D

Θ(n−1|H1/2|−1)dx = Θ(n−1|H1/2|−1).

A.4 PROOF OF PROPOSITION 2.1

Combining Lemmas A.1, A.4, we obtain the final conclusion.
Theorem A.1 (Precise statement of Proposition 2.1). Under Assumptions A.1, A.2, A.3, if the func-
tion f to be estimated is not within the the global affine class G,then

E
∫
D

MSEGL(x) dx = Ω(1) and E
∫
D

MSENW(x) dx = O
(
n−3/(d+3)

)
,

where f̂NW uses the optimal bandwidth H ∈ Hn.

Proof. The lower bound for MSEGL follows directly from Lemma A.1.

For NW, Lemma A.4 and the definition ofHn imply∫
D

Bias2NW(x) dx = Op(h
3),

∫
D

VarNW(x) dx = Θ
(
n−1h−d

)
uniformly for h ∈ [n−a, n−b] (since ∥H∥ = Θ(h2) and |H|1/2 = Θ(hd) under bounded condition
number). Hence ∫

D

MSENW(x) dx = Op

(
h3 +

1

nhd

)
= Op

(
n−3/(d+3)

)
,

at the minimizer h = n−1/(d+3) ∈ [n−a, n−b] of h3 + (nhd)−1.

B APPENDIX: PROOF OF PROPOSITION 2.2

The local linear estimator at x ∈ D is
f̂LL(x) = (X⊤WX)−1X⊤WY ,

where

X :=

[
1 . . . 1

X1 − x0 . . . Xn − x0

]⊤
.

Here we inherit Assumptions A.1, A.2, A.3 and continue to set dy = 1 as in Appendix A.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.1 POINT-WISE ERROR ESTIMATION

We have already derived the point-wise error of the local constant estimator in Lemma A.4. We now
do the same for the local linear estimator.

Lemma B.1. Under Assumption A.2, we have, uniformly for all H ∈ Hn,

BiasLL(x) = Op(∥H∥), VarLL(x) = Op

(1

n|H|1/2
)
,

where Hn := {H = h2B : h ∈ [n−a, n−b], B ≻ 0, |B| = 1, κ(B) ≤ κ1} with constants
0 < b < a < 1.

Proof. For any fixed point x0 ∈ D, we have

BiasLL(x0) = e1(X
⊤WX)−1X⊤W (f −X(f(x0),∇f(x0)

⊤)⊤)

=
1

2
e1(X

⊤WX)−1X⊤W (Q+ op(tr(H)))

where Q = [(X1 − x)⊤Hf (X1 − x), . . . , (Xn − x)⊤Hf (Xn − x)]⊤.

VarLL(x0) = e1(X
⊤WX)−1(X⊤ΣX)(X⊤WX)−1e⊤1

where Σ := diag(K2
H(Xi − x0)σ

2(Xi)).

n−1(X⊤WX) =

[
n−1

∑n
i=1 KH(Xi − x0) n−1

∑n
i=1 KH(Xi − x0) (Xi − x0)

⊤

n−1
∑n

i=1 KH(Xi − x0) (Xi − x0) n−1
∑n

i=1 KH(Xi − x0) (Xi − x0)(Xi − x0)
⊤

]

n−1(X⊤ΣX) =

[
n−1

∑n
i=1 K

2
H(Xi − x0)σ

2(Xi) n−1
∑n

i=1 K
2
H(Xi − x0)σ

2(Xi)(Xi − x0)
⊤

n−1
∑n

i=1 K
2
H(Xi − x0)σ

2(Xi)(Xi − x0) n−1
∑n

i=1 K
2
H(Xi − x0)σ

2(Xi)(Xi − x0)(Xi − x0)
⊤

]

n−1X⊤W (f −X(f(x0),∇f(x0)
⊤)⊤)

=

[
n−1

∑n
i=1 KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)

⊤(Xi − x0))
n−1

∑n
i=1 KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)

⊤(Xi − x0))(Xi − x0)

]
By the same uniform LLN and

√
log n arguments used in the proof of Lemma A.2, we have uni-

formly over H ∈ Hn:

n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi) = |H|−1/2σ2(x0)p(x0)R0(x0, H)(1 + op(1))

n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi)(Xi − x0)
⊤

= σ2(x0)p(x0)|H|−1/2R1(K)H1/2 +Op

(
(

√
log n

n
|H|−3/4 + 1)H1/21

)

n−1
n∑

i=1

KH(Xi − x0) = p(x0)µ
∗
0(x0, H) + op(1)

n−1
n∑

i=1

K2
H(Xi − x0)σ

2(Xi)(Xi − x0)(Xi − x0)
⊤

= σ2(x0)p(x0)|H|−1/2H1/2R2(K)H1/2 + op

(
|H|−1/2H

)
19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

n−1
n∑

i=1

KH(Xi − x0)(Xi − x0)
⊤ = p(x0)µ

∗
1(x0, H)⊤H1/2 +Op(H1)

n−1
n∑

i=1

KH(Xi − x0)(Xi − x0)(Xi − x0)
⊤ = Op(H)

n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)
⊤(Xi − x0)) = p(x0)µ2(K)tr (HHf (x0)) + op(tr(H))

n−1
n∑

i=1

KH(Xi − x0)(f(Xi)− f(x0)−∇f(x0)
⊤(Xi − x0))(Xi − x0) = Op(H

3/21),

where

R0(x0, H) =

∫
Dx0,H

K2(u)du, R1(x0, H) =

∫
Dx0,H

K2(u)udu, R2(x0, H) =

∫
Dx0,H

K2(u)uu⊤du.

Then we have the expression of every element in all matrices. A standard blockwise inversion
therefore yields

BiasLL(x) = Op(∥H∥), VarLL(x) = Op(
1

n|H|1/2).

uniformly over H ∈ Hn, proving the claim.

B.2 INTEGRAL ERROR ESTIMATION

From Lemma A.2 we have that for any x ∈ D, the pointwise bias of local constant estimator is

BiasNW(x) = ∇f(x)⊤H1/2µ̄⋆
1(x,H) + Op(∥H∥).

By symmetry of the kernel K, the first moment satisfies µ̄⋆
1(x,H) = 0 if and only if x /∈ B(H).

We will show that if f has a sufficiently large normal gradient on a measurable subset of ∂D, then∫
B(H)

Bias2NW(x)dx will have a dominant order Θ(∥H3/2∥).

We begin by lower-bounding |∇f(x)⊤H1/2µ̄⋆
1(x,H)|, to do which we first lower-bound

e(y)⊤H1/2µ̄∗
1(y − te(y), H).

Lemma B.2. Under Assumption A.1, A.3, there exists α ∈ (0, 1), c∗ > 0 and C∗ > 0 such that for
all sufficiently small H and all y ∈ ∂D, all t ∈ [0, αhn(y)],

|e(y)⊤H1/2µ̄∗
1(y − te(y), H)| ≥ c∗hn(y) ||µ̄∗

1(y − te(y), H)|| ≤ C∗.

Proof. Recall Dx,H = {u ∈ Bd : x +H1/2u ∈ D}. For x = y − te(y) with y ∈ ∂D, choose an
orthogonal Q(y) such that Q(y)H1/2e(y) = hn(y) ed. Define the rotated domain

D̃y,t,H := { v ∈ Bd : y − te(y) +H1/2Q(y)v ∈ D }.

Define the corresponding moments on D̃y,t,H :

µ⋆
0,v(y, t,H) :=

∫
D̃y,t,H

K(u) du, µ⋆
1,v(y, t,H) :=

∫
D̃y,t,H

uK(u) du, µ̄⋆
1,v(y, t,H) :=

µ⋆
1,v(y, t,H)

µ⋆
0,v(y, t,H)

.

Then

µ⋆
0,v(y, t,H) = µ⋆

0(x,H), Q(y)µ⋆
1,v(y, t,H) = µ⋆

1(x,H), Q(y) µ̄⋆
1,v(y, t,H) = µ̄⋆

1(x,H),

and hence
e(y)⊤H1/2µ̄⋆

1(x,H) = hn(y) e
⊤
d µ̄

⋆
1,v(y, t,H). (21)

By the standard signed-distance expansion with shape operator Sy (Assumption A.1), for v ∈ Rd,

ϕ
(
y − te(y) +H1/2Q(y)v

)
= −t+ hn(y) vd − 1

2z
⊤
T SyzT +O(∥H∥3/2),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where zT := (I − e(y)e(y)⊤)H1/2Q(y)v and ∥Sy∥ is uniformly bounded. Therefore

y − te(y) +H1/2Q(y)v ∈ D ⇐⇒ vd <
t

hn(y)
+O(∥H∥1/2),

so
D̃y,t,H =

{
v ∈ Bd : vd <

t

hn(y)
+O(∥H∥1/2)

}
.

Consequently,

µ⋆
0,v(y, t,H) =

∫
D̃y,t,H

K(v) dv

=

∫
Rd−1

dv1:d−1

∫ t/hn(y)

−
√

1−
∑d−1

i=1 v2
i

K(v1:d−1, vd) dvd + O(∥H∥1/2)

≥
∫
Rd−1

dv1:d−1

∫ 0

−
√

1−
∑d−1

i=1 v2
i

K(v1:d−1, vd) dvd + O(∥H∥1/2).

Using positivity and boundedness of K on Bd, there exist 0 < C < D <∞ such that

C < µ⋆
0,v(y, t,H) < D. (22)

Similarly,

e⊤d µ
⋆
1,v(y, t,H) =

∫
D̃y,t,H

vdK(v) dv

=

∫
Rd−1

dv1:d−1

∫ t/hn(y)

−
√

1−
∑d−1

i=1 v2
i

vd K(v1:d−1, vd) dvd + O(∥H∥1/2)

=: g
(

t
hn(y)

)
+O(∥H∥1/2).

Note g(0) < 0 and g(τ) decreases as τ ↓ 0. Choose α = α1 ∈ (0, 1) with g(α1) < 0. Then for all
t ∈ [0, α1hn(y)],

e⊤d µ
⋆
1,v(y, t,H) ≤ g(α1) +O(∥H∥1/2) < 0. (23)

Combining equation 22–equation 23, for small H ,∣∣e⊤d µ̄⋆
1,v(y, t,H)

∣∣ = |e⊤d µ⋆
1,v(y, t,H)|

µ⋆
0,v(y, t,H)

≥ |g(α1)|
2D

.

Using equation 21 yields the first bound with c∗ := |g(α1)|/(2D). The second bound follows from
boundedness of K and supp(K) ⊂ Bd.

Since the leading term of BiasNW(x) is ∇f(x)⊤H1/2µ̄⋆
1(x,H), the lower bound on

|e(y)⊤H1/2µ̄⋆
1(y − te(y), H)| alone does not guarantee order Θ(∥H1/2∥); we also require a suffi-

ciently large normal derivative of f along ∂D.
Definition B.1 (Extreme boundary gradient class). For any domain D and constants m and M ,
we define a class of functions E(D,m,M), where f ∈ E(D,m,M) iff there exist a measurable
Γ ⊂ ∂D with S(Γ) > 0 and constants m, M such that |∂ef(y)| ≥ m and ||∇T f(y)|| < M where
∂ef(y) = ∇f(y)⊤e(y) and ∇T f(y) = (I − e(y)e(y)⊤)∇f(y).

Then we can prove that if the function to be estimated is within E(D,m,M) where m and M are
specifically chosen constants that are independent of H , the NW has an integral squared bias with
high order.
Lemma B.3. Under Assumptions A.1, A.2, and A.3, if f ∈ E(D,m,M) with

c2∗ κ
−1
1 m2 − 2c∗ κ

−1/2
1 C∗ mM ≥ C1 > 0,

then uniformly over H ∈ Hn,∫
D

Bias2NW(x) dx = Ωp(∥H∥3/2) and
∫
D

VarNW(x) dx = Ωp

(
n−1|H|−1/2

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Remark. It is easy to construct f and D satisfying Assumptions A.1, A.2 and f ∈ E(D,m,M).
For example, on D = {(x1, x2) : x

2
1 + x2

2 ≤ 1}, f(x1, x2) =
√
c1κ1

2c∗
(x2

1 + x2
2) works with suitable

m,M .

Proof. We first lower-bound bias. Choosing α as the minimum α given by Lemmas A.3, B.2, we
have∫

Bias2NW(x)dx ≥
∫
B(H)

Bias2NW(x)dx ≥
∫
C(H,α)

Bias2NW(x)dx

=

∫
∂D

∫ αhn(y)

0

Bias2NW(y − te(y))det (I − tSy) dtdS(y)

≥ C2

∫
Γ

∫ αhn(y)

0

(
(∇f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H))2 + Op(||H3/2||)
)
dtdS(y),

(24)

where the last inequality is derived from Lemma A.2 and the boundedness of Sy from Assumption
A.1.

For all t ∈ αhn(y) and all η ∈ (0, 1),(
∇f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H)
)2

(a)
=
(
∂ef(y − te(y))e(y)⊤H1/2µ̄⋆

1(y − te(y), H) +∇T f(y − te(y))⊤H1/2µ̄⋆
1(y − te(y), H)

)2
(b)

≥ (1− η)
(
∂ef(y − te(y))e(y)⊤H1/2µ̄⋆

1(y − te(y), H)
)2
− η−1

(
∇T f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H)
)2

(c)

≥ (1− η)(∂ef(y − te(y)))2h2
n(y)c

2
∗ − η−1||∇T f(y − te(y)||2C2

∗ ||H||
= (1− η)(∂ef(y))

2h2
n(y)c

2
∗ − η−1||∇T f(y)||2C2

∗ ||H||+O(||H3/2||)
≥
(
(1− η)m2c2∗κ

−1
1 − η−1M2C2

∗
)
||H||+O(||H3/2||).

Here (a) uses the fact∇f = ∂ef(y)e(y)+∇T f(y), (b) uses the fact (A+B)2 ≥ (1−η)A2−η−1B2

for all η ∈ (0, 1), (c) uses Lemma B.2.

Setting η =
MC∗κ

1/2
1

mc∗
, we have(
∇f(y − te(y))⊤H1/2µ̄⋆

1(y − te(y), H)
)2

≥
(
(1− η)m2c2∗κ

−1
1 − η−1M2C2

∗
)
||H||+O(||H3/2||)

=
(
c2∗κ

−1
1 m2 − 2c∗κ

−1/2
1 C∗mM

)
||H||+O(||H3/2||)

≥ C1||H||++O(||H3/2||).

(25)

Combining Equations 24, 25, we have that

∫
Bias2NW(x)dx ≥ αC2

(
C1||H|| + Op(||H3/2||)

)∫
Γ

hn(y)dS(y) = Ωp(||H3/2||).

The last equation holds because hn(y) ≥ κ−1
1 ||H1/2||. Using Lemma A.2, it is straightforward to

show that ∫
Ω

VarNW(x)dx = Ωp(n
−1|H1/2|−1).

We then show that local linear regression enjoys strictly lower bias than NW on all functions.

Lemma B.4. Under Assumptions A.1, A.2, A.3, we have
∫
D
Bias2LL(x)dx = Op(||H2||) and∫

D
VarLL(x)dx = Op(n

−1|H1/2|−1) uniformly hold for all H ∈ Hn.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. It is straightforward from Lemma B.1.

Then it is easy to prove the final conclusion.
Theorem B.1 (Precise statement of Proposition 2.2). Under Assumptions A.1, A.2, A.3, if the func-
tion f to be estimated is within E(D,m,M) where

c2∗κ
−1
1 m2 − 2c∗κ

−1/2
1 C∗mM ≥ C1 > 0,

we have E
∫
D
MSENW(x)dx = Ω(n−3/(d+3)) and E

∫
D
MSELL(x)dx = O(n−4/(d+4)), where

both f̂NW and f̂LL are at their optimal bandwidth H ∈ Hn.

Proof. According to Lemma B.3 and the definition of Hn, we have that we have∫
D
Bias2NW(x)dx = Ωp(h

3) and
∫
D
VarNW(x)dx = Ωp(n

−1h−d) uniformly hold for all h ∈
[n−a, n−b]. So we have∫

D

MSENW(x)dx = Ωp(h
3 +

1

nhd
) = Ωp(n

−3/(d+3))

even for optimal H ∈ Hn. The last equality holds because h = n−1/(d+3) ∈ [n−a, n−b] is the
minimizer of h3 + (nhd)−1.

According to Lemma B.4, we have that∫
D

MSELL(x)dx = Op(h
4 +

1

nhd
) = Op(n

−4/(d+4))

for the optimal H ∈ Hn. According to the definition of Ωp and Op, it is straightforward to deduce
the conclusion.

C APPENDIX: CONJUGATE GRADIENT SOLVER

The Conjugate Gradient (CG) method (Hestenes & Stiefel, 1952) is an iterative algorithm for solving
systems of linear equations with symmetric positive-definite matrices. As described in Section 3,
we solve the linear systems with matrix Σi for blocks of queries in parallel:

Σixi = yi, for i ∈ {(r − 1)Br + 1, . . . , rBr} (26)

In the FlashLLA forward algorithm 1, CG is applied within each row block, with Qr,Mr,mr, ωr

being the block quantities, Xr being the solution to be computed and Yr being the right-hand side.
We use the simplest initialization Xr ← 0 for CG. Hence the initial residual ri is set to be yi, i.e.,
R(0) ← Yr in Algorithm 2.

The core computation is the matrix-vector product Σipi for the search vectors pi computed in the
lines 4-10. The result is stored in matrix ΣP . This operation has high I/O intensity due to the re-
quirement to stream through the entire K matrix in HBM during each CG iteration. Consequently,
controlling the number of iterations is crucial for both the efficiency and convergence. While maxi-
mal iteration number T ≤ d can be manually set, further considerations are necessary to ensure the
numerical stability and performance.

First, the convergence and convergent rate of CG are greatly influenced by its spectral condition.
However, the conditioning varies significantly across positions. For example, for early tokens, the
matrix Σi is low-rank and requires relatively large λ to maintain positive definiteness. To address
this, we make the regularization λ learnable and data-dependent:

λi = sigmoid(Wλxi). (27)

The dimension of the weight Wλ ∈ Rd×dλ controls the granularity of the regularization. Setting
dλ = d enables per-dimensional regularization, though empirically set dλ = dh suffices, where dh
denotes the head dimension.

Additionally, since the CG solves multiple systems in parallel, different system converge at different
iterations. To prevent the numerical issues from affecting early converged system, we employ an
active mask that disables iterations for systems whose residual norm fall below the tolerance ϵ.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 2 FlashLLA CG Solver

Require: Variables K in HBM, Xr, Yr, Qr,Mr,mr, ωr in SRAM, block sizes Bc, regularization
λ, tolerance ϵ, max iterations T , bandwidth h.

1: Initialize on-chip: R(0) ← Yr ∈ RBr×d, P (0) ← Yr ∈ RBr×d.
2: for t = 1 to T do
3: Initialize on-chip: Σ(0)

P ← 0 ∈ RBr×d.
4: for c = 1 to ⌈n/Bc⌉ do
5: Load Kc from HBM to SRAM.
6: Compute W = exp(QrK

⊤
c /h− bcast(mr)).

7: Compute Σ
(c)
P = Σ

(c−1)
P + (W ⊙ P (t−1)Kc)Kc.

8: end for
9: Compute PQ = brsum(Yr ⊙Qr) and PM = brsum(P (t−1) ⊙Mr).

10: Compute Σ
(last)
P = Σ

(last)
P − PQ ⊙Mr − PM ⊙Qr + bcast(ωr)⊙ PQ ⊙Qr + λYr

11: Compute n = rsum(R(t−1) ⊙R(t−1)) and check convergence.
12: Compute α = n/rsum(P (t−1) ⊙ Σ

(last)
P).

13: Compute X(t) = X(t−1) + bcast(α)⊙ P (t−1).
14: Compute R(t) = R(t−1) − bcast(α)⊙ Σ

(last)
P .

15: Compute β = rsum(R(t) ⊙R(t))/n.
16: Compute P (t) = R(t) + β ⊙ P (t−1).
17: end for
18: return Xr as the solution of ΣiX = Pi for i in the block.

D APPENDIX: BACKWARD DERIVATION

This section provides the detailed derivation of the backward pass. Defining the following variables:

b̂i =

i∑
j=1

sijvj =

i∑
j=1

wij
nij

δi
vj , gi =

∂L
∂b̂i
∈ Rd (28)

γij = g⊤i vj =
∂L
∂sij

, βi =
1

δi

i∑
j=1

γijsij , cij =
γijwij

δi
(29)

The gradient of the loss with respect to vj is given by:

∂L
∂vj

=

n∑
i=j

sijgi, ∆V = S⊤G (30)

The gradient of qi and kj is related to sij , which can be broken down into wij and zij path in the
computation graph. The partial gradients of the loss with respect to wij , zij are given by:

∂L
∂wij

=
∂L
∂sij

∂sij
∂wij

+
∂L
∂ωi

∂ωi

∂wij
+

∂L
∂µi

⊤ ∂µi

∂wij
+Tr

(
∂L
∂Σi

⊤ ∂Σi

∂wij

)
(31)

=
γijnij

δi
− βi + z⊤ij

∂L
∂µi

+ z⊤ij
∂L
∂Σi

zij (32)

∂L
∂zij

=
∂L
∂sij

∂sij
∂zij

+
∂L
∂µi

⊤ ∂µi

∂zij
+Tr

(
∂L
∂Σi

⊤ ∂Σi

∂wij

)
(33)

= −cijρi + wij
∂L
∂µi

+ 2wij
∂L
∂Σi

zij (34)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Then the partial gradients of the loss with respect to kj and qi are given by:

∂L
∂kj

=

n∑
i=j

∂L
∂wij

∂wij

∂kj
+

∂L
∂zij

∂zij
∂kj

=

n∑
i=j

∂L
∂wij

wij

h
qi +

∂L
∂zij

(35)

∂L
∂qi

=

i∑
j=1

∂L
∂wij

∂wij

∂qi
+

∂L
∂zij

∂zij
∂qi

=

i∑
j=1

∂L
∂wij

wij

h
kj −

∂L
∂zij

(36)

In order to compute the partial gradients of µi and Σi, denote

ui = Σ−1
i

i∑
j=1

cijzij = Σ−1
i

[i∑
j=1

cijkj −
(i∑
j=1

cij

)
qi

]
(37)

which can be computed with existing Conjugate Gradient solver 2. Then

∂L
∂µi

=

i∑
j=1

∂L
∂nij

∂nij

∂µi
+

∂L
∂δi

∂δi
∂µi

= −ui + 2βiρi (38)

∂L
∂Σi

=

i∑
j=1

∂L
∂nij

∂nij

∂Σi
+

∂L
∂δi

∂δi
∂Σi

= −1

2
ρi

∂L
∂µi

⊤
+

1

2
uiρ

⊤
i (39)

We denote the following variables:

∆µ = −U + 2bcast(β)⊙R (40)

We can materialize the gradient of wij for every i, j pair and then perform the reduction.

wij
∂L
∂wij

= γijsij + wijz
⊤
ij

∂L
∂µi

+ wijz
⊤
ij

∂L
∂Σi

zij (41)

We omit the Q,K in the relmm for simplicity, then the gradient of wij can be computed as:

∆W = Γ⊙ S +W ⊙ (−bcast(β) + relmm(∆µ)−
1

2
relmm(∆µ)⊙ relmm(R) (42)

+
1

2
relmm(U)⊙ relmm(R)) (43)

Then we can compute the gradient of kj and qi through wij branch as follows:

∆K
W =

1

h
∆⊤

WQ, ∆Q
W =

1

h
∆WK (44)

For the zij path, we avoid materializing the third-order tensor by performing the reduction internally,

n∑
i=j

∂L
∂zij

=

n∑
i=j

−cijρi +
n∑

i=j

wij
∂L
∂µi

+ 2

n∑
i=j

wij
∂L
∂Σi

zij (45)

i∑
j=1

∂L
∂zij

=

i∑
j=1

−cijρi +
i∑

j=1

wij
∂L
∂µi

+ 2

i∑
j=1

wij
∂L
∂Σi

zij (46)

Then we can compute the gradient of the loss with respect to zij as follows:

∆K
Z = −C⊤R+W⊤∆µ − (W ⊙ relmm(∆µ))

⊤R+ (W ⊙ relmm(R))⊤U (47)

∆Q
Z = −brsum(C)⊙R+ brsum(W)⊙∆µ (48)
− brsum(W ⊙ relmm(∆µ))⊙R+ brsum(W ⊙ relmm(R))⊙ U (49)

Hence the gradient of the loss with respect to kj and qi can be computed as:

∆K = ∆K
W +∆K

Z , ∆Q = ∆Q
W +∆Q

Z (50)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

10−5

10−1
D

im
8

L
os

s/
D

im

Segment Size 8 Segment Size 16 Segment Size 64 Segment Size 128 Segment Size 256 Segment Size 512 Segment Size 1024

10−5

10−1

D
im

16
L

os
s/

D
im

10−5

10−1

D
im

32
L

os
s/

D
im

10−5

10−1

D
im

64
L

os
s/

D
im

0 500 1000
Position

10−5

10−1

D
im

12
8

L
os

s/
D

im

0 500 1000
Position

0 500 1000
Position

0 500 1000
Position

0 500 1000
Position

0 500 1000
Position

0 500 1000
Position

Position-wise MSE - All Dimensions vs Segment Sizes

LLA Attn Mesa LA Random

Figure 6: Test-time regression with across all input dimension d and segment size S.

E APPENDIX: EXPERIMENTS

E.1 PIECEWISE LINEAR DATA GENERATION.

Let n = 2m be the number of segment with n = log2 n ≤ d. For each section index c ∈ {1, . . . , n},
define a sign pattern Sc = (sc,1, sc,2, . . . , sc,m) ∈ {−1,+1}m by reading the least-significant bits
of c. For each segment in each sample, draw Z ∼ N (0, Id) and construct the data X ∈ Rd by
flipping the first m coordinate of Z:

Xj =

{
Sc,j |Zj |, j ≤ m

Zj , j > m
(51)

As the result, the constructed segment is a truncated Gaussian conditioned to lie in the cone Cc =
{x ∈ Rd : sc,jxj ≥ 0, j = 1, . . . ,m} where Ci ∩Cj = ∅. Denote Tc(Z) = (Sc⊙ |Z1:m|, |Zm+1:d|)
and segment distribution Pc, we have

X ∼ Pc ⇐⇒ X
d
= Tc(Z) (52)

E.2 TRAINING CONFIGURATION

Test-Time Regression. This experiment evaluates test-time adaptation without training any model
parameters. We sweep over input dimension d ∈ {8, 16, 32, 64, 128} and segment size S ∈
{8, 16, 32, 64, 128, 256, 512, 1024} with fixed sequence length L = 1024. Performance is evalu-
ated by averaging the mean squared error over 10,000 independently generated sequences.

In-Context Regression. We fix the input and output dimensions at dx = dy = 32. For each ran-
dom seed, we generate 100,000 training examples with noise level δ = 0.1 and 1,000 test examples
with δ = 0 (noiseless evaluation). For each sequence length L ∈ {64, 128, 256, 512}, we sweep
over segment size S ∈ {L/8, L/4, L/2, L} and learning rate {5 × 10−5, 10−4, 5 × 10−4, 10−3}.
All models are trained with the AdamW optimizer (β1, β2) = (0.9, 0.999), weight decay 0.1, batch
size 256, for a maximum of 100 epochs.

In-Context Associative Recall. We fix the vocabulary size |Ak∪Av| = 8,192. For each sequence
length L ∈ {64, 128, 256, 512}, we sweep over the number of key-value pairs {L/16, L/8, L/4}
and learning rate {10−4, 5× 10−4, 10−3}. We generate 20,000, 40,000, and 60,000 training exam-
ples and 1,000 test examples each for the respective key-value pair counts. Training uses AdamW

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

with (β1, β2) = (0.9, 0.999), weight decay 0.1, batch size 256, for a maximum of 32 epochs. Short
convolution and feature map are disabled for all models.

Permutation State Tracking. We fix the vocabulary size |A| = 8,192. For each random seed,
we generate 100,000 training examples and 1,000 test examples. For each position count N ∈
{16, 24, 48, 96}, we sample the number of instructions S ∼ Uniform(N/6, N/3) and use 8 queries
per example. We sweep over learning rate {10−4, 5×10−4, 10−3}. Models are trained with AdamW
(β1, β2) = (0.9, 0.999), weight decay 0.1, batch size 256, for a maximum of 64 epochs.

E.3 ADDITIONAL EXPERIMENT RESULTS

In Figure 6, we provide the full test-time regression results across all input dimension d and seg-
ment size S. The advantages of LLA scales with the dimension d and nonstationarity. In practical
settings, as the dimensionality increases, it is less likely to do exact query q = kj as in this synthetic
experiment. Consequently, kernel selectivity becomes less pronounced when noise is present in
query points, limiting the potential advantages of both softmax attention and LLA compared to the
ideal conditions of this synthetic experiment. Nevertheless, the overall performance trends remain
consistent with our main findings.

Figure 7 shows complete associative recall results across all sequence lengths L. For visual clarity,
we average results across different numbers of key-value pairs for each sequence length and plot the
trajectory of the best score for each model. Gated DeltaNet exhibits distinctive training dynamics
characterized by an extended plateau phase with minimal loss improvement, followed by an abrupt
transition to significantly lower test loss and corresponding rapid accuracy improvement. The timing
of this transition is highly sensitive to hyperparameters such as learning rate and dataset size.

In contrast, LLA demonstrates consistent, gradual improvement in test accuracy with a correspond-
ing smooth decrease in test loss throughout training, mirroring the behavior of Softmax Attention
but more powerful. This stable convergence pattern remains robust across a wide range of learn-
ing rates and dataset sizes. The marked difference in optimization dynamics suggests fundamental
differences in how these models navigate the loss landscape and converge to solutions.

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
u

ra
cy

L=64, Seed=42

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
L=128, Seed=42

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
L=256, Seed=42

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
L=512, Seed=42

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
u

ra
cy

L=64, Seed=43

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
L=128, Seed=43

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
L=256, Seed=43

10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
L=512, Seed=43

10 20 30
Test Step

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
u

ra
cy

L=64, Seed=44

10 20 30
Test Step

0.0

0.2

0.4

0.6

0.8

1.0
L=128, Seed=44

10 20 30
Test Step

0.0

0.2

0.4

0.6

0.8

1.0
L=256, Seed=44

10 20 30
Test Step

0.0

0.2

0.4

0.6

0.8

1.0
L=512, Seed=44

Test Recall Accuracy

LLA Mamba Hyena GLA Gated DeltaNet Attn

Figure 7: Test accuracy curves for associative recall across all sequence lengths L (averaged over 3
random seeds). Results for different numbers of key-value pairs are averaged within each sequence
length for visual clarity

27

	Introduction
	Related Works.
	Notation.

	Beyond Local Constant Estimate
	Attention as Test-Time Regression
	Learning Behavior of Associative Recall
	Local Linear Attention

	Practical Algorithm
	Memory Efficient Primitives
	Parallel Form and Blockwise Algorithm

	Empirical Results
	Limitations and Future Directions
	Appendix: Proof of Proposition 2.1
	Integral Error Estimation of Global Linear Regression
	Point-wise Error Estimation of Local Constant Regression
	Integral Error Estimation of Local Constant Regression
	Proof of Proposition 2.1

	Appendix: Proof of Proposition 2.2
	Point-wise Error Estimation
	Integral Error Estimation

	Appendix: Conjugate Gradient Solver
	Appendix: Backward Derivation
	Appendix: Experiments
	Piecewise Linear Data Generation.
	Training Configuration
	Additional Experiment Results

