
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MOES ARE STRONGER THAN YOU THINK:
HYPER-PARALLEL INFERENCE SCALING WITH ROE

Anonymous authors

Paper under double-blind review

ABSTRACT

The generation quality of large language models (LLMs) is often improved by
utilizing inference-time sequence-level scaling methods (e.g., Chain-of-Thought).
We introduce hyper-parallel scaling, a complementary framework that improves
prediction quality at the token level. Hyper-parallel scaling computes and aggre-
gates multiple output proposals for a single token from the model. We implement
this concept in Mixture-of-Experts (MoE) models, which we refer to as Roster
of Experts (RoE). RoE is a training-free inference algorithm that turns a single
MoE into a dynamic ensemble of MoEs. RoE injects controlled stochasticity into
the expert routing mechanism, enabling it to sample multiple diverse experts for
each token and aggregate their outputs for a more accurate final prediction. To
overcome the computational cost, we introduce an efficient batching strategy and
a specialized KV-caching mechanism that minimizes compute and memory over-
head. For example, RoE enables a 7B MoE model to match the performance of a
10.5B MoE model while using 30% less compute for inference. These gains are
achieved without any fine-tuning of model parameters.

1 INTRODUCTION

Extensive data and substantial computational resources have fueled recent advancements in lan-
guage models. While the simplest method for generating responses is greedy decoding, the quality
of model outputs often requires enhancement at inference time. A growing line of work in this area
focuses on test-time scaling, which aims to improve the performance of the sequence generation pro-
cess. Existing test-time scaling approaches typically fall into two orthogonal categories: sequential
scaling, where the model produces longer, more structured outputs (e.g., Chain-of-Thought (Wei
et al., 2022)); and parallel scaling, where multiple independent sequences are generated and then
aggregated (e.g., self-consistency (Wang et al., 2022)). The general notion of these categories is
marked as “Sequential Scaling” and “Parallel Scaling” in Figure 1.

In this paper, we pose an orthogonal question: Can we improve a model’s intrinsic next-token pre-
diction capability by allocating more computation at inference time? In other words, can we increase
the model’s internal compute during inference to enhance the quality of every generated token? We
refer to this new paradigm as hyper-parallel scaling, as shown in Figure 1. This approach improves
generation quality even under the simplest decoding strategy, greedy decoding. To isolate the gains
attributable to hyper-parallel scaling, we focus our experiments on evaluating greedy decoding qual-
ity throughout the paper.

Hyper-parallel scaling aims to unlock a model’s full potential by increasing the computation allo-
cated to each token at inference time. One way to realize this idea is by introducing controlled
variation within each transformer block (Shelmanov et al., 2021) and recomputing the layer output
multiple times. Another approach is to reuse each layer repeatedly in a recurrent manner, thereby
increasing computation without adding parameters (Lin et al., 2022). While many variants are pos-
sible, we focus on sparsely activated Mixture-of-Experts (MoE) models, which provide an ideal
architecture for implementing this concept.

Mixture of experts (MoE) models have become a leading solution for frontier large language mod-
els (Shazeer et al., 2017; Comanici et al., 2025; Dai et al., 2024). Since they activate only a fraction
of their parameters per forward pass, they naturally raise the central question of hyper-parallel scal-
ing: can the inactive experts be leveraged at inference time to boost performance? Simply increasing

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

M

Prompt: What is 15 / 3?

[3] [times] [5] [is]

[the] [answer] [is]

[15]

[The]

[The]

MMM

[The]

[answer]

[power]

[answer]

[is]

[is]

[is]

[is]

[5]

[5]

[4]

[5][answer]

CoT Token

Answer Token

Sequential Scaling

Hyper-Parallel
Scaling

Parallel Scaling

M M
<think>

M M M

<\think>
M M M M M

[5]

[15]

M M M M M
[15] [/] [3] [=] [5]

M M M M M
[The] [answer] [is] [four] [.]

M M M M M
[Fifteen] [over] [three] [is] [five]

Answer: 15/3=5

Selector/A
ggregator

MMM
MMM

MMM

Figure 1: A categorization of inference-time scaling strategies. (I) Sequential Scaling: Enhancing
performance by generating longer, structured outputs like a chain of thought (Wei et al., 2022).
(II) Parallel Scaling: Generating multiple token sequences and aggregating them, as in Self-
Consistency (Wang et al., 2022). (III) Hyper-Parallel Scaling: A novel paradigm, instantiated
by RoE, that aggregates results from diverse internal computation paths on a per-token basis.

the number of active experts does not work, as models are not trained to aggregate information from
larger expert sets. To address this, we propose Roster of Experts (RoE), a training-free inference
technique that treats a single MoE as a dynamic ensemble. RoE adds controlled stochasticity into
the router’s expert selection, runs multiple stochastic forward passes per token, and aggregates the
resulting logits into a single, higher-quality prediction, all without model fine-tuning.

As is evident, a naive implementation of RoE would incur substantial redundant computation. We
address this by exploiting the overlap across forward passes and merging them into a single batched
call to the LLM. Furthermore, we introduce a specialized caching mechanism to reduce the KV-
cache size required for RoE generation. In short, the contributions in this work are as follows:

• We introduce hyper-parallel scaling, a novel inference paradigm that allocates additional com-
pute at test time to diversify a model’s internal computations, thereby improving the quality of
each token prediction.

• We propose Roster of Experts (RoE), a training-free approach to hyper-parallel scaling in MoE
models that ensembles diverse computational paths. RoE leverages Gumbel-Top-K routing to
inject controlled stochasticity into expert selection and introduces execution and KV-cache opti-
mizations for efficient inference.

• We demonstrate the superior efficiency of RoE compared to conventional model scaling. For
instance, we demonstrate that RoE can enhance the OlMoE-7B model (Muennighoff et al., 2024)
to achieve the performance of a 10.5B model, with a 30% latency decrease compared to its larger
counterpart. The enhancement requires no model finetuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

 MoE Module

E1 E2 E3 E8

+
E4 E5 E6 E7

Gumbel Noise

Top-K Router

Router logits

...

Embedding Table

M
oE

Router

Non-MoE Modules

B
lo

ck
 N

LM Head

...

M
oE

Router

Non-MoE Modules

B
lo

ck
 1

Input sequence

Logits1 LogitsnAggregator()...

Logits

Embedding Table

M
oE

Router

Non-MoE Modules

LM Head

...

M
oE

Router

Non-MoE Modules
B

lo
ck

 1
B

lo
ck

 N

Figure 2: An illustration of the Roster of Experts (RoE) method. Left: For a single input, n distinct
experts are sampled by adding stochasticity to the expert routing at each MoE layer, and the resulting
output logits are aggregated to form the final prediction. Right: A closer view of a single MoE layer
shows k = 2 active experts (dark orange), where Gumbel noise (dark blue) is added to the router
logits, and the top-k experts are selected based on these modified logits.

2 ROE: HYPER PARALLEL SCALING OF MIXTURE OF EXPERTS

Roster of Experts (RoE) enhances a pre-trained MoE model’s performance by treating it as a dy-
namic ensemble. In designing RoE, we hypothesize that making controlled variations in routing
still yields high-quality predictions. The rationale behind our claim is straightforward: during train-
ing, the model already encounters a wide range of expert combinations, so there is no reason not to
exploit the same diversity at test time.

Given the aforementioned insight, we provide a high-level illustration of RoE in Figure 2. At each
generation step, the MoE model generates multiple candidate output logits for a single input by
sampling diverse expert selections from the model. These outputs are then aggregated to produce a
single, more accurate prediction. This process relies on two key components: a stochastic routing
mechanism to create diverse paths, and an efficient inference strategy to ensure practicality.

2.1 GUMBEL-TOP-K ROUTING FOR PATH DIVERSITY

Standard MoE models use deterministic top-k routing, where each token is routed to the k experts
with the highest router logits. To generate diverse computational paths, we introduce controlled
stochasticity into this selection process using Gumbel-Top-K routing. Given the router logits R 2
RE for a token over E experts, we perturb them with Gumbel noise before selecting the top-k
experts. The indices of the selected experts are given by:

Indices = TopK(R+ ⌧ ·G, k) (1)

where G is a vector of i.i.d. samples from the Gumbel(0, 1) distribution, and ⌧ is a temperature pa-
rameter that controls the degree of stochasticity. When ⌧ = 0, this reduces to standard deterministic
top-k routing. As ⌧ increases, the selection becomes more random.

This method is a principled way to sample from the distribution implicitly defined by the router
logits. The Gumbel-Max trick (Gumbel, 1954) establishes that adding Gumbel noise to logits be-
fore an argmax operation is equivalent to sampling from the categorical distribution produced by
applying a softmax to the logits. By extension, applying a TopK operation to Gumbel-perturbed

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

logits corresponds to sampling k elements without replacement from the distribution. This ensures
that experts with higher router logits remain more likely to be selected even after adding Gumbel
noise, preventing the selection from drifting too far from the trained router’s predictions. Figure 2
illustrates this mechanism.

2.2 CHOOSING THE GUMBEL TEMPERATURE

The Gumbel temperature, ⌧ , controls the degree of stochasticity in expert routing. We treat it as a
layer-specific hyperparameter, defining a temperature vector ⌧ = {⌧i}i2LMoE , where LMoE is the
set of MoE layers. Setting a small value of ⌧ keeps router selections nearly unchanged, reducing
expert diversity per sample and making the next-token prediction closely match the underlying MoE.
In contrast, an excessively large ⌧ introduces too much randomness in expert selection, degrading
prediction quality. Appendix B illustrates how task performance varies as the temperature increases.
Selecting the optimal ⌧ presents a hyperparameter optimization problem, balancing the potential
performance gain against the cost of the search. The primary challenge is the search space, which
grows exponentially with the number of MoE layers, rendering an exhaustive search infeasible. A
practical search strategy therefore requires an efficient optimization algorithm and a carefully chosen
validation metric.

2.2.1 OPTIMIZATION METRIC

We consider two metrics for guiding the hyperparameter search: validation perplexity and task-
specific accuracy.

Validation Perplexity (PPL) is computationally inexpensive, as it only requires a single forward
pass over the validation set. However, PPL is an indirect measure of generative reasoning. A low
PPL indicates that the model assigns a high probability to a ground-truth sequence, but does not
guarantee that the model can generate a correct solution independently.

Validation Accuracy directly measures the model’s ability to solve the task, making it a more
faithful metric for generative performance. The main drawback is its high computational cost, as it
requires generating a full solution for each validation example. This cost can make it prohibitive for
large-scale hyperparameter searches.

2.2.2 SEARCH STRATEGY

Given the cost of each evaluation, Bayesian optimization methods are well-suited for this task.
In our experiments (Section 3), we employ the Tree-structured Parzen Estimator (TPE) Watanabe
(2023) via the Optuna framework Akiba et al. (2019). To make the search tractable for models with
many MoE layers, we introduce two heuristics to prune the vast search space, based on empirical
observations:

1. Apply RoE to middle layers only. We hypothesize that the initial and final layers of a trans-
former are more sensitive to routing perturbations. The initial layers process raw token embeddings,
while the final layers consolidate information for the output prediction. Our experiments show pref-
erence of the optimizer to reduce the stochasticity of initial and final layers. We therefore constrain
the search by setting the temperature to zero (⌧i = 0) for the first and last k MoE layers, applying
RoE only to the intermediate ones.

2. Bound the temperature range. We empirically observe that temperature values above 0.5
introduce excessive routing noise, which consistently harms model performance. Consequently, we
restrict the search space for each non-zero temperature to the range [0, 0.5].

2.3 EFFICIENT ROE INFERENCE

A naive implementation of RoE, which performs n independent forward passes, would incur a pro-
hibitive n-fold increase in computation. We introduce two optimization techniques that drastically
reduce this overhead.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

First, we take advantage of the batched parallel processing capabilities of modern accelerators, such
as GPUs. The latency of a forward pass grows sub-linearly with the batch size due to hardware-level
parallelization. By processing the n samples for a single token generation step as a batch, we can
significantly reduce the wall-clock time compared to n sequential runs.

We demonstrate in Section 3.3 that Key-Value (KV) caching significantly reduces the computational
overhead of sequence generation with RoE. However, batched inference alone does not solve the
significant memory overhead introduced by the KV-cache in autoregressive decoding. Since the n
samples follow different computational paths, their hidden states diverge. A naive implementation
would require maintaining n separate KV caches, one for each sample’s unique history. This scales
both memory and computation linearly with n, quickly becoming intractable for long sequences.

To address this, we introduce a novel caching strategy named Clean Cache. Our key insight is that
sufficient output diversity can be achieved by applying stochastic routing only for the current token
being generated, while all samples share a common KV cache derived from a single, deterministic
history. We implement this efficiently within our batched approach by setting the routing temper-
ature ⌧ for the first sample (batch index 0) to zero, making it the “clean” path. We then store and
reuse the KV cache from this single clean sample across all other samples in the batch. As a result,
the memory footprint of the Clean Cache is identical to that of a single sample’s KV cache, incurring
no extra overhead compared to regular caching. This localizes the additional cost of RoE entirely to
the batched forward pass of the current token, making it a practical inference-time strategy.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Models and Benchmarks. We evaluate RoE on three instruction-tuned MoE models: OLMoE-
1B-7B-Instruct (Muennighoff et al., 2024), Mixtral-8x7B-Instruct-v0.1 (Jiang et al., 2024), and
GPT-OSS-20B (OpenAI et al., 2025). Our evaluation spans three domains: mathematical reasoning
(GSM8K (Cobbe et al., 2021), SVAMP (Patel et al., 2021), AddSub (Hosseini et al., 2014), Sin-
gleEQ (Koncel-Kedziorski et al., 2015), MultiArith (Imani et al., 2023)), commonsense reasoning
(ARC-Easy, ARC-Challenge (Clark et al., 2018), OpenBookQA (Mihaylov et al., 2018), Social-I-
QA (Sap et al., 2019), Hellaswag (Zellers et al., 2019)), and code generation (HumanEval (Chen
et al., 2021), HumanEvalPlus (Liu et al., 2023)).

Baseline and Evaluation Strategy. Our primary goal is to isolate the performance gains directly
attributable to RoE’s modification of the model’s internal computational pathways. Unlike test-time
methods that treat the model as a black box and ensemble outputs from multiple generation runs
(e.g., self-consistency), RoE enhances the model’s backbone directly. These two classes of methods
are orthogonal and can be used in conjunction. Therefore, to ensure a clean and direct measurement
of RoE’s impact, we use the standard, unmodified MoE inference as our sole baseline. We employ
greedy decoding for all experiments, ensuring that any observed improvements stem from RoE itself,
not from interactions with complex decoding strategies.

RoE Configuration and Tuning. We tune the per-layer noise temperatures for RoE on each task’s
validation set using the Tree-structured Parzen Estimator (TPE) (Watanabe, 2023) implemented in
Optuna (Akiba et al., 2019). All reported results are evaluated on the test sets after tuning, ensuring
no data contamination from the validation sets. For computational efficiency, we optimize valida-
tion perplexity for math tasks and validation accuracy for commonsense and code tasks. We employ
our ‘clean-cache‘ implementation (Section 2) for OLMoE and the standard cache for other models.
The tuning budget and key RoE hyperparameters are summarized in the appendix (Table 1, while
the complete per-layer temperature profiles are visualized in the appendix (Figure 10).

Implementation Details. Experiments use NVIDIA A100 80GB GPUs. RoE predictions are ag-
gregated by probability averaging. For commonsense tasks, we follow Hu et al. (2023) and select
the answer with the highest log-probability. Results are averaged over 5 seeds. Inference latency is
measured as the wall-clock time for generating 128 tokens. We report exact-match accuracy for all
tasks and pass@1 additionally for code tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Performance comparison of base MoE models and RoE on five mathematical, five com-
monsense, and two code benchmarks. Accuracy is measured by exact match (except for HE and
HE+, which use pass@1). Results are averaged over five random seeds. Axes are normalized to
(min � 1,max + 1) for visualization.

3.2 MAIN RESULTS

Figure 3 presents the performance of RoE applied to the three MoE models across our suite of
benchmarks. As is evident, RoE consistently improves performance across nearly all tasks and
model scales, demonstrating its broad effectiveness as a post-hoc enhancement strategy.

The performance gains are most pronounced for OLMoE, the smallest and weakest base model,
where RoE substantially lifts accuracy across all benchmark categories. We hypothesize that by
diversifying computational paths, RoE unlocks latent capabilities inaccessible to a single, static
routing configuration. This suggests the diversification is most impactful for models with more
initial headroom for improvement.

However, the improvements are not uniform. For math benchmarks, we optimized RoE’s hyperpa-
rameters for validation set perplexity. While RoE consistently lowered perplexity (see Figure 8 in
the appendix), this did not always translate to higher generative accuracy. For instance, on Multi-
Arith, RoE did not improve the accuracy of Mixtral or GPT-OSS. This result underscores the known
disconnect between perplexity and generative reasoning performance, suggesting that tuning RoE
directly on task-specific metrics could yield further gains where computationally feasible.

Finally, we observe a ceiling effect: as a model’s baseline performance on a benchmark approaches
saturation, the potential for improvement diminishes. For instance, the GPT-OSS model already
achieves 95.7% on MultiArith, leaving minimal room for any method to provide substantial gains.

A key advantage of RoE is its applicability to open-ended generation, where parallel scaling meth-
ods, like majority voting over complete outputs, are infeasible. By aggregating logits at each token-
generation step, RoE enhances the performance of open-ended tasks such as code generation, as
evident in Figure 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Impact of caching on RoE performance. (a) Resource usage with caching enabled. Peak
memory (blue, left axis) and power per token (orange, right axis) show a modest increase as the
sample count grows. (b) Latency comparison with and without caching. Without caching, latency
per token rises exponentially, highlighting the necessity of caching for scalable RoE inference.

3.3 COMPUTATIONAL OVERHEAD

We evaluate the computational overhead of RoE in terms of GPU memory footprint, power usage,
and throughput (tokens/second). Our benchmark uses the OLMoE model to generate solutions for
the first 100 problems from the GSM8k benchmark (Cobbe et al., 2021) on a single NVIDIA A100
GPU. To isolate the overhead of our method and ensure a fair comparison, we set the generation
temperature and ⌧ to 0, which produces identical output sequences across all runs.

Figure 4(a) illustrates the relative increase in inference cost for RoE with our caching mechanism.
The resource requirements grow modestly with the number of samples. For instance, using 64
samples increases the memory footprint by only 12% and power consumption by 20%. These results
show that the additional computational cost is manageable and not prohibitive.

Figure 4(b) underscores the necessity of our caching scheme. By comparing RoE with and with-
out caching, we observe that our approach drastically mitigates the increase in power consumption
and latency. Without caching, the cost of sampling multiple paths would be impractical. These
findings confirm that RoE offers a practical trade-off, enhancing model quality for a moderate and
controllable increase in computational demand.

3.4 EFFICIENCY ANALYSIS: ROE VS. MODEL SCALING

RoE enhances a model’s performance, making it comparable to a larger version of the base model.
To quantify this improvement, we measure the equivalent model size that a standard MoE would
need to match the performance of RoE for a given number of samples K. This allows us to directly
compare the efficiency of RoE against the cost of simply using a larger MoE. We estimate this
equivalent size by applying the scaling laws from Kaplan et al. (2020), using test perplexity on the
WikiText-103 dataset (Merity et al., 2016) as the performance metric. For each sample size K, we
tune the RoE routing temperatures across all layers by optimizing perplexity on the WikiText-103
validation set over 50 trials with a TPE optimizer. We then measure the test perplexity of the best-
performing temperature setting on the validation set. As shown in Figure 5(a), the effective model
size grows monotonically with K, although the gains diminish as the sample size increases.

Figure 5(b) compares the computational cost of RoE (blue curve) with the cost of using a larger,
equivalently performing standard MoE model (orange curve). The results show that RoE is substan-
tially more efficient in terms of both latency and memory. For instance, applying RoE with K = 32
to the OLMoE-7B model yields performance comparable to that of a 10.5B OLMoE model. No-
tably, this configuration reduces memory overhead by 25% and per-token latency by 30% relative to
the larger model, underscoring the efficiency of RoE as an alternative to conventional model scaling.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Performance and efficiency analysis of RoE. (a) The performance of RoE applied to
OLMoE-7B, measured in terms of an equivalent standard MoE model size. Performance is evaluated
using perplexity on the WikiText-103 test set. (b) Comparison of the relative increase in latency and
memory for RoE (blue) versus scaling up to an equivalently performing MoE model (orange). The
numbers on the blue curve indicate the RoE sample size K.

4 RELATED WORK

Our work, Roster of Experts (RoE), introduces a method for trading additional inference-time com-
pute for improved model performance. Several strategies improve model performance by increasing
computation at inference time. Inspired by Mirtaheri et al. (2025) we categorize them into three
paradigms, as illustrated in Figure 1.

Sequential Scaling: Sequential scaling methods improve reasoning quality by prompting the model
to generate longer, more structured intermediate steps. The seminal work in this area is Chain-of-
Thought (CoT) prompting (Wei et al., 2022; Nye et al., 2021), which elicits step-by-step reasoning.
In this category, we ask the model to think, question it self and do a step by step analysis (OpenAI,
2025; Kojima et al., 2022). This approach has been extended by a large body of subsequent work
that explores more complex reasoning structures, such as Tree-of-Thoughts (Yao et al., 2023), at
the cost of increased sequential generation steps. The language model needs to be trained with CoT
prompts to be able to utilize this capability during inference.

Parallel Scaling: Parallel scaling generates multiple independent outputs for the same prompt and
aggregates them to produce a final, more robust answer (Brown et al., 2024). The simplest technique
to mention for this category is beam search Freitag & Al-Onaizan (2017), where multiple sequences
of tokens are evolved at the inference time and the best sequence is chosen as the response. Another
prominent example is Self-Consistency (SC) (Wang et al., 2022), which samples diverse reasoning
paths using stochastic decoding (e.g., non-zero temperature) and selects the most frequent answer
via majority vote. While highly effective, the standard voting mechanism limits SC to tasks with
easily verifiable answers, such as math or multiple-choice questions. Recent work aims to extend this
paradigm to open-ended generation tasks by developing more sophisticated aggregation strategies
that do not rely on a single, extractable answer and instead aggregate on a sequence level (Chen
et al., 2023; Taubenfeld et al., 2025; Wang et al., 2024).

Hyper-Parallel Scaling: We introduce hyper-parallel scaling as a distinct, third paradigm. Un-
like sequential and parallel methods that scale the output generation process, hyper-parallel scaling
diversifies the internal computation paths within the model for a single token prediction. RoE ac-
tualizes this concept by treating a single MoE model as an ensemble of subnetworks. By sampling
different sets of active experts for each forward pass, RoE aggregates multiple internal predictions to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

produce a single, higher-quality output distribution for the next token. This approach is orthogonal
to and can be combined with both sequential and parallel scaling.

A related direction was explored by Geiping et al. (2025), who designed a special recurrent architec-
ture allowing for variable-depth inference. However, their method requires a model to be specifically
pretrained for this capability. In contrast, RoE is a training-free strategy that can be applied post-
hoc to any pretrained MoE model, offering a practical way to unlock enhanced performance from
existing artifacts dynamically, and on demand.

5 CONCLUSION

We introduced hyper-parallel scaling, a novel inference paradigm for improving model quality that
is orthogonal to existing sequence-level approaches. Instead of generating multiple sequences, this
paradigm enhances a model’s intrinsic next-token prediction by diversifying its internal computa-
tion. We presented Roster of Experts (RoE), a training-free realization of this concept for Mixture-
of-Experts (MoE) models. RoE treats a single MoE model as a dynamic ensemble, leveraging con-
trolled stochasticity in the expert routing to activate diverse experts and aggregate their outputs into a
more robust prediction. Crucially, we demonstrated that through efficient batching and caching, the
computational overhead of this method is minimal. Our results show that RoE enables a model to
achieve the performance of a substantially larger counterpart with only a minor increase in inference
cost. This provides practitioners with a powerful tool to dynamically trade inference-time compute
for higher quality from a single, pre-trained model.

6 FUTURE WORK

Our work on Roster of Experts (RoE) opens several promising avenues for future research. We
highlight three key directions:

• Generalizing Hyper-Parallel Scaling: A key direction is to extend hyper-parallel scaling
beyond MoE models. Unlike sequence-level scaling methods that are specific to auto-
regressive tasks, hyper-parallel scaling is domain-agnostic. This is particularly relevant for
modalities like vision, audio, and video, where test-time performance scaling is largely
unexplored. Hyper-parallel scaling thus offers a promising path to achieve dynamic perfor-
mance trade-offs in these domains.

• Advanced Noise Injection: Developing more sophisticated noise schemes, such as adap-
tive or input-conditioned noise, to achieve more effective diversification of expert selection
and further improve performance.

• Adaptive Computation: Investigating strategies to dynamically adjust RoE’s computa-
tional budget, for instance by varying the ensemble size based on token difficulty, to opti-
mize the performance-cost trade-off.

• RoE-Aware Training: Incorporating stochastic routing into the pre-training or fine-tuning
process to create models explicitly optimized for RoE, potentially yielding greater gains in
efficiency and quality.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
model generation. arXiv preprint arXiv:2311.17311, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. arXiv
preprint arXiv:1702.01806, 2017.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a series
of lectures, volume 33. US Government Printing Office, 1954.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 523–533, 2014.

Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
and Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. arXiv preprint arXiv:2304.01933, 2023.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Chien-Yu Lin, Anish Prabhu, Thomas Merth, Sachin Mehta, Anurag Ranjan, Maxwell Horton, and
Mohammad Rastegari. Spin: an empirical evaluation on sharing parameters of isotropic networks.
In European conference on computer vision, pp. 553–568. Springer, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558–21572, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Parsa Mirtaheri, Ezra Edelman, Samy Jelassi, Eran Malach, and Enric Boix-Adsera. Let me
think! a long chain-of-thought can be worth exponentially many short ones. arXiv preprint
arXiv:2505.21825, 2025.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. 2021.

OpenAI. Gpt-5 [large language model]. https://openai.com/index/
introducing-gpt-5/, 2025. Released August 7, 2025.

OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai
Chen, Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin
Fives, Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam
Goucher, Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec
Helyar, Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina
Kofman, Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc,
James Park Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin,
Jordan Liss, Lily, Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCal-
lum, Josh McGrath, Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu,
Gideon Myles, Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ash-
ley Pantuliano, Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic
Peran, Dmitry Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo
Raso, Hongyu Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh
Sanjeev, Max Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song,
Dane Stuckey, Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric
Wallace, Xin Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery,
Cedric Whitney, Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech
Zaremba, Wenting Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-
120b gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/2508.10925.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Artem Shelmanov, Evgenii Tsymbalov, Dmitri Puzyrev, Kirill Fedyanin, Alexander Panchenko, and
Maxim Panov. How certain is your transformer? In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1833–
1840, 2021.

11

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2508.10925

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
Yona. Confidence improves self-consistency in llms. arXiv preprint arXiv:2502.06233, 2025.

Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Soft self-consistency improves
language model agents. arXiv preprint arXiv:2402.13212, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

12

	Introduction
	RoE: Hyper Parallel Scaling of Mixture of Experts
	Gumbel-Top-K Routing for Path Diversity
	Choosing the Gumbel Temperature
	Optimization Metric
	Search Strategy

	Efficient RoE Inference

	Experiments
	Experimental Setup
	Main Results
	Computational Overhead
	Efficiency Analysis: RoE vs. Model Scaling

	Related Work
	Conclusion
	Future Work
	Experiment Setup Details
	Impact of Routing Temperature
	Tuning History and Results Heatmap

