MosaicBERT: How to Train BERT with a Lunch Money Budget

Jacob Portes “! Alex Trott “! Sam Havens' Daniel King' Abhinav Venigala' Moin Nadeem >
Nikhil Sardana'! Daya Khudia! Jonathan Frankle !

Abstract

Although BERT-style encoder models are heav-
ily used in NLP research, many researchers do
not pretrain their own BERTSs from scratch due to
the high cost of training. In the past half-decade
since BERT first rose to prominence, many ad-
vances have been made with other transformer
architectures and training configurations that have
yet to be systematically incorporated into BERT.
Here, we introduce MosaicBERT, a BERT-style
encoder architecture and training recipe that is
empirically optimized for fast pretraining. This
efficient architecture incorporates FlashAttention,
Attention with Linear Biases (ALiBi), Gated Lin-
ear Units (GLU), a module to dynamically re-
move padded tokens, and low precision Layer-
Norm into the classic transformer encoder block.
The training recipe includes a 30% masking ratio
for the Masked Language Modeling (MLM) ob-
jective, bfloat16 precision, and vocabulary size
optimized for GPU throughput, in addition to
best-practices from RoBERTa and other encoder
models. When pretrained from scratch on the
C4 dataset, this base model achieves the down-
stream average GLUE (dev) score of 79.6 in 1.13
hours on 8 A100 80 GB GPUs at a cost of roughly
$20. We plot extensive accuracy vs. pretraining
speed Pareto curves and show that MosaicBERT
base and large are consistently Pareto optimal
when compared to a competitive BERT base and
large. This empirical speed up in pretraining en-
ables researchers and engineers to pretrain custom
BERT-style models at low cost instead of finetune
on existing generic models. We open source our
model weights and code.'

*Work done while
Jacob Portes <ja-

“Equal contribution "MosaicML
at MosaicML. Correspondence to:
cob@mosaicml.com>.

Work presented at the ES-FoMo: Efficient Systems for Foundation
Models Workshop at ICML 2023, Honolulu, Hawaii, USA. PMLR
202, 2023. Copyright 2023 by the author(s).

!Code can be found at github.com/mosaicml/examples, and
model weights can be found at huggingface.co/mosaicml. An

1. Introduction

BERT has been the workhorse of modern natural language
processing (NLP) since its introduction in 2018 (Devlin
et al., 2018). Even in the era of large language models
(LLMs), BERT-style encoder models are still quite relevant;
for example, encoder models are used for vector database
embeddings and retrieval augmented generation in tandem
with LLMs (Karpukhin et al., 2020; Lewis et al., 2020; Izac-
ard et al., 2022; Shi et al., 2023). In the past half-decade
since BERT first rose to prominence, however, many ad-
vances have been made with other transformer architectures
and training configurations that have yet to be systemati-
cally incorporated into BERT (Dauphin et al., 2017; Press
et al., 2021; Dao et al., 2022). In this study we empirically
show that these speed optimizations can successfully be
incorporated into the classic BERT architecture and training
recipe.

BERT-style models are typically trained in two stages: an
initial self-supervised pretraining phase that builds general
representations of language, and a subsequent supervised
finetuning phase that uses those representations to address a
specific task. The pretraining stage for BERT models has
historically been computationally expensive; in the original
BERT study, for example, the authors trained their models
for 4 full days on 16 Google TPUs. In recent years, however,
the time and cost to train BERT models has dropped sig-
nificantly. One widely cited paper from 2021 successfully
reduced the training time of BERT-Large to 24 hours on 8 Ti-
tan V-12 GPUs (Izsak et al., 2021), and another very recent
paper trained a competitive BERT-Base model on a single
consumer GPU in only 24 hours (Geiping and Goldstein,
2022). Our work builds on these trends.

In this study, we introduce our optimized MosaicBERT ar-
chitecture and show that certain architectural choices for
BERT-style encoders lead to accuracy vs. time Pareto im-
provements in pretraining. We do this by empirically com-
paring MosaicBERT with an optimal BERT baseline that
does not incorporate our architectural changes but does have
non-architectural optimizations such as fast data streaming

earlier version of this work appeared as a blogpost “Mo-
saicBERT: Pretraining BERT from Scratch for $20” (mo-
saicml.com/blog/mosaicbert).

https://www.github.com/mosaicml/examples
https://huggingface.co/mosaicml/
https://www.mosaicml.com/blog/mosaicbert
https://www.mosaicml.com/blog/mosaicbert

MosaicBERT: How to Train BERT with a Lunch Money Budget

Gated Linear Unit with GeLU | °
(GeLU(xW1) ® xV) W,

Unpadding

Low Precision LayerNorm
max_seq_len

ATa alalals[s[c[o[o[o]p]

B Tx] ntokens

olo[w[>

b Gated Linear Unit

-
0356 10] batch_offset

batch_size +1

o[o[p

FlashAttention (10-aware) LemIACEEEm ke e

] Matmul

Unpadding

Dropout

s

] Softmax

Time (ms)

FlashAttention +

. ALIBi

Fu
Mask Kernel
—
] Matmul

PyTorch FlashAttention

ALiBi (i.e. Linear Bias)

softmax(QK " +

Tokenization & Embedding

AN
MosaicBERT
Encoder Block 1

B GLUE Pareto Curves
o g JBERTT 3G Besin Za1a1
o Y
0 ./.——._./
/./

< 0.82 0 ="
% / o/
< / BERT-Base (Devlin 2018)
O 0,80 et RS ORI SR
[e]
O
(2]
S 0.78 1
)
G)
&
& 0.76 1
g
Z

0.74 4

—e— BERT-Base
0.72 1 i —e— MosaicBERT-Base
0 2 4 6 8 10 12

Pretraining Wall Clock Time (hours)

Figure 1. (A) Schematic of MosaicBERT architecture (B) Pareto curves of average GLUE (dev) scores for MosaicBERT-Base and the
standard BERT-Base. Error bars indicate 95% confidence interval over n=5 pretraining seeds. All training was on 8 x A100-80GB GPUs.
FlashAttention schematic adapted from (Dao et al., 2022), and unpadding schematic adapted from (Zeng et al., 2022)).

and optimal floating point precision. We then evaluate on
the classic GLUE benchmark (Wang et al., 2018).

The contributions of this work are as follows: (1) We imple-
ment a new BERT-style encoder architecture that optimizes
pretraining speed and accuracy. This architecture combines
FlashAttention (Dao et al., 2022), ALiBi (Press et al., 2021),
Gated Linear Units (Dauphin et al., 2017; Shazeer, 2020),
a dynamic unpadding module (Zeng et al., 2022), and low
precision LayerNorm. (2) We show that MosaicBERT base
achieves the downstream average GLUE (dev) score of 79.6
in 1.13 hours on 8 x A100 80 GB GPUs at a cost of roughly
$20 on a standard cloud provider. (3) We characterize the ac-
curacy vs. pretraining time Pareto frontier for MosaicBERT
Base and Large, and empirically show that the performance
of MosaicBERT Base and Large is Pareto optimal relative
to BERT Base and Large. (4) We characterize the relative
throughput properties of each of MosaicBERT’s architec-
ture and design choices via ablations. (5) We characterize
the tradeoff between model size and training duration, and
show that BERT Large performance only surpasses BERT
Base performance after extensive training. We open-source
our model weights, benchmarking data, and code.

2. Methods

In order to build MosaicBERT, we incorporated architec-
tural choices from the recent transformer literature. These
include FlashAttention (Dao et al., 2022), ALiBi (Press
et al., 2021), training with dynamic unpadding (Zeng et al.,
2022), low precision LayerNorm, and Gated Linear Units
(Dauphin et al., 2017; Shazeer, 2020). Before describing

these modifications in detail, we first review the classic
BERT architecture and how we chose a strong baseline.

Since our goal here is to show relative improvements in
training time and final accuracy, we do not attempt to beat
state of the art models for finetuning benchmarks such as
GLUE (Wang et al., 2018). These SOTA models are often
trained for much longer (e.g. (Liu et al., 2019)) and are
larger than the models we explore in this study (Clark et al.,
2020; He et al., 2021)

Choosing a Strong BERT Baseline The basic transformer
block used in BERT models consists of (1) the attention
mechanism and (2) the feed forward layers. This block is
then repeated depending on the model size; BERT-Base has
12 repeated transformer blocks, while BERT-Large has 24.

For our baseline BERT-Base, we used the exact architecture
of BERT from (Devlin et al., 2018);? this includes a hidden
size of 768, an intermediate size of 3072, 12 attention heads
and 12 hidden layers, as well as the GeLU activation func-
tion, and learned positional embeddings. For our baseline
BERT-Large, we used the exact architecture of BERT-Large
from (Devlin et al., 2018), which has a hidden size of 1024,
an intermediate size of 4096, 16 attention heads, and 24
hidden layers.

While MosaicBERT Base (i.e. 12 hidden layers) and Large
(i.e. 24 hidden layers) stay true to this general structure,
we introduce modifications that affect both the attention

>The Hugging Face bert-base-uncased model has been
downloaded 62 million times, more than any other model on the
Hugging Face hub.

MosaicBERT: How to Train BERT with a Lunch Money Budget

mechanism and the feedforward layers.

2.1. MosaicBERT Architecture Modifications for Fast
Pretraining

FlashAttention: The recently proposed FlashAttention
layer reduces the number of read/write operations between
the GPU HBM (high bandwidth memory, i.e. long-term
memory) and the GPU SRAM (i.e. short-term memory)
(Dao et al., 2022). We modified the FlashAttention module
built by Hazy Research with OpenAT’s triton library in order
to flexibly incorporate ALiBi.’

Attention with Linear Biases (ALiBi): In most BERT
models, the positions of tokens in a sequence are encoded
using learned position embeddings, which are added to the
learned token embeddings at the start of the forward pass.
ALiBi eliminates position embeddings and instead encodes
position information directly through the attention operation
(Press et al., 2021). It adds a negative bias to the attention
score between each token pair, which grows linearly with the
relative distance between the tokens. Intuitively, this biases
attention to nearby tokens and allows for extrapolation to
context lengths longer than those used for training (Press
et al., 2021). See Appendix for more details.

Gated Linear Units (GLU): We used Gated Linear Units
for the feedforward sublayer of a transformer. GLUs were
first proposed in 2016 (Dauphin et al., 2017), and incor-
porate an extra learnable matrix that “gates” the outputs
of the feedforward layer (Figure 1A). More recent work
has shown that GLUs can improve performance quality in
transformers (Shazeer, 2020; Narang et al., 2021). We used
the GeLU (Gaussian-error Linear Unit)* activation func-
tion with GLU, which is sometimes referred to as GeGLU.
The module can be described by the following equation:
(GeLU(xW) ® XV)Wa, where x is the input to the feed-
foward layer and the matrix V gates the output of the GeLU
activation function. The extra gating matrix in a GLU model
potentially adds additional parameters to a model; we chose
to augment our MosaicBERT-Base model with additional
parameters due to GLU modules, as it leads to a Pareto
improvement across all timescales. While BERT-Base has
110 million parameters, MosaicBERT-Base has 137 million
parameters. Note that MosaicBERT-Base reaches higher
accuracy faster than BERT-Base despite having more param-
eters (Figure 1B). Similarly, BERT-Large has 340 million
parameters, and MosaicBERT-Large has 430 million param-
eters (see Appendix D).

3github.com/HazyResearch/flash-attention. Note that while
this research was being completed, PyTorch 2.0 was released with
support for FlashAttention. However, FlashAttention in PyTorch
2.0 does not currently support ALiBi integration.

*GeLU is a fully differentiable approximation to ReLU, and
was used in the original BERT study (Devlin et al., 2018).

Low Precision LayerNorm: LayerNorm is a bandwidth-
bound operation, which means that its speed depends on
how quickly data can be loaded from memory to the com-
pute units for element-wise operations. Typically the Lay-
erNorm operation is set to £1oat 32 precision, which re-
quires 4-bytes per-element. In MosaicBERT, we modify
LayerNorm modules to run in bfloat 16 precision instead
of £1oat32. This reduces the amount of data that needs
to be loaded from memory, as only 2-bytes are required
per-element. PyTorch’s automatic-mixed-precision pack-
age does not, by default, run LayerNorm in lower precision
because this can lead to numerical instabilities for certain
models. However, our experimental results show that Mo-
saicBERT does not experience any numerical instabilities
with bfloat 16 precision LayerNorm.

Unpadding: Standard NLP practice is to combine text sam-
ples of different lengths into a batch, and pad the sequences
with empty tokens so that all sequence lengths are the same
(Figure 1A). During training, however, this leads to many
wasted operations on the padding tokens. In MosaicBERT,
we take a different approach and instead concatenate all the
examples from a minibatch into a single sequence of batch
size 1. Results from NVIDIA and others have shown that
this approach leads to speed improvements during training,
since operations are not performed on padding tokens (Zeng
et al., 2022).

MLM Masking Ratio and Dropout We used the standard
Masked Language Modeling (MLM) pretraining objective.
While the original BERT paper also included a Next Sen-
tence Prediction (NSP) task in the pretraining objective,
subsequent papers have shown this to be unnecessary (Liu
et al., 2019; Izsak et al., 2021). For our BERT baselines, we
used the standard 15% masking ratio. However, we found
that a 30% masking ratio led to slight accuracy improve-
ments in both pretraining MLM and downstream GLUE
performance. We therefore included this simple change as
part of our MosaicBERT training recipe. Recent studies
have also found that this can lead to downstream improve-
ments (Wettig et al., 2022; Ankner et al., 2023).

For the baseline BERT, we applied the standard 0.1 dropout
to both the attention and feedforward layers of the trans-
former block. For MosaicBERT, however, we applied 0.1
dropout to the feedforward layers but did not apply dropout
to the FlashAttention module, as this was not possible with
the OpenAl triton implementation.’

3. Results

In our first set of experiments, we pretrained BERT-Base
and MosaicBERT-Base for 70,000 steps of batch size 4096,
which roughly corresponds to 78% of English C4. We

>https://github.com/openai/triton

https://github.com/HazyResearch/flash-attention
https://github.com/openai/triton

MosaicBERT: How to Train BERT with a Lunch Money Budget

Average GLUE Score

0.86
g BERT-Large (Devlin 2018)
................ 0006°%...%9.° ?
650008 88T P TR TCTR STy e
0.84 - C i / Ne—o——o——— \/0
L o—e~ \ e
Q /.
S o P =00 _-®
W 08241 Oof 0
W o/
o} /'® /0
a J ..
o o o
o / d
g d L e oL | BERTBASE (Deviin 2018) 1l
5 0.801° ./
2
°
L)
0.78 —e— BERT-Base
' % Cramming BERT-Base, 1xA6000 (Geiping 2022) —eo— MosaicBERT-Base
—e— BERT-Large
MosaicBERT-Large
0.76

0 10 20 30

40 50 60 70

Pretraining WCT (hours)

Figure 2. Average GLUE (dev) score Pareto curves for MosaicBERT-Base and Large trained for 2 epochs of C4 (178,000 steps with batch
size 4096). MosaicBERT-Base and Large are Pareto optimal relative to BERT-Base and Large. All pretraining is done on 8 x A100 80GB
devices (n=2-3 pretraining seeds). MosaicBERT-Base took much less time to train than MosaicBERT-Large.

ran experiments with n = 5 pretraining seeds for each
model class. We then finetuned these models on the GLUE
benchmark suite using identical finetuning parameters for
all models and experiments (see Appendix).

MosaicBERT-Base Achieves 79.6 Average GLUE (dev)
Score in 1.13 Hours MosaicBERT-Base achieves the down-
stream average GLUE (dev) score of 79.6 in 1.13 hours
on 8xA100 80 GB GPUs at a cost of roughly $20 on a
standard cloud provider. More details on cost estimates are
included in the Appendix. The baseline BERT-Base reached
an average GLUE (dev) score of 83.2% in 11.5 hours (A100-
80GB), while MosaicBERT reached the same accuracy in
roughly 4.6 hours on the same hardware, which is roughly a
2.38x speedup (Table S1 and Figure 1B).

MosaicBERT-Base is Pareto Optimal As can be seen Fig-
ure 1B, MosaicBERT-Base consistently achieves higher
average GLUE accuracy more quickly than the standard
BERT-Base across all training durations. The performance
of MosaicBERT on individual GLUE finetuning tasks can be
seen in Figure S1. MosaicBERT-Base outperforms BERT-
Base in four out of eight GLUE tasks across pretraining
durations.

MosaicBERT-Large is Pareto Optimal While BERT-Base
is one of the most popular BERT models, BERT-Large
comes in a close second. All of our model development
was done on MosaicBERT-Base; we were therefore curi-
ous whether our architecture and pretraining choices also
generalized to a larger model.

In a second set of experiments, we pretrained MosaicBERT-
Base and Large as well as BERT-Base and Large for two

epochs of the C4 dataset. The training duration is 178,000
steps with batch size 4096, and is more than twice as long
as the duration of the models in Figures 1 and S1.

BERT-Large has 24 repeated transformer layers (BERT-
Base has 12), and as a result consumes much more memory
and takes longer to train. We found that MosaicBERT-
Large reached an average GLUE score of 83.2 in 15.85
hours, while BERT-Large took 23.35 hours (Figure 2).
MosaicBERT-Large therefore had a 1.47x speedup over
BERT-Large in this training regime.

While MosaicBERT-Base is optimal for a constrained bud-
get, the MosaicBERT-Large average GLUE score eventu-
ally surpasses MosaicBERT-Base after 25 hours of train-
ing on a 8xA100-80GB node, and reaches an average
score of 85.5 in roughly 50 hours. In our experiments,
the MosaicBERT-Large architecture and pretraining was
the same as MosaicBERT-Base, outside of the number of
attention heads, number of hidden layers, and intermediate
size of the feedforward units.

A striking result from Figures 2 and S2 is that MosaicBERT-
Base is Pareto optimal relative to BERT-large in this training
regime, and is Pareto optimal to MosaicBERT-Large during
the first half of training. MosaicBERT-Base takes only
25 hours to complete 2 epochs, while MosaicBERT-Large
takes close to 70. A potential takeaway from this is that
MosaicBERT-Large only surpasses Base performance in the
large data regime. For certain tasks such as QQP, SST-2, and
MRPC MosaicBERT-Base achieves a maximum accuracy
on par with the maximum accuracy of MosaicBERT-Large,
for far fewer pretraining hours. When building encoders for
specific domains and tasks, bigger is not always better.

MosaicBERT: How to Train BERT with a Lunch Money Budget

References

Z. Ankner, N. Saphra, D. Blalock, J. Frankle, and M. L.
Leavitt. Dynamic masking rate schedules for mlm pre-
training. arXiv preprint arXiv:2305.15096, 2023.

L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo. The
fifth pascal recognizing textual entailment challenge. In
TAC. Citeseer, 2009.

C. Blakeney, J. Z. Forde, J. Frankle, Z. Zong, and M. L.
Leavitt. Reduce, reuse, recycle: Improving training effi-
ciency with distillation. arXiv preprint arXiv:2211.00683,
2022.

D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Spe-
cia. Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Elec-
tra: Pre-training text encoders as discriminators rather
than generators. arXiv preprint arXiv:2003.10555, 2020.

I. Dagan, O. Glickman, and B. Magnini. The pascal recog-
nising textual entailment challenge. In Machine Learning
Challenges. Evaluating Predictive Uncertainty, Visual
Object Classification, and Recognising Tectual Entail-
ment: First PASCAL Machine Learning Challenges Work-
shop, MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers, pages 177-190. Springer, 2006.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344—16359, 2022.

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language
modeling with gated convolutional networks. In Interna-

tional conference on machine learning, pages 933-941.
PMLR, 2017.

M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski,
J. Heek, J. Gilmer, A. Steiner, M. Caron, R. Geirhos,
I. Alabdulmohsin, et al. Scaling vision transformers to
22 billion parameters. arXiv preprint arXiv:2302.05442,
2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

B. Dolan and C. Brockett. Automatically constructing a
corpus of sentential paraphrases. In Third International
Workshop on Paraphrasing (IWP2005), 2005.

J. Geiping and T. Goldstein. Cramming: Training a lan-
guage model on a single gpu in one day. arXiv preprint
arXiv:2212.14034, 2022.

D. Giampiccolo, B. Magnini, I. Dagan, and W. B. Dolan.
The third pascal recognizing textual entailment challenge.
In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pages 1-9, 2007.

P. He, J. Gao, and W. Chen. Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing. arXiv preprint
arXiv:2111.09543, 2021.

A. Henry, P. R. Dachapally, S. Pawar, and Y. Chen. Query-
key normalization for transformers. arXiv preprint
arXiv:2010.04245, 2020.

S. Iyer, N. Dandekar, and K. Csernai. First
quora dataset release: Question pairs,
2017. URL https://data.quora.com/

First-Quora-Dataset—-Release—-Question—-Pairs.

G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski,
A. Joulin, and E. Grave. Unsupervised dense information
retrieval with contrastive learning. 2022.

P. Izsak, M. Berchansky, and O. Levy. How to train bert with
an academic budget. arXiv preprint arXiv:2104.07705,
2021.

V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih. Dense passage retrieval
for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

V. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro. Reducing activation re-

computation in large transformer models. arXiv preprint
arXiv:2205.05198, 2022.

H. Levesque, E. Davis, and L. Morgenstern. The winograd
schema challenge. In Thirteenth international confer-
ence on the principles of knowledge representation and
reasoning, 2012.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktischel,
et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459-9474, 2020.

H. Li, P. Keung, D. Cheng, J. Kasai, and N. A. Smith.
Narrowbert: Accelerating masked language model pre-
training and inference. arXiv preprint arXiv:2301.04761,
2023.

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

MosaicBERT: How to Train BERT with a Lunch Money Budget

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta:
A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

S. Narang, H. W. Chung, Y. Tay, W. Fedus, T. Fevry,
M. Matena, K. Malkan, N. Fiedel, N. Shazeer, Z. Lan,
et al. Do transformer modifications transfer across
implementations and applications? arXiv preprint
arXiv:2102.11972, 2021.

O. Press, N. A. Smith, and M. Lewis. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text

transformer. The Journal of Machine Learning Research,
21(1):5485-5551, 2020.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

N. Shazeer. Glu variants improve transformer. arXiv

preprint arXiv:2002.05202, 2020.

W. Shi, S. Min, M. Yasunaga, M. Seo, R. James, M. Lewis,
L. Zettlemoyer, and W.-t. Yih. Replug: Retrieval-
augmented black-box language models. arXiv preprint
arXiv:2301.12652, 2023.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro. Megatron-Im: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053, 2019.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning,
A. Y. Ng, and C. Potts. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pages 1631-1642, 2013.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is
all you need. Advances in neural information processing
systems, 30, 2017.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
Bowman. Glue: A multi-task benchmark and analy-
sis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

A. Warstadt, A. Singh, and S. R. Bowman. Neural network
acceptability judgments. Transactions of the Association
for Computational Linguistics, 7:625-641, 2019.

A. Wettig, T. Gao, Z. Zhong, and D. Chen. Should you
mask 15% in masked language modeling? arXiv preprint
arXiv:2202.08005, 2022.

A. Williams, N. Nangia, and S. R. Bowman. A broad-
coverage challenge corpus for sentence understanding
through inference. arXiv preprint arXiv:1704.05426,
2017.

J. Zeng, M. Li, Z. Wu, J. Liu, Y. Liu, D. Yu, and Y. Ma.
Boosting distributed training performance of the un-
padded bert model. arXiv preprint arXiv:2208.08124,
2022.

B. Zhang and R. Sennrich. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urta-
sun, A. Torralba, and S. Fidler. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In Proceedings of the

IEEE international conference on computer vision, pages
19-27, 2015.

MosaicBERT: How to Train BERT with a Lunch Money Budget

A. Accuracy vs. Pretraining Time Pareto
Curves

It can often be difficult to understand the effects of model
architecture modifications and training hyperparameter
choices by simply reporting a few numbers in a table, as is
traditionally done in ML papers. A few numbers in a table
can obscure differences in the training data, objective func-
tion, batch size, training duration, learning rate schedule
and many other details. Since our main goal in this study
is to show how combinations of architecture choices lead
to improvements in both accuracy and training time, we
make the choice to plot accuracy vs. training time Pareto
curves for all models. Certain architecture changes might
lead to an increase in throughput, but a decrease in accuracy
(e.g. changes to the floating point precision); other changes
might lead to an increase in accuracy but take a much longer
time to converge (e.g. increasing the model size). Accuracy
vs. training time Pareto curves allow us to adequately asses
all these changes.

B. Further ALiBi Details

Following the notation in (Press et al., 2021), the attention
block computes the attention scores between the ith query
¢; € R? and keys K € RL*4 where d is the head dimension
and L is the sequence length. ALiBi adds a fixed bias with
m as a head-specific slope controlling how the bias grows
with absolute distance between tokens, yielding attention
weights as

softmax(q; K" —m-abs([i—1,i—2,...,i—L])). (1)

The slopes m follow a geometric sequence such that for n
heads, each head has a ratio of 278/" (Press et al., 2021).
During finetuning or inference, the static bias can be in-
creased to accommodated longer sequence lengths. For
example, a model pretrained using ALiBi with a maximum
sequence length of 128 tokens can then extrapolate to a
task with 256 tokens with little to no decrease in zero-shot
performance. Since pretraining a model with a maximum
sequence length of 128 has much higher throughput than
pretraining a model with a sequence length of 256, ALiBi
can be considered an indirect speedup method.

C. Pretraining Optimizations for Both
MosaicBERT and the BERT baseline

Data Pretraining data is an important factor when compar-
ing BERT models; while the original BERT study trained on
English Wikipedia and the Books Corpus (Zhu et al., 2015),
subsequent models such as ROBERTa trained on much larger
datasets (e.g. (Liu et al., 2019) trained on 160 GBs of text
while (Devlin et al., 2018) only trained on 16GB of text).
Here we chose to train all models on the more modern

Colossal Cleaned Common Crawl (C4) corpus (Raffel et al.,
2020). For all experiments, we used a maximum sequence
length of 128 tokens; a larger maximum sequence length
naturally leads to a decrease in throughput (see Figure S5).

Streaming Dataset As part of our efficiency pipeline, we
converted the C4 dataset to the St reamingDataset for-
mat® and used this for both MosaicBERT-Base and the base-
line BERT-Base. This ensured that our wall clock time
measurements were not hindered by data streaming issues.

Bfloat16 Precision We use bfloat16 mixed precision
training for all the models. bf1oat16 is a custom 16-bit
floating point format for machine learning that has one sign
bit, eight exponent bits, and seven mantissa bits, and has
the dynamic range of £1oat 32. For mixed precision train-
ing, a matrix multiplication layer uses bf loat 16 for the
multiplication and 32-bit IEEE floating point (f1oat32)
for gradient accumulation. We found this to be more stable
than using £1oat 16 mixed precision.

Vocab Size as a Multiple of 64 We increased the vocab size
to be a multiple of 64 (i.e. from 30,522 to 30,528). This
small constraint is something established in the MEGA-
TRON work by Shoeybi et al. (2019), and leads to a non-
trivial throughput speedup. Note that in the original BERT
study, the vocabulary size was 32,768 (i.e. 2'6) (Devlin
et al., 2018). Across all experiments, we use the standard
BERT-Base and Large tokenizers.

Hyperparameters For all models, we use a global batch
size of 4096, and microbatch size of 128. We set the max-
imum sequence length during pretraining to 128, and we
used the standard embedding dimension of 768. These hy-
perparameters were the same for MosaicBERT-Base and
the baseline BERT-Base. Full hyperparameter details are
included in the github.com/mosaicml/examples repository.

The space of NLP benchmarks and tasks has exploded in
recent years; we include more information on the individ-
ual tasks in the classic GLUE benchmark later in the Ap-
pendix. MNLI, QNLI and QQP are the largest datasets in
the GLUE benchmark, with 100k-400k training examples,
and MosaicBERT-Base is strictly Pareto-optimal for these
tasks relative to BERT-Base (Figure S1). We interpret this to
mean that the architectural changes and training recipe we
chose resulted in an optimized, efficient BERT-Base model.

The quality of both models on smaller datasets (3k-67k train-
ing samples) is much more variable, as shown by the large
error bars (standard deviation across n=5 pretraining seeds)
for SST-2, MRPC and STSB. Regardless of this variation,
MosaicBERT-Base performs equivalently to BERT-Base on
these tasks across training duration.

8github.com/mosaicml/streaming. It is a drop in replacement
for PyTorch’s TterableDataset that allows for fast streaming
from cloud storage.

https://github.com/mosaicml/examples/tree/main/examples/benchmarks/bert/yamls/
https://github.com/mosaicml/streaming

MosaicBERT: How to Train BERT with a Lunch Money Budget

QNLI QQP RTE
0.905 0.825
0.91 ——o o—o—o—* .
o — > 5
0.8a 0.0 /'/-_./ —] 0.900 ./._--———- 0.800 /,_./
o o— Y —— o—*
0.89 /./ = 0895 ./ e e T 0775 e
> 082 > o884 ¢ i > 0.890 e > ? S
9 9 / Q 0 0.750 / NN
e e o e e ¢ —
5 5 0.87 5 0.885 5 5
9] o o | S 0.725 e
$ o0 £ 06 2 0880 & =
. 0.700
. 0.85 0.875
078 —e— BERT-Base 0.8a —e— BERT-Base 0870 —e— BERT-Base 0.675 —e— BERT-Base
. —e— MosaicBERT-Base 083l ® —e— MosaicBERT-Base osesd ® —e— MosaicBERT-Base 0.650 ¢ —e— MosaicBERT-Base
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Pretraining WCT (hours) Pretraining WCT (hours) Pretraining WCT (hours) Pretraining WCT (hours)
CoLA SST-2 MRPC STSB
0.93
s gyee=—" L 0.895
o py Y oo > 4 emtmte—r 0.90 _"./:/->./\'./. . /-.\’,./.
- 5 ol o7 =0 2 < =
g D4 //,s—--v 089 /_‘./ e g 0.890 ./;.)4)' <
0.91 » o 0
ou /] R fuw| 2
o 9 9 o
o © 0.90 © 0.87 O 0.880
g g | 3 §
g 031/ &, 0.89 2 0.86 E 0.875
B 0.85 5 0.8704 ¢
202 0.88 ’ a”
—e— BERT-Base —e— BERT-Base 0.84 1 o —e— BERT-Base 0.865 —e— BERT-Base
ol —e— MosaicBERT-Base 0871 e —e— MosaicBERT-Base 083 1 —e— MosaicBERT-Base —e— MosaicBERT-Base
. 0.860
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Pretraining WCT (hours) Pretraining WCT (hours) Pretraining WCT (hours) Pretraining WCT (hours)

Figure S1. Performance on individual GLUE (dev) finetuning tasks. Our MosaicBERT-Base consistently outperforms BERT-Base on
MNLI-m, QNLI, QQP and RTE, and has comparable performance on CoLA, SST-2, MRPC and STSB. Wall clock time is for 8 x A100-
80GB GPUs, and does not include finetuning time. Error bars are plotted with 95% confidence interval across n = 5 pretraining seeds,

and all models are trained for 70,000 steps with batch size 4096.

MNLI-m (Accuracy) QNLI (Accuracy)

QQP (Accuracy)

RTE (Accuracy)

0.875 0.94

OC—rs b

0.850

0.825

& ././'\.\
\/ 3

r
0.800 / 0.88 1 . 0.75
1," s '\/\ [\, 2
0.775 | TR \-’.”"""/\'"'.‘.\.
0.86 0.70 - -
0,750 —e— BERT-Base-178k 0l BERT-Large (Devlin 2018)
' —e— MosaicBERT-Base-178k
0.725 1 —— BERT-Large-178k 0824 0.84 1 0.65
MosaicBERT-Large-178k * .
0.700 1 0.80 0.82 0.60
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
CoLA (Matthew's Corr Coef) SST2 (Accuracy) STSB (Spearman's Corr Coef)
0.94 1 0.900 1 0.1
0.931 0.875
0.90
0.92 1
0.850 1
0.91- 0.89
0.825
0.90 0.88
0.800 A
0.89 0.87
0.775 1
0.88
| 0.86
0.87 1 0750
<
| : ; : 0.86 : : v 0.725 1 ; v : 0851, |] I
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

Pretraining WCT (hours) Pretraining WCT (hours)

Figure S2. MosaicBERT-Base and Large accuracy (dev) vs. pretraining speed Pareto curves for individual GLUE benchmarks. All models
were trained on 2 epochs of C4 (178,000 steps with batch size 4096). Error bars represent 95% confidence interval for n=2-3 pretraining

Pretraining WCT (hours)

Pretraining WCT (hours)

seeds. Dashed black line represents BERT-Large accuracy on the GLUE (dev) data (Devlin et al., 2018; Liu et al., 2019).

MosaicBERT: How to Train BERT with a Lunch Money Budget

Model Architecture Average Training Hardware Pretraining #
GLUE (dev) (hours) Corpus Params

MosaicBERT-Base 79.6 1.13 8xA100-80 C4 137M
MosaicBERT-Base 82.2 2.81 8xA100-80 C4 137M
MosaicBERT-Base 83.2 4.6 8xA100-80 Cc4 137M
MosaicBERT-Base 83.4 5.27 8xA100-80 C4 137M
BERT-Base (benchmark) 83.2 11.5 8xA100-80 C4 110M
BERT-Base (Devlin et al., 2018) 79.6 96 16xTPU Wiki+Books 110M
BERT-Base (Geiping and Goldstein, 2022) 80.3 24 1 RTX A6000 Wiki+Books 110M
CrammingBERT-Base (Geiping and Goldstein, 2022) 77.8 24 1 RTX A6000 Wiki+Books 110M
BERT-Large (Devlin et al., 2018) 84.1 96 64xTPU Wiki+Books 340M

Table S1. Average GLUE (dev) score across various efficient BERT implementations. Average includes all 8 GLUE tasks.

D. Ablation Throughput Experiments

How do each of the architecture modifications affect
throughput during training? We ran a series of experi-
ments looking at the individual and combinatorial effects of
low precision LayerNorm, ALiBi and GLU on the baseline
BERT-Base. As can be seen from Figure S3A, ALiBi has
a marginal effect on the throughput as measured by sam-
ples per second, while GLU leads to a decrease in through-
put. Low precision LayerNorm alone causes an increase
in throughput, due to the reduced floating point precision.
When low precision LayerNorm, ALiBi and GLU are com-
bined together on top of the baseline BERT, the throughput
gains of low precision LayerNorm are cancelled out by the
slowdown due to GLU.

t)

In Figure S3B, we show the throughput of the “complete
MosaicBERT-Base with differently-sized GLU matrices of
intermediate size 2048 and 3072. While MosaicBERT-Base
with GLU-2048 has the highest throughput, we found that
the added expressivity of GLU-3072 due to the increase in
parameters compensated for the relative decrease in through-
put, and therefore used this configuration for the modeling in
Figures 1-S2. Therefore, while BERT-Base has 110 million
parameters, MosaicBERT-Base has 137 million parameters
due to the added GLU parameters. Similarly, while BERT-
Large has 340 million parameters, MosaicBERT-Large has
430 million parameters.

Since Dao et al. (2022) showed that FlashAttention leads
to an increase in throughput without any decrease in accu-
racy, and Zeng et al. (2022) showed that removing padding
leads to an increase in throughput, we do not include those
ablation experiments here.

E. Related Work

Various studies rightly focus on a single method or modi-
fication that improves throughput, such as FlashAttention
(Dao et al., 2022) and unpadding (Zeng et al., 2022). In this

study, we incorporate many of these techniques to investi-
gate whether they combine advantageously.

RoBERTa (“Robustly optimized BERT approach”) is the
most influential work in this regard (Liu et al., 2019). In this
study, they kept the exact BERT architecture but changed
the training recipe by removing the next sentence predic-
tion objective, training for longer on much larger datasets,
and changing the batch size, among other things. They
showed that the original BERT was significantly under-
trained - while the original BERT trained on 16GB worth
of text, the top accuracy RoBERTa (Large) was trained on
160GB of data for 500,000 steps with batch size 8192. Many
of the training choices in ROBERTa have become standard
practice; our training recipe therefore more closely resem-
bles RoOBERTa than the original BERT.

Improvements in transformer architecture and GPU hard-
ware have caused the cost of pretraining BERT models to
decline precipitously. The very recent paper “Cramming:
Training a Language Model on a Single GPU in One Day”
(Geiping and Goldstein, 2022) exemplifies this trend. The
goal of this study was to train the best BERT in 24 hours
on a single GPU. Similar to us, they tweaked the BERT
architecture to incorporate FlashAttention and Gated Lin-
ear Units (but without increasing the dimensionality of the
hidden block). Unlike MosaicBERT, they used scaled si-
nusoidal positional embeddings (Vaswani et al., 2017) as
well as Pre-LayerNorm (applying LayerNorm before the
attention and feedforward layers) and did not change the
pretraining masking rate. With this setup, they were able
to train their modified BERT-Base to an average GLUE
score of 78.6 in 24 hours on a single A6000 GPU (i.e. 24
GPU hours). Our study is similar in spirit, but asks what
is the fastest architecture for pretraining, and expands on
this in greater detail by showing that MosaicBERT is Pareto
optimal relative to BERT.

While we believe that our training optimization choices
for MosaicBERT go a long way to improve BERT training
efficiency, there are still exciting optimizations to pursue.

MosaicBERT: How to Train BERT with a Lunch Money Budget

>

Composition of Architecture Changes

MosaicBERT

10000 A

8000

6000

4000 A

2000 A

Throughput (samples/second)

10000 A

8000 -

6000 -

4000 A

2000 A

Throughput (samples/second)

o
L

N & @
&N
N N
e’ &’
$X
\Q\’

Figure S3. Effect of architectural modification on throughput (samples/second) for BERT-Base. (A) ALiBi, GLU and low precision
LayerNorm (IpLN) each affect throughput. In combination, ALiBi, GLU and low precision LayerNorm have lower throughput than the
baseline BERT-Base. (B) Throughput of the “complete” MosaicBERT-Base with different intermediate sizes for GLU.

“NarrowBERT” (Li et al., 2023) suggested a clever change
to the way encoder blocks are stacked so that computation
is not wasted on unmasked tokens. Another recent study
showed that dynamically masking the masking ratio during
pretraining leads to downstream accuracy gains in BERT
(Ankner et al., 2023). There are likely further modifications
that could lead to an increase in accuracy with no effect on
throughput, such as replacing LayerNorm with RMSNorm
(Zhang and Sennrich, 2019) and GeGLU with SwiGLU
(Shazeer, 2020; Narang et al., 2021).

Approaches such as knowledge distillation (Blakeney et al.,
2022) might additionally push the Pareto frontier of BERT
models during pretraining and finetuning. As the field is
learning how to optimize stable model training at the billion
parameter scale (Chowdhery et al., 2022; Dehghani et al.,
2023), we expect some of these innovations to cycle back
to smaller models such as BERT-Base. For example, it
has been hypothesized that incorporating more LayerNorm
modules at the QK matrix output (i.e. QK-LayerNorm
(Henry et al., 2020)) can lead to improved stability during
training; combining this with a more aggressive learning
rate schedule could lead to faster convergence.

F. GLUE Benchmark Details

The GLUE benchmark consists of 8 (originally 9) tasks
(Wang et al., 2018). Since there has been a Cambrian explo-
sion of benchmarks since the halcyon days of GLUE, we
elaborate on the individual GLUE benchmarks for reference:

F.1. Large Finetuning Datasets

MNLI (Multi-Genre Natural Language Inference)
[392,702 train, 19,643 test] is a large crowd-sourced en-

10

tailment classification task (Williams et al., 2017). The
model is given two sentences and has to predict whether
the second sentence is entailed by, contradicts, or is neutral
with respect to the first one. For example:

¢ Premise: “Buffet and a la carte available.”
* Hypothesis: “It has a buffet.”

¢ Label: 0 (entailment)

QNLI [104,743 train, 5,463 test] this Stanford Question An-
swering dataset consists of question-paragraph pairs drawn
from Wikipedia (Rajpurkar et al., 2016).

QQP (Quora Question Pairs 2) [363,846 train, 390,965
test]. The task is to determine whether two sentences are
semantically equivalent (Iyer et al., 2017).

F.2. Small Finetuning Datasets

RTE (Recognizing Textual Entailment) [2,490 train, 3,000
test] Given two sentences, the model has to predict whether
the second sentence is or is not entailed by the first sentence
(Dagan et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009). Note that in our work we use a checkpoint
from the MNLI finetuning to finetune on RTE.

CoLA (Corpus of Linguistic Acceptability) [8,551 train,
1,063 test] (Warstadt et al., 2019) is a benchmark with sen-
tences that are either linguistically acceptable or grammati-
cally incorrect. For example:

* “The higher the stakes, the lower his expectations are.”
Label: 1 (acceptable)

* “Mickey looked up it.” Label: O (unacceptable)

MosaicBERT: How to Train BERT with a Lunch Money Budget

SST-2 (Stanford Sentiment Treebank) [67,349 train,
1,821 test] consists of sentences from movie reviews. The
task is to classify the sentiment as either positive or negative
(Socher et al., 2013).

MRPC (Microsoft Research Paraphrase Corpus)[3,668
train, 1,725 test] (Dolan and Brockett, 2005) The dataset
consists of sentence pairs extracted from online news
sources. The task is to classify whether the sentences in the
pair are semantically equivalent.

STSB (Semantic Textual Similarity Benchmark) [5,749
train, 1,379 test] This dataset contains sentence pairs that
are given similarity scores from 0 to 5 (Cer et al., 2017).

Note that we excluded finetuning on the 9th GLUE task
WNLI (Winograd NLI) (Levesque et al., 2012), as in the
original BERT study (it is a very small dataset [634 train,
146 test] with a high number of adversarial examples). Fine-
tuning on RTE, MRPC and STSB starts from a checkpoint
already finetuned on MNLI (following the example of (Izsak
et al., 2021) and other studies). This is done because all
the above tasks deal with sentence pairs, and this staged
finetuning leads to consistent empirical improvement.

G. Finetuning Hyperparameters

We used the hyperparameters in Table S2 for finetuning all
BERT and MosaicBERT models. All finetuning datasets
used a max sequence length of 256 tokens. We found that
these values worked well across all tasks for BERT-Base,
MosaicBERT-Base, and MosaicBERT-Large; BERT-Large
however was somewhat under-performant on QQP for some
pretraining seeds (Figure S2).

H. MosaicBERT-Large Multinode Throughput
Scaling

The experiments in the main section of this paper were all
performed on a single node with 8x A100 GPUs. How
well do our innovations to the BERT architecture maximize
throughput at the multinode scale?

We measured the throughput of MosaicBERT-Large (430M)
during training on 8, 16, 32, 64, 128 and 200 GPUs, and
plotted the tokens per second for various global batch sizes.
Global batch size is an important factor in the throughput
measurements; in general, cranking up the batch size in-
creases the GPU utilization and raw throughput. As the
number of nodes increases, the global batch size needs to
be increased as well in order to maintain high throughput.

If the global batch size is kept constant while increasing the
number of nodes, the throughput does not increase linearly.
This can be seen in Figure S4; a global batch size of 4096
spread across 64 GPUs using Distributed Data Parallelism

11

le6

—e— global batch size 4096
® global bs 8192 (A10080GB)
global bs 16384 (A10080GB)
® global bs 65536 (A10080GB)
- = theoretical 2x throughput
—e— global bs 128 per GPU (A10040GB)

throughput (tokens/second)

50 75 100 125 150 175 200

GPUs (A100 40GB and 80GB)

0 25

Figure S4. MosaicBERT-Large (430M) multinode throughput scal-
ing

(DDP) means that each GPU will only apply matmul op-
erations on matrices with a dimension of 64, which leads
to suboptimal throughput. If the global batch size is in-
creased to 65,536 across 64 GPUs, this roughly means that
each GPU will apply matmul operations on matrices with
a dimension of 1024, leading to higher throughput. How-
ever, such a large global batch size might not lead to the
best downstream accuracys; this is a question that we were
not able to address in this study due to resource and time
constraints.

1. MosaicBERT-Base Model FLOPs Utilization
(MFU)

Model FLOPs Utilization (MFU) is an estimate of what
percentage of the hardware’s FLOPs are being used during
training. The estimate is based on the measured throughput
and the known FLOPs of the computation.

MFU calculates the utilization from the floating point op-
erations required for a single forward/backwards pass of
the model, and does not account for the additional compute
required for other implementation details such as activation
checkpointing. Thus, MFU is independent of implemen-
tation and hardware. For more details, see (Korthikanti
et al., 2022). All FLOP calculations exclude the operations
required for normalization, activation, and residuals.

Following the notation in the PaLLM paper (Chowdhery et al.,
2022), Model FLOPs Utilization (MFU) is approximated
as:

MosaicBERT: How to Train BERT with a Lunch Money Budget

GLUE Task learning rate beta epsilon weight decay epochs
MNLI Se-5 [0.9, 0.98] le-6 Se-6 3
QNLI le-5 [0.9, 0.98] le-6 le-6 10
QQP 3e-5 [0.9,0.988] le-6 3e-6 5

RTE le-5 [0.9, 0.98] le-6 le-5 3
CoLA Se-5 [0.9, 0.98] le-6 Se-6 10
SST-2 3e-5 [0.9,0.988] le-6 3e-6 3
MRPC 8e-5 [0.9, 0.98] le-6 8e-6 10

Table S2. Finetuning hyperparameters for BERT and MosaicBERT across Base and Large.

6- arameters * To serve
MFU = (8 Pparamer bserved))

Ngpus * Ttheoretical

where Tipserved 1S the observed throughput and T}coretical
is the theoretical peak throughput.

In the numerator, the number of learnable parameters in the
model is multiplied by a factor of 6 to estimate the matmul
FLOPs per token seen (2% for the forward pass and 4 x for
the backward pass). This is then multiplied by the number
of tokens seen per second. As a first-order approximation,
we exclude the extra FLOPs per token due to dense self-
attention.

In the denominator, the theoretical peak throughput is pro-
vided in the GPU hardware specs. For A100 GPUs using
bfloatlé, this theoretical peak throughput is 312 ter-
aFLOPs.

J. GPU Pricing

As of this writing, A100 GPU pricing ranges from $4.10
(40 GB) for on demand cloud compute on AWS, to $2.46
(40 GB) / $5.00 (80 GB) per GPU on GCP to $1.10 (40
GB) / $1.50 (80 GB) per GPU using Lambda labs. At an
intermediate price of $2.50 an hour per A100 80 GB GPU,
training to 79.6 GLUE average score takes 1.13 hours and
costs roughly $22.60.” Some example costs are calculated
in Table S4.

K. Throughput as a Function of Sequence
Length

In Figure S5, we plot the pretraining throughput of
MosaicBERT-Base with various context windows. As the
sequence length doubles, the pretraining throughput halves.
We note that for all of the pretraining in the main text, we
use a maximum sequence length of 128.

"See for example “Cloud GPU instances with the largest
VRAM 2022” (https://medium.com/@aleixlopez/cloud-gpu-
instances-to-solve-out-of-memory-error-2022-d5012883a2727?)

12

MosaicBERT Throughput Across Sequence Length

8000 1

7000 A

6000 -

5000

4000

3000

2000

Throughput (samples/second)

=
o
o
o

o
I

© N
A R

P
Sequence Length

Figure S5. Throughput for Various Sequence Lengths

L. Gated Linear Units (GLU) Optimizations

GLU adds elementwise multiplication of two linear pro-
jections and it leads to qualitative improvements over the
standard Transformer block. There are multiple ways to
implement GLUs and we experimented with two implemen-
tations. Figure S6 shows standard feedforward transformer
block (A) and two implementations of GLUs (B-C). “Fused
GLU” in (C) fuses the two matrix multiplications into one
and is expected to perform better in some domains.

Figure S7 shows the performance impact of the two GLU
over standard feedforward transformer block (which would
be 0% slowdown) for a single GPU. This figure only shows
the performance of the forward pass, and the backward
pass is expected to behave similarly. We can draw two
conclusions from this chart: 1) For smaller batch sizes,
both GLU implementations add significant overhead over
the standard block 2) For batch sizes < 128, Fused GLU
implementation is better than regular GLU implementation
and beyond 128 it’s slightly worse. The implementation
used in the main text is the “Fused GLU” implementation
(C) with batch size global 4096. Since the profiling in Figure
S7 is per GPU, this is in the regime of 4096/8 = 512.

https://medium.com/@aleixlopez/cloud-gpu-instances-to-solve-out-of-memory-error-2022-d5012883a272?
https://medium.com/@aleixlopez/cloud-gpu-instances-to-solve-out-of-memory-error-2022-d5012883a272?

MosaicBERT: How to Train BERT with a Lunch Money Budget

hidden_states
[256, 12|B‘ 768]
Linearl 768x3072
[256, 128, 3072]
Activation Func
[256, 128, 3072]
dropout

[256, 128, 3072]

Linear2 3072x768

[256, 128, 768] 256,

\ elementwise add

[256, 128, 768

LayerNorm

(256, 128, 768]

output

Figure S6. Standard FeedForward Transformer Block and Gated Linear Unit Modifications. Each edge shows the tensor dimension with a
batch size of 256, sequence length of 128 and a hidden dimension of 768. (A): A standard transformer feedforward block. (B): Naive
implementation of a Gated Linear Unit. The number of parameters in this are the same as in (A). (C): Fused implementation of a Gated
Linear Unit where the two matrix multiplications (Linear1_0 and Linear1_1) from (B) are fused into one (Linearl) with 2x the

hidden_states

[256, 128, 768)

[256, 128, 768] Linearl_0 768x2048
Linearl_1 768x2048 [256, 128, 2048]

[256, 128, 2048] Activation Func
[256, 128, 2048)

elementwise mul

[256, 128, 2048]

dropout

input [256, 128, 2048]

128, 768] Linear2 2048x768 input

(256, 128, 768] [256, 128, 768]

elementwise add

[256, 128, 768]

LayerNorm

[256, 128, 768)

output

parameters. Here the output is sliced, and is functionally equivalent to (B).

13

hidden_states

N

256, 128, 768]

Linearl 768x4096
[256, 128, 4096]
slice

256, 128, 2048]

[256, 128, 2048] Activation Func

elementwise mul
[256, 128, 2048]
dropout

[256, 128, 2048]
Linear2 2048x768 input

[256, 128, 768] [256, 128, 768]
elementwise add
[256, 128, 768)
(LayerNorm

256, 128, 768]

output

MosaicBERT: How to Train BERT with a Lunch Money Budget

Model Throughput MFU Hardware Time to Av. Batch Micro-batch
(tokens /sec) GLUE (dev) 79.6 Size Size
BERT-Base 0.4e6 104% 8x A100 80 110.4 minutes 4096 512
(1.84 hours)
MosaicBERT-Base 1.1e6 39.97% 8x A100 80 67.8 minutes 4096 512
(1.13 hours)
MosaicBERT-Base 0.938e6 309% 8x A100 40 76.8 minutes 4096 128
MosaicBERT-Base 1.88e6 31.0% 16x A10040 38.5 minutes 4096 128
MosaicBERT-Base 3.15e6 259% 32x A10040 23.1 minutes 4096 128
MosaicBERT-Base 4.77e6 19.6% 64x A100 40 15.7 minutes 4096 64
Table S3. Multinode Throughput scaling for MosaicBERT-Base
MosaicBERT- 8xA100 8xA100 80GB cost 8xA100 8xA100 40GB
Base Ave. GLUE 80GB hours ($2.50 GPU/hr) 40GB hours cost ($2 GPU/hr)
Score
79.6 1.13 $22.60 1.28 $20.00
82.2 2.81 $56.20 3.19 $51.00
834 5.27 $105.40 5.99 $95.78

Table S4. MosaicBERT-Base GLUE (dev) scores, time and cost comparison

The main reason for slowness of GLUs over standard block
is extra elementwise multiplication in GLU layers. As
for why fused implementation is slower, profiling analysis
shows that the Linear layer ends up calling different CUDA
kernels for matrix-multiplications and their relative perfor-
mance varies for different sizes. While the MosaicBERT
architecture in this work uses the fused GLU implementa-
tion, the analysis here indicates that it would be slightly
more efficient to use the standard GLU implementation in-
stead.

M. Limitations and Broader Impact
M.1. Limitations

While we trained two different model sizes, we have not
pretrained a MosaicBERT model in the >1B parameter
range. In this regime, it is possible there will be training
stability issues; this is an area of future work.

We also only trained models for 70,000 steps and 178,000
steps of batch size 4096. It is possible that some of the
Pareto properties change in the longer regime, although we
suspect that this is unlikely.

M.2. Broader Impact

BERT models are highly used for NLP tasks. By open-
sourcing this work, we hope that our code and models will
be used by the wider research community. We recognize
however that models like BERT and MosaicBERT are tools
that can be used for nefarious purposes, and that biases
inherent in the training data can be reflected in the final

14

model artefacts.

MosaicBERT: How to Train BERT with a Lunch Money Budget

B GLU Slowdown M Fused GLU Slowdown

0%
2
= 40%
[\8)
=
=
®
n
=
S
=
2 0w
=
=
I=
7]

0%

1 2 4] 16 32 64 128 256 512 1024
Batch Size

Figure S7. Slowdown of different implementations of the Gated Linear Unit (GLU). This slowdown is with respect to the standard
feedforward transformer block. The number of parameters between the standard feedforward transformer block and the two GLU
implementations are the same (whereas in the main text, the number of parameters is larger for MosaicBERT corresponding to an
intermediate size of 3072 for the GLU matrix; see Appendix D). The profiling here is per GPU on an 8-GPU cluster. For global batch size
4096, the corresponding per-GPU batch size on the x-axis is 512.

15

