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Abstract
Curriculum learning techniques are a viable so-
lution for improving the accuracy of automatic
models, by replacing the traditional random train-
ing with an easy to hard strategy. However, the
standard curriculum methodology does not auto-
matically provide improved results, but is con-
strained by multiple elements like the data distri-
bution or the proposed model. In this paper, we
introduce a novel curriculum sampling strategy
which takes into consideration the diversity of the
training data together with the difficulty of the
inputs. We determine the difficulty using a state-
of-the-art difficulty estimator and we model the
diversity during training, giving higher priority to
elements from classes visited less. We conduct
object detection and instance segmentation exper-
iments on Pascal VOC 2007 and Cityscapes data
sets, surpassing both the randomly-trained base-
line and the standard curriculum approach. We
prove that our strategy is very efficient in unbal-
anced data sets, leading to faster convergence and
more accurate results, where other curriculum-
based strategies fail.

1. Introduction
Although the quality of automatic models highly increased
with the development of deep and very deep neural net-
works, an important and less studied key element is the
training strategy. In this direction, Bengio et al. (2009) intro-
duced curriculum learning (CL), a set of learning strategies
inspired by the way humans teach and learn. People learn
the easiest concepts at first, followed by more and more
complex elements. Similarly, CL proposes feeding the au-
tomatic model with easier samples at the beginning of the
training, while gradually introducing more difficult data as
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the training proceeds.

The idea is straightforward, but an important question is how
to determine whether a sample is easy or hard. CL requires
the existence of a predefined metric which can compute
the difficulty of the input examples. In this paper, we use
the image difficulty estimator from (Ionescu et al., 2016)
which is based on the time required by human annotators to
identify if a class is present or not in a certain image.

The next challenge is building the curriculum schedule, or
the rate at which we can augment the training set with
more complex information. To address this problem, we
follow a sampling strategy similar to the one introduced
in (Soviany et al., 2020). Based on the difficulty score, we
sample according to a probability function which favors
easier samples in the first iterations, but converges to give
the same weight to all the examples in the later phases
of the training. Still, the probability of sampling a harder
example in the first iterations is not null, and the more
difficult samples which are occasionally picked increase the
diversity of the data and help training.

The above-mentioned methodology should work well for
balanced data sets, but it can fail when the data is unbal-
anced. Ionescu et al. (2016) show that some classes are
more difficult than others. This can make our sampling strat-
egy neglect examples from harder classes and slow down
training. The problem becomes more serious when the data
is biased towards the easier classes, making the more dif-
ficult categories inaccessible in the first epochs. To solve
this problem, we enhance our sampling function with a new
term which takes into consideration the classes of the ele-
ments already sampled, in order to give more importance to
images from less-visited classes.

Since it is a sampling procedure, our CL approach can be
applied to any supervised task in machine learning. In this
paper, we focus on object detection and instance segmen-
tation, two of the main tasks in computer vision, which
require the model to identify the class and the location of
objects in images. To test the validity of our approach, we
experiment on two data sets: Pascal VOC 2007 (Everingham
et al., a) and Cityscapes (Cordts et al., 2016), and compare
our curriculum with diversity strategy against the standard
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random training method, a curriculum sampling (without
diversity) procedure and an inverse-curriculum approach,
which selects images from hard to easy. We employ a state-
of-the-art Faster R-CNN (Ren et al., 2015) detector with
a Resnet-101 (He et al., 2016) backbone for the object de-
tection experiments, and a Mask R-CNN (He et al., 2017)
model based on Resnet-50 for instance segmentation.

Our main contributions can be resumed as follows:

1. We illustrate the necessity of adding diversity when
using CL in unbalanced data sets;

2. We introduce a novel curriculum sampling function,
which takes into consideration the class-diversity of
the training samples and improves the results when
traditional curriculum approaches fail;

3. We prove our strategy by experimenting on two com-
puter vision tasks: object detection and instance seg-
mentation, using two data sets of high interest.

We organize the rest of this paper as follows. In Section 2,
we present the most relevant related works and compare
them with our approach. In Section 3, we explain in detail
the methodology we follow. We present our results in Sec-
tion 4, and draw our conclusion and discuss possible future
work in the last section.

2. Related Work
Curriculum learning. Bengio et al. (2009) introduced the
idea of curriculum learning (CL) to train artificial intelli-
gence, proving that the standard learning paradigm used
in human educational systems could also be applied to
automatic models. CL represents a class of easy-to-hard
approaches, which have successfully been employed in a
wide range of machine learning applications, from natu-
ral language processing (Guo et al., 2019; Kocmi & Bojar,
2017; Liu et al., 2018; Platanios et al., 2019; Subrama-
nian et al., 2017), to computer vision (Gong et al., 2016;
Gui et al., 2017; Hacohen & Weinshall, 2019; Jiang et al.,
2018; Li et al., 2017; Shi & Ferrari, 2016; Weinshall & Co-
hen, 2018), or audio processing (Amodei, 2016; Ranjan &
Hansen, 2017).

One of the main limitations of CL is that it assumes the
existence of a predefined metric which can rank the samples
from easy to hard. These metrics are usually task-dependent
with various solutions being proposed for each. For ex-
ample, in text processing, the length of the sentence can
be used to estimate the difficulty of the input (shorter sen-
tences are easier) (Platanios et al., 2019; Spitkovsky et al.,
2009), while the number and the size of objects in a cer-
tain sample can provide enough insights about difficulty
in image processing tasks (images with few large objects
are easier) (Shi & Ferrari, 2016; Soviany & Ionescu, 2018).

In our paper, we employ the image difficulty estimator of
Ionescu et al. (2016) which was trained considering the time
required by human annotators to identify the presence of
certain classes in images. A big advantage of this method is
that it is not task-dependent, being suitable for a wide range
of computer vision challenges. Previous results (Soviany
et al., 2020), as well as the output on our data set (Figure
1), prove it as a good choice for our experiments.

To alleviate the challenge of finding a predefined difficulty
metric, Kumar et al. (Kumar et al., 2010) introduce Self-
paced learning (SPL), a set of approaches in which the
model ranks the samples from easy to hard during train-
ing, based on its current progress. For example, the inputs
with the smaller losses at a certain time during training are
easier than the samples with higher losses. Many papers
apply SPL successfully (Sangineto et al., 2018; Supancic
& Ramanan, 2013; Tang et al., 2012), and some methods
combine prior knowledge with live training information,
creating self-paced with curriculum techniques (Jiang et al.,
2015; Zhang et al., 2019). Even so, SPL still has some
limitations, requiring a methodology on how to select the
samples and on how much to emphasize easier examples.
Our approach is on the borderline between CL and SPL,
but we consider it to be pure curricular, although we use
training information to advantage classes visited less. The
reason behind our statement is that the class of the training
samples is a priori information and a similar system could
iteratively select examples from every class. Still, we prefer
to use the class-diversity as a term in our difficulty-based
sampling probability function, in order to not massively
alter the actual class distribution of our data set.

Figure 1. Easy and difficult images from Pascal VOC 2007 and
Cityscapes according to our estimation.

The easy-to-hard idea behind CL can be implemented in
multiple ways. One option is to start training on the eas-
iest set of images, while gradually adding more difficult
batches (Bengio et al., 2009; Gui et al., 2017; Kocmi &
Bojar, 2017; Shi & Ferrari, 2016; Spitkovsky et al., 2009;
Zhang et al., 2018). Although most of the models keep
the visited examples in the training set, in (Kocmi & Bojar,
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2017) the authors reduce the size of each bin until combin-
ing it with the following one, in order to use each example
only once during an epoch. In (Liu et al., 2018; Soviany
et al., 2020) the authors propose a sampling strategy ac-
cording to some probability function, which favors easier
examples in the first iterations. As the authors show, the
easiness score from (Soviany et al., 2020) could also be
added as a new term to the loss function to emphasize the
easier examples in the beginning of the training. In this
paper, we follow their sampling strategy and use a similar
probability function to select training examples.

Despite leading to good results in many related papers, the
standard CL procedure is highly influenced by the task and
the data distribution. Simple tasks may not gain much from
using curriculum approaches, while employing CL in unbal-
anced data sets can lead to slower convergence. To address
the second problem, Jiang et al. (2014) and Sachan and
Xing (2016) argue that a key element is diversity. Jiang et
al. (2014) introduce a SPL with diversity technique in which
they regularize the model using both difficulty information
and the variety of the samples. They suggest using clustering
algorithms to split the data in diverse groups. Sachan and
Xing (2016) measure diversity using the angle between the
hyperplanes the samples induce in the feature space. They
chose the examples that optimize a convex combination of
the curriculum learning objective and the sum of angles
between the candidate samples and the examples selected in
previous steps. In our model, we define diversity based on
the classes of our data. We combine our predefined difficulty
metric with a score which favors images from classes visited
less, in order to sample easy and diverse examples at the
beginning of the training, then gradually add more complex
elements. Our idea works well for supervised tasks, but it
can be extended to unsupervised learning by replacing the
ground-truth labels with a clustering model, like suggested
in (Jiang et al., 2014).

Object detection is the task of predicting the location and
the class of objects in certain images. As noted in (Soviany
& Ionescu, 2018), the state-of-the-art object detectors can
be split in two main categories: two-stage and single stage
models. The two-stage object detectors (He et al., 2017;
Ren et al., 2015) use a Region Proposal Network to generate
regions of interest which are then fed to another network
for object localization and classification. The single stage
approaches (Liu et al., 2016; Redmon et al., 2016) take the
whole image as input and solve the problem like a regular
regression task. These methods are usually faster, but less ac-
curate than the two-stage designs. Instance segmentation
is similar to object detection, but more complex, requiring
to generate a mask instead of a bounding box for the objects
in the test image. Our strategy can be applied on top of any
detection and segmentation model, but, in order to increase
the relevance of our results, we experiment with high qual-

ity Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He
et al., 2017) baselines.

3. Methodology
Training artificial intelligence using curriculum approaches,
from easy to hard, can lead to improved results in a wide
range of tasks (Amodei, 2016; Gong et al., 2016; Gui et al.,
2017; Guo et al., 2019; Hacohen & Weinshall, 2019; Jiang
et al., 2018; Kocmi & Bojar, 2017; Li et al., 2017; Liu et al.,
2018; Platanios et al., 2019; Ranjan & Hansen, 2017; Shi &
Ferrari, 2016; Subramanian et al., 2017; Weinshall & Cohen,
2018). Still, it is not simple to determine which samples
are easy or hard because many of the available metrics are
task-dependent. Another challenge of CL is finding the right
curricular schedule, i.e. how fast to add more difficult ex-
amples to training, as well as introducing the right quantity
of harder samples at the right time to positively influence
convergence. In this section, we present our approach for
estimating difficulty and our curriculum sampling strategy
which we enhance by taking into consideration the diversity
of the examples.

3.1. Difficulty estimation

In (Ionescu et al., 2016), the authors defined image difficulty
as the required human time for solving a visual search task.
They collected annotations for the Pascal VOC 2012 (Ev-
eringham et al., b) data set, which they normalized and fed
as training data for their regression model. We follow their
strategy as described in the original paper (Ionescu et al.,
2016) to determine the difficulty scores of the images in our
data sets. These scores have values ≈ 3, with a larger score
defining a more difficult sample. We translate the values
between [−1, 1] using Equation 1 to simplify the usage of
the score in the next steps.

Scalemin−max(x) =
2 · (x−min(x))
max(x)−min(x)

− 1 (1)

3.2. Curriculum sampling

Soviany et al. (2020) introduce a curriculum sampling strat-
egy, which favors easier examples in the first iterations
and converges as the training progresses. It has the advan-
tage of being a continuous method, removing the necessity
of a curricular schedule for enhancing the difficulty-based
batches. Furthermore, the fact that it is a probabilistic sam-
pling method does not constrain the model to only select
easy examples in the first iterations, as batching does, but
adds more diversity in data selection. We follow their ap-
proach in building our curriculum sampling strategy with
only a small change to better emphasize the difficulty. We
use the following function to assign weights to the input
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images during training:

w(xi, t) = (1− diff(xi) · e−γ·t)
k
,∀xi ∈ X, (2)

where xi is the training example from the data set X, t is
the current iteration, and diff(xi) is the difficulty score
associated with the selected sample. γ is a parameter which
sets how fast the function converges to 1, while k sets how
much to emphasize the easier examples. Our function varies
from the one proposed in (Soviany et al., 2020) by changing
the position of the k parameter. We consider that we can
take advantage of the properties of the power function which
increases faster for numbers greater than the unit. Since 1−
si · e−γ·t ∈ [0, 2], and the result is > 1 for easier examples,
our function will focus more on the easier samples in the
first iterations. We transform the weights into probabilities
and we sample according to them.

3.3. Curriculum with diversity sampling

As (Jiang et al., 2014; Sachan & Xing, 2016) note, applying
a CL strategy does not guarantee improved quality, the
diversity of the selected samples having a great impact on
the final results. A simple example is the case in which the
data set is biased, having fewer samples of certain classes.
Since some classes are more difficult than others, as noted
in (Ionescu et al., 2016) and illustrated in Figure 2, if the
data set is not well-balanced, the model will not visit the
harder classes until the later stages of the training. This is
the reason why we enhance our sampling method, by adding
a new term, which is based on the diversity of the examples.

Figure 2. Difficulty of classes in Pascal VOC 2007 according to
our estimation. Best viewed in color.

Our diversity scoring algorithm is simple, taking into consid-
eration the classes of the selected samples. During training,
we count the number of visited objects from each class
(numobjects(c)). We subtract the mean the values to deter-

mine how often was each class visited. This is formally
presented in Equation 3. We scale and translate the results
between [−1, 1] using Equation 1 to get the score of each
class, then, for every image, we compute the image-level
diversity by averaging the class score for each object in its
ground-truth labels in order to make our algorithm work in
multi-class scenarios (Equation 4).

visited(ci) = numobjects(ci)−
∑
cj∈C numobjects(cj)

|C|
∀ci ∈ C. (3)

imgV isited(xi) =

∑
obj∈objects(xi)

visited(class(obj))

|objects(xi)|
∀xi ∈ X. (4)

In our diversity algorithm we want to emphasize the im-
ages with objects from classes visited less, i.e. with a small
imgV isited value, closer to −1. We compute a scoring
function similar to Equation 2, which also takes into con-
sideration how often a class was visited, in order to add
diversity:

w(xi, t) = [1− α · (diff(xi) · e−γ·t)
− (1− α) · (imgV isited(xi) · e−γ·t)]k, (5)

where α controls the impact of each component, the diffi-
culty and the diversity, while the rest of the notation follows
Equation 2. We transform the weights into probabilities by
dividing them by their sum, and we sample according to
them.

4. Experiments
4.1. Data sets

In order to test the validity of our method, we experiment
on two data sets: Pascal VOC 2007 (Everingham et al., a)
and Cityscapes (Cordts et al., 2016). We conduct detection
experiments on 20 classes (aeroplane, bicycle, bird, boat,
bottle, bus, car, cat, chair, cow, diningtable, dog, horse, mo-
torbike, person, pottedplant, sheep, sofa, train, tvmonitor),
training on the 5011 images from the Pascal VOC 2007
trainval split. We perform evaluation on the test split which
contains 4952 images. For our instance segmentation ex-
periments, we use the Cityscapes data set which contains
eight labeled object classes: person, rider, car, truck, bus,
train, motorcycle, bicycle. We train on the training set of
2975 images and we evaluate on the validation split of 500
images.
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Figure 3. Number of objects from each class sampled during our training on Pascal VOC 2007. On the first row is the curriculum sampling
method and on the second row is the curriculum with diversity approach. We present the first 30000 iterations for each case, with
histograms generated from 10k in 10k steps.

4.2. Baselines and configuration

We build our method on top of the Faster R-CNN (Ren et al.,
2015) and Mask R-CNN (He et al., 2017) implementations
available at: https://github.com/facebookresearch/maskrcnn-
benchmark. For our detection experiments, we use Faster
R-CNN with Resnet-101 (He et al., 2016) backbone, while
for segmentation we employ the Resnet-50 backbone on
the Mask R-CNN model. We use the configurations avail-
able on the web site, with the learning rate adjusted for a
training with a batch size of 4. In our sampling procedure
(Equation 5) we set α = 0.5, γ = 6 · 10−5, and k = 5. We
do not compare with other models, because the goal of our
paper is not surpassing the state of the art, but improving the
quality of our baseline model. We also present the results of
a hard-to-easy sampling, in order to prove the efficiency of
the curriculum approach.

4.3. Evaluation metrics

We evaluate our results using the mean Average Preci-
sion (AP). The AP score is given by the area under the
precision-recall curve for the detected objects. The ex-
act evaluation protocol has some differences for each
data set, thus we use the Pascal VOC 2007 (Evering-
ham et al., a) metric for the detection experiments and
the Cityscapes (Cordts et al., 2016) metric for the in-

stance segmentation results. We use the evaluation code
available at https://github.com/facebookresearch/maskrcnn-
benchmark. More details about the evaluation metrics can
be found in the original papers (Cordts et al., 2016; Evering-
ham et al., a).

4.4. Results and discussion

The class distribution of the objects in Pascal VOC 2007
clearly favors class person, with 4690 instances, while
classes dinningtable and bus only contain 215 and 229
instances, respectively (Figure 5). This would not be a
problem if the difficulty of the classes was similar, because
we can assume the test data set has a matching distribution,
but this is not the case, as shown in Figure 2.

Figure 3 presents how the two sampling methods behave
during training on the Pascal VOC 2007 data set. In the
first 10k iterations, curriculum sampling selects images with
almost 20k objects from class person and only 283 instances
from class diningtable. By adding diversity, we lower the
gap between classes, reaching 10k objects of persons and
1000 instances of tables. This behaviour continues as the
training progresses, with the differences between classes
being smaller when adding diversity. It is important to
note that we do not want to sample the exact number of
objects from each class, but to keep the class distribution
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Figure 4. Difficulty of the images samples during our training on Pascal VOC 2007. On the left is presented the curriculum sampling
method and on the right the curriculum with diversity approach. We present the first 40000 iterations for each case, with histograms
generated from 10k in 10k steps. Best viewed in color.

Figure 5. Number of instances from each class in the trainval split
of the Pascal VOC 2007 data set.

of the actual data set, while feeding the model with enough
details about every class. Figure 4 shows the difficulty of the
examples sampled according to our strategies. We observe
that by adding diversity we do not break our curriculum
learning schedule, the examples still being selected from
easy to hard.

To further prove the efficiency of our method, we compute
the AP on both object detection and instance segmentation
tasks. The results are presented in Tables 1 and 2.

We repeat our object detection experiments five times and av-
erage the results, in order to ensure their relevance. The sam-
pling with diversity approach provides an improvement of

Table 1. Average Precision scores for object detection on Pascal
VOC 2007 data set.

MODEL AP

FASTER R-CNN (BASELINE) 72.28± 0.34
CURRICULUM SAMPLING 72.38± 0.32

INVERSE CURRICULUM SAMPLING 70.89± 0.53
DIVERSE CURRICULUM SAMPLING 73.07± 0.28

Table 2. Average Precision scores for instance segmentation on
Cityscapes data set.

MODEL AP AP50 AP75

FASTER R-CNN (BASELINE) 38.72 69.15 34.95
CURRICULUM SAMPLING 38.47 69.88 35.01
INVERSE CURRICULUM 37.40 68.17 34.22
DIVERSE CURRICULUM 39.12 69.86 35.4

0.69% over the standard curriculum method, and of 0.79%
over the randomly-trained baseline. Our experiments, with
an inverse curriculum approach, from hard to easy, lead to
the worst results, showing the utility of CL. Moreover, Fig-
ure 6 illustrates the evolution of the AP during training. The
curriculum with diversity approach has superior results over
the baseline from the beginning to the end of the training.
The standard CL method, on the other hand, starts from
lower scores, exactly because it does not visit enough sam-
ples from more difficult classes in the early stages of the
training.

The instance segmentation results on the Cityscapes data
set confirm the conclusion from our previous experiments.
As Table 2 shows, the curriculum with diversity is again the
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Figure 6. Evolution of mAP during training on Pascal VOC 2007
for object detection. Best viewed in color.

optimal method, surpassing the baseline with 0.4% using
AP, 0.71% using AP50%, and 0.45% using AP75%. It is
interesting to point that, although the diverse curriculum
approach has a better AP and AP75% than the standard CL
method, the former technique surpasses our method with
0.02% when evaluated using AP50%. The inverse curricu-
lum approach has the worst scores again, strengthening our
statements on the utility of curriculum learning.

5. Conclusion and future work
In this paper, we presented a simple method of optimizing
the curriculum learning approaches on unbalanced data sets.
We consider that the diversity of the selected examples is just
as important as their difficulty, and neglecting this fact may
slow down training for more difficult classes. We introduced
a novel sampling function, which uses the classes of the vis-
ited examples together with a difficulty score to ensure the
curriculum schedule and the diversity of the selection. Our
object detection and instance segmentation experiments con-
ducted on two data sets of high interest prove the superiority
of our method over the randomly-trained baseline and over
the standard CL approach. A benefit of our methodology
is that it can be used on top of any deep learning model,
for any supervised task. For the future work, we plan on
studying more difficulty measures to build an extensive view
on how the chosen metric affects the performance of our
system. Furthermore, we aim to create an ablation study on
the parameter choice and find better ways to detect the right
parameter values. Another important aspect we are consid-
ering is extending the framework to unsupervised tasks, by
introducing a novel method of computing the diversity of
the examples.
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