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ABSTRACT

Conformal prediction (CP) offers a powerful framework to build distribution-free
prediction intervals for exchangeable data. Existing methods that extend CP to se-
quential data rely on fitting a relatively complex model to capture temporal depen-
dencies. However, these methods can fail if the sample size is small and often re-
quire expensive retraining when the underlying data distribution changes. To over-
come these limitations, we propose Reservoir Conformal Prediction (RESCP),
a novel training-free CP for time series. Our approach leverages the efficiency
and representation learning capabilities of Reservoir Computing to dynamically
reweight conformity scores. In particular, we compute similarity scores across
reservoir states and use them to adaptively reweight the observed residuals.
RESCP enables us to account for local temporal dynamics when modeling the
error distribution without compromising computational scalability. We prove that,
under reasonable assumptions, RESCP achieves asymptotic conditional coverage,
and we empirically demonstrate its effectiveness across diverse forecasting tasks.

1 INTRODUCTION

Despite deep learning often achieving state-of-the-art results in time series forecasting, widely used
methods do not provide a way to quantify the uncertainty of the predictions (Benidis et al., 2022),
which is crucial for their adoption in risk-sensitive scenarios, such as healthcare (Makridakis et al.,
2019), load forecasting (Hong & Fan, 2016), and weather forecasting (Palmer & Hagedorn, 2006).
Moreover, in many cases, prediction intervals (PIs) must not only be reliable but also fast to compute.
Existing uncertainty quantification approaches for time series often rely on strong distributional
assumptions (Benidis et al., 2022; Salinas et al., 2020), which do not always fit real-world data.
Moreover, they often require long and expensive training procedures, as well as modifications to the
underlying forecasting model, which limits their applicability to large datasets. A framework that
recently gained attention in uncertainty quantification is CP (Vovk et al., 2005; Angelopoulos et al.,
2023). CP assumes exchangeability between the data used to build the PIs and the test data points,
meaning that the joint distribution of the associated sequence of random variables does not change
when indices are permuted. Clearly, this does not hold for time series, as the presence of temporal
dependencies and, possibly, non-stationarity violates the assumption. Moreover, temporal dynamics
can be heterogeneous and often result in heteroskedastic errors. This requires mechanisms to make
PIs locally adaptive (Lei et al., 2018; Guan, 2022).

To extend CP to time series data, a popular approach is to reweight the observed residuals to handle
non-exchangeability and/or temporal dependencies (Barber et al., 2023; Tibshirani et al., 2019; Auer
et al., 2023). In particular, Auer et al. (2023) proposes an effective reweighting mechanism based on
a learned model and soft-attention operators, which, however, suffers from the high computational
cost typical of Transformer-like architectures. Other methods build PIs by directly learning the
quantile function of the error distribution (Jensen et al., 2022; Xu & Xie, 2023a; Lee et al., 2024;
2025; Cini et al., 2025). This, however, often results in high sample complexity and might require
frequent model updates to adapt to changes in the data distribution.

To address these limitations, we propose Reservoir Conformal Prediction (RESCP), a novel CP
method that leverages a reservoir, i.e., a randomized recurrent neural network (Jaeger, 2001;
Lukoševičius & Jaeger, 2009), driven by the observed prediction residuals to efficiently compute
data-dependent weights adaptively at each time step. To capture locally similar dynamics, the
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weights are derived from the similarity between current and past states of the reservoir, which is
implemented as an echo state network (ESN) (Jaeger, 2001; Gallicchio & Scardapane, 2020). This
enables RESCP to model local errors through a weighted empirical distribution of past residuals,
where residuals associated with similar temporal dynamics receive higher weights. The ESN does
not require any training and is initialized to yield stable dynamics and informative representations
of the input time series at each time step. This makes our approach extremely scalable and easy
to implement. RESCP can be applied on top of any point forecasting model, since it only requires
residuals from a disjoint calibration set.

Our main contributions are summarized as follows.

• We provide the first assessment of reservoir computing for CP in time series analysis and show
that it is a valid and scalable alternative to existing methods.
• We introduce RESCP, a novel, scalable, and theoretically grounded tool for distribution-free
uncertainty quantification in sequential prediction tasks.
• We prove that RESCP can achieve asymptotic conditional coverage under reasonable assump-
tions on the data-generating process.
• We introduce variants of RESCP to handle distribution shifts and leverage exogenous variables.

We evaluate RESCP on data from real-world applications and show its robustness and effectiveness
by comparing it to state-of-the-art baselines.

2 BACKGROUND AND RELATED WORK

We consider a forecasting setting where the goal is to predict future values of a time series based
on past observations. Let {yt}Tt=1 be the sequence of scalar target observations at each time step t.
We denote by y1:T the entire history of observations up to time T . Moreover, let {ut}Tt=1 be the
sequence of exogenous variables at each time step t of dimension Du. In this context, we are also
given a forecasting model ŷt+H = f̂(yt−W :t,ut−W :t) that produces point forecasts of H-steps-
ahead, with H ≥ 1, given a window W ≥ 1 of past observations. The model f̂ can be any kind
of forecasting model, e.g., a recurrent neural network (RNN). The objective is to construct valid PIs
that reflect the uncertainty in the forecasts. Ideally, PIs should be conditioned on the current state of
the system, i.e., we want to achieve conditional coverage:

P
(
yt+H ∈ Ĉα

T (ŷt+H)
∣∣y≤t,u≤t

)
≥ 1− α (1)

where Ĉα
T (ŷt+H) is the prediction interval for the forecast ŷt+H at significance level α.

2.1 CONFORMAL PREDICTION IN TIME SERIES FORECASTING

CP (Vovk et al., 2005; Angelopoulos et al., 2023) is a framework for building valid distribution-
free PIs, possibly with finite samples. CP provides a way to quantify uncertainty in predictions by
leveraging the empirical quantiles of conformity scores, which in our regression setting we define as
the prediction residuals

rt = yt − ŷt. (2)

These scores measure the discrepancy between the model predictions and the observed values. The
CP framework we consider in this work is split CP (SCP) (Vovk et al., 2005), which constructs
valid PIs post-hoc by leveraging a disjoint calibration set to estimate the distribution of prediction
errors. In its standard formulation, CP treats all calibration points symmetrically when building
PIs. In heterogeneous settings, this can lead to overly conservative intervals as conformal scores
are often heteroskedastic. To address heteroskedasticity, CP can be made locally adaptive by pro-
viding PIs whose width can adaptively shrink and inflate at different regions of the input space (Lei
et al., 2018). In this context, Guan (2022) proposed localized CP (LCP), which reweights con-
formity scores according to the similarity between samples in feature space, given a localization
function. Hore & Barber (2023) introduced a randomized version of LCP, with approximate condi-
tional coverage guarantees and more robust under covariate shifts. Although this reweighting breaks
exchangeability, validity is recovered through a finite-sample correction of the target coverage level.
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Other approaches rely on calibrating estimates of the spread of the data (Lei & Wasserman, 2013)
or quantile regression (Romano et al., 2019; Jensen et al., 2022; Feldman et al., 2023), but often
require ad-hoc base predictors (i.e., they cannot be applied on top of generic point predictors).

Conformal prediction for time series Under the assumption of data exchangeability, CP meth-
ods provide, in finite samples, valid intervals given a specified level of confidence (Angelopoulos
et al., 2023). However, in settings where exchangeability does not hold, standard CP methods can
fail in providing valid coverage (Barber et al., 2023; Tibshirani et al., 2019). This is the case of
time series data where temporal dependencies break the exchangeability assumption. Barber et al.
(2023) show that reweighting the available residuals (in a data-independent fashion) can handle non-
exchangeability and distribution shifts, and introduce NexCP, a weighting scheme that exponentially
decays the past residuals over time. Barber & Tibshirani (2025) provides a unified view of several
weighted CP methods as approaches to condition uncertainty estimates on the available informa-
tion on the target data point. Other recent approaches, instead, fit a model to account for temporal
dependencies and rely on asymptotic guarantees under some assumptions on the data-generating
process (Xu & Xie, 2023a; Auer et al., 2023; Lee et al., 2025). For example, SPCI (Xu & Xie,
2023a) uses a quantile random forest trained at each step on the most recent scores. Conversely,
HopCPT leverages a Hopfield network to learn a data-dependent reweighting scheme based on soft
attention (Auer et al., 2023). Lee et al. (2025) use a reweighted Nadaraya-Watson estimator to per-
form quantile regression over the past nonconformity scores and derive the weights from the kernel
function. Cini et al. (2025) proposes instead to use graph neural networks (Bacciu et al., 2020;
Bronstein et al., 2021) to additionally condition uncertainty estimates on correlated time series. As
already mentioned, we focus on methods that estimate uncertainty on the prediction of a pre-trained
model; we refer to Benidis et al. (2022) for a discussion of probabilistic forecasting architectures.

2.2 ECHO STATE NETWORKS

ESNs are among the most popular reservoir computing (RC) methods (Jaeger, 2001; Lukoševičius
& Jaeger, 2009). In particular, ESNs are RNNs that are randomly initialized to ensure the stability
and meaningfulness of the representations and left untrained. An ESN encodes input sequences into
nonlinear, high-dimensional state representations through the recurrent component, called reservoir,
which extrapolates from the input a rich pool of dynamical features. The state update equation of
the reservoir is

ht = (1− l)ht−1 + l σ (Wxxt +Whht−1 + b) , (3)

where xt denotes the input at time t, Wx ∈ RDh×Dx and Wh ∈ RDh×Dh are fixed random weight
matrices, b ∈ RDh is a random bias vector, ht ∈ RDh is the reservoir state, l ∈ (0, 1] is the leak
rate which controls how much of the current state is retained at each update, and σ is a nonlinear
activation, typically the hyperbolic tangent. When Wx and Wh are properly initialized, the reser-
voir states ht provide expressive embeddings of the past inputs x≤t, which can be processed by a
trainable readout to perform downstream tasks such as classification, clustering, or time-series fore-
casting (Bianchi et al., 2020). Since the reservoir embeddings already model nonlinear dynamics,
the readout is usually implemented as a simple linear layer that can be trained efficiently.

Echo state property The reservoir dynamics should be neither too contractive nor chaotic. In the
first case, the reservoir produces representations that are not sufficiently expressive. In the latter,
the reservoir is unstable and responds inconsistently to nearly identical input sequences, resulting
in poor generalization. ESNs are usually configured to ensure the Echo State Property (ESP), a
necessary condition for global asymptotic stability under which the reservoir state asymptotically
forgets its initial conditions and the past inputs. Formally, for any initial states h0,h

′
0 and input

sequence x1:T , by calling fR(h0,x1:T ) the final state of the reservoir initialized with h0 and being
fed with x1:T , then the ESP is defined as

||fR(h0,x1:T )− fR(h
′
0,x1:T )|| → 0 as T → ∞ (4)

The ESP can be achieved by properly initializing Wh and by setting its spectral radius
ρ(Wh) < 1 (Yildiz et al., 2012; Gallicchio & Scardapane, 2020).

3
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Reservoir

Similarity score

Calibration Test

... ...... ... ... ... ... ... ...

Sampling

Figure 1: Let {xt}Tt=1 and {rt}Tt=1 be the time series and residuals of the calibration set, respectively.
Each sequence x1:t generates the state of the reservoir ht. The last state hT is the query state
for the prediction of ŷT+H . We compute similarity scores between hT and the calibration states
{ht}T−H

t=1 , which are used to reweight with {wt}T−H
t=1 associated residuals {rt}Tt=H by resampling

them. Quantiles are computed from the sampled residuals and used to build the PI for ŷT+H .

3 RESERVOIR CONFORMAL PREDICTION

We propose a novel approach for computing CP intervals for time series forecasting based on the
representations generated by RC to model temporal dependencies. Our method leverages CP to
provide accurate uncertainty estimates while maintaining the computational efficiency of RC.

3.1 RESERVOIR SAMPLING CONFORMAL PREDICTION

We construct PIs from a calibration set consisting of a time series of residuals of length T . In
particular, we aim at reweighting the residuals based on similarities with the local dynamics at the
target time step. We leverage the reservoir capability of embedding the observed dynamics x≤t into
its state ht. An overview of the whole procedure is depicted in Figure 1. In general, the input xt can
include any set of endogenous and exogenous variables available at time step t. For simplicity, we
consider xt to be the prediction residual (xt = rt obtained by training a generic forecasting model
on a disjoint training set); the discussion on how to effectively incorporate exogenous variables is
deferred to Section 3.2.

Given an ESN with dynamics defined in Equation 3 and hyperparameters θ, the time series
x1:t = (x1, . . . ,xt) is embedded into a sequence of t reservoir states which encode observed dy-
namics at each time step as

ht = ESNθ(x1:t), ht ∈ RDh . (5)

In particular, to compute the PI for the H-step-ahead prediction ŷt+H , we take as query state the
current state ht (since we do not have access to states h>t) and compute similarity scores between
ht and the states in the calibration set. Note that in most scenarios, the calibration set can be
iteratively updated as new observations become available (i.e., we can include in the calibration set
all the observations up to the current time step t). Weights are computed as

zs(ht) = SIM(ht,hs), 1 ≤ s ≤ T −H (6)

{w1(ht), . . . , wT−H(ht)} = SOFTMAX

{
z1(ht)

τ
, . . . ,

zT−H(ht)

τ

}
(7)

where SIM is a similarity score (e.g., dot product) and τ > 0 is a temperature hyperparameter. Our
goal is to approximate the conditional cumulative distribution function (CDF) of the residual at time
t+H with

F̂ (r | ht) :=

T−H∑
s=1

ws(ht)1
(
rs+H ≤ r

)
≈ P(rt+H ≤ r | x≤t) (8)

where ws(ht) is a weight proportional to the similarity of hs to ht and such that
∑

s ws(ht) = 1.
Quantiles of the conditional error distribution can then be estimated as:

Q̂β(ht) := inf{r ∈ R : F̂ (r | ht) ≥ β}. (9)

4
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In practice, instead of computing the weighted quantile in Eq. 9 directly, we approximate it through
Monte Carlo sampling akin to Auer et al. (2023). More specifically, we sample residuals accordingly
to the weights in Eq. 7 and compute the standard empirical β-quantile on the sampled residuals:

q̂
α/2
t+H = Q̂α/2(ht), q̂

1−α/2
t+H = Q̂1−α/2(ht). (10)

PIs with the desired confidence level α are obtained as:

Ĉα
T (ŷt+H) =

[
ŷt+H + q̂

α/2
t+H , ŷt+H + q̂

1−α/2
t+H

]
. (11)

To account for skewed error distributions, we follow the approach of Xu & Xie (2023b) and refine
the interval in 11 by selecting the level β∗ that minimizes its width:

β∗ = argmin
β∈[0,α]

[
Q̂1−α+β(ht)− Q̂β(ht)

]
Ĉα

T (ŷT+H) =
[
ŷT+H + Q̂β∗(ht), ŷT+H + Q̂1−α+β∗(ht)

]
.

This can provide narrower PIs, at the cost of searching for the optimal level β (Xu & Xie, 2023b).

Discussion Essentially, RESCP is a local CP method for time series where local similarity is
gauged by relying on reservoir states. By sampling more residuals associated with similar states, we
condition the estimates on specific dynamics of interest in the time series. This allows us to build lo-
cally adaptive intervals. While Guan (2022) provides asymptotic guarantees for standard local LCP
for i.i.d. data, such results cannot be applied in the context of time series. In the following section,
we discuss the conditions that allow RESCP to provide (asymptotically) valid intervals. Notably,
this will require assumptions on the nature of the process generating the data and on the reservoir
dynamics. Finally, note that with finite samples, even with i.i.d. observation, data-dependent weights
might introduce a bias that should be accounted for (Guan, 2022). In practice, we found that tun-
ing RESCP hyperparameters on a validation set was sufficient to provide accurate coverage in most
scenarios (see Sec. 4).

3.1.1 THEORETICAL ANALYSIS

We analyze the theoretical properties of RESCP, and show in Corollary 3.7 that it asymptotically
guarantees coverage under some regularity assumptions. As already mentioned, guarantees of stan-
dard CP methods break down for time series unless one relies on highly unrealistic assumptions (e.g.,
exchangeable or i.i.d. observations) (Barber et al., 2023). Moreover, even assuming exchangeabil-
ity, it is impossible to construct finite-length PIs with distribution-free conditional coverage guar-
antees (Lei & Wasserman, 2013; Vovk, 2012). We start by introducing the assumptions needed to
prove the consistency of the weighted empirical CDF in Eq. 8.

Assumption 3.1 (Time-invariant and mixing process). We assume that the process
{Zt = (xt, rt+H)}∞t=1 is time-invariant and strongly mixing (α-mixing) with coefficient α(k) → 0
as t → ∞.

Intuitively, Assumption 3.1 implies that the system’s dynamics do not change over time and that it
“forgets” its initial conditions and past structure, thereby allowing observations that are far apart in
time to be treated as if they were independent.

Assumption 3.2 (ESP and Lipschitz properties in ESN). Let x≤t = (. . . ,xt−1,xt) denote the
history. Define the fading-memory metric for γ ∈ (0, 1) by

dfm(x≤t,x
′
≤t) :=

∞∑
k=1

γk ∥xt−k+1 − x′
t−k+1∥2.

Then the ESN state map ESNθ : x≤t 7→ ht ∈ RDh is well-defined and causal with fading memory
(i.e., the output only depends on the past and present inputs), and there exist a constant LX > 0
such that for all histories x≤t,x

′
≤t:

∥ESNθ(x≤t)− ESNθ(x
′
≤t)∥2 ≤ LX dfm(x≤t,x

′
≤t).

5
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Assumption 3.2 tells us that the reservoir state evolves in a stable and predictable manner: past inputs
influence the state in a controlled, decaying way, and small perturbations are eventually washed out
from the reservoir’s state. These assumptions are commonly used in RC (Grigoryeva & Ortega,
2019; Gallicchio & Micheli, 2011).
Assumption 3.3 (Continuity of the conditional law). Let P(rt+H ∈ R | x≤t) denote the conditional
law of rt+H given the past. Then for every r ∈ R the map

x≤t 7→ F (r | x≤t)

is continuous in x≤t with respect to dfm, i.e.
dfm(x≤t,x

′
≤t) → 0 =⇒ sup

b
|F (r | x≤t)− F (r | x′

≤t)| → 0

Intuitively, Assumption 3.3 ensures that if two histories are similar (in the fading-memory sense),
then the distributions of the future residuals conditioned on these histories are also close. This is a
reasonable assumption to enable learning.
Definition 3.4 (Effective sample size). Let n be the number of available calibration samples, the
effective sample size (Kong et al., 1994; Liu, 2008) is defined in our setting as

mn :=

(
n∑

i=1

(w
(n)
i )2

)−1

. (12)

Note that at high temperature, weights are approximately uniform (w(n)
i ≈ 1

n ) and
∑

i(w
(n)
i )2 ≈ 1

n ,
hence mn ≈ n, which means that the method collapses to vanilla SCP as all calibration points are
treated symmetrically. If instead the temperature is too low, then all the mass concentrates on only
one point, meaning that

∑
i(w

(n)
i )2 = 1 and hence mn = 1.

Assumption 3.5 (Softmax weighting scheme). Let n be the number of available calibration sam-
ples, and let τn = τ(n) be the temperature parameter of the SOFTMAX of equation 7, mn the
associated effective sample size, and w(n) the output weights. Assume:

(i) τn is configured to slowly decrease as n → ∞, so that mn → ∞;

(ii) for every δ > 0, ∑
s:∥hs−ht∥≥δ

w(n)
s (ht)

P−−−−→
n→∞

0.

Condition (ii) states that for sufficiently small temperature τn, the softmax normalization should
concentrate almost all mass on those calibration points whose states lie in a shrinking neighborhood
of ht. On the other hand, we also need these points within the shrinking neighborhood of ht to
increase as the size of the calibration set increases. This can be seen as a bias-variance tradeoff : τn
must be set to a small enough value to localize weights at points similar to the query state (reducing
bias), but at the same time it should be large enough to guarantee a good effective sample size. The-
oretically, this requirement translates into Assumption 3.5 (i) which prescribes that the temperature
has to shrink at a reasonably slow rate: one that allows the number of effective neighbors mn to
diverge as n grows.

Theorem 3.6 (Consistency of the weighted empirical CDF). Let F̂n( · | ht) denote
the conditional weighted empirical CDF in Eq. 8 with calibration data {(xi, ri)}ni=1 and
Fn(r | ht) := P(rt+H ≤ r | ht). Under Assumptions 3.1–3.5, we have for any query state
ht ∈ RDh ,

sup
b∈R

∣∣F̂n(b | ht)− F (b | ht)
∣∣ P−−−−→

n→∞
0.

The proof can be found in App. A. Theorem 3.6 implies the consistency of the empirical conditional
quantile estimator Q̂β(ht) as defined in Equation 9 as estimator to the true conditional quantile
Qβ(ht). Finally, it is trivial to show that the asymptotic coverage of RESCP is guaranteed.
Corollary 3.7 (Asymptotic conditional coverage guarantee). Under Assumptions 3.1–3.5, for any
α ∈ (0, 1) and for n → ∞,

P
(
yt+h ∈ Ĉα

t (ŷt+h) | ht

)
P−−−−→

n→∞
(1− α).

6
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Remark In the theoretical analysis, we model the distribution of future residuals conditioned on
the state ht, i.e., on the reservoir state at time t. This is clearly weaker than conditioning on the entire
history x≤t. Recalling Eq. 8, whether or not F̂ (r | ht) is a good approximation of F (r | x≤t) en-
tirely depends on the ability of the ESN to encode all relevant information from the past in its state.
In particular, if the state representation captures all the relevant information, then RESCP provides
asymptotic conditional coverage given such a history. Conversely, in the extreme case where every
sequence is mapped by the reservoir into the same uninformative state, RESCP would simply pro-
vide marginal coverage, as one would expect. We refer the reader to the rich body of literature on the
expressiveness of ESNs, particularly regarding their universal approximation properties (Grigoryeva
& Ortega, 2018a;b; Li & Yang, 2025) and their effectiveness in extracting meaningful representa-
tions from time series data (Bianchi et al., 2020).

3.1.2 TIME-DEPENDENT WEIGHTS

RESCP, by default, compares the query state with any time step from the calibration state. Note
that state representations do not include any positional encoding that accounts for how far back
in time a certain sample is, treating recent and distant residuals alike. This is not problematic for
time-invariant and stable processes, which we assumed in 3.1.1 to provide coverage guarantees. To
deal, instead, with distribution shifts, we 1) update the calibration set over time, keeping its size
N fixed using a first-in-first-out approach, and 2) make the weights time-dependent, following an
approach similar to NexCP (Barber et al., 2023). In particular, we condition the weights on the
distance between time steps as

wi(ht, t) = γ(∆(t, i))wi(ht), (13)

where γ : N → R is a discount function that maps the distance between time steps ∆(t, i) to a decay
factor. The discount schedule can be chosen in different ways, e.g., exponential like NexCP (Barber
et al., 2023) or linear. In our settings, we observed that a linear decay–i.e., γ(∆(t, i)) := 1/∆(t, i)–
allowed to keep PIs up-to-date without reducing too much the effective sample size. This is partic-
ularly important if assumption 3.1 is violated and the underlying dynamics change over time. It is
worth noting that RESCP is a non-parametric approach without learnable parameters that is much
more robust to non-stationarity compared to approaches that train a model (Auer et al., 2023; Cini
et al., 2025), which must necessarily be updated when time-invariance is lost.

3.2 HANDLING EXOGENOUS INPUTS

Adding exogenous variables as input to the reservoir can affect the internal dynamics of the network
and, thus, its states. Depending on the characteristics of specific exogenous variables, they can harm
the effectiveness of the reservoir in localizing prediction w.r.t. the dynamics of the target variable.
Since the network is not trained, adjusting to the relevance and characteristics of the covariates is
not possible with the completely unsupervised approach discussed in Sec. 3.1. As an alternative to
RESCP in these scenarios, we consider a variant of our original approach, called Reservoir Confor-
mal Quantile Regression (RESCQR), which can account for exogenous inputs by relying on quantile
regression. In practice, we use a linear readout to map the state at each time step to a set of quantiles
of interest. Specifically, we use states h1:T−H and residuals rH+1:T in the calibration set to fit a
linear model Q̂α(ht) as a quantile predictor. To do so, we train the readout to minimize the pinball
loss for the target quantiles {β1, . . . , βM} of the conformity scores:

Lβi
(Q̂βi

(ht), r) =

{
(1− βi)(Q̂βi(ht)− r), Q̂βi(ht) ≥ r

βi(r − Q̂βi
(ht)), Q̂βi

(ht) < r

We can then construct PIs as discussed in Sec. 3.1. As we will show in Sec. 4, RESCQR pro-
vides a practical methods approach that can work well in scenarios where the availability of enough
calibration data allows for training the readout and informative exogenous variables are available.

4 EXPERIMENTS

We compare the performances of RESCP against state-of-the-art conformal prediction baselines on
time series data coming from several applications.
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Table 1: Performance comparison for α = 0.1. ∆Cov values are color-coded for undercoverage
cases: yellow (1-2%), orange (2-4%), red (>4%). The top three Winkler scores for each scenario
are highlighted: bold+underlined (1st), underlined (2nd), . . . . . . . . . . . . . . . . .dot-underlined (3rd).

Learning Non-learning
Metric SPCI HopCPT CP-QRNN RESCQR SCP NexCP RESCP

So
la

r
R

N
N ∆Cov 0.05±0.17 -1.64±1.18 -0.26±0.92 -1.10±0.91 0.37 1.46 0.74±0.24

PI-Width 70.41±1.73 60.49±2.10 55.74±0.98 59.99±1.72 79.15 89.56 62.25±0.75

Winkler 151.50±1.18 112.46±9.34 78.42±0.20 82.76±0.26 171.41 164.96 . . . . . . . . . . . . .104.24±0.79

Tr
an

sf ∆Cov -0.16±0.46 1.32±0.62 1.37±2.09 -3.51±16.26 0.35 1.46 3.09±0.35

PI-Width 71.36±3.21 61.49±1.74 55.70±0.95 59.56±1.59 79.03 89.21 63.34±1.11

Winkler 152.85±0.67 107.59±6.07 77.61±0.25 82.16±0.32 169.64 163.34 . . . . . . . . . . . . .103.13±0.58

A
R

IM
A ∆Cov 0.51±0.36 2.88±2.13 -0.41±0.42 -2.03±0.62 0.16 1.76 0.68±0.95

PI-Width 91.71±1.18 143.32±7.36 59.17±0.41 66.19±0.81 124.19 137.53 77.17±2.07

Winkler 148.86±0.34 173.49±5.15 77.34±0.30 85.38±0.45 215.77 207.58 . . . . . . . . . . . . .110.38±4.03

B
ei

jin
g

R
N

N ∆Cov -1.73±0.67 -5.18±12.67 -1.86±2.16 -1.21±1.65 -0.32 0.00 -0.70±0.77

PI-Width 67.93±1.43 68.47±13.30 61.71±4.91 65.53±4.09 67.99 69.79 65.96±2.50

Winkler 124.51±2.25 140.50±43.64 104.03±0.99 105.43±0.85 126.41 124.10 . . . . . . . . . . . . .106.07±0.47

Tr
an

sf ∆Cov -0.98±1.04 -8.05±16.41 -1.07±0.69 -1.43±1.10 -0.41 0.03 -0.49±0.59

PI-Width 69.96±4.53 61.76±14.39 62.41±1.66 64.41±2.72 67.46 69.64 64.06±1.74

Winkler 125.41±1.43 140.30±36.01 102.81±0.44 . . . . . . . . . . . . .105.97±1.21 126.63 124.35 103.64±0.21

A
R

IM
A ∆Cov -0.23±0.40 -1.37±0.26 -1.54±0.77 -1.42±1.15 -0.24 -0.16 0.63±0.22

PI-Width 74.68±1.21 67.78±0.50 61.80±1.68 66.01±3.01 75.72 76.45 70.43±0.86

Winkler 130.59±0.59 122.48±4.36 101.84±0.67 107.20±1.21 135.07 132.03 . . . . . . . . . . . . .108.75±0.31

E
xc

ha
ng

e
R

N
N ∆Cov 2.98±0.65 2.75±0.08 -1.07±2.52 3.18±1.25 2.29 1.64 1.13±0.27

PI-Width 0.0241±0.0007 0.0404±0.0001 0.0341±0.0018 0.0383±0.0008 0.0444 0.0405 0.0210±0.0001

Winkler 0.0287±0.0007 0.0482±0.0001 . . . . . . . . . . . . . . .0.0461±0.0005 0.0464±0.0005 0.0517 0.0492 0.0264±0.0002

Tr
an

sf ∆Cov 4.44±0.35 2.98±0.07 -0.57±1.58 0.82±1.89 4.57 3.25 1.46±0.18

PI-Width 0.0255±0.0005 0.0399±0.0001 0.0337±0.0016 0.0365±0.0013 0.0544 0.0509 0.0229±0.0001

Winkler 0.0300±0.0005 0.0479±0.0001 0.0480±0.0009 . . . . . . . . . . . . . . .0.0475±0.0008 0.0620 0.0602 0.0294±0.0001

A
R

IM
A ∆Cov 3.49±0.41 2.07±0.08 -1.22±1.78 0.68±1.58 3.08 2.13 0.38±0.41

PI-Width 0.0242±0.0006 0.0379±0.0000 0.0330±0.0007 0.0351±0.0009 0.0387 0.0356 0.0207±0.0001

Winkler 0.0289±0.0003 0.0456±0.0001 0.0455±0.0003 0.0455±0.0006 0.0462 . . . . . . . .0.0447 0.0268±0.0001

A
C

E
A

R
N

N ∆Cov -0.78±1.88 -2.07±0.26 -11.84±8.93 -17.24±5.56 -0.99 -0.33 1.56±0.62

PI-Width 8.99±0.68 18.98±0.19 15.59±1.71 15.44±1.41 19.63 20.15 9.61±0.26

Winkler 14.27±0.19 27.56±0.04 31.48±5.20 33.25±3.48 27.60 . . . . . .26.83 12.91±0.23

Tr
an

sf ∆Cov -1.41±1.29 -2.40±0.27 -21.92±9.88 -23.98±7.16 -5.52 -0.45 3.54±0.32

PI-Width 9.10±0.23 18.40±0.24 13.61±1.49 14.25±1.22 16.53 20.20 10.10±0.16

Winkler 14.58±0.36 27.52±0.02 37.59±5.45 37.54±4.44 29.24 . . . . . .27.47 12.90±0.16

A
R

IM
A ∆Cov 1.41±0.90 -3.55±0.06 -26.91±11.91 -22.21±4.57 -0.75 -0.40 5.02±0.40

PI-Width 12.46±0.35 34.83±0.00 18.48±2.59 19.80±1.35 38.13 36.08 13.63±0.55

Winkler 17.36±0.13 44.70±0.03 53.47±11.95 49.49±3.00 45.99 . . . . . .43.70 16.21±0.53

Datasets and baselines We evaluated our method across four datasets. 1) The Solar dataset comes
from the US National Solar Radiation Database (Sengupta et al., 2018). We used the dataset contain-
ing 50 time series from different locations over a period of 3 years, as done in previous work (Auer
et al., 2023). 2) The Beijing dataset contains air quality measurements taken over a period of 4
years from 12 locations in the city of Beijing, China (Zhang et al., 2017). 3) The Exchange dataset
consists of a collection of the daily exchange rates of eight countries from 1990 to 2016 (Lai et al.,
2017). 4) ACEA contains electricity consumption data coming from the backbone of the energy
supply network in the city of Rome (Bianchi et al., 2015). More details are reported in App. B. We
compare RESCP and its RESCQR variant against the competitors presented in Sec. 2: 1) vanilla
SCP (Vovk et al., 2005), 2) NexCP (Barber et al., 2023), 3) SPCI (Xu & Xie, 2023a), and 4)
HopCPT Auer et al. (2023). We also include 5) CP-QRNN, an RNN trained to perform quantile
regression calibration set using the pinball loss, which is similar to the model proposed by Cini et al.
(2025). For RESCP, we use time-dependent weights (with a linear decay schedule) and the cosine
similarity between reservoir states as the similarity score.
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Table 2: Runtime (in seconds) using the RNN point forecasting baseline.
Learning Non-learning

Dataset SPCI HopCPT CP-QRNN RESCQR SCP NexCP RESCP
Solar 1039.8±2 4574.6±1356.5 172.4±17 82.1±6.7 18 66 52.9±14.7

Beijing 351.4±2.1 1838.5±202.4 81.6±3 46±2.1 9 29 34.6±1.4

Exchange 50.6±0.5 318±0 36.9±1.2 16±0.9 2 2 6.5±0.5

ACEA 227.6±5.8 2262.8±918.9 95.3±9.5 56.6±2.9 7 57 70.5±0.5

Experimental setup and evaluation metrics In our experiments, we adopted a 40%/40%/20%
split for training, calibration, and testing sets, respectively. As base models, we consider three
different point predictors: a simple RNN with gated recurrent cells (Cho et al., 2014), a decoder-only
Transformer (Vaswani et al., 2017), and an ARIMA model (Box & Jenkins, 1970). After training,
we evaluated each model on the calibration set and saved the residuals, which we then used in all the
baselines to compute the PIs. As evaluation metrics, we considered the ∆Cov, i.e., the difference
between the specified confidence level 1− α and the achieved coverage on the test set, the width of
the PIs, and the Winkler score (Winkler, 1972), which penalizes the PI width whenever the observed
value falls outside the computed interval, with the penalty scaled proportionally to the magnitude
of the deviation. Model selection for all methods is done by minimizing the Winkler score over a
validation set, except for HopCPT, which follows a custom procedure (Auer et al., 2023). More
details on model selection for our methods are reported in App. C.

4.1 RESULTS

Results across the datasets and base models are summarized in Tab. 1, where CP methods are
grouped based on whether they rely on learning or not. RESCP achieves competitive performance
across all settings and datasets, both in terms of coverage and Winkler score, while remaining
highly scalable. Notably, RESCPs outperforms HopCPT in almost all scenarios. This is particu-
larly remarkable since both methods use weighted empirical distributions to model uncertainty, but
HopCPT requires training an attention-based architecture end-to-end, while RESCPs does not per-
form any form of training. Moreover, similarly to NexCP and differently from most of the other
methods, RESCP provides approximately valid coverage across all scenarios, but with large im-
provements in PI width, which is reduced up to 60%. The CP-QRNN baseline achieves strong
performance on the large datasets with informative exogenous variables, outperforming all methods
in Solar, but fails in achieving good results in the smaller datasets, such as ACEA and Exchange.
Moreover, on those datasets, trainable methods obtain worse performance, likely due to distribution
changes that require the trained models to be updated over time. RESCQR achieves competitive
performance against the competitors, including more complex models such as CP-QRNN in Solar,
while being more scalable. All other baselines obtain good coverage in most settings, but produce
prediction intervals that are much more conservative. The runtime of each CP method is reported
in Tab. 2 and shows the advantage of RESCP in terms of scalability against methods that require
fitting a model. Moreover, as RESCP does not need centralized training on a GPU, it can be easily
scaled in a distributed setting to process big data. Finally, App. D reports additional results on the
sensitivity of RESCP to different hyperparameter configurations.

5 CONCLUSION AND FUTURE WORKS

We introduced Reservoir Conformal Prediction (RESCP), a simple, fast, and effective method for
uncertainty quantification in time series forecasting that provides accurate uncertainty estimation
across several tasks. We showed that RESCP is principled and theoretically sound. In particu-
lar, assuming strong mixing conditions and reasonable regularity conditions, we demonstrated that
RESCP provides asymptotically valid conditional coverage guarantees. Results on a diverse suite
of benchmarks show that RESCP achieves state-of-the-art performance while being more scalable
and computationally efficient than its competitors. There are several directions for future work. In
particular, it would be interesting to explore extensions to modeling joint distributions in multistep
forecasting (Sun & Yu, 2024), treat multidimensional time series (Feldman et al., 2023; Xu et al.,
2024), and spatiotemporal data (Cini et al., 2025).
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Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Andrea Ceni and Claudio Gallicchio. Edge of stability echo state network. IEEE Trans. Neural
Netw. Learn. Syst., 36(4):7555–7564, April 2025.
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A PROOFS FOR THE ASYMPTOTIC CONDITIONAL COVERAGE

We start the proof with the following lemma.

Lemma A.1 (Regularity of the conditional CDF). Under Assumptions 3.2–3.3, the conditional CDF
F (r | ht) is continuous in ht ∈ Rdh , uniformly in r ∈ R.

Proof. By Assumption 3.2, the map x≤t 7→ ht is Lipschitz with respect to dfm. By Assumption 3.3,
the map x≤t 7→ F (r | x≤t) is continuous. Therefore the composition x≤t 7→ ht 7→ F (r | ht) is
continuous in ht.

We then continue with the proof of Theorem 3.6, which we start by proving point wise convergence.

Proof of Theorem 3.6. Define

F̄n(r | ht) :=

n∑
i=1

w
(n)
i (ht)F (r | hi).

Decompose

F̂n(r | ht)− F (r | ht) = (F̂n(r | ht)− F̄n(r | ht))︸ ︷︷ ︸
(I)

+(F̄n(r | ht)− F (r | ht))︸ ︷︷ ︸
(II)

.

We handle the two terms separately and show both going uniformly to 0 in probability.

Term (I):

F̂n(r | ht)−F̄n(r | ht) =

n∑
i=1

w
(n)
i (ht)

(
1{ri+H ≤ r}−F (r | hi)

)
=

n∑
i=1

w
(n)
i (ht)Yi(r) = Sn(r)

with Yi(r) = 1{ri+H ≤ r} − F (r | hi).

It’s easy to see that since E [Yi(r) | hi] = 0 as

E[1{ri ≤ r} | hi] = 1 · P(ri ≤ r | hi) + 0 · P(ri > r | hi) = P(ri ≤ r | hi) =: F (r | hi),

then E [Sn(r)] = 0. Moreover, |Yi(r)| ≤ 1. To prove that Sn(r)
P−−−−→

n→∞
0, we leverage Chebyshev’s

inequality

P(|Sn(r)| > ϵ) ≤ Var(Sn(r))

ϵ2
.
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and then expand the variance as

Var(Sn(r)) = Var

(
n∑

i=1

w
(n)
i Yi

)
=

n∑
i=1

(w
(n)
i )2Var(Yi) +

∑
i ̸=j

w
(n)
i w

(n)
j Cov(Yi, Yj) (14)

≤
n∑

i=1

(w
(n)
i )2Var(Yi) +

∑
i ̸=j

w
(n)
i w

(n)
j |Cov(Yi, Yj)|. (15)

Starting by the variances term, since |Yi| ≤ 1, we have Var(Yi) ≤ 1, thus the first term of Eq. 14
is bounded

∑n
i=1(w

(n)
i )2Var(Yi) ≤

∑n
i=1(w

(n)
i )2 → 0 thanks to Assumption 3.5 (i). We now

move to the covariances. From Lemma 3 of Doukhan (1994), we know that since the process
generating (xi, ri+H) is mixing by Assumption 3.1, for bounded variables Yi, Yj that are function
of this process the following holds

|Cov(Yi, Yj)| ≤ 4α(|i− j|),

where α(k) is the mixing coefficient. Hence, in our case,∑
i ̸=j

w
(n)
i w

(n)
j |Cov(Yi, Yj)| ≤ 4

∑
i ̸=j

w
(n)
i w

(n)
j α(|i− j|). (16)

We can split the sum in two terms

4
∑

1≤|i−j|≤K

w
(n)
i w

(n)
j α(|i− j|)

︸ ︷︷ ︸
(∗)

+4
∑

|i−j|>K

w
(n)
i w

(n)
j α(|i− j|)

︸ ︷︷ ︸
(∗∗)

(17)

such that for all lags k > K the mixing coefficient is arbitrary small, i.e., for any ϵ > 0, α(k) <
ϵ (this is always possible).

(∗) ≤
(

max
1≤k≤K

α(k)

) ∑
1≤|i−j|≤K

w
(n)
i w

(n)
j (18)

≤ Amax

∑
1≤|i−j|≤K

w
(n)
i w

(n)
j (19)

= 2Amax

K∑
k=1

n−k∑
i=1

w
(n)
i w

(n)
i+k (20)

Using the inequality 2ab ≤ a2 + b2:

2Amax

K∑
k=1

n−k∑
i=1

w
(n)
i w

(n)
i+k ≤ Amax

K∑
k=1

(
n−k∑
i=1

(w
(n)
i )2 +

n−k∑
i=1

(w
(n)
i+k)

2

)
(21)

≤ 2Amax

K∑
k=1

n∑
i=1

(w
(n)
i )2 (22)

≤ 2AmaxK

n∑
i=1

(w
(n)
i )2 (23)

=
2AmaxK

mn
→ 0. (24)

For the second term

14
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(∗∗) =
∑

|i−j|>K

w
(n)
i w

(n)
j α(|i− j|) (25)

≤ ϵ
∑

|i−j|>K

w
(n)
i w

(n)
j (26)

≤ ϵ (27)

where ϵ is arbitrarily small.

Term (II):

F̄n(r | ht)− F (r | ht) =

n∑
i=1

w
(n)
i (ht)

(
F (r | hi)− F (r | ht)

)
Because weights are a convex combination (nonnegative, sum to 1),

|F̄n(r | ht)− F (r | ht)| ≤
n∑

i=1

w
(n)
i (ht)

∣∣F (r | hi)− F (r | ht)
∣∣

Now we use Lemma A.1. For any ϵ > 0 we can choose δ > 0 so that ∥hi − ht∥ < δ implies
supb

∣∣F (r | hi)− F (r | ht)
∣∣ < ϵ. We can split the sum into indices with ∥hi − ht∥ < δ and

∥hi − ht∥ ≥ δ:
n∑

i=1

w
(n)
i (ht)

∣∣F (r | hi)− F (r | ht)
∣∣ = ∑

i:∥hi−ht∥<δ

w
(n)
i (ht)

∣∣F (r | hi)− F (r | ht)
∣∣

+
∑

i:∥hi−ht∥≥δ

w
(n)
i (ht)

∣∣F (r | hi)− F (r | ht)
∣∣

The first term is smaller than ϵ,∑
i:∥hi−ht∥<δ

w
(n)
i (ht)

∣∣F (r | hi)− F (r | ht)
∣∣ < ϵ

∑
i:∥hi−ht∥<δ

w
(n)
i (ht) < ϵ

which we can make arbitrarily small. The second term goes to 0 in probability under Assump-
tions 3.5-(i) and 3.5-(ii): as the temperature goes to zero, the weight concentrates on observations
hi close to ht, and the weight of points not in the neighborhood of ht vanishes∑

i:∥hi−ht∥≥δ

w
(n)
i (ht)

∣∣F (r | hi)− F (r | ht)
∣∣ ≤ 2

∑
i:∥hi−ht∥≥δ

w
(n)
i (ht)

P−−−−→
n→∞

0.

Uniform convergence: The proof here is analogous to proofs of the Glivenko–Cantelli theorem.
Consider points

−∞ = r0 < r1 < ... < rK−1 < rK = ∞
such that for all ϵ > 0

F (rk | ht)− F (rk−1 | ht) ≤ ϵ.

This implies

sup
r∈R

∣∣F̂n(r | ht)− F (r | ht)
∣∣ ≤ max

1≤k≤K

∣∣F̂n(rk | ht)− F (rk | ht)
∣∣ + ϵ

Since we already proven pointwise convergence, we have that

max
1≤k≤K

∣∣F̂n(rk | ht)− F (rk | ht)
∣∣ P−−−−→

n→∞
0

and since ϵ can be made arbitrary small

sup
r∈R

∣∣F̂n(r | ht)− F (r | ht)
∣∣ P−−−−→

n→∞
0.
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Proof of Corollary 3.7.

Starting from

P
(
yt+H ∈ Ĉα

t (ŷt+H) | ht

)
= P

(
rt+H ∈

[
Q̂α/2(ht), Q̂1−α/2(ht)

]
| ht

)
so we have

P
(
rt+H ∈

[
Q̂α/2(ht), Q̂1−α/2(ht)

]
| ht

)
= F

(
Q̂1−α/2(ht)

∣∣ ht

)
− F

(
Q̂α/2(ht)

∣∣ ht

)
and since Theorem 3.6 gives us the consistency of the quantile estimator to the true conditional
quantile, we have that

F
(
Q̂1−α/2(ht)

∣∣ ht

)
− F

(
Q̂α/2(ht)

∣∣ ht

)
P−−−−→

n→∞
1− α.

B DATASETS AND POINT PREDICTORS

B.1 DATASETS

In the experiments that we performed, we considered four datasets coming from different real-world
scenarios and application domains.

Solar data The solar data comes from the US National Solar Radiation Database (Sengupta et al.,
2018). We worked with the dataset of 50 time series generated by Auer et al. (2023), each consisting
of 52,609 half-hourly measurements. These were resampled to obtain 26,304 hourly observations.
Solar radiation was designated as the target variable, and the dataset includes eight additional envi-
ronmental features.

Air Quality data The dataset was first introduced in Zhang et al. (2017) and comprises 35,064
measurements from 12 locations in Beijing, China. It includes two air-quality measurements (PM10
and PM2.5); for our experiments, we used PM10 as the target and excluded PM2.5 from the feature
set. The dataset also contains ten additional environmental variables. Wind direction was encoded
following the method in Auer et al. (2023).

Exchange rate data The collection of the daily exchange rates of eight foreign countries, includ-
ing Australia, Britain, Canada, Switzerland, China, Japan, New Zealand, and Singapore. The data
span 1990–2016, yielding 7,588 samples.

ACEA data The data was first introduced in Bianchi et al. (2015). The time series represents
electricity load provided by ACEA (Azienda Comunale Energia e Ambiente), the company that
manages the electric and hydraulic distribution in the city of Rome, Italy. It was sampled every 10
minutes and contains 137,376 observations.

B.2 POINT PREDICTORS

For each dataset, we trained three distinct point-forecasting models that span different modelling
paradigms. First, a RNN built with gated recurrent unit (GRU) cells and a single layer with a
hidden state size of 32. Second, a decoder-only Transformer configured with hidden size 32, a feed-
forward size of 64, two attention heads, three stacked layers, and a dropout rate of 0.1. Third, an
Autoregressive Integrated Moving Average (ARIMA) model of order (3, 1, 3). The first two models
were trained and configured similarly to Cini et al. (2025), i.e. by minimizing the mean absolute
error (MAE) loss with the Adam optimizer for 200 epochs and a batch size of 32.

For each dataset, every model was trained independently using 40% of that dataset’s samples as the
training set. The first 25% of the calibration split is used as a validation set for early stopping.
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C HYPERPARAMETERS AND EXPERIMENTAL SETUP

C.1 EVALUATION METRICS

Given a prediction interval Ĉα(ŷt) =
[
ŷt + q̂

α/2
t , ŷt + q̂

1−α/2
t

]
computed for a desired confidence

level α and true observation yt, we evaluated our method against the baselines using three funda-
mental metrics in uncertainty quantification.

Coverage gap The coverage gap is defined as

∆Cov = 100
(
1(yt ∈ Ĉα(ŷt))− (1− α)

)
.

and indicates the difference between the target coverage 1− α and the observed one.

Prediction interval width This metric quantifies the width of the prediction intervals, i.e., how
uncertain the model is about prediction ŷt

PI-Width = q̂
1−α/2
t − q̂

α/2
t .

Winkler score This is a combined metric that adds to the PI-Width a penalty if the actual value
yt falls outside the PI. The penalty is proportional by a factor 2

α to the degree of error of the PI, i.e.
how far the actual value is from the closest bound of the interval. The Winkler score is defined as:

W =


(q̂

1−α/2
t − q̂

α/2
t ) + 2

α (q̂
α/2
t − yt) if yt < q̂

α/2
t ,

(q̂
1−α/2
t − q̂

α/2
t ) if q̂α/2t ≤ yt ≤ q̂

1−α/2
t ,

(q̂
1−α/2
t − q̂

α/2
t ) + 2

α (yt − q̂
1−α/2
t ) if yt > q̂

1−α/2
t .

C.2 ESN HYPERPARAMETERS

If properly configured, ESNs can provide rich and stable representations of the temporal depen-
dencies in the data. The main hyperparameters that we considered are: the reservoir size, which
represents the dimension Dh of the high-dimensional space where reservoir’s states evolve (the “ca-
pacity” of the reservoir); the spectral radius ρ(Wh) of the state update weight matrix Wh, which
governs the stability of the internal dynamics of the reservoir; the leak rate, which controls the
proportion of information from the previous reservoir state that is preserved and added to the new
state after the non-linearity; and the input scaling, which regulates the magnitude of the input signal
before it is projected into the reservoir, and thereby control the degree of non-linearity that will be
applied to the state update.

Other hyperparameters that define how the ESN behaves are the connectivity of the reservoirs, which
denotes the proportion of non-zero connections in the state update weight matrix and thereby de-
termines the sparsity structure of the reservoir, the amount and magnitude of noise injected during
state update, and the activation function for the non-linearity. Sometimes, also the topology of the
reservoir can lead to meaningful dynamical properties (a ring-like arrangement of the reservoir’s
internal connection as opposed to random connections).

C.3 MODEL SELECTION

We performed hyperparameter tuning for all combinations of point predictors and datasets on a
validation set, depending on the model.

RESCP For our method, we used 10% of the calibration set for validation. To perform model
selection, we run a grid search over the spectral radius for values in the interval [0.5, 1.5], for the
leak rate [0.5, 1] (1 meaning no leak), for the input scaling [0.1, 3], for the temperature [0.01, 2] and
for the size of the calibration window [100, “all”], where “all” considers all states in the calibration
set. The remaining ESN hyperparameters where kept fixed (reservoir size 512, connectivity 0.2,
tanh activation function, no injected noise during state update, random connections). Given the
high scalability of the method, performing such a grid search was very fast. The same was done for

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 3: Best hyperparameter values found with the grid search described in the previous section for
each dataset and base model combination.

Spectral Radius Leak Rate Input Scaling Temperature Sliding Window
Model RESCP RESCQR RESCP RESCQR RESCP RESCQR RESCP RESCP

So
la

r RNN 0.9 0.9 0.75 1.0 0.7 0.1 0.1 3900
Transformer 0.9 0.9 0.8 1.0 0.4 0.1 0.1 7600
ARIMA 1.0 0.95 0.8 0.9 0.2 0.1 0.1 1500

B
ei

jin
g RNN 1.3 0.99 0.95 1.0 0.25 0.1 0.1 3200

Transformer 1.0 0.9 0.8 1.0 0.25 0.1 0.1 10500
ARIMA 1.45 0.99 0.65 1.0 0.75 0.1 0.15 3800

E
xc

h. RNN 0.95 0.9 0.8 0.9 0.5 0.25 0.1 1000
Transformer 0.99 0.99 0.8 0.9 0.5 0.1 0.1 1000
ARIMA 0.95 0.99 0.8 0.8 0.5 0.1 0.1 1000

A
C

E
A RNN 0.95 0.99 0.8 0.8 0.25 0.25 0.1 1000

Transformer 0.99 0.99 0.8 0.8 0.25 0.25 0.1 3000
ARIMA 0.95 0.9 0.8 1.0 0.25 0.1 0.1 1000

RESCQR, but only on the ESN hyperparameters (reservoir’s size, spectral radius, leak rate and input
scaling). In this setting, to train the readout we used the Adam optimizer (Kingma & Ba, 2015) with
an initial learning rate of 0.003, which was reduced byt 50% every time the loss did not decrease for
10 epochs in a row. Each epoch consisted of mini-batches of 64 samples per batch.

NexCP The search was made for the parameter ρ used to control the decay rate for the weights.
The search was over the values {0.999, 0.99, 0.95, 0.9}.

SPCI Since SPCI (Xu & Xie, 2023a) required fitting a quantile random forest at each time step,
the computational demand to use the official implementation was limiting. Therefore, we used the
implementation provided by Auer et al. (2023), and followed the same protocol for the training.
SPCI was run using a fixed window of 100 time steps, which corresponds to the longest window
considered in Xu & Xie (2023a).

HopCPT We followed the same model selection procedure and hyperparameter search of the orig-
inal paper (Auer et al., 2023). The model was trained for 3,000 epochs in each experiment, validating
every 5 epochs on 50% of the calibration data. AdamW (Loshchilov & Hutter, 2019) with standard
parameters (β1 = 0.9, β2 = 0.999, δ = 0.01) was used to optimize the model. A batch size of 4
time series was used. The model with smallest PI-Width and non-negative ∆Cov was selected. If
no models achieved non-negative ∆Cov, then the one with the highest ∆Cov was chosen.

CP-QRNN Also for this baseline, we followed the same model selection procedure as in the
original paper (Cini et al., 2025). The number of neurons and the number of GRU layers was tuned
with a small grid search on 10% of the calibration data.

C.4 RESULTING HYPERPARAMETERS

The best hyperparameters found with the grid search described in the previous section can be found
in Tab. 3.

D SENSITIVITY ANALYSIS ON ESN HYPERPARAMETERS AND TEMPERATURE

After performing model selection and evaluating our model with the resulting hyperparameters, we
conducted a small sensitivity analysis to determine how each part of the reservoir influenced model
performance in RESCP, allowing us to assess the robustness of our chosen hyperparameters and
identify the key aspects of the reservoir architecture that contribute most to quantification accuracy.
We considered the RNN point forecasting baseline.

Fig. 2 shows how the value of the Winkler score and of the coverage varies as the temperature used
in the SOFTMAX in equation Eq. 7 increases. As can be seen, there is a well-defined optimal range
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Figure 2: Sensitivity analysis of the temperature.
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Figure 3: Sensitivity analysis of the reservoir size.

for the temperature in which the Winkler score is minimal and the coverage is close to the targeted
one. Notice that for a small temperature, the method is unable to achieve the nominal coverage. This
is the bias-variace tradeoff that we mentioned in Section 3.1.1, more specifically in Assumption 3.5:
the temperature should be small enough to localize only the meaningful residuals close to the query
one, yet high enough to avoid collapsing the neighborhood to a single or limited set of similar
samples.
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Figure 4: Sensitivity analysis of the spectral radius.

Fig. 3 shows the behaviour of RESCP depending on the capacity of the reservoir. Apart from the
Beijing dataset, the method can achieve the nominal coverage also when the dimensionality of the
reservoir space is contained, at the price of a higher Winkler score. For the Beijing dataset, a bigger
reservoir dimensionality is required to reach the target coverage.

The sensitivity analysis of the spectral radius can be seen in Fig. 4. It is interesting to see that in
the Solar and Beijing datasets, the best performance is achieved even with ρ(Wh) > 1. This is
due to the condition being only sufficient, not necessary: while ρ(Wh) < 1 guarantees contractive
dynamics in the autonomous linearized reservoir (Gallicchio & Scardapane, 2020), driven reservoirs
with input scaling, leaky units, and bounded nonlinearities (Dong et al., 2022; Ceni & Gallicchio,
2025).

In Fig. 5, we observe how varying the leak rate affects the reservoir’s performance. In particular, a
low value of the leaking rate slows the reservoir’s state updates, causing the network to retain past
information for longer but reducing its responsiveness to new inputs. We can see how this heavily
affects the observed coverage in almost all datasets.

Finally, the effect of different values of input scaling can be found in Fig. 6. High values of input
scaling lead the tanh activation function to saturation during state update, yielding loss of sensitivity
to input variations. On the other hand, a small input scaling keeps the activation function in the linear
part, limiting the richness of nonlinear dynamics necessary to capture complex temporal patterns.
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Figure 5: Sensitivity analysis of the leak rate.
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Figure 6: Sensitivity analysis of the input scaling.
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