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ABSTRACT
The Virtual and Augmented reality market has greatly expanded
in the recent years with devices such as the Meta Quest and the
Microsoft Hololens. Both of these devices have limited to no sup-
port on Linux distributions, which are commonly used in robotics.
Instead, developers are typically running these on Windows, often
with either Unity or Unreal for 3D support, and using a middleware
to integrate with other systems such as ROS.

There have been several different approaches for this communi-
cation; it can be difficult for developers of new projects to choose
one that might be best for their use case. In this paper, we set out
to benchmark the performance of several different Unity to ROS
communication implementations. In particular we are looking at
an analysis on ROS#, Unity Technology’s ROS-TCP-Connector, and
ROS.NET.
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1 INTRODUCTION
The consumer VR/AR market has been a major asset to research,
providing not only several iterations of hardware, but alsomany use-
ful tools and applications to be used specifically within the VR/AR
space. One tool used heavily within the VAM-HRI domain is Unity,
which allows for rapid development and sharing of many kinds of
interfaces. Of these projects, many use ROS [28] to communicate
data from robots to the Unity project. There are several different
Unity-ROS communication methods that groups use within the
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VAM-HRI domain. Each of these solutions has different amounts of
support, feature-sets, and capabilities, so choosing one for a project
can be difficult. Beyond those differences, the choice could also be
impacted by the performance of the actual message passing from
Unity to the ROS ecosystem. While some applications might only
send small amounts of data, VR/AR applications can be very per-
formance intensive, and often require transmitting large amounts
of data for visualization. Furthermore, VR/AR applications can be
computationally expensive, and so CPU overhead could also be a
concern.

Our lab created a Unity-ROS implementation, ROS.NET [2], in
2016, and we have used it for a number of projects ranging from
touch screen to VR applications. The authors have no financial
interest or other benefits regarding the results presented in this
paper. Since our lab developed this implementation in 2016, several
alternative implementations have been released. As the field has
advanced, we are motivated to investigate the current state of other
Unity-ROS approaches to determine whether it would be worth
switching implementations for current or future projects. After
looking through the implementation that each Unity-ROS approach
uses, we believed that there could be trade-offs for each.We thought
this information may also be applicable to the VR/AR community
and so decided to run a controlled set of benchmarking tests to
compare performance under a few different practical situations. We
are particularly interested in the effect message size has on latency,
publishing rate, and CPU usage for each approach. In addition,
we will also check whether publishing to multiple machines has
any effect on performance for each approach. We are interested in
publishing to multiple machines as one interface developed in Unity
might be used to control swarms or other multi-robot scenarios.

2 DIFFERENT IMPLEMENTATIONS
In this paper we are comparing the performance of the different
Unity-ROS communication implementations through a series of
tests explained below. In particular we are looking at an analysis
on ROS# [31], Unity Technology’s ROS-TCP-Connector [35], and
ROS.NET [2]. Each of these implementations has been utilized
in the general robotics community, as well as specifically in the
VR/AR space. Our justification for including ROS# and ROS-TCP-
Connector was based on a small literature review to analyze the
popularity of each ROS communication approach within the VAM-
HRI community.

For this literature review, we targeted a modern representation
of the software used, thus we only include papers published from
2020 until January 10th 2023. This range was chosen as ROS-TCP-
Connector was first publicly released in 2020 [34]. We began the
literature review by including all VAM-HRI papers that meet this
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ROS Count Used By
ROS# 15 [4–6, 9, 10, 13–17, 23, 25–27, 42]
ROS-TCP-Connector 5 [8, 19, 39–41]
rosbridge 5 [3, 7, 12, 32, 33]
ROS Reality 5 [11, 20, 29, 30, 37]
ROS.NET 1 [18]
ROSIntegration 1 [43]

Table 1: Popularity of different Unity-ROS implementations
within the VAM-HRI community since 2020.

criteria. Next we included all references of the VAM-HRI papers
that also fit the same criteria. Finally, we conducted a forward
search rooted from the VAM-HRI papers using the citations listed
on Google Scholar. Each branch of the forward search continued
until we encountered a paper that did not have any citations or that
did not include the key terms “ROS” or “Robot Operating System”
within their paper or linked Github repositories. We conducted our
forward search in this manner as some of the papers that did not
fit the criteria for our forward search had thousands of citations
stemming from them, most of which were not within our domain.

Once all of the papers were collected, we first removed all papers
that did not include the key terms “ROS” or “Robot Operating
System” within their paper or linked Github repositories. This left
us with a total of 56 papers that fit our criteria. Out of these papers,
24 either did not use ROS onWindows or did not specify the method
they used to do so. Out of the remaining 32 papers, 15 used ROS#,
5 used ROS-TCP-Connector, 5 used rosbridge [21], 5 used ROS
Reality [38], 1 used ROS.NET, and 1 used ROSIntegration [22]. We
excluded ROS Reality from our analysis as the creators no longer
support it as they have migrated to ROS# [1]. Additionally we have
excluded ROSIntegration as it is only used with Unreal Engine, not
Unity. Table 1 breaks down the papers included in each category.

2.1 ROS#
ROS# was developed by Dr. Martin Bischoff and “is a set of open
source software libraries and tools in C# for communicating with
ROS from .NET applications”[31] It uses a rosbridge server for com-
municating with ROS, which uses JSON to allow communication.
This approach requires a rosbridge server node to be running on a
machine in the ROS environment, that receives data from Unity and
republishes it as a ROS message. As such, all ROS communication
to Unity first passes through this rosbridge node. This could be a
potential bottleneck in multi-machine environments. This method-
ology potentially reduces CPU usage on the computer running
the Unity application as the serialization is offloaded to another
computer.

This is one of the earlier and most widely used approaches in
the VR/AR community, and has served several projects as shown
through our literature review. There are several other Unity ap-
plications that also use rosbridge for the actual ROS communica-
tion such as ROS Reality developed by the Humans to Robots Lab
at Brown University. However ROS Reality is only supported for
legacy projects according to [1], which recommends switching to
ROS#. Since ROS Reality also uses rosbridge, we expect that it would
have similar performance to ROS#. Finally, some some papers in

our survey utilized rosbridge by itself without a suite, or did not
name the suite, but as the underlying communication layer is the
same. We chose to test the most popular implementation, ROS#, to
cover all rosbridge approaches.

2.2 ROS-TCP-Connector
Unity Robotics Hub was created and is maintained directly by
a team at Unity as part of their robotics initiative to allow for
communication from within Unity to ROS. They use ROS-TCP-
Connector [35] for communication to ROS, which is another ap-
proach built on rosbridge. They also credit ROS#, although they
maintain their own separate approach. This requires a ROS-TCP-
Endpoint [36] running on a machine in the ROS environment. This
node receives data from Unity and translates it to ROS. Likewise,
all ROS communication to Unity first passes through this connec-
tor. While this could be a potential bottleneck in multi-machine
environments, it might also reduce CPU usage for the computer
running the Unity application as it is being offloaded to another
computer. Despite being newer than other implementations dis-
cussed here, it has already seen adoption for projects within the
VR/AR community, as seen in our literature review. Additionally,
this implementation’s backing by Unity’s robotics initiative means
that is it professionally maintained and supported.

2.3 ROS.NET
ROS.NET [2] was created by our lab to allow communication be-
tween windows interfaces and robots running ROS. It was then
incorporated into Unity once we began developing for virtual re-
ality. ROS.NET allows for communication with ROS without an
intermediary node or tunnel, messages are sent directly to and
from each node to Unity. With this approach, messages are only
serialized once on the Windows machine running Unity, before
being recieved directly by the ROS nodes.

3 BENCHMARKING SETUP
While there are no comprehensive benchmarks for all of the tools
available, there have been a few that we will use for our model here.
Mizuchi and Inamura[24] evaluated sending messages ranging from
5k bytes to 28k bytes, with 1 to 8 clients, comparing the standard
JSON approach from rosbridge to their own re-implementation. Be-
cause our primary interest is analysing applications on the VR/AR
domain, we chose to scale up the data sizes to be more in line
with expected robotics interfaces. We settled on 10mb, 100mb, and
1000mb sizes for our test to get a rough profile for how the amount
of data affects performance. The 10mb case represents a fairly light
data stream such as some robot state data. The 100mb size rep-
resents some sensor data such as a compressed image stream, a
sparse pointcloud, along with some robot state data. Finally the
1000mb size is the largest data stream most networks can handle
over ethernet and would represent 2-3 fairly dense point clouds,
several camera streams, along with other robot information.

For the benchmarking, we used relatively high end machines
running a i7 9800k Intel processor and 16GB 3300MHz RAM. In
every test case, the computers were running on a gigabit network.
One computer was set up to run Unity 2022.2.0b10 on Windows
10. The Unity code used in our evaluations can be found on our
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Github 1. We also had two additional computers that ran Ubuntu
18.04 with ROS Melodic. Each evaluation either used one or both
of these computers, depending on the condition. The C++ code
running on the ROS machines can be found on our Github 2.

4 EVALUATION METHODOLOGY
4.1 Latency: Single PC - Single PC
For the performance evaluation, we chose to perform several tests.
First we look at latency, or the difference in time from when the
message was sent and when the message was fully received. Each
message sent has a timestamp embedded into the message, sent
from Unity. Then a subscriber is setup using the roscpp C++ library,
that checks the timestamp versus the current time to compute
the delay. This delay is then averaged over 10 messages to get an
average delay. For this test, the messages were published at 60hz.
This evaluation used a single PC to single PC communication as
seen in Figure 1A. and 1B.

4.2 Latency: Single PC - Multiple PCs
One major design trade-off of the Unity-ROS implementations is
regarding the serialization of the ROS messages as described in Sec-
tion 2. To analyze how latency is impacted, we repeated the latency
test, however this time there was a third computer added to the
setup as seen in Figure 1C. and 1D. In this single PC to multiple PCs
setup, Unity first publishes the message as it did in the first evalua-
tion. Then, for ROS-TCP-Connector and ROS#, the packets travel
to Computer B which ran the roscore as well as the intermediary
nodes for ROS-TCP-Endpoint and rosbridge respectively. Finally,
the message is sent to a subscriber that is running on Computer
C. The approach is different for ROS.NET where the message is
directly sent from the Computer A to Computer C. This test was
specifically looking to see if the additional network hop required
by ROS# through rosbridge and ROS-TCP-Connector through ROS-
TCP-Endpoint would have a significant impact on performance, or
if the effect was small enough to be negligible.

4.3 Publishing Rate: Single PC - Single PC
We also chose to examine the publishing rate, or the maximum
rate that messages could be published under each condition. This
is important for systems that may be sending lots of messages,
such as transforms or sensor data. An example application for this
would be simulating a robot within Unity. For this test, messages
were published at the fastest rate possible on each system for each
message size. This evaluation used a single PC to single PC setup,
where communication was between a node on Unity, and between
a node running using the roscpp C++ library. The C++ node only
recorded the rate messages were received over a 10 second window.

4.4 CPU Utilization: Single PC - Single PC
Finally we recorded the CPU utilization while running the pub-
lishing rate test. This was to determine if there was any signifi-
cant difference in CPU usage between the three approaches. One
potential source for differences in CPU utilization is due to the

1https://github.com/uml-robotics/vamhri2023-benchmarking-unity
2https://github.com/uml-robotics/vamhri2023-benchmarking

ROS-TCP-Connector ROS# ROS.NET
Publishing 10mb 258.1ms 261.2ms 271.5ms
Subscribing 10mb 259.7ms 260.5ms 272.4ms
Publishing 100mb 257.6ms 307.7ms 273.2ms
Subscribing 100mb 254.2ms 309.2ms 272.7ms
Publishing 1000mb 302.4ms 680.0ms 280.1ms
Subscribing 1000mb 304.6ms 679.7ms 281.7ms

Table 2: Latency: Single PC - Single PC. The best performing
Unity-ROS implementation for each condition is bold and
highlighted.

serialization trade-off. ROS.NET handles all of the serialization on
the computer running the Unity application whereas for ROS#
and ROS-TCP-Connector serialization is offloaded to another com-
puter and is handled by the intermediary nodes, rosbridge and
ROS-TCP-Endpoint respectively. As the publishing rate is sending
the maximum amount of messages possible, any differences in CPU
usage should be most noticeable there. We chose to measure both
a Unity publisher, and a Unity subscriber to see if there was a dif-
ference. We repeated each benchmark test five times and averaged
the results, to smooth out any spontaneous inconsistencies.

5 ANALYSIS
5.1 Evaluation 1: Latency: Single PC - Single PC
Table 2 shows the latency of the different Unity-ROS implementa-
tions in the single PC to single PC scenario. As seen in the table,
all three approaches have similar latency when the message size
is small, with ROS-TCP-Connector having the best performance.
When the message size becomes larger however, both ROS-TCP-
Connector and ROS# gain latency, causing ROS.NET to perform
comparatively better. This shows that the additional translation
step in ROS-TCP-Connector did not seem to have a significant effect
on performance when the message size is smaller, but may affect it
for very large messages.

5.2 Evaluation 2: Latency: Single PC - Multiple
PCs

Table 3 shows the repeated latency test with the ROS node running
on a second computer. From these results we do not see a signif-
icant increase in latency, except for ROS-TCP-Connector on the
large packet size test case, where we do see a significant increase.
We believe this difference is explained by ROS-TCP-Connector and
ROS# having an additional network hop due to ROS-TCP-Endpoint
and rosbridge respectively. Since ROS.NET works without an inter-
mediary node, and instead connects directly with each ROS node
directly, and was not as heavily affected. This reinforces the pre-
vious test, that for most data sizes ROS-TCP-Connector has the
superior performance, but is more heavily impacted by extremely
large message sizes. Future work should investigate running this
evaluation with more than one subscriber machine, as would be
found in multi-robot and swarm scenarios. It would additionally be
interesting to further investigate performance cross-network, this
would have applications to remote teleoperation. We hypothesize
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Figure 1: Communication setups for Single PC - Single PC and Single PC - Multiple PCs across the three different Unity-ROS
implementations.

ROS-TCP-Connector ROS# ROS.NET
Publishing 10mb 258.5ms 259.2ms 273.4ms
Subscribing 10mb 256.1ms 260.5ms 273.6ms
Publishing 100mb 256.4ms 314.2ms 274.1ms
Subscribing 100mb 256.8ms 318.2ms 273.7ms
Publishing 1000mb 411.6ms 682.3ms 284.7ms
Subscribing 1000mb 408.1ms 694.3ms 282.2ms

Table 3: Latency: Single PC - Multiple PCs. The best perform-
ing Unity-ROS implementation for each condition is bold
and highlighted.

ROS-TCP-Connector ROS# ROS.NET
Publishing 10mb 480.2hz 50.0hz 531.7hz
Subscribing 10mb 482.7hz 50.0hz 531.2hz
Publishing 100mb 460.6hz 27.7hz 416.8hz
Subscribing 100mb 461.9hz 28.1hz 417.6hz
Publishing 1000mb 118.6hz 2.4hz 161.7hz
Subscribing 1000mb 116.3hz 2.2hz 161.2hz

Table 4: Uncapped Publishing Rate: Single PC - Single PC.
The best performing Unity-ROS implementation for each
condition is bold and highlighted.

that the performance difference between ROS.NET and the other
implementations will be more exaggerated in these cases.

ROS-TCP-Connector ROS# ROS.NET
Publishing 10mb 22.4% 22.6% 23.1%
Subscribing 10mb 22.3% 22.1% 22.3%
Publishing 100mb 21.8% 21.7% 22.7%
Subscribing 100mb 22.4% 23.1% 22.4%
Publishing 1000mb 23.4% 22.3% 24.8%
Subscribing 1000mb 22.9% 22.4% 22.2%

Table 5: CPU Utilization During Uncapped Publishing: Single
PC - Single PC. The best performing Unity-ROS implementa-
tion for each condition is bold and highlighted.

5.3 Publishing Rate: Single PC - Single PC
The uncapped publishing rate in Table 4 shows each Unity-ROS
implementation publishing as many messages as possible at vari-
ous message sizes. As seen in this table the ROS# with rosbridge
implementation was significantly slower at all payload sizes, and es-
pecially so when handling larger messages as we had expected. ROS-
TCP-Connector and ROS.NET were similar in performance, with
ROS-TCP-Connector slightly outperforming ROS.NET in the 100mb
condition. ROS.NET slightly outperformed ROS-TCP-Connector in
the 10mb and 1000mb condition.

5.4 CPU Utilization: Single PC - Single PC
Figure 5 shows the CPU overhead cost associated with each Unity-
ROS approach, determined on the machine running Unity. We
thought there could be a difference between CPU usage between
the approaches as described in Section 4.4, however none of the
approaches were CPU bottlenecked. On these relatively high end
machines we were unable to determine any significant difference.
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6 CONCLUSION
Our goal was to determine which of the widely used Unity-ROS ap-
proaches were most prepared to handle different sized data streams.
We wanted to provide that information to others preparing their
own VR/AR projects so they may make an informed choice.

Overall, ROS-TCP-Connector proved to have the lowest latency
in single PC to single PC and single PC to two PC for all but the
largest data test, where ROS.NET has an advantage. This suggests
that the serialization process for ROS-TCP-Connector is more ef-
ficient, however republishing large messages adds a significant
amount of time to the latency, likely due to the intermediary node.
In our single PC to two PC setup, ROS-TCP-Connector had notice-
ably worse results in the 1000mb condition compared to ROS.NET,
which had the lowest latency in this evaluation. This suggests that
projects such as multi-robot control may consider using ROS.NET.

The publishing rates between ROS-TCP-Connector and ROS.NET
are similar for all message sizes, with both being affected by mes-
sage size. ROS# with rosbridge performs significantly worse than
ROS-TCP-Connector and ROS.NET in the uncapped publish rate
scenario. Thus, any application that requires continuous publishing
of lots of data is not suited for this implementation. ROS# with
rosbridge generally did not perform as well as ROS-TCP-Connector
and ROS.NET, however, it is still usable for most projects. The ROS#
community and the popularity of this approach might also make
this implementation appealing to some developers.

We were unable to determine any significant effect on CPU
performance that would influence the choice. We expected perfor-
mance to be impacted based on the message size, however, this was
only significantly apparent in the ROS# with rosbridge publishing
rate test, in all other conditions there was little difference between
the 10mb and 1000mb sizes. We also found that there was not a
noticeable difference between Unity providing the publisher versus
the subscriber.

To summarize, we would recommend that new projects should
use ROS-TCP-Connector for most applications. In multi-robot appli-
cations, or applications where you will be transmitting very large
data streams to several different computers, ROS.NET would be our
recommended implementation. We hope these results will prove
useful to groups within the VR/AR community.

7 FUTUREWORK
We benchmarked performance metrics for a few situations that we
feel are common in the VR/AR robotics space, specifically looking
at sending a large number of messages, or sending large amounts
of data at a consistent rate. However there are a number of things
we didn’t test for, such as message reliability, sending messages
over poor network conditions such as inconsistent WiFi, or look-
ing at swarm robot situations where there may be many different
publisher/subscribers machines.

We benchmarked on relatively high end machines, as most
VR/AR applications tend to require, however it’s possible that very
low powered machines, such as microcontrollers or a tablet, could
experience very different results. Future work can further investi-
gate the performance of Unity-ROS implementations in these niche
scenarios.
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