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Abstract
We study the problem of learning discrete latent
variable causal structures from mixed-type obser-
vational data. Traditional methods, such as those
based on the tensor rank condition, are designed
to identify discrete latent structure models and
provide robust identification bounds for discrete
causal models. However, when observed vari-
ables—specifically, those representing the chil-
dren of latent variables—are collected at various
levels with continuous data types, the tensor rank
condition is not applicable, limiting further causal
structure learning for latent variables. In this
paper, we consider a more general case where
observed variables can be either continuous or
discrete, and further allow for scenarios where
multiple latent parents cause the same set of ob-
served variables. We show that, under the com-
pleteness condition, it is possible to discretize
the data in a way that satisfies the full-rank as-
sumption required by the tensor rank condition.
This enables the identifiability of discrete latent
structure models within mixed-type observational
data. Moreover, we introduce the two-sufficient
measurement condition, a more general structural
assumption under which the tensor rank condition
holds and the underlying latent causal structure
is identifiable by a proposed two-stage identifi-
cation algorithm. Extensive experiments on both
simulated and real-world data validate the effec-
tiveness of our method.
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1. Introduction
Latent confounders, typically referred to as unobserved vari-
ables that influence multiple observed variables, are fre-
quently encountered in various disciplines such as statistics,
machine learning, and causal discovery. Ignoring latent
confounders may introduce spurious correlations among
observed variables, impeding the correctness and robustness
of models trained from observational data. Taking into ac-
count latent confounders in modeling procedures remains
a long-standing challenge and has attracted wide attention
in both theoretical and applied research (Zheng et al., 2023;
Li et al., 2024; Miao et al., 2018; Thaden & Kneib, 2018;
Wang & Blei, 2019; Bartolucci et al., 2023).

Much effort has been made to handle the latent confounding
problem in causal structure learning. One line of research
considers the causal structure over the measured variables,
including constraint-based methods (Spirtes et al., 2000;
Colombo et al., 2012; Zhou et al., 2020), functional model-
based ones (Chen et al., 2021b; Hoyer et al., 2008; Salehka-
leybar et al., 2020), and hybrid model approaches (Chen
et al., 2021c; Ogarrio et al., 2016). Another line of research
focuses on identifying the causal structure among latent vari-
ables by utilizing the pure measurement model assumption,
where each latent variable has certain measured variables
as its children. This includes linear model-based methods
(Silva et al., 2006; Cai et al., 2019; Xie et al., 2020; Chen
et al., 2022; Jin et al., 2023; Huang et al., 2022; Xie et al.,
2024) and discrete latent tree model-based approaches (Gu,
2022; Gu & Dunson, 2023; Choi et al., 2011; Zhou et al.,
2020). These methods either assume linear relationships
among all variables or constrain the latent structure to a
specific structure. Consequently, they are unable to handle a
general causal structure with non-linear relationships among
latent variables and observed variables.

When observed variables are continuous and nonlinearly
depend on the discrete latent variables, one straightforward
way to learn the causal structure among latent variables is
to treat it as a mixture model (Teicher, 1967; Tahmasebi
et al., 2018; Allman et al., 2009; Ritchie et al., 2020), so
that the causal structure can be learned from the recovered
latent distribution (Kivva et al., 2021). However, such re-
covery requires an unbiased estimation of the parameters
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of the mixture model, which is unrealistic and impractical
(Chung et al., 2004; xian Wang et al., 2004). Recent work
by (Chen et al., 2024) shows that it is possible to identify
causal relations among latent variables by recovering the
cardinality of the support of latent variables, which is rather
practical and also testable. However, it is only applicable in
discrete cases, and it is still unclear whether the results hold
in the presence of continuous observed variables.

In this paper, we investigate the problem of identifying
discrete latent variables and their causal structure from non-
linearly dependent observed variables. When the observed
variables are also discrete, the tensor rank condition (Chen
et al., 2024) implies d-separation by identifying the cardi-
nality of the latent supports from observed variables. This
raises the question: can the cardinality of latent supports be
identified from continuously observed variables, and then
can the tensor rank condition be applied to further learn the
causal structure? Interestingly, we find that it is possible
to identify the cardinality of latent supports from nonlin-
early dependent observed variables (whether discrete or con-
tinuous) by, for example, using appropriate discretization
techniques. We show that, under the completeness condi-
tion, the tensor rank condition can be used to identify the
d-separation among observed variables that are non-linearly
dependent given the discrete latent confounder, if there are
two sufficient measured variables for each latent variable.
Based on this, we apply the tensor rank condition to the dis-
crete latent structure model with mixed-type observational
data and develop a two-stage identification algorithm to
learn a more general discrete latent variable structure, where
an observed variable can have multiple latent parents. We
theoretically show that the latent structure of the discrete la-
tent structure model is identified up to a Markov equivalent
class by properly utilizing the tensor rank condition.

The contributions of this work are three-fold: (1) We first
demonstrate that under the completeness condition, the ten-
sor rank condition holds for variable sets that may be non-
linearly dependent on latent confounders. (2) We develop
an identification algorithm that identifies a more general
discrete latent variable structure up to a Markov equivalent
class. (3) We conduct simulated experiments to verify its
capability to handle mixed-type observational data.

2. Non-linear Causal Models with Discrete
Latent Confounders

In this paper, we focus on the causal graphical model
(Spirtes et al., 2000) and study how to identify latent vari-
ables and their causal relationships from measured variables
that may be nonlinearly dependent on latent variables. We
first introduce the basic notation.

Consider a causal graph G = {V,E}, it is a DAG with

V = (X,L), where X ∈ Rn is the observed variable set
while L ∈ Ωm is the latent variable set, Ω is a discrete
space with |Ω| = r ≥ 2. In a causal graph, we do not
allow directions from observed to latent to preserve the
latent confounder structure. The data generation of observed
variables is defined as

Xi := f(Pa(Xi), εXi
), (1)

where Pa(Xi) is the parent set of Xi and εXi
is noise

term of Xi. We denote the generating function by f :
[Pa(Xi), εXi

] 7→ Xi. We denote such a causal model as
the nonlinear causal model with discrete latent confounders.

In a causal model, certain causal assumptions are neces-
sary to ensure identifiability. We assume that the distri-
bution P(V) satisfies the Markov property and Faithful-
ness condition with respect to G. That is, the distribution
P(V) =

∏
Vi∈V P(Vi|Pa(Vi)) and the conditional inde-

pendence relations imply the d-separation structure in the
causal graph (Spirtes et al., 2000). Besides, to identify the
discrete latent variable only from observational data, we
make the following non-degeneracy assumption.

Assumption 2.1 (Non-degeneracy). The distribution over
V = {X,L} satisfies:

(a) [Non-zero mass condition] For any r ∈ Ω, P(Li = r) >
0 for all Li ∈ L.

(b) [Full-rank condition] For any discrete conditional distri-
bution contingency table P(Vi|Pa(Vi)) is full rank.

The non-degeneracy assumption has also been used in
(Kivva et al., 2021; Kong et al., 2024; Chen et al., 2024) to
ensure the identifiability of discrete latent variables. Further
discussion on this topic can be found in (Kivva et al., 2021).

Throughout this paper, we use standard notation such as
Pa(Vi) = {Vj |Vj → Vi}, Ch(Vi) = {Vj |Vi → Vj},
Anc(Vi) = {Vj |Vj ⇝ Vi}, Des(Vi) = {Vj |Vi ⇝ Vj} to
denote the set of parents, children, ancestors, descendants,
and nodes of Vi, respectively. For a discrete variable Vi, we
use supp(Vi) = {v ∈ Z+ : P(Vi = v) > 0} to denote the
set of possible values of Vi, and T(Xp) to denote probability
tensor of discrete joint distribution P(Xp). Beside, we use
|Vp| denote the dimension (or cardinality) of Vp.

Goal. We aim to develop a statistically testable method
to learn the causal structure among latent variables in the
nonlinear causal model with discrete latent confounders.

3. Graphical Criteria in Non-linear Causal
Models with Discrete Latents

We begin with a brief review of discrete latent structure
learning methods, with a focus on the tensor rank condition.
Subsequently, we demonstrate that the tensor rank condition
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can be extended to nonlinear causal models with discrete
latent confounders. Thus, we provide a general result for
the tensor rank condition (Theorem 3.4).

3.1. Background

When the mixture model over X is identifiable, (Kivva et al.,
2021) shows that the causal structure among latent variables
is identifiable from an existing mixture oracle. To estimate
the parameters of the mixture oracle, such as the number of
components, (Kivva et al., 2021) applies a K-means algo-
rithm. However, since K-means is an approximate method,
it may sometimes misidentify the number of components
in real-world applications, potentially leading to incorrect
identification of the causal structure.
Example 3.1 (Incorrect identifying the cardinality of latent
support). As shown in Fig. 1, the left side represents the
discrete latent DAG, while the right side shows the corre-
sponding mixture distribution. In the latent structure, the
latent variables L1, L2 have the same support {0, 1}, and
the observed variable is mixed by the Laplace distribution.
One can see that the cardinality of the latent variable is in-
correctly identified as three (when it is actually four) by the
K-means algorithm (Kivva et al., 2021), even in a simple
structure (left side in Fig .1).

L1 L2

X1 X2 X3

−3 −2 −1 0 1
1st observed variable

−2

−1

0

1

2

2n
d o

bs
er
ve

d v
ar
iab

le

1

2

3

12 3 4

12

3

4

The visualization of the clustered data.

Figure 1. Example of a discrete latent DAG and corresponding
mixture distribution, clustered by K-means algorithms.

While the identification of latent variables can be built upon
the identifiability of mixture models, learning mixture mod-
els is a nontrivial problem (Kivva et al., 2021). Rather
than relying on approximate methods to estimate mixture
models, seeking a simple and robust approach is more mean-
ingful. Recently, (Chen et al., 2024) introduced a statisti-
cally testable tool, the tensor rank condition, for handling
discrete cases with discrete latent confounders. By exam-
ining the rank of the probability tensor, which reflects the
cardinality of the latent support, the tensor rank condition
establishes a connection between algebraic constraints and
the d-separation structure in discrete latent structure models,
and can be used to identify the latent structure. Mathemati-
cally, the graphical implication of the tensor rank condition
is as follows (Theorem 3.2).

Theorem 3.2 (Graphical implication of tensor rank con-
dition (Chen et al., 2024)). In the discrete causal model,
suppose the Markov, Faithfulness condition and full-rank
condition hold. Consider an observed variable set Xp =
{X1, · · · , Xp} (Xp ⊆ X and 2 ≤ p ≤ n) and the
corresponding p-way probability tensor T(Xp) that is the
tabular representation of the joint probability mass func-
tion P(X1, · · · , Xp), then Rank(T(Xp)) = r (r > 1)1 if
and only if (i) there exists a variable set S ⊂ V with
|supp(S)| = r that d-separates any pair of variables in
{X1, · · · , Xp}, and (ii) does no exist conditional set S̃ that
satisfies |supp(S̃)| < r.

The full-rank assumption (in Theorem 3.2) posits that
any conditional probability table P(V |Pa(V )) is full rank,
aligned with the non-degeneracy condition (b). Roughly
speaking, the tensor rank condition shows that one can iden-
tify the cardinality of latent support by the probability tensor
of observed variables, for detecting the d-separation rela-
tions among observed or latent variables. However, when
the observed variables are continuous, which exhibit more
general nonlinear dependencies, it remains unclear under
what conditions the graphical implications of the tensor rank
condition hold for the probability tensor over continuous
variables. This is because the graphical criteria rely on
the full-rank assumption, which typically only applies to
discrete variables. Fortunately, we find a well-studied condi-
tion, the completeness condition, under which the graphical
implications of the tensor rank condition also hold for the
continuous observed variables.

Condition 3.3 (Completeness condition). For any Xi ∈ X
that has only one (latent) parent Lj , we assume that the
conditional distribution P(Lj |Xi) is complete. That is, for
all measurable real functions g such that E(|g(l)|) < +∞,
E(g(l)|x) = 0 almost surely iif. g(l) = 0 almost surely.

In this case, any function g : Ω → R is indeed bounded.
This condition is also used in (Miao et al., 2018; Cui
et al., 2023; Liu et al., 2024). It is worth noting that
many commonly-used parametric and semiparametric mod-
els such as exponential families (Newey & Powell, 2003)
and location-scale families like convolution density func-
tions (Hu & Shiu, 2018) satisfy the completeness condition.
Further discussion can be found in Appendix.

3.2. General Results for Tensor Rank Condition

Here, we aim to show that the tensor rank condition holds in
the nonlinear causal model with discrete latent confounders
under the completeness condition.

1The rank of a tensor T , denoted Rank(T ), is the smallest
number of rank-one tensors that generate as their sum, where a
N -way tensor is rank-one if it can be written as the outer product
of N vectors.
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Figure 2. Example of discrete latent structure model with mixed-
type observational data, where Xi represents continuous observed
variables X̃i represents discrete observed variables (purple), and
Li represents a discrete latent variable. Moreover, the blue edge
constructs the structure model C, the black edge constructs the
measurement model M.

Theorem 3.4 (Graphical Implication in Non-linear Causal
Model). In the nonlinear causal model with discrete la-
tent confounders, suppose the Markov condition, faithful-
ness, non-degeneracy condition, and the completeness con-
dition hold. Consider an observed variable set Xp =
{X1, . . . , Xp}, Xq ⊂ X is a continuous observed vari-
able set (can be empty), for its corresponding p-way (condi-
tional) probability tensor P(Xp|Xq), denoted by T(Xp|Xq),
then Rank(T(Xp|Xq)) = r and r ≪ p, if and only if (i) there
exists a variable set S̃ ⊂ V with | supp(S̃)| = r such that
S̃ ∪Xq = S, S d-separates any pair variables in Xp (con-
ditional on Xq if Xq ̸= ∅), and (ii) does no exist conditional
set S̃ ∪Xq that satisfies | supp(S̃)| < r.

The above theorem shows that in the nonlinear causal model
with discrete latent confounders, given an observed variable
set Xp, the rank of its (conditional) probability tensor corre-
sponds to the cardinality of the discrete conditional variable
set that d-separates all variables in Xp. When all observed
variables are discrete, Theorem 3.2 is a specific case of
Theorem 3.4. Moreover, we allow continuous, nonlinearly
dependent observed variable sets and further consider the
constraints on the (conditional) probability tensor.
Remark 3.5. Although computing the tensor rank for con-
tinuous, nonlinearly dependent observed variables is in-
tractable due to the curse of dimensionality, we will show
in Section 4 that a practical implementation is to discretize
the continuous variables, thereby making tensor rank com-
putation feasible.

4. Application in Discrete Latent Structure
Models

In this section, our goal is to apply the tensor rank condi-
tion (Theorem 3.4) to perform causal discovery with latent
variables in the nonlinear causal model with discrete latent
confounders. Without additional assumptions, however, it
is hard to identify the causal structure among latent variable
L only from observed variables X (Silva et al., 2006; Kivva
et al., 2021). Generally speaking, to address this issue, one

common model is to adopt the pure measurement model,
such as the linear case (Silva et al., 2006; Cai et al., 2019;
Xie et al., 2020) and discrete case (Chen et al., 2024; Gu,
2022).

Based on the nonlinear causal model with discrete latent con-
founders and combining the discrete latent structure model
from (Chen et al., 2024), in this paper, we further consider
a more challenging case where the observed variable can be
discrete or continuous, and allow for a multi-factor structure
among observed variables. We formalize this as the discrete
latent structure model with mixed-type data.

Definition 4.1 (Discrete Latent Structure Model with Mixed–
Type Observational Data). A nonlinear causal model with
latent confounders and its corresponding causal graph G is a
discrete latent structure model with mixed-type data (Mixed
LSM) if it satisfies the following conditions:

• (Purity Assumption) there are no direct edges between
the observed variables;

• (Three-Pure Child Variable Assumption) each latent
variable set Lp ⊂ L (at least exist one |Lp| = 1), in
which every latent variable directly causes the same
set of observed variables, has at least 2|Lp| + 1 pure
variables2 as children;

• (Two-Sufficient Measurement Assumption) each latent
variable set Lp ⊂ L, in which every latent variable
directly causes the same set of observed variables, has
at least two sufficient measured variables3, which can
be either continuous variables or discrete variables with
larger support than the latent parents.

Note that the mixed LSM is different from the discrete
latent variable model like (Chen et al., 2024; Gu, 2022),
in which they assume all variables are discrete variables.
The mixed-type setting more closely aligns with real-world
scenarios, where the latent variable of interest is assessed
using multiple indicators at varying measurement levels. For
instance, a specific disease (unobserved, discrete variable)
may be reflected by various physiological indicators, such as
blood oxygen levels (continuous) and heart rate (discrete).

Discussions on the Assumptions. In general, to study
the causal structure of latent variables, the purity and three-
pure-children assumption are commonly used, even in linear
models (Silva et al., 2006; Kummerfeld & Ramsey, 2016;
Chen et al., 2022). When the latent variable is discrete,
some works achieve identification under weaker assump-
tions, such as the two-pure-children assumption (Gu, 2022)
and the multi-parent assumption (Kivva et al., 2021; Kong
et al., 2024). However, these approaches often involve spe-

2Pure variables denote the variables that have only one latent
parent, and no observed parents.

3For an observed variable X with support X and latent parent L
with support Ω, we define a sufficient measurement as |X | > |Ω|.
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cific structural constraints or complex estimation algorithms,
hindering their practical application in real-world scenarios.
It is important to emphasize that the purity and three-pure-
children assumption are only sufficient conditions for identi-
fying the causal structure of latent variables, which ensures
the identification algorithm is simpler and more efficient. In
fact, relaxing these assumptions to a more general case is
feasible. Further discussion on this extension is provided in
Appendix D.

Under the mixed-type LSM, G decomposes as the union of
two subgraphs G = M∪ S, where M denotes the mea-
surement model graph that represents the bipartite graph of
edges pointing from L to X, and S represents the structure
model graph that is a DAG over the latent variable L. Such
a definition can be referred to previous works (Chen et al.,
2024; Silva et al., 2006; Cai et al., 2019; Xie et al., 2020;
Gu, 2022). See Figure 2 for example.

Based on the graphical implication of the tensor rank con-
dition, one can develop a statistically testable and robust
algorithm to recover the latent structure, aligning with (Chen
et al., 2024). However, the challenge hindering the appli-
cation of the tensor rank is that for the probability tensor
involving continuous variables, it is intractable to compute
the tensor rank due to the curse of dimensionality. Thus, we
first provide a practical method to test the tensor rank con-
dition for the continuous probability tensor by employing
proper discretization techniques.

4.1. Estimation Tensor Rank from Continuous
Observed Variables

To apply the tensor rank condition (Theorem 3.4) for con-
tinuous observed variables, one practical way is to properly
discretize continuous variables and then test the tensor rank
condition on the discretized data. However, to ensure the
tensor rank condition holds in the discretized data, two key
issues must be addressed:

1). whether there exists a discretization of continuous data
such that the tensor rank condition holds, and

2). how to implement such discretization.

Resolving the first issue guarantees that a suitable discretiza-
tion approach can be identified to apply the tensor rank
condition for causal discovery, while the second issue fo-
cuses on the operable implementation procedure. We begin
by addressing the first issue.

For the discrete data, the tensor rank condition relies on the
full-rank condition, as shown in Theorem 3.2. Therefore, to
apply the tensor rank condition to discretized data (derived
from continuous observed variables), the task is equivalent
to finding a discretization such that P(X̃i|PaXi

) is full rank
in the mixed LSM. We first show its existence.

Proposition 4.2. In the mixed LSM, suppose that the
Markov condition, faithfulness assumption, and complete-
ness condition hold. Then, there exists a discretization X̃i

of Xi, such that P(X̃i|PaXi
) has full rank.

Proof of Sketch. In the mixed LSM, each observed vari-
able is caused by their latent parents, i.e., P(X̃i|PaXi) =
P(X̃i|Li). Under the completeness condition, E(g(l)|xi) =
0 with g(l) = 0 implies that the linear independence of
functions {fLi|Xi

(l|xi)}rl=1, where fLi|Xi
can be seen as

the PMF of conditional distribution P(Li|Xi). Therefore,
one can further infer that {FXi|Li

(xi|l)}rl=1 are also linear
independent based on the Bayes theorem, where FXi|Li

is the CDF of P(Xi|Li). It ensures that the partition of
P(Xi|Li) is also linearly independent.

Intuitively, the completeness condition admits linear inde-
pendence within the conditional probability space and main-
tains this independence for any subspace of the probability
space. This induces the possibility to find a discretization
that satisfies the full-rank assumption.

Now, we aim to address the second issue: how to implement
such a discretization. However, it is a non-trivial task to find
such a discretization that satisfies the full-rank condition
in the mixed LSM. The challenge lies in the fact that L
of P(X|L) is a latent variable, which cannot be directly
measured or tested.
Remark 4.3 (The challenging of discretization). Since one
can only discretize the observed data X and P(Xi|Li) is
unobserved, it is possible to obtain discretized data in which
P(X̃i|Li) is not full rank. When the full-rank condition
does not hold in Theorem 3.4 (or, Theorem 3.2), the rank
of the probability tensor may fail to uniquely represent the
d-separation relations among the observed variables. There-
fore, if continuous data is randomly discretized without
careful consideration, the causal structure may be incor-
rectly identified using the tensor rank condition (see detailed
example in Appendix).

Although the full-rank condition cannot be directly tested
since P(Xi|Li) cannot be obtained from observational data,
we have found that it can be indirectly assessed by exam-
ining the non-negative rank of two discrete variables. This
approach is motivated by the following observation.
Lemma 4.4 (Upper bound after discretization). In the
mixed LSM and suppose Markov condition, faithfulness
assumption and full-rank condition hold. Let X̃i and
X̃j be the discretization of Xi and Xj , then we have
Rank(P(X̃i, X̃j)) ≤ | supp(L)|, where L is a latent parent
that d-separates Xi from Xj . Moreover, X̃i and X̃j satisfy
the full-rank assumption if and only if the above inequality
holds with equality.

Lemma 4.4 shows that one can achieve the upper bound of
the rank of probability tensor when the discretized variables
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satisfy the full-rank condition. This motivates us to dis-
cretize continuous variables and then check their rank con-
straints over the joint contingency table, for achieving the
full-rank condition. When the cardinality of latent support is
unknown, one practical way is to use a rank-stop-increasing
technique, which can indirectly detect the full-rank condi-
tion.

Theorem 4.5 (Ranks’ stopped increasing to implement full
rank). For a continuous random variable Xi and a discrete
variable X̃j , denote X̃i be the discretization of Xi. Let
P(k)(X̃i, X̃j) be the k-th discretization of contingency tables
P(X̃i, X̃j) that satisfies

1) Rank(P(k)(X̃i, X̃j)) ≥ Rank(P(k−1)(X̃i, X̃j)),
2) Max(Rank(P(k)(X̃i, X̃j)) < Min(| supp(X̃i)|, | supp
(X̃j)|), then there must exist a finite order k such that

Rank(P(k)(X̃i, X̃j)) = Rank(P(k+1)(X̃i, X̃j)). (2)

That is, X̃i and X̃j satisfy the full-rank assumption.

Remark 4.6 (Practical implementations). We can discretize
the continuous variable by choosing suitable cut-points (bin
numbers) in practice. Generally speaking, a larger bin num-
ber effectively controls discretization error and more easily
meets the full-rank assumption. To achieve this, we follow
the heuristics proposed by (Dougherty et al., 1995) to set
the cut points. Moreover, we can construct a hypothesis
test for the null-hypothesis that P(X̃i, X̃j) has the rank ≥ r,
following the approach of (Mazaheri et al., 2023). This rank
test method is based on matrix perturbation theory. More
details can be found in (Ratsimalahelo, 2001).

In other words, one can discretize the data multi-times (suf-
ficiently large k), to find the discretized data that satisfies
the full-rank condition. Consequently, the tensor rank con-
dition can then be applied to the discrete data to learn causal
structure. Moreover, we can show that the conditional inde-
pendence (CI) relations in the discretized data imply the true
corresponding d-separation relations in the causal graph.

Proposition 4.7. Let {X̃1, · · · , X̃n} be the discretized vari-
able of {X1, · · · , Xn} correspondingly and satisfy the full-
rank condition. Then under the Markov assumption, faith-
fulness assumption, the CI relations among {X̃1, · · · , X̃n}
imply the true d-separation in the causal graph G.

Based on Proposition 4.7, we can derive that the tensor
rank condition and its graphical implications hold in the
discretized data (i.e., data obtained from the discretization
of continuous variables).

Lemma 4.8 (Tensor rank condition in mixted-type data). In
the nonlinear causal model with latent confounders, sup-
pose the Markov condition, faithfulness assumption, and
non-degeneracy assumption hold, then for the continuous
variable set Xp that satisfies the completeness condition,

there exists a discretized dataset X̃p of Xp, such that the
graphical implication of tensor rank condition holds.

4.2. Structure Learning in Mixed LSMs

In this section, we aim to learn the causal structure of mixed
latent structure models (LSMs) from mixed-type observa-
tional data. One commonly used approach is the two-stage
structure learning algorithm, as seen in (Silva et al., 2006;
Chen et al., 2024). Specifically, we first learn the causal clus-
ters among the observed variables to determine the latent
variables (Step I), and then test the d-separation relations
among the latent variables using their measured variables to
recover the causal structure of the latent variables (Step II).

4.2.1. STEP I: FINDING CAUSAL CLUSTERS

Without any constraints, the discrete latent variable is
unidentifiable. When the observed variable set shares a
common latent parent, for instance, one can always replace
a pair of distinct latent variables Li and Lj with a single la-
tent variable Lk, where | supp(Lk)| = | supp(Li, Lj)|. To
simplify the identification algorithm, we assume all latent
variables have the same support and that at least one set of
observed variables is caused by a single latent parent (see
Appendix for extensions). Next, we focus on identifying
these latent variables.

Since each latent variable has certain observed children as
its measured variables in the mixed LSM, one can identify
these measured variables as causal clusters to determine the
existence of latent variables. To ensure that latent variables
are identified correctly and without redundancy, two issues
need to be addressed:

(i). Finding all causal clusters from the observed variables
and determining latent parents for each cluster.

(ii). Merging the causal clusters that share common latent
parents to avoid redundancy.

For the first issue, we first define the concepts of causal
clusters and one-factor (multi-factor) structures.

Definition 4.9 (Causal cluster). In the Mixed LSM model,
Ci = {X1, · · · , Xp} is a causal cluster if and only if all
variables in {X1, · · · , Xn} share the common latent parent.

Due to the multi-factor model setting, we further define the
observed set with a multi-factor structure.

Definition 4.10 (One-factor & multi-factor cluster). For
a causal cluster Ci, if ∀Xi ∈ Ci, Xi has only one latent
parent in the causal graph G, Ci is a one-factor cluster (or
one-factor structure if |Ci| = 1). Otherwise, it is a multi-
factor cluster (or multi-factor structure if |Ci| = 1).

To determine the number of latent parents in a causal cluster,
it is crucial to first distinguish the multi-factor structure.
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Algorithm 1 Finding Causal Clusters

Require: Data set X = {X1, . . . , Xm}
Ensure: The set of causal clusters C and its corresponding

latent parent number set L.
1: Initialize the causal cluster set C = ∅;
2: Initialize the dictionary L = ∅;
3: X̃← Discretize all continuous variables in X by ranks’

stop increasing criteria (Theorem 4.5);
4: Xc ← one-factor group by Proposition 4.11;
5: for ∀Xi, Xj ∈ Xc, and Xk ∈ X \ {Xi, Xj} do
6: if Proposition 4.13 hold for {Xi, Xj , Xk} then
7: C = C ∪ {Xi, Xj , Xk};
8: L ← {{Xi, Xj , Xk} : 1} for recording the num-

ber of the latent parent of this causal cluster;
9: end if

10: end for
11: r ← the cardinality of latent support by Proposition

4.13;
12: for each set Ci ⊂ X \Xc do
13: C← multi-factor causal cluster by Proposition 4.15;
14: L ← {Ci : m} with m =

Rk(P(Xp))
r ;

15: end for
16: C← merge the causal clusters that share the common

latent parent by Proposition 4.16;
17: return C and L;

Although the cardinality of the latent support is unknown,
this structure can be identified by leveraging its graphical
properties, i.e., tensor rank condition.

Proposition 4.11 (Distinguish multi-factor structure). For
Xi ∈ X, Xi has only one latent parent if ∀Xj ∈ X \ {Xi},
Rank(P(Xi, Xj)) is invariant. Otherwise, Xi is caused by
more than one latent parent in discrete LSM.

Based on Proposition 4.11, one can divide the observed
into two groups, one group is the observed variable that has
only one latent parent, and another is the observed variable
that has a multi-factor structure. Now, one can identify the
cardinality of latent support by identifying the rank of the
contingency table of any two observed in the first group. We
first define such a group as the one-factor group.

Definition 4.12 (One-factor group). Let Xc ⊆ X denote a
subset of observed variables, where each observed Xi ∈ Xc

has exactly one latent parent (one-factor structure).

One can identify the causal clusters that share only one
latent parent, as shown in the following result.

Proposition 4.13 (One-factor cluster). Let {Xi, Xj} ⊆ Xc,
and Xk ∈X\{Xi, Xj}, {Xi, Xj , Xk} is a causal cluster if
∀Xs ∈ X\{Xi, Xj , Xk}, Rank(P(Xi, Xj , Xk, Xs)) = r,
where r is the cardinality of latent support that can be
identified by Rank(P(Xi, Xj)).

Example 4.14. Take the Fig .2 as an example. One can see
that {X7, X8, X̃9}, {X6, X̃5, X̃4} and {X̃10, X̃11, X̃12}
are identified as one-factor clusters.

Similarly, one can identify the causal cluster from X \Xc

to determine the multi-factor structure.

Proposition 4.15 (Multi-factor cluster). Let {Xi, Xj , Xk}
⊆ X \ Xc, {Xi, Xj , Xk} is a multi-factor causal cluster
that caused by n latent parents if ∀Xs ∈ X \ {Xi, Xj , Xk},
(i) Rank(P(Xp, Xq)) = rn, where ∀p, q ∈ {i, j, k}, and
(ii) Rank(P(Xi, Xj , Xk, Xs)) = rn.

Once the causal cluster is identified, one can determine the
existence of latent variables. However, it cannot ensure that
the latent variable is identified without redundancy, e.g., two
causal clusters that share the same latent parent. Thus, it is
necessary to merge the causal clusters that share a common
latent into one causal cluster (the second issue).

Proposition 4.16 (Merge Rule). Let C1 and C2 be two
causal clusters identified by Proposition 4.13 or Proposition
4.15, then C1 and C2 share the common latent parent if one
of the following conditions holds:

R1. C1 ∩C2 ̸= ∅, or
R2. One of them is a multi-factor cluster, such as C1, and

Rank(P(C1 ∪C2)) = Rank(P(C1)).

Now, one can identify all latent variables by their causal
clusters. The procedure is summarized in Algorithm 1.

4.2.2. STEP II: STRUCTURE LEARNING FOR LATENT
VARIABLES

In Step I, we identify the causal clusters and determine the
number of latent variables based on whether they belong
to one-factor or multi-factor clusters. In this stage, we will
show how the causal structure of latent variables can be
identified up to a Markov equivalent class based on the
identified clusters.

To this end, we follow the constraint-based method by (Chen
et al., 2024) and present the conditional independence test
among latent variables as follows.

Theorem 4.17 (d-separation among latent varaible). In the
mixed LSM model, suppose the Markov condition, faith-
fulness assumption, full-rank condition, and completeness
condition hold. Let r be the dimension of latent support,
given the discretized data X, then Li⊥Lj |Lp if and only if
Rank(T(Xi,Xj ,Xp1,Xp2)) = r|Lp|, where Xi and Xj are the
pure children of Li and Lj , Xp1 and Xp2 are two disjoint
child set of Lp that satisfy (i) ∀Xi ∈ Xp1∪Xp2, Xi is a suf-
ficient measured variable and, (ii) ∀Li ∈ Lp,ChLi

∩Xp1 ̸=
∅,ChLi

∩Xp2 ̸= ∅.

In Theorem 4.17, a sufficient measured variable Xi refers
to a variable that is either continuous or a discrete variable
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with larger support than its latent parents.
Example 4.18. Consider the structure in Fig .2. Suppose
that the cardinality of latent support is r. To test the CI
relation L3 ⊥⊥ L4|{L1, L2}, let Xp = {X̃9, X̃10, X̃1, X̃2},
one can test the rank of the probability tensor P(Xp), where
X̃1 and X̃2 is discretized variables of X1 and X2. That is,
Rank(P(Xp)) = r2 ⇔ L3 ⊥⊥ L4|{L1, L2}.

Based on Theorem 4.17, one can extend the PC-TENSOR-
RANK algorithm (Chen et al., 2024) into the case of mixed
observational data, by discretizing all continuous variables
in X by ranks’ stop increasing criteria (Theorem 4.5). Due
to the space limitation, the complete algorithm is provided
in Appendix. By this, we further give the identification
result of mixed LSM.

Theorem 4.19 (Identification of Mixed LSM). In the mixed
LSM, assuming the Markov condition, faithfulness assump-
tion, full-rank condition, and completeness condition hold,
if all latent variables have the same support and at least
one set of observed variables is caused by a single latent
parent, the causal structure of the latent variables can be
identified up to a Markov equivalence class.

5. Simulation Experiments
In this section, we conduct simulation experiments to ver-
ify the accuracy and effectiveness of our method. Baseline
approaches include PC-TENSOR-RANK (abbreviated as
TS-PC) (Chen et al., 2024), and mixed latent tree (abbrevi-
ated as Mixed-LT) (Zhou et al., 2020). To ensure fairness,
since TS-PC can only handle discrete data, we directly dis-
cretize the continuous data using random cut points, and
then apply TS-PC. For our algorithm, we test the matrix
rank using the hypothesis test by (Mazaheri et al., 2023) and
the tensor rank following (Chen et al., 2024).

Setup. In the simulation studies, we consider the different
combinations of various structure models and measurement
models. Specifically, for the structure model, we consider
the following three typical cases: Case I: L1 → L2; Case II:
L1 → L2 → L3; Case III: the structure of latent variables
is shown in Fig. 2. For the measurement model, each
latent variable has three pure observed variables, i.e., Li →
{X3i+1, X3i+2, X3i+3}. We randomly choose 1/3 of the
observed variables to be continuous variables.

Generation Process. To ensure that the generated data sat-
isfies the completeness condition, we use a mixture model
as a practical and effective way to simulate data. Although
the data is generated from a mixture model, the resulting
joint distribution still reflects nonlinear dependencies (due
to the probability property of the mixture model), and thus
remains consistent with the setting described in Eq. (1). In
all cases, the data generation process follows the following
procedure: (i) we generate the probability contingency table
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Figure 3. Performance under different setups.

of latent variables in advance, according to different latent
structures (e.g., SM1), then (ii) we generate the conditional
contingency table of discrete observed variables (condition
on their latent parent) and each component of a Gaussian
mixture model for continuous observed variables, and fi-
nally (iii) we sample the observed data according to the
probability contingency table and Gaussian mixture model,
where the dimension of latent support r is set to 2 and the
dimension of all discrete observed variables support is set
to 3, sample size ranged from {5k, 10k, 50k}.

Evaluation Metric. For each simulation study, we ran-
domly generate the dataset and apply the proposed algorithm
and baselines to these data. We use latent omission to as-
sess the performance of causal clusters from each algorithm,
which can be referred to (Silva et al., 2006). Moreover, to
assess the ability of these algorithms to discover the causal
structure among latent variables, we use the F1 score as the
evaluation metric. Each experiment was repeated ten times
with randomly generated data.

Results Analysis. The results are reported in Fig. 3. Our
method consistently delivers the best outcomes across most
scenarios, demonstrating its capability to identify both the
causal clusters and the causal structures of latent variables
with mixed data types. In contrast, the TS-PC approach per-
forms poorly, as random discretization may violate the full-
rank assumption (see Appendix B). Additionally, the Mixed-
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LT algorithm shows suboptimal performance in structure
learning of latent variables due to their limitations to specific
structural models, such as tree structures, or assumptions
that latent variables are binary. More experimental results
and discussions are provided in the Appendix.

6. Conclusion
In this paper, we extend the tensor rank condition to discrete
latent structure models with mixed-type observational data.
We demonstrate that, under the completeness condition, the
tensor rank condition holds for discretized data, requiring
only two sufficient measured observed variables. Based on
this extension, we propose a structure learning algorithm
that first identifies causal clusters to determine the num-
ber of latent variables and then infers the causal structure
among them using their measured variables. This identifi-
cation result extends the identification bounds of discrete
latent structure models with a multi-factor structure. Future
work includes allowing for impure observed structures and
exploring more general non-linear models.
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Impact Statement
Learning causal structure among latent variables is essen-
tial throughout the data-driven sciences and has attracted
much attention. Our research focuses on learning causal
structure among discrete latent variables only from their
measured variables, which can be continuous variables or
discrete variables. This is typically encountered in fields
like social sciences, economics, public health, and neuro-
science. We assess the impact of our work in the context of
these fields. However, the applicability of existing methods

is often limited in practice, as the tensor rank condition re-
lies on certain assumptions such as the full-rank condition
or completeness condition. Notable merits of our work in-
clude establishing the connection between the tensor rank
condition and the causal graph pattern, providing a practi-
cal method for constructing discretized data, and applying
the tensor rank condition to learn the causal structure from
purely observational data.
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A. Related Works
Latent Confounders. Unobserved confounding has long been a significant challenge for reliably drawing causal inferences
and conducting statistical analyses from observational data. In the causal inference, most methods focus on addressing
the problem of effect estimation in the presence of latent confounders, such as instrumental variables-based approaches
(Brundy & Jorgenson, 1971; Viberg et al., 1997; Myers et al., 2011; Xie et al., 2022a; Rudolph et al., 2024), the control
outcome-based methods (Tchetgen Tchetgen, 2014; Shi et al., 2020), confounding functions-based ones (Kasza et al., 2017;
Miao et al., 2024). There are also some statistical models that account for latent confounders, such as those proposed in
(Tofighi et al., 2019; Valente et al., 2017; Dziadkowiec, 2023; Liu & Wang, 2021). Most of these methods focus on the
problem of estimation, rather than addressing the challenge of structure learning.

Mixture Model. Mixture models are closely related to our problem setup. Traditional methods focus on the parameter
identifiability of mixture models, as seen in (Lindsay & Roeder, 1993; McLachlan & Peel, 2000; Allman et al., 2009;
Anandkumar et al., 2014; Kim & Lindsay, 2015; Mena & Walker, 2015; Yang et al., 2020; Tahmasebi et al., 2018; Kargas &
Sidiropoulos, 2019). To learn the causal structure in the presence of latent confounders, (Mazaheri et al., 2023; Anandkumar
et al., 2012) present a rank-based approach to infer the d-separation relations among observed variables, leveraging the
identifiability of mixture models. For learning the structure of latent variables, (Kivva et al., 2021) propose a mixture
oracle-based method to recover the distribution of latent variables and then perform causal discovery among them. However,
the identification results depend on the existence of a mixture oracle, and it remains unclear how such an oracle can be
identified.

Latent Variable Model. Latent variable graphical models have been well studied in the literature. Most work focuses on
linear models, such as the linear latent variable model with Gaussian noise assumption (Silva et al., 2006; Kummerfeld
& Ramsey, 2016; Kummerfeld et al., 2014; Huang et al., 2022), non-Gaussian linear latent structure models (Cai et al.,
2019; Xie et al., 2020; 2022b; Chen et al., 2023; 2022; Jin et al., 2023), and copula model-based approaches (Cui et al.,
2018). Less is known regarding structure learning between latent variables for nonlinear models. One typical method is
based on non-linear ICA, such as (Zheng et al., 2022; Hyvarinen & Morioka, 2017; Hyvarinen et al., 2019). In the discrete
model domain, there are a few methods, including the latent tree model (Choi et al., 2011; Mourad et al., 2013) and pure
measurement model (Gu, 2022; Gu & Dunson, 2023; Chen et al., 2024). However, these methods focus on restricted latent
structures or linear assumptions and cannot handle discrete latent variable structures with mixed-type observational data.

B. More Details on the Motivating Example for Discretization
In this section, we discuss two key questions: (i) why it is necessary to design a method for discretization, and (ii) the
detailed implementation of the discretization process. The first part highlights that without a careful discretization strategy,
the tensor rank condition may fail to hold in the discretized data. The second part provides an illustrative example to show
this procedure in practice.

We begin by discussing the first question. When we learn the causal structure using the tensor rank condition, a key
assumption for applying the tensor rank condition is the full-rank assumption (Chen et al., 2024), which stipulates that the
conditional probability table must have full rank. However, when continuous data are discretized arbitrarily, this assumption
may be violated, potentially undermining the validity of the tensor rank condition. For example, in Fig .4, one can see that
there exists a discretization of Xi such that P(X̃i|L) is not full rank.

In this example, we simulate a simple structure L→ Xi where Xi is a continuous variable and L is a binary variable. Our
goal is to discretize Xi into a discrete variable X̃i with support {0, 1, 2, 3}. Thus, To achieve this, we randomly select three
cut points {π2 , π,

3π
2 }, on the marginal distribution of Xi (i.e., the pink area). When examining the conditional distributions

P(Xi|L = 0) and P(Xi|L = 1), represented by the blue and green areas, respectively, we observe that the conditional
probability table is not full rank. This is because the blue and green areas are identical in each partition, thereby violating
the full-rank condition. Therefore, if we discretize the continuous variable arbitrarily, the structure learned by the tensor
rank condition may be incorrect. This is the reason why we need to present the ranks stopped increasing criteria (Theorem
4.5) during the discretization process.
Remark B.1. In (Kargas & Sidiropoulos, 2019), it is demonstrated that the identifiability of mixture distributions holds
even after discretization, and a practical algorithm is provided to learn the conditional probability by tensor decomposition
(actually, the tensor rank) for discretized data. Based on their algorithm, one can efficiently estimate the tensor rank of the
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discretized probability tensor.

Next, we provide additional implementation details for the discretization methodology. Specifically, we describe how to
discretize the data such that the full-rank condition holds. We generate data using the following directed acyclic graph
(DAG): L→ X , L→ Y , L→ Z, where X and Y are continuous variables, and Z is a binary discrete variable. The latent
variable L has the support {0, 1}. The marginal distribution of X and Y is a mixture of the Laplace distribution (Figure 5 (a)
and (c)). Through proper discretization of X and Y into X̃ and Ỹ (Figure 5 (b) and (d)), respectively, for example, selecting
cutpoints 2.06 and 0.26 for X , and cutpoints −0.94 and 0.83 for Y , we discretize the two continuous variables into two
discrete variables X̃ and Ỹ , as shown in Figure 5 (b) and (d). In this procedure, we maximize Rank(P(X̃, Ỹ )), ensuring
that P(X̃|L) and, hence, P(Ỹ |L) satisfy the full-rank assumption. For instance, the joint distribution P(X,Y, Z = i) with
i = 0, 1 is shown in Figure 6. We discretize this distribution into a discrete joint probability table, as shown in Figure 7,
which is a rank-2 tensor, indicating that the conditional probability table is full rank. Based on these results, one can use X̃ ,
Ỹ , and Z to compute the tensor rank of the probabilistic contingency table and recover the support of L.

Figure 4. Example for discretized data, where the latent parent L of Xi has supp(L) = {0, 1}. There are three cut point {π
2
, π, 3π

2
} that

lead to P(X̃i) with support di = {0, 1, 2, 3}. One can see that P(X̃i|L) is not full rank because the green and blue areas are equal in
each partition.
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(a) Marginal distribution of X .
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Figure 5. Exanple for illustrating the procedure of discretization. For marginal distribution X and Y (i.e., subfig (a) and subfig (c)), we
discretize them into two discretized variables (i.e., subfig (b) and subfig (d)).

C. More Details on PC-TENSOR RANK Algorithm
The specific details of the PC-TENSOR RANK algorithm are provided below.
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Figure 6. Joint distribution of P(X,Y, Z = i) with i = 0, 1.

p(X̃, Ỹ , Z = 0) Ỹ = 0 Ỹ = 1 Ỹ = 2

X̃ = 0 0.170 0.169 0.001
X̃ = 1 0.116 0.133 0.081
X̃ = 2 0.116 0.133 0.081

p(X̃, Ỹ , Z = 1) Ỹ = 0 Ỹ = 1 Ỹ = 2

X̃ = 0 0.145 0.142 0.001
X̃ = 1 0.114 0.137 0.105
X̃ = 2 0.114 0.137 0.105

Figure 7. Probabilistic contingency table of P(X,Y, Z = i) with
i = 0, 1. One can see that Rank(P(X̃, Ỹ , Z = 0)) = 2 and
Rank(P(X̃, Ỹ , Z = 1)) = 2, indicating L (with | supp(P(L))| =
2) d-separates X,Y and Z.

Algorithm 2 PC-TENSOR-RANK
Input: The discretized data set X = {X1, . . . , Xm} and causal cluster C
Output: A partial DAG G.

1: Initialize the maximal conditions set dimension k;
2: Let Li denote as Ci, Ci ∈ C;
3: Form the complete undirected graph G on the latent variable set L;
4: for ∀Li, Lj ∈ L and adjacent in G do
5: //Test the CI relations among latent variables by Theorem 4.17
6: if ∃Lp ⊆ L \ {Li, Lj} and (|Lp| < k) such that Li ⊥⊥ Lj |Lp hold then
7: delete edge Li − Lj from G;
8: end if
9: end for

10: Search V structures and apply meek rules (Meek, 1995).
11: return a partial DAG G of latent variables.

D. Analysis the Identification of Discrete Latent Variable Models under Sparsity Condition
We now extend the results of the previous section when there are some direct edges between the observed variable (impure
structure) in contrast to the three-pure children condition. Our goal is to explore under what milder conditions the discrete
latent variable model remains identifiable. Under more general sparsity assumption, we provide the identification results of
the discrete latent variable model with the discrete observed variables. For continuous observed variables, the identification
result can be easily extended by appropriately estimating the conditional distribution.

In the following, we aim to relax the purity assumption and the three-pure children assumption in the discrete latent variable
model. The alternative identification condition is the sparsity assumption.

Assumption D.1 (Sparsity assumption). each latent variable set Lp ⊂ L, in which every latent variable directly causes the
same set of observed variables, has at least three observed children variable Xi, Xj , Xk ∈ X such that (i) {Xi, Xj , Xk} ⊥⊥
X \ {Xi, Xj , Xk}|Lp, and (ii) there are Xq ⊂ X \ {Xi, Xj , Xk}, Xi ⊥⊥ Xj ⊥⊥ Xk|{Lp,Xq}.

Example D.2. For example, for the L3 in Fig .8, one have X13, X15 and X7 satisfy the spasity assumption. Since given X14,
we have X13 ⊥⊥ X15 ⊥⊥ X7|{X14, L3}. By the tensor rank condition, the joint distribution P(X13, X15, X7|X14) follows
the graphical implication.
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Under the sparsity assumption, we allow edges between observed variables and do not impose the three pure children
structure constraints. This leads to a more general identification result for discrete latent variable models. We define such a
general discrete latent variable model as the Sparse Discrete Latent Variable Model.

Definition D.3 (Sparse Discrete Latent Variable Model). A nonlinear causal model with latent confounders and its
corresponding causal graph G is a Sparse Discrete Latent Variable Model (Discrete Sparse-LSM) if all observed variables
are discrete and satisfy the following conditions:

• (Sparsity Assumption) each latent variable set Lp ⊂ L, in which every latent variable directly causes the same set of
observed variables, satisfy the sparsity assumption (Assumption D.1);

• (Two-Sufficient Measurement Assumption) each latent variable set Lp ⊂ L, in which every latent variable directly
causes the same set of observed variables, has at least two sufficient measured variables, i.e., larger support than their
latent parents.

L1

L2

X̃1 X̃2 X̃3 X̃4

X̃5

X̃6

L3 L4

X̃7 X̃8 X̃9

X̃13

X̃14

X̃15

X̃10 X̃11 X̃12

Figure 8. A generalized discrete latent structure in the presence of mixed-type observed variables, where Xi represents continuous
observed variables X̃i represents discrete observed variables (purple), and Li represents a discrete latent variable.

To ensure the cardinality of latent support is identifiable, we require the following assumption.

Assumption D.4. All latent variable has the same support, and there exists at least one observed variable set Xp with
|Xp| ≥ 3, Xp has only one latent parent.

Remark D.5 (Discussion on assumption D.4). Assumption D.4 is only a sufficient condition for identifying the cardinality
of the latent support. In (Mazaheri et al., 2023), the cardinality of the latent support is assumed to be known, while in
(Kivva et al., 2021), the Subset condition is assumed. The Subset condition requires that the neighborhoods of two distinct
latent variables do not overlap, thereby ensuring the identification of the components in the mixture model. Actually, it is
possible to relax the Assumption D.4 to a more general case where the support of latent variable can be different, by using
the minimal state space criteria (Chen et al., 2024).

In the following, we develop an identification algorithm that identifies the latent causal structure under the Discrete Spare-
LSM. We still follow the strategy that first determines the latent variable by causal cluster, and then infer the causal structure
based on these clusters. Since there are edges between observed variables (called impure structure), it is necessary to find
these impure structures to ensure the causal cluster can be identified correctly. In the discrete sparse-LSM, the impure
structure can be identified by performing the conditional independent test in the presence of a latent confounder.

D.1. Conditional Independent Test in the presence of Latent Confounders

We begin with an illustrative example that demonstrates the connection between the tensor rank condition and the d-
separation relations among observed variables in an impure structure. Take the structures in Fig .9 as an example, one can
see that, X1 ⊥⊥ X3|{X2, L1} hold for two structures. Suppose X1, X2, X3 has the same support {0, 1, 2} and the latent
variable L1, L2 has the same support {0, 1}, let P(X1, X3|X2 = c) be the conditional probability contingency table, denote
p̃j|c,i = P(X1 = j|X2 = c, L1 = i), p̂j|c,i = P(X3 = j|X2 = c, L1 = i), and pi|c = P(L1 = i|X2 = c), under the
Markov assumption, faithfulness assumption, one can see that

P(X1, X3|X2 = c) =

p̃0|c,0 p̃0|c,1
p̃1|c,0 p̃1|c,1
p̃2|c,0 p̃2|c,1


︸ ︷︷ ︸
P(X1|X2=c,L1)

·
[
p0|c

p1|c

]
︸ ︷︷ ︸

Diag(P(L1|X2=c))

·
[
p̂0|c,0 p̂1|c,0 p̂2|c,0
p̂0|c,1 p̂1|c,1 p̂2|c,1

]
︸ ︷︷ ︸

P⊺(X3|X2=c,L1)

. (3)
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L

X1 X2 X3

(a)

L1 L2

X1 X2 X3

(b)

Figure 9. Example of the impure structure that can be identified by tensor rank condition.

Under the non-degenerate assumption (i.e., the conditional contingency table is full rank and non-zero elements in the
diagonal matrix), one can see that Rank(P(X1, X3|X2 = c)) = 2. This implies that when considering the conditional
distribution of X1 and X3 given the observed variable set X2 (which d-separates X1 from X3 by combining with the latent
variable L1), the rank of the conditional tensor is determined by the latent parent L1. Thus, one can test the conditional
independence relations among observed variables by identifying these properties, which can help detect the impure structure
among the measured variables.

Theorem D.6 (CI relations among observed variables). In the Discrete Sparse-LSM, suppose the Markov assumption,
faithfulness condition, and the non-degenerate condition hold. Let r denote the cardinality of latent support, Xi ⊥⊥
Xj |{Xp, L} hold if and only if for the conditional probability tensor Rank(P(Xi, Xj |Xp)) = r.

Proof. Observe that any two observed variables (if they are purely measured variables) are separated by one of their latent
parents in the discrete sparse-LSM model. This result can be directly proven by combining the non-degenerate condition
with the findings from (Anandkumar et al., 2012).

By theorem D.6, one can find the general pure child set for each latent variable by designing a proper search algorithm.

Lemma D.7 (Stop decreasing for probability matrix). For any pair of observed variables Xi and Xj , let Li and Lj be their
latent parent. If there is no Xp such that Rank(P(Xi, Xj |Xp)) has a lower rank than any Rank(P(Xi, Xj |Xq)) = r, then
min(| supp(P(Li))|, | supp(P(Lj))|) = r.

Proof. The proof is straightforward. Suppose | supp(P(Li))| < | supp(P(Lj))|, based on Theorem D.6, if we
find the conditional set Xq in which {Li,Xq} is the conditional set that d-separates any pair variable in Xp, then
Rank(P(Xi, Xj |Xq)) = r, under the Markov assumption, faithfulness assumption, and the non-degenerate condition. Oth-
erwise, Rank(P(Xi, Xj |Xq)) > r according to the graphical implication of tensor rank condition. Therefore, if we find that
Rank(P(Xi, Xj |Xq)) is minimal (do not exist X̃q such that the conditional probability tensor has lower rank), then {Li,Xq}
is the conditional set with the minimal cardinality of latent support, i.e., min(| supp(P(Li))|, | supp(P(Lj))|) = r.

Based on Lemma D.7, all d-separations among observed variables can be identified using an appropriate search algorithm,
such as (Anandkumar et al., 2012; Mazaheri et al., 2023). Moreover, existing methods can identify whether an observed
variable set is caused by a latent confounder, such as (Silva et al., 2006; Chen et al., 2021a). Thus, one can determine the
observed variable set in which each observed variable has at least one latent parent. We omit the specific algorithm and
assume that all d-separation relations between any pair of measured variables Xi, Xj are recorded in a set denoted as dset.
For instance, dset(Xi, Xj) = Xp implies that there exist ∃Lq ⊆ L, such that Lq ∪Xp d-separates Xi from Xj .

D.2. Identifying the Causal Structure of Discrete Sparse-LSM

Based on the fact that all d-separation relations among observed variables are identifiable, we can infer the identifiability
of the discrete sparse latent variable model. Since its identification algorithm is hybrid and lacks elegance (e.g., a hybrid
algorithm from the modified PC-algorithm (Mazaheri et al., 2023), the FINDPATTERN algorithm (Silva et al., 2006) and
the discrete latent structure learning algorithm (Chen et al., 2024)), we primarily focus on discussing its identifiability result.

Theorem D.8 (Identification of discrete sparse-LSMs). Given an unbiased estimation of the conditional distribution of any
observed variables, in the discrete sparse latent structure model, suppose the Markov assumption, faithfulness condition,
non-degenerate condition, and assumption D.4 hold. The causal structure of the latent variable can be identified up to a
Markov equivalence class.
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Proof. To complete this proof, there are two stages of identification that need to be discussed: the causal cluster that
determines the latent variable and the structure model among latent variables.

Before providing the proof, we first demonstrate that all observed variable sets with at least one latent parent can be identified
using the following corollary.

Corollary D.9. For Xi and Xj , if one of them does not have a latent parent, then there exists a subset Xq ⊆ X \ {Xi, Xj},
such that Rank(P(Xi, Xj |Xq)) = 1.

Since one of Xi and Xj does not have a latent parent, then Xi and Xj are d-separated by the observed variable set.
According to Remark G.1 in (Chen et al., 2024), this result is proven. Based on this corollary, all observed variables that do
not have a latent parent can be removed. Now, we can continue the proof of discrete sparse-LSM.

Stage I: Identify the cardinality of latent support. Based on Lemma D.7 and Assumption D.4, one can identify the cardinality
of latent support, i.e., identifying the minimal rank for the (conditional) probability table over two observed variables that
are caused by a single latent parent. We can iterate over all pairs of variables and identify the cardinality of latent support by
finding the minimum rank constraint of the probability contingency table.

Stage II: Determine the latent variable. Under the sparsity assumption and the result of Theorem D.6, one can see that,
{Xi, Xj , Xk} is a causal cluster, if Rank(P(Xp|Xq)) = r with Xp = {Xi, Xj , Xk, Xs} for any Xs ∈ X \ {Xi, Xj , Xk},
and Xq ∪Li (Li is the latent parent of them) is the conditional set that d-separates any pair variable in {Xi, Xj , Xk}, where
Xp ∩Xq = ∅. The reason is as follows.

First, by Theorem D.6, one can get all conditional independent relations between any pair of observed variables (Mazaheri
et al., 2023; Anandkumar et al., 2012). We can record these d-separation sets for each pair of observed variables Xi and Xj ,
denoted by dset(Xi, Xj) = Xp where Xi ⊥⊥ Xj |{Li,Xp}, Li is one of the parent variables of Xi or Xj . For an observed
variable set {Xi, Xj , Xk} and any Xs ∈ X \ {Xi, Xj , Xk}, let Xq =

⋃
i,j∈{i,j,k,s} dset(Xi, Xj), i.e., the combination of

the d-separation set for any pair variable in Xp. Therefore, if {Xi, Xj , Xk} share the one latent parent variable set, denoted
by Lt, then one can see that {Lt} ∪Xq is a conditional set that d-separates any pair variable in Xp. Similar to the proof of
(Chen et al., 2024), one can see that {Lt} ∪Xq is the minimal conditional set with support r. Thus, Rank(P(Xp|Xq)) = r.

Second, by repeating the above procedure, the causal cluster can be identified. Moreover, since the cardinality of the latent
support is identifiable, let r represent the cardinality of the latent support. Without loss of generality, the number of latent
parents can be determined as nr

r , where nr is the rank of probability tensor P(Xi, Xj , Xk, Xs|Xq).

Third, we aim to show that the causal cluster can be further merged if they share a common latent parent, to avoid the
redundant introduction of latent variables. Under the sparsity assumption and the result of d-separation for any pair observed
variable, if for two causal clusters C1 and C2, C1 ∩C2 ̸= ∅, then C1 and C2 share the common latent parent, according to
the result of (Chen et al., 2024) (Proposition 4.5). Moreover, one can modify the result of Proposition 4.16 to check more
merging rules. Let Xq be the conditional set for any pair variable in C1 and C2, by constructing the conditional probability
tensor, Proposition 4.16 holds. By detecting the causal clusters that share a common latent parent and merging them into
one causal cluster, the number of latent variables is identifiable.

Stage III: Identify the causal structure among latent variables, given the causal cluster for each latent variable. In stage II,
we have recorded the d-separation set for any pair of observed variables. Thus, one can construct the conditional probability
tensor P(Xp|Xq) for any set Xp ⊆ X such that any pair variable Xi, Xj ∈ Xp are d-separated by {Xq ∪ Li}, Li ∈ L.
This means that, one can find that Lt ⊆ L such that Lt ∪Xq d-separates any pair variable in Xp and there do not exist
L̃t with | supp(P(Lt))| < | supp(P(L̃t))| also be the conditional set. According to the result of (Chen et al., 2024), the
conditional independent relations among the latent variables are identified. Using the PC algorithm with latent variable
(Chen et al., 2024), the causal structure among latent variables is identified up to a Markov equivalent class.

D.3. Discussion of Two Pure-children Condition

We aim to demonstrate that the measurement model is identifiable under the condition that each latent variable has only two
pure measured variables, assuming the latent structure is fully connected. This result, which is also shown by (Gu, 2022), is
not surprising. However, compared to (Gu, 2022), our identification algorithm is simpler and more efficient.
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We only need to check the rank condition of a three-way tensor, to identify the causal cluster.

Theorem D.10. In the discrete sparse-LSM, suppose the Markov assumption, faithfulness assumption, non-degenerate
condition, and the assumption D.4 hold. When each latent variable has at least two pure measured variables and the latent
structure is fully connected, the measurement model is identifiable.

Proof. To identify the causal cluster by tensor rank condition, one can check for any Xi, Xj ∈ X, ∀Xk ∈ X \ {Xi, Xj}, let
Xp = {Xi, Xj , Xk}, if Rank(P(Xp)) = r, then {Xi, Xj} is a causal cluster, where r is the cardinality of latent support.
The proof is derived from the Proof of Proposition 4.3 in (Chen et al., 2024). That is, if Xi, Xj are not a causal cluster,
e.g., L2 is the latent parent of Xi and L1 is the latent parent of Xj , then there exists Xk ∈ X \ Xi, Xj such that the
Rank(P(Xp)) ̸= r (see Fig 4 in (Chen et al., 2024)). Thus, all causal clusters can be identified by checking the rank
constraints over the three-way probability tensor. Moreover, by applying the merging rule in Proposition 4.16, two causal
clusters that share a common latent parent can be merged to avoid the redundant introduction of latent variables. Therefore,
the identification of the measurement model is completed.

Remark D.11 (Discussion on two-sufficient measurement). It is important to contrast this condition with the sufficient
observation assumption in (Chen et al., 2024), where the cardinality of each discrete observed variable is larger than the
cardinality of the latent variable. One may note that in the mixed LSM, each latent variable has at least three observed
children, but only requires two of them to be continuous variables, regardless of whether the third variable is discrete or
continuous. Additionally, if the third variable is discrete, we do not assume any specific cardinality of its support; for
instance, it can be a binary variable.

E. More Details on the Difference between Mixture Model and Tensor Rank Condition
To learn discrete latent structures solely from observed variables, a traditional approach treats structural identification as a
parameter identification problem in mixture models. Numerous studies focus on this approach, including (Gu, 2022; Kivva
et al., 2021; Anandkumar et al., 2012). We are particularly interested in discussing whether the identification results based
on mixture models offer more general identifiability than those achieved through tensor rank conditions.

In (Gu, 2022), it is shown that for a binary latent structure model, one can vectorize P(L1, · · · , Lm) to a marginal distribution
P(Lv) that the support of Lv is

∏m
i=1 supp |P(Li)|. According to Kruskal’s Theorem (Kruskal, 1977), the parameters

of P (Xi|Lv) and P(Lv) can be uniquely recovered through tensor decomposition, under the assumption that each latent
variable has at least three pure children. Based on the identified parameter matrix, the measurement model becomes
identifiable. In (Kivva et al., 2021), it is shown that the measurement model can be identified under a weaker structural
condition, leveraging the identification results of a mixture model (Mixture Oracle). This is because the structure can be
identified under weaker conditions by using a simplified version of Kruskal’s condition, as proposed by Lovitz and Petrov
(Lovitz & Petrov, 2023), as shown below.

Lemma E.1 (Generalization of Kruskal’s theorem (Lovitz & Petrov, 2023)). Let n ≥ 2 and m ≥ 3 be integers, let
V = V1 ⊗ · · · Vm be a vector space over a field F and let

xa,1 ⊗ · · · ⊗ xa,m : a ∈ [n] ⊆ V \ {0} (4)

be a multiset of product tensors. For each a ∈ [n], let xa = xa,1 ⊗ · · · ⊗ xa,m. For each subset S ⊆ [n] and index j ∈ [m],
let

dSj = dim span{xa,j : a ∈ S}. (5)

If 2|S| ≤
∑m

j=1(d
S
j − 1) + 1 for every subset S ⊆ [n] with 2 ≤ |S| ≤ n, then

∑
a∈[n] xa constites a unique tensor rank

decomposition.

Lemma E.1 shows that the conditions for unique tensor decomposition can be relaxed to a more general case. Specifically, by
constructing a tensor that encapsulates structural information, Lemma E.1 enables a more broadly applicable identification
result for the measurement model.

In summary, both (Gu, 2022) and (Kivva et al., 2021) use the unique tensor decomposition to identify the measurement
model, relying on Kruskal’s theorem or its generalized form.
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F. More Details on Completeness Condition
Here, we present some existing results that illustrate the generality of the completeness condition, primarily based on the
findings from (Hu & Shiu, 2018).
Remark F.1 (Sufficient Condition for fX|L(x|l)). The sequence {fX|L(x|l)} corresponding to a sequence {l : 1, 2, · · · , r}
is linearly independent if one of the following conditions hold:

1)
∑r

l=1 cif(x|l) = 0 for all x implies ci = 0 for all i = 1, 2, · · · , r;

2) for all l, limx→∞
f(x|l+1)
f(x|l) = 0 or limx→x0

f(x|l+1)
f(x|l) = 0 for some x0.

In other words, many conditional densities satisfy the completeness condition. An important family of conditional
distributions that exhibit completeness is the exponential family, including Gaussian, Poisson, Binomial, and certain
multivariate forms of these. Another family that implies completeness consists of convolution density functions (Hu & Shiu,
2018). Additionally, (Newey & Powell, 2003) demonstrates that the semiparametric exponential family also satisfies the
completeness condition. A detailed discussion of the completeness condition can be found in the supplementary material 4

of (Ying et al., 2023).

G. Proof and Illustrations
Notations. Suppose X,L, X̃ are random variables with domains X ,L, X̃ . We denote the probability law of X as LX :=
P ◦X−1 and denote the cumulative density function (CDF) as FX . For discrete variables X̃ , we denote their levels as lX̃ , lL,
etc. We use the the column vector P(X̃|x) := [p(x̃1|x), ..., p(x̃lX |x)]⊤, the row vector P(x|X̃) := [p(x|x̃1), ..., p(x|x̃lx)],
and the matrix P(X|L) := [P(X|l1), ...,P(X|llL)] to represent their transition probabilities. For a continuous variable
X , we denote the probability density function (PDF) as fX and the conditional PDF of x given L = lr as fx|lr ( or
f(X|L = lr)). We denote {Xi}lX a disjoint partition of X with lX subspaces, such that ∪lXi Xi = X and Xi ∩ Xj = ∅ for
i ̸= j. We thereby define the discretized version of X as X̃ , and denoting X̃ := x̃i to represent the event X ∈ Xi for any i.
We denote F (x|lr) as the conditional CDF of x given L = lr. Besides, we denote F (x|l[r]) := [F (x|l1), ..., F (x|lr)]⊤, with
[r] := {1, ..., r}. We let A1\A2 := A1 ∩Ac

2 for two sets A1, A2. We denote n as the sample size.

To simplify notation in the proof and distinguish Xi and Xj without using subscripts, we sometimes replace Xi, Xj with
X,Y . This implies that Y is also an observed variable measured in relation to the latent variables in the mixed-LSM.

G.1. Proof of Theorem 3.4

We first give a lemma that gives a specific case proof of our theorem.

Lemma G.1. (Allman et al., 2009) Consider a bivariate distribution of the form

P(X1, X2) =

r∑
i=1

πiµ
1
i (X1)µ

2
i (X2). (6)

Then P(X1, X2) has rank r, if and only if, for each of j = 1, 2 the measures {µj
i}1≤i≤r are linearly independent, where µj

i

denote the jth marginal of µi.

Remark G.2. One can see that, given P(X1, X2|V) has the same forms of Eq. 6, the above result still holds. Besides, Let
µj
i represent a probabilistic decomposition of graphical models, P(Xj |V = i), with | supp(V )| = r, under the Markov

assumption and faithfulness condition, the above result also holds.
Remark G.3 (Mathematical Representation of Probability Tensor for Continuous Variables). To represent the probability ten-
sor of continuous variable, such as Xi, Xj , one can let the entry of probability tensor pi,j ≈

∫ xi+∆

xi

∫ xj+∆

xj
p(xi, xj)dxidxj ,

where ∆ → 0, such that the probability tensor of P(Xi, Xj) has size I × J , with I, J → ∞. One can see that this may
result in an infinite tensor, leading to the curse of dimensionality. We will provide a practical solution for estimation rank in
Sec .4.

4https://academic.oup.com/jrsssb/article/85/3/684/7094061
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Lemma G.4 (Tensor Rank Condition in Two Variables Case). Let X1, X2 be two variables in the nonlinear causal model
with discrete latent confounders, suppose the Markov assumption, faithfulness assumption, and completeness condition hold.
Then P(X1, X2) has rank r (r ≪ n) if and only if there exist a discrete variable set S with | supp(S)| = r, that d-separates
X1 from X2, and there are no other conditional set S̃ that satifies | supp(S̃)| < r.

Proof. ‘If’ part: If S with | supp(S)| = r, are the minimal conditional set that d-separates X1 from X2, one can rewrrite
P(X1, X2) =

∑r
i=1 P(X1|S = i)P(X2|S = i)P(S = i) according to the Markov assumption. Denote fXj |S=i be

P(Xj |S = i), by completeness condition, one can see that {fXj |S=i}ri=1 are linearly independent. This is because
E[g(L)|x] = 0 implies that {fL=i|X}ri=1 are linearly independent. By the Bayes’ theorem, {fXj |S=i}ri=1 also are linearly
independent (here S are discrete latent variables set due to the model assumption).

Conversely, due to {fXj |S=i}ri=1 with j = 1, 2 are linear independent, the corresponding set of c.d.f.s {FXj |S=i}ri=1 are
also linear independent. One may choose collections of points {tjk}rk=1 such that the r × r matrices Mk whose i, j-entries
are FXj |S=i(t

j
k) have full rank. Then with F denoting the c.d.f. for P, the matrix N with entries F (t1i , t

2
j ) can be expressed

as
N = M⊺

1 diag(P(S))M2, (7)

and therefore has full rank. Otherwise, a similar factorization arising from the expression of P using fewer than r summands
shows that N has rank smaller than r, which violates the completeness condition. Thus the rank of P is at least r, and since
the faithfulness assumption, it has rank exactly r.

‘Only if’ part: If X1 and X2 are d-separated by a continuous variable set Xp, then r → n. This is because P(X1, X2) =∫
f(X1, X2|Xp)f(Xp)dXp for any data point. It means that for any r, the r× r matrices Mk whose i, j-entries are FXj |Xp

have full rank. Thus, there does not exist a low-rank expression of P with r ≪ n. Otherwise, Xp degenerates into a
discrete distribution that violates the faithfulness assumption. This also holds for the case that the conditional set contains a
continuous variable set.

Suppose P(X1, X2) has rank r with r ≪ n, then there exist a discrete variable set S that d-separates X1 and X2. Otherwise,
the rank r must close to n (for example, P(X1, X2) = P(X1|X2)P(X2) has large rank r due to X2 are a continuous
conditional set). By the Markov assumption, P(X1, X2) has the form

P(X1, X2) =

r∑
i=1

P(S = i)f(X1|S = i)f(X2|S = i). (8)

According to Lemma G.1, {f(Xj |S = i)}1≤i≤r, j = 1, 2, must be linear independent. If there exists a conditional set S̃
with | supp(S̃)| < r, it violate the linear independent of {f(Xj |S = i)}1≤i≤r, j = 1, 2. Thus, S is the minimal conditional
set with smallest cardinality of latent support.

Besides, for any no conditional set S1 with | supp(S̃1)| = r, P(X1, X2|S̃1 = i) is not a rank-one matrix, therefore, it cannot
be expressed by Eq. 8 according to the Markov assumption. If there exist S̃1 with | supp(S̃1)| = r that is constructed from
the parameter space, such that P(X1, X2|S̃1 = i) is a rank-one matrix, it will violate the faithfulness assumption.

In summary, if P(X1, X2) has rank r with r ≪ n, then there exists conditional set S with smallest cardinarlity latent support
that d-separates X1 from X2.

Corollary G.5. Under the Markov assumption, faithfulness assumption, if the conditional set for X1 and X2 contains a
continuous variable set Vp, then for P(X1, X2|Vp), the result of Lemma G.4 also holds.

Proof. The proof is straightforward. In the nonlinear causal model with latent confounders, all continuous variables are
observational. Therefore, given P(X1, X2|Vp), if the result of Lemma G.4 does not hold, then it violates the Markov
assumption and faithfulness assumption.

Now, we can prove Theorem 3.4.
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Proof. When |Xp| = 2, the result holds according to Lemma G.4 and Corollary G.5. Next, we consider the case that
|Xp| > 2 and Xq = ∅.

‘If’ part: if S d-separates any pair variables in Xp, according to the Markov assumption, we have

P(Xp) =

r∑
i=1

P(S = i)

n∏
j=1

P(Xj |S = i), (9)

where P(Xj |S = i) = fXj |S, {fXj |S}ri=1 are linear independent by the completeness condition. We further have
{FXj |S}ri=1 also linearly independent, such that the probability tensor can be expressed with entries F (t1i , · · · , tnr ) (see a
specific case in the proof of Lemma G.4). Furthermore, if there does not exist Ṽp with | supp(Ṽp)| < r, by the definition
of tensor rank and the faithfulness assumption, P(Xp) has rank r.

‘Only if’ part: if the probability tensor P(Xp) has rank r, then there does not exist Xi, Xj ∈ Xp, Xi and Xj are d-separated
by a continuous variable set. Otherwise, the sub-tensor with entries Xi, Xj has rank r that is close to n (See the proof of
Lemma G.4). Thus, by the definition of tensor rank, let P(S = i) is a constant and P(Xp|S = i) is a rank-one tensor, one
has

P(Xp) =

r∑
i=1

P(S = i)P(X1|S = i)⊗ · · · ⊗ P(Xn|S = i), (10)

where any pair of P(Xi|S = i) and P(Xj |S = i) are linearly independent by the completeness condition. We aim to prove
that S is a discrete conditional set with the smallest cardinality of support that d-separates all variables in Xp. There are
three cases:

(1) If P(S) with | supp(S)| = r is arbitrarily constructed from the parameter space (i.e., S is not a node set in the causal
graph G), it will violate the faithfulness assumption.

(2) If S is not a conditional set that d-separates any pair variables in Xp, without loss of generality, suppose there exists
Xi, Xj ∈ Xp, Xi ̸⊥⊥ Xj |S, one can see that P(Xp|S = i) is not a rank-one tensor since the sub-tensor P(Xi, Xj ,X

\(i,j)
p =

c) is not a rank-one matrix according to the Markov assumption and faithfulness assumption (Hackbusch, 2012), where
X

\(i,j)
p denote Xp \ {Xi, Xj}, and X

\(i,j)
p = c means that the values of X\(i,j)

p is fixed to c.

(3) If S is a conditional set for Xp but not a smallest cardinality of support, without loss of generality, let S̃ is the conditional
set with smallest cardinality of support, denoted by | supp(S̃)| = k, k < r, one has

P(Xp) =

k∑
i=1

P(S̃ = i)P(X1|S̃ = i)⊗ · · ·P(Xn|S̃ = i)

=

k∑
i=1

P̃(X1|S̃ = i)⊗ · · ·P(Xn|S̃ = i)

=

k∑
i=1

µi
1 ⊗ · · · ⊗ µi

n,

(11)

where P̃(X1|S̃ = i) denote P(S̃ = i)P(X1|S̃ = i), and µi
j is a vector. According to the definition of tensor rank, the rank of

P(Xp) is k, which violates the preconditions that P(Xp) has rank r. Thus, S must be the conditional set with the smallest
cardinality of support.

Next, consider the case of Xq ̸= ∅, if Xq ∪ S d-separates any pair variable in Xp, by the Markov assumption and
completeness condition, one can see that P(Xp|Xq) has rank r. Without considering the Xq as the conditional set, the rank
of P(Xp) will be close to n. This is because there exists Xi, Xj ∈ Xp, Xi, Xj are d-connected without given Xq as the
conditional set. Thus, the sub-tensor with entries Xi and Xj has a rank k close to n (see the proof in Lemma G.4).

On the other hand, suppose P(Xp|Xq) has rank r, and r ≪ n, according to the previous proof, there exists a conditional set
S with the smallest cardinality of support r that d-separates variable in P(Xp|Xq). Since P(Xp|Xq) are the conditional
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distribution of Xp given Xq , then Xq also be the conditional set of Xp.

Corollary G.6. If Xq is the conditional set that d-separates all variables in Xp, then the conditional probability tensor
P(Xp|Xq) has rank one.

Proof. Since Xq is the conditional set, we have

P(Xp|Xq) = fX1|Xq
· · · fXn|Xq

= P(X1|Xq)⊗ · · · ⊗ P(Xn|Xq) (12)

is a rank-one tensor according to the Markov assumption. Thus, the conditional probability tensor has rank one.

G.2. Proof of Proposition 4.2

Proof. We will show that, there exists a partition {X}Ii=1 with I ≥ r such that the matrix P(X̃|L) has rank r. We first
show that the function {fL|X(L = l|x)}rl=1 are linear independent. Prove by contradiction. Suppose that there are r
numbers {αl}rl=1 that are not all zero such that

∑r
l=1 αlfL|X(L = l|x) = 0. Let g(l) be the piece-wise constant function

defined by g(l) = αl, we then have
∑r

l=1 g(l)fL|X(L = l|x) = 0 for all x, i.e., E[g(l)|x] = 0. Since g(·) ̸= 0, this
contradicts the completeness assumption. Consequently, {fL|X(L = l|x)}rl=1 are linear independent. Besides, note that

fX|L(x|L = l) =
fL|X(L=l|x)fX(x)

P(L=l) , therefore it is easy to obtain the linear independence of {fX|L(x|L = l)}rl=1. Since

fX|L(x|L = l) = F
′

X|L(x|L = l), we can also obtain the linear independence of {FX|L(x|L = l)}rl=1 (Similar results can
be found in (Liu et al., 2024)).

Given that {FX|L(x|L = l)}rl=1 are linear independent, we now show that there exists I ≥ r points xI = {xi}Ii=1 such
that the matrix P(X̃|L) has rank r. Denote FX|l(xI) = [FX|l(x1), · · · , FX|l(xI)]

⊺, where FX|l(x) = FX|L(x|L = l). We
have

Rank(P(X̃|L)) = Rank(


FX|1(x1) · · · FX|r(x1)
FX|1(x2) · · · FX|r(x2)
· · · · · · · · ·

FX|1(xI) · · · FX|r(xI)

), (13)

i.e., Rank([FX|1(xI), · · · , FX|r(xI)]) = r.

We first discuss the case when I = r. The proof is based on mathematical induction:

(1) Base: ∀l ∈ [r], we have ∃xl, FX|l(xl) ̸= 0. Thus, we have det(FX|l(xl)) ̸= 0.

(2) Induction hypothesis: assume for any combination l1, l2, · · · , lk ∈ [r] (k ∈ N, 1 ≤ k ≤ r − 1), for k linear
independent functions FX|l1(·), · · ·FX|lk(·), there exists k points xk = {x1, · · · , xk} such that det(Mk) ̸= 0, where
Mk ≜ [FX|l1(xk), · · · , FX|lk(xk)].

(3) Induction: show that for any k+1 linear independent functions FX|l1(·), · · · , FX|lk+1
(·) (k ∈ N, 2 ≤ k+1 ≤ r), there

exists k+ 1 point xk+1 = {x1, · · · , xk+1} such that det(Mk+1) ̸= 0, where Mk+1 ≜ [FX|l1(xk+1), · · · , FX|lk+1
(xk+1)].

To this end, we first have the Laplace expansion of matrix determinant

det(Mk+1)(xk+1) =

k+1∑
l=1

(−1)k+1+l det(Ak+1
l )FX|l(xk+1), (14)

where Ak+1
l denote the submatrix obtained by removing the (k + 1)-th row and l-th column from Mk+1. That is,

Ak+1
l = [FX|l1(xk), · · · , FX|ll−1

(xk), FX|ll+1
(xk), · · · , FX|lk+1

(xk)] with FX|l(xk) = [FX|l(x1), · · · , FX|l(xk)]
⊺.

Since FX|l1(·), · · · , FX|lk(·) are k linear independent functions, according to the induction hypothesis, there exist k points
x1, · · · , xk such that det(Ak+1

l ) ̸= 0. That is, at least one of the cofactors det(Ak+1
l ) in the expansion is not zero. Since

FX|l1(·), · · ·FX|lk+1
(·) are linear independent, we have

∑k+1
l=1 αlFX|l = 0 iif. all αl = 0 (a column expansion of matrix

determinant). Thus, there exists xk+1 such that det(Mk+1)(xk+1) ̸= 0 for xk+1, which concludes the induction.
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For the case when I > r, we have FX|1(xI), · · · , FX|r(xI) (where FX|l(x) = [FX|l(x1), · · · , FX|l(xI)]
⊺) are linear

independent because FX|1(xr), · · · , FX|r(xr) (where FX|l(xr) = [FX|l(x1), · · · , FX|l(xr)]
⊺) are linear independent.

That is, the row slice of matrix Mr ≜ [FX|1(xI), · · · , FX|r(xI)] has the full column rank and hence the Mr also has full
column rank.

G.3. Proof of Lemma 4.4

Proof. Any discretization of Xi and Xj in the discrete latent variable model has an upper bound of | supp(L)|, in which L

d-separates Xi from Xj . For convenience, we denote ∆i as the support of Xi that X̃i = i. ∆j is defined similarly.

P(X̃i = i, X̃j = j) =

∫
∆i

∫
∆j

P(Xi, Xj)dXidXj

=

∫
∆i

∫
∆j

supp(L)∑
k=0

P(Xi, Xj |L = k)P(L = k)dXidXj

=

supp(L)∑
k=0

P(L = k)

∫
∆i

∫
∆j

P(Xi|L = k)P(Xj |L = k)dXidXj

=

supp(L)∑
k=0

P(L = k)

∫
∆i

P(Xi|L = k)dXi

∫
∆j

P(Xj |L = k)dXj

=

supp(L)∑
k=0

P(L = k)P(X̃i = i|L = k)P(X̃j = j|L = k),

(15)

where P(X̃i = i|L = k) =
∫
∆i

P(Xi|L = k)dXi and P(X̃j = j|L = k) =
∫
∆j

P(Xj |L = k)dXj .

We can rewrite P(X̃i = i, X̃j = j) as follows.

supp(L)∑
k=0

P(L = k)P(X̃i = i|L = k)P(X̃j = j|L = k)

= P(X̃i = i|L) diag(P(L))P⊺(X̃j = j|L).

(16)

So, one can get that

P(X̃i, X̃j) = P(X̃i|L) diag(P(L))P⊺(X̃j |L). (17)

Thus, if | supp(L)| < | supp(X̃i)|, and supp(L)| < | supp(X̃j)|, the upper bound of rank of P(X̃i, X̃j) is

Rank(P(X̃i, X̃j)) ≤ | supp(L)|. (18)

Moreover, one can see that Rank(P(X̃i, X̃j)) = | supp(L)| if and only if P(X̃i|L) and P(X̃j |L) are full column rank.

G.4. Proof of Theorem 4.5

Proof. This result is proven based on Lemma 4.4. Since Rank(P(k)(X̃i, X̃j)) ≤ | supp(L)|, and the upper bound is achieved
if P(X̃i|L) and P(X̃j |L) are full column rank, we cannot find a discretization such that Rank(P(k)(X̃i, X̃j)) > | supp(L)|,
i.e., for the (k + 1)-th time discretization, the rank stops increasing. Therefore, in this case, X̃i and X̃j satisfy the full-rank
assumption.
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G.5. Proof of Proposition 4.7

Proof. In the discrete latent structure model, any two observed variables Xi, Xj are conditionally independent given one
latent parent of them. We first show that, by discretizing the marginal distribution of Xi or Xj , the generation process of X̃
is still determined by its latent parent. One can see that

P(X̃ = i) =

∫ Bi

Bi−1

P (X)dX

=

∫ Bi

Bi−1

|supp(P(L))|∑
j=1

P(X|L = j)P(L = j)dX

=

|supp(P(L))|∑
j=1

∫ Bi

Bi−1

P(X|L = j)P(L = j)dX

=

|supp(P(L))|∑
j=1

P(L = j)

∫ Bi

Bi−1

P(X|L = j)dX

=

|supp(P(L))|∑
j=1

P(L = j)P(X̃ = i|L = j)

= P(L)P⊺(X̃ = i|L)

(19)

Under Markov assumption, faithfulness assumption and P(X̃|L) is full rank, we have

P(X̃) = P(L)P(X̃|L), (20)

which means that the generation process of X is still determined by its latent parent L. Thus, we have

P(X̃1) = P(L1)P(X̃1|L1),P(X̃2) = P(L2)P(X̃2|L2), (21)

where L1 is parent of X1 and L2 is parent of X2.

Suppose L1 ⊥⊥ L2|L in the causal graph, we aim to show that X̃1 ⊥⊥ X̃2|L also holds.

P(X̃1, X̃2, L1, L2, L)

= P(X̃1|L1)P(X̃2|L2)P(L1|L)P(L2|L)P(L)
= P(X̃1|L1)P(L1|L)︸ ︷︷ ︸

P(X̃1,L1|L)

P(X̃2|L2)P(L2|L)︸ ︷︷ ︸
P(X̃2,L2|L)

P(L).
(22)

Moreover, let P(X̃1|L) =
∑

L1
P(X̃1, L1|L), and P(X̃2|L) =

∑
L2

P(X̃2, L2|L), one can see that

P(X̃1X̃2) =
∑
L

P(X̃1|L)P(X̃2|L)P(L). (23)

Therefore, X̃1 ⊥⊥ X̃2|L also holds.

Meanwhile, if L1 ̸⊥⊥ L2|L in the causal graph, we aim to show that X̃1 ̸⊥⊥ X̃2|L also holds. Without loss of generality,
suppose P(L1L2|L) ̸= P(L1|L)P(L1|L), one can see that
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P(X̃1, X̃2, |L = i)

=
∑
L1

∑
L2

P(X̃1|L1)P(X̃2|L2)P(L1, L2|L = i)

=
∑
L1

P(X̃1|L1)
∑
L2

P(X̃2|L2)P(L1, L2|L = i)

̸= P(X̃1|L = i)P(X̃2|L = i).

(24)

Thus, we have X̃1 ̸⊥⊥ X̃2|L hold if X1 ̸⊥⊥ X2|L in the causal graph. Based on the proof above, the CI relations after
discretization are consistent.

Discussion. Actually, since the CI relationship between observed variables relies on the CI relations among latent
variables in the mixed-type latent structure model (LSM), the discretized variables still maintain the conditional probability
decomposition in the discrete probability space. In other words, the discretization does not alter the relations within the
discrete probability space.

G.6. Proof of Lemma 4.8

Proof. For continuous observational data that satisfy the completeness condition, one can discretize the continuous data into
discretized data that satisfy the non-degeneracy condition by Theorem 4.5. Thus, for the discretized data X̃p, it satisfies the
Markov assumption, faithfulness assumption, and non-degeneracy condition according to Proposition 4.7, the tensor rank
condition holds for X̃p. The proof for the discrete data can be referred to (Chen et al., 2024).

G.7. Proof of Proposition 4.11

Proof. Under the assumption that each latent variable has the same cardinality of support, it is easy to check if Xi is
only caused by one latent parent. One can prove it by contradiction. If Xi has more than one latent parent, by the model
assumption, there exists Xj that shares the set of common latent parents with Xi, thus, Rank(P(Xi, Xj)) > r according
to the graphical implication of the tensor rank condition, where r is the cardinality of latent support. This means that if
Xi is not a one-factor structure, there are Rank(P(Xi, Xj)) > r and Rank(P(Xi, Xk)) = r where Xk is any one-factor
structure variable. Thus, Rank(P(Xi, Xj)) is different for any Xj ∈ X \ {Xi}.

G.8. Proof of Proposition 4.13

Proof. Due to Xc being a one-factor group, {Xi, Xj} also be a one-factor sub-group. If {Xi, Xj , Xk} is not a one-factor
cluster, without loss of generality, let L1 be the parent of {Xi, Xj} and L2 be the parent of Xk, according to the model
assumption, there exist Xs also be the children of L2, such that {Xi, Xj , Xk, Xs} are d-separated by {L1, L2}. By the
graphical implication of the tensor rank condition, Rank(P(Xi, Xj , Xk, Xs)) = r2 (The similar proof can be seen in (Chen
et al., 2024)). Thus, {Xi, Xj , Xk} is a causal cluster if ∀Xs ∈ X \ {Xi, Xj , Xk}, Rank(P(Xi, Xj , Xk, Xs)) = r.

G.9. Proof of Proposition 4.15

Proof. By Proposition 4.11, the observed variable can be classified into the one-factor group and the multi-factor group.
That is, X \Xc is the set of the multi-factor group. For C = {Xi, Xj , Xk}, let {L1, · · · , Ln} be the latent parent set of C,
one can map {L1, · · · , Ln} to be one latent variable Lq with cardinality rn. Then this result can be proved by the extension
result of different state space cases in (Chen et al., 2024).

G.10. Proof of Proposition 4.16

Proof. For the first proposition, because C1 ∩C2 ̸= ∅, with loss of generality, assume that C1 ∩C2 = Xk. Let Pa(Xk)
denote the parent of Xk. One has Pa(Xk) be the parent of C1 according to the definition of the causal cluster. Meanwhile,
we also have Pa(Xk) be the parent of C2. Therefore, C1 and C2 share a common latent parent.

For the second proposition, since |Pa(C1)| > |Pa(C2)|, and Rank(P(C1 ∪ C2)) = Rank(P(C1)), by the graphical
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implication of tensor rank, one can infer Pa(C1) also be the d-separated set for C2. Under the model assumption of discrete
mixed-LSM, one can infer that Pa(C2) ⊆ Pa(C1), and hence C1 and C2 share the common latent parent.

G.11. Proof of Theorem 4.17

Proof. Proof of this theorem is straightforward by combining the proof of (Chen et al., 2024) and the property of tensor rank
in which the tensor rank is greater than or equal to the sub-tensor rank (constructed by sufficient measured variables).

G.12. Proof of Theorem 4.19

Proof. We prove the identification by a two-stage algorithm, including the identification of the measurement model and the
identification of the structure model.

Stage I: the identification of the measurement model. In this stage, Algorithm 1 first discretizes all continuous variables to
enable efficient testing of tensor rank. Next, it identifies the latent support and one-factor group using Proposition 4.13. By
applying Propositions 4.13 and 4.15, the algorithm identifies the causal clusters and determines the number of latent parents
for each cluster. Finally, according to Proposition 4.16, the causal clusters are merged to prevent the redundant introduction
of latent variables. By this, the measurement model is completely identified under the Mixed LSM.

Stage II: Identification of the Structural Model. In this stage, d-separation relations are identified using Theorem 4.17. Then,
the PC algorithm (Spirtes et al., 2000) is applied. Given the measurement model, the causal structure among latent variables
can be identified up to a Markov equivalence class (Chen et al., 2024).

H. More details on the Experimental Results
We first introduce a detailed definition of different evaluation metrics. Denote the output results of each algorithm Gout, the
true graph is labeled G: The performance of the causal cluster is evaluated by following the scores:

latent omission: the number of latents in G that do not appear in Gout divided by the total number of true latents in G;

Moreover, we use the F1 score to evaluate the performance of causal structure among latent variables. Next, we describe the
calculation details of F1 score. First, we introduce two metrics used basically for F1 score.

edge omission (EO): the number of edges in the structural model of G that do not appear in Gout divided by the possible
number of edge omissions;

edge commission (EC): the number of edges in the structural model of Gout that do not exist in G divided by the possible
number of edge commissions;

F1 =
2× (1− EO)× (1− EC)

(1− EO) + (1− EC)
.

H.1. Experimental Results on Real-world Dataset

In this section, we apply our algorithm to the real-world Industrialization and Political Democracy dataset (Bollen, 1989).
This dataset contains various measures of political democracy and industrialization across developing countries, with 75
observations of 11 variables. The details of each observation are summarized as follows.

• y1: Expert ratings of the freedom of the press in 1960

• y2: The freedom of political opposition in 1960

• y3: The fairness of elections in 1960

• y4: The effectiveness of the elected legislature in 1960

• y5: Expert ratings of the freedom of the press in 1965

27



Identification of Latent Confounders via Investigating the Tensor Ranks of the Nonlinear Observations

• y6: The freedom of political opposition in 1965

• y7: The fairness of elections in 1965

• y8: The effectiveness of the elected legislature in 1965

• x1: The gross national product (GNP) per capita in 1960

• x2: The inanimate energy consumption per capita in 1960

• x3: The percentage of the labor force in industry in 1960

In (Bollen, 1989), the authors show that there are three latent factors that cause these observed variables. Specifically,
{x1, x2, x3} are driven by a single latent factor, while {y1, y2, y3, y4} and {y5, y6, y7, y8} are each influenced by a
two-factor structure. In our implementation, we first obtain the discretized data using our discretization technique, where
each observed variable is discretized into a discrete variable with four categories. We then apply a bootstrapping resampling
approach to enhance the statistical properties of the data. Next, we compute the results for all possible combinations of sets
with four elements, sorting them according to their reconstruction error (CP decomposition with rank r, more details can
refer to (Chen et al., 2024)) and selecting the top-K items. (where K = 10). Finally, our algorithm outputs the following
result:

• {L1} → {x1, x2, x3}, | supp(P(L1)) | = 3,

• {L2, L3} → {y1, y2, y3, y4, y5, y6, y7, y8}, | supp(P(L2)) | = 2, | supp(P(L3)) | = 2.

One can observe that the results are consistent with the discussion in (Bollen, 1989), demonstrating the effectiveness of our
algorithm, including the discretization technique. In fact, these latent variables have real-world meaning. For example, as
discussed in (Bollen, 1989), y1 to y4 are intended to be indicators of the latent variable political democracy in 1960, y5 to
y8 are indicators of political democracy in 1965, and x1 to x3 are indicators of industrialization in 1960. Since there are
common features between political democracy in 1960 and political democracy in 1965, our algorithm learns them as a
two-factor structure.
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