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ABSTRACT

Learning from set-structured data is a fundamental problem that has recently at-
tracted increasing attention, where a series of summary networks are introduced
to deal with the set input. In fact, many meta-learning problems can be treated
as set-input tasks. Most existing summary networks aim to design different ar-
chitectures for the input set in order to enforce permutation invariance. However,
scant attention has been paid to the common cases where different sets in a meta-
distribution are closely related and share certain statistical properties. Viewing
each set as a distribution over a set of global prototypes, this paper provides a
novel prototype-oriented optimal transport (POT) framework to improve exist-
ing summary networks. To learn the distribution over the global prototypes, we
minimize its regularized optimal transport distance to the set empirical distribu-
tion over data points, providing a natural unsupervised way to improve the sum-
mary network. Since our plug-and-play framework can be applied to many meta-
learning problems, we further instantiate it to the cases of few-shot classification
and implicit meta generative modeling. Extensive experiments demonstrate that
our framework significantly improves the existing summary networks on learning
more powerful summary statistics from sets and can be successfully integrated
into metric-based few-shot classification and generative modeling applications,
providing a promising tool for addressing set-input and meta-learning problems.

1 INTRODUCTION

Machine learning models, such as convolutional neural networks for images (He et al. 2016) and
recurrent neural networks for sequential data (Sutskever et al. 2014), have achieved great success in
taking advantage of the structure in the input space (Maron et al. 2020). However, extending them to
handle unstructured input in the form of sets, where a set can be defined as an unordered collections
of elements, is not trivial and has recently attracted increasing attention (Jurewicz & Strømberg-
Derczynski, 2021). Set-input is relevant to a range of problems, such as understanding a scene
formed of a set of objects (Eslami et al. 2016), classifying an object composed of a set of 3D points
(Qi et al. 2017), summarizing a document consisting of a set of words (Blei et al., 2003; Zhou et al.,
2016), and estimating summary statistics from a set of data points for implicit generative models
(Chen et al. 2021). Moreover, many meta-learning problems, which process different but related
tasks, may also be viewed as set-input tasks (Lee et al., 2019), where an input set corresponds to
the training dataset of a single task. Therefore, we broaden the scope of set-related applications by
including traditional set-structured input problems and most meta-learning problems. Both of them
aim to improve the quick adaptation ability for unseen sets, even though the latter is more difficult
because of limited samples or the occurrence of new categories for classification problems.

For a set-input, the output of the model must not change if the elements of the input set are reordered,
which entails permutation invariance of the model. To enforce this property, multiple researchers
have recently focused on designing different network architectures, which can be referred to as a
summary network for compressing the set-structured data into a fixed-size output. For example,
the prominent works of Zaheer et al. (2017) and Edwards & Storkey (2017) combined the standard
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feed-forward neural networks with a set-pooling layer, which have been proven to be universal ap-
proximators of continuous permutation invariant functions. Lee et al. (2019) further introduced Set
Transformer to encode and aggregate the features within the set using multi-head attention. Maron
et al. (2020) designed deep models and presented a principled approach to learn sets of symmetric
elements. Despite the effectiveness and recent popularity of these works in set-input problems, there
are several shortcomings for existing summary networks, which could hinder their applicability and
further extensions: 1) The parameters of the summary network are typically optimized by a task-
speci�c loss function, which could limit the models' �exibility. 2) A desideratum of a summary
network is to extract set features, which have enough ability to represent the summary statistics of
the input set and thus bene�t the corresponding set-speci�c task; but for many existing summary
networks, there is no clear evidence or constraint that the outputs of the summary network could de-
scribe the set's summary statistics well. These limits still remain even with the recent more carefully
designed summary networks, while sets with limited samples further exacerbate the problem.

To address the above shortcomings, we present a novel and generic approach to improve the sum-
mary networks for set-structured data and adapt them to meta-learning problems. Motivated by
meta-learning that aims to extract transferable patterns useful for all related tasks, we assume that
there areK global prototypes (i:e:, centers) among the collection of related sets, and each proto-
type or center is encouraged to capture the statistical information shared by those sets, similar to the
“topic” in topic modeling (Blei et al., 2003; Zhou et al., 2016) or “dictionary atom” in dictionary
learning (Aharon et al., 2006; Zhou et al., 2009). Speci�cally, for thej th set, we consider it as a
discrete distributionPj over all the samples within the set (in data or feature space). At the same
time, we also represent this set with another distributionQj (in the same space withPj ), supported
on K global prototypes with aK -dimensional set representationh j . Sinceh j measures the impor-
tance of global prototypes for setj , it can be treated as the prototype proportion for summarizing the
salient characteristics of setj . Moreover, the existing summary networks can be adopted to encode
setj ash j for their desired property of permutation invariance. In this way, we can formulate the
learning of summary networks as the process of learning aPj to be as close toQj as possible, a pro-
cess facilitated by leveraging the optimal transport (OT) distance (Peyré & Cuturi 2019). Therefore,
the global prototypes and summary network can be learned by jointly optimizing the task-speci�c
loss and OT distance betweenPj andQj in an end-to-endmanner. We can refer to this method
as prototype-oriented OT (POT) framework for meta-learning, which is applicable to a range of
unsupervised and supervised tasks, such as set-input problems solved by summary networks, meta
generation (Hong et al., 2020c; Antoniou et al., 2017), metric-based few-shot classi�cation (Snell
et al., 2017), and learning statistics for approximate Bayesian computation (Chen et al., 2021). We
note our construction has drawn inspirations from previous works that utilize a transport based loss
between a set of objects and a set of prototypes (Tanwisuth et al., 2021; Wang et al., 2022). These
works mainly follow the bidirectional conditional transport framework of Zheng & Zhou (2021),
instead of the undirectional OT framework, and focus on different applications.

Since our plug-and-play framework can be applied to many meta-learning problems, this paper fur-
ther instantiates it to the cases of metric-based few-shot classi�cation and implicit meta generative
modeling. We summarize our contributions as follows: (1) We formulate the learning of summary
network as the distribution approximation problem by minimizing the distance between the distribu-
tion over data points and another one over global prototypes. (2) We leverage the POT to measure the
difference between the distributions for use in a joint learning algorithm. (3) We apply our method
to metric-based few-shot classi�cation and construct implicit meta generative models, where a sum-
mary network is used to extract the summary statistics from set and optimized by the POT loss.
Experiments on several meta-learning tasks demonstrate that introducing the POT loss into existing
summary networks can extract more effective set representations for the corresponding tasks, which
can also be integrated into existing few-shot classi�cation and GAN frameworks, producing a new
way to learn the set' summary statistics applicable to many applications.

2 BACKGROUND

2.1 SUMMARY NETWORKS FOR SET-STRUCTURED INPUT

To deal with the set-structured inputD j = f x j; 1:N j g and satisfy the permutation invariance in set,
a remarkably simple but effective summary network is to perform pooling over embedding vectors
extracted from the elements of a set. More formally,

S� (D j ) = g� 2

�
pool

��
f � 1 (x j 1) ; : : : ; f � 1

�
x jN j

�	��
; (1)
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wheref � 1 (�) acts on each element of a set andg� 2 (pool(�)) aggregates these encoded features and
produces desired output, and� = f � 1; � 2g denotes the parameters of the summary network. Most
network architectures for set-structured data follow this structure; see more details from previous
works (Lee et al., 2019; Zaheer et al., 2017; Edwards & Storkey, 2017; Maron et al., 2020).

2.2 OPTIMAL TRANSPORT

Although OT has a rich theory, we limit our discussion to OT for discrete distributions and refer the
reader to Peyŕe & Cuturi (2019) for more details. Let us considerp andq as two discrete probability
distributions on the arbitrary spaceX � Rd, which can be formulated asp =

P n
i =1 ai � x i and

q =
P m

j =1 bj � y j . In this case,a 2 � n andb 2 � m , where� n denotes the probability simplex
of Rn . The OT distance betweena andb is de�ned as

OT(a; b) = min
T 2 U (a ;b)

hT ; Ci ; (2)

whereh�; �i means the Frobenius dot-product;C 2 Rn � m
� 0 is the transport cost function with element

Cij = C(x i ; yj ); T 2 Rn � m
> 0 denotes the doubly stochastic transport probability matrix such that

U(a; b) := f T j
P n

i Tij = bj ;
P m

j Tij = ai g. To relax the time-consuming problem when opti-
mising the OT distance, Cuturi (2013) introduced the entropic regularization,H = �

P
ij Tij ln Tij ,

leading to the widely-used Sinkhorn algorithm for discrete OT problems.

3 PROPOSED FRAMEWORK

In meta-learning, given a meta-distributionpM of tasks, the marginal distributionpj of taskj is sam-
pled frompM for j 2 J , whereJ denotes a �nite set of indices. E.g., we can samplepj from pM

with probability 1
J whenpM is uniform over a �nite number of marginals. During meta-training,

direct access to the distribution of interestpj is usually not available. Instead, we will observe a set
of data pointsD j = f x ji gN j

i =1 , which consists ofN j i.i.d. samples frompj overRd. We can roughly
treat the meta-learning problems as the set-input tasks, where datasetD j from pj corresponds to
an input set. To learn more representative features from related but unseen sets in meta-learning
problems, we adopt the summary network as the encoder to extract set representations and improve
it by introducing the OT loss and global prototypes, providing many applications. Besides, we also
provide the applications to metric-based few-shot classi�cation and implicit generative framework
by assimilating the summary statistics. Below we describe our model in detail.

3.1 LEARNING GLOBAL PROTOTYPES AND SET REPRESENTATION VIAOT

GivenJ sets from meta-distributionpM , we can represent each setD j from meta-distributionpM
as an empirical distribution overN j samples on the original data space, formulated as

Pj =
X N j

i =1

1
N j

� x ji ; x ji 2 Rd: (3)

Since all sets (distributions) drawn from meta-distributionpM are closely related, it is reasonable
to assume that these sets share some statistical information. Motivated by dictionary learning, topic
modeling, and two recent prototype-oriented algorithms (Tanwisuth et al., 2021; Wang et al., 2022),
we de�ne the shared information as the learnable global prototype matrixB = f � k g 2 Rd� K ,
whereK represents the number of global prototypes and� k denotes the distributed representation
of thek-th prototype in the same space of the observed data points (e:g:, “topic” in topic modeling).
Given the prototype matrixB , each set can be represented with aK -dimensional weight vector
h j 2 � k (e:g:, “topic proportion” in topic modeling), wherehjk means the weight of the prototype
� k for setj . Hence, we can represent setD j with another distributionQj on prototypes� 1:K :

Qj =
X K

k=1
hjk � � k ; � k 2 Rd; (4)

whereh j is a set representation for describing setj . Since setj can be represented asQj andPj ,
we can learn set-speci�c representationh j and prototype matrixB by pushingQj towardsPj :

OT(Pj ; Qj ) = min
B ;h j

hT ; Ci def.=
N jX

i

KX

k

Cik Tik ; (5)
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Figure 1: An overview of our proposed framework, where “pool” operation including mean, sum, max or
similar. We compute the representationh j for setj using the summary network in Equation 1, which is the
weight vector of the global prototypes (i:e:, centers)� 1:K in the corresponding set.

whereC 2 RN j � K
� 0 is the transport cost matrix. In this paper, to measure the distance between

data pointx ji in set j and prototype� k , unless speci�ed otherwise, we constructC as Cik =
1� cos (x ji ; � k ), which provides an upper-bounded positive similarity metric. Besides, the transport
probability matrixT 2 RN j � K

> 0 should satisfy�( a; b) :=
�

T j T1 K = a; T > 1N j = b
	

with
Tik = T(x ji ; � k ), wherea = [ 1

N j
] 2 � N j andb = [ hjk ] 2 � K denote the respective probability

vectors for distributionPj in Equation 3 andQj in Equation 4.

Sinceh j should be invariant to permutations of the samples in setj , we adopt a summary network
to encode the set ofN j points. For unsupervised tasks, taking the summary network in Equation 1
as the example, we can directly add a Softmax activation function intoS� to enforce the simplex
constraint in set representationh j , denoted ash j = Softmax( S� (D j )) . As shown in Fig. 1, given
J sets, to learn the global prototype matrixB and summary network parameterized by� , we adopt
the entropic constraint (Cuturi, 2013) and de�ne the average OT loss for all training sets as

L POT = min
B ;�

1
J

JX

j =1

0

@
N jX

i

KX

k

Cik Tik � �
N jX

i

KX

k

� Tik lnTik

1

A = min
B ;�

1
J

JX

j =1

(OT� (Pj ; Qj )) ;

(6)
where� is a hyper-parameter for entropic constraint. Algorithm 1 describes the work�ow of the
POT loss for improving summary network under unsupervised tasks. For supervised tasks, setj is
denoted asD j = f x j; 1:N j ; y j g, wherey j is the ground-truth output determined by speci�c tasks. As
h j is a normalized weight vector, directly using it to realize the corresponding task may be undesired.
Denotingz j =pool

��
f � 1 (x j 1) ; : : : ; f � 1

�
x jN j

�	�
, we project it to the following vectors:

h j = f e(z j ); ŷ j = f � (z j ); (7)

whereh j andŷ j are responsible for the POT and task-speci�c losses, respectively. Now the sum-
mary network parameters~� = f e; �; � 1g and global prototypesB are learned by jointly optimizing
the task-speci�c loss (computed bŷy j andy j ) and OT loss in Equation 6. In summary, minimiz-
ing the POT loss de�ned by the prototype distributionQj and empirical distributionPj provides a
principled and unsupervised way to encourage the summary network to capture the set's summary
statistics. Therefore, our plug-and-play framework can integrate a suite of summary networks and
realize ef�cient learning from new sets for both unsupervised and supervised tasks.

3.2 APPLICATION TO METRIC-BASED FEW-SHOT CLASSIFICATION

As a challenging meta-learning problem, few-shot classi�cation has recently attracted increasing at-
tention, where one representative method is metric-based few-shot classi�cation algorithms. Taking
the ProtoNet (Snell et al., 2017) as an example, we provide a simple but effective method to im-
prove its classi�cation performance with the help of POT and summary network, where we refer the
reader to ProtoNet for more details. ProtoNet represents each class by computing anM -dimensional
representationzj 2 RM , with an embedding functionf � 1 : Rd ! RM , where we adopt the same
� 1 as the learnable parameters, following the feature extractor in summary network in Equation 1
for simplicity. Formally, ProtoNet adopts the average pooling to aggregate the embedded features
of the support points belonging to its class into vectorzj = 1

jSj j

P
(x ji ;y ji )2 Sj

f � 1 (x ji ). ProtoNet
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Algorithm 1 The work�ow of POT on minimizing the OT distance betweenPj andQj .
Require: DatasetsD1:J , batch sizem, learning rate� , initial summary network parameters� , initial global
prototype matrixB , cost functionC and hyper-parameter� .
while B ; � has not convergeddo

Randomly choosej from 1; 2; ::; J
Sample the real dataf x ji gm

i =1 from setj , which is denoted as empirical distributionPj in Equation 3;
Compute the set representationh j =Softmax( S� (f x ji gm

i =1 )) with summary network in Equation 1;
Represent theQj with global prototype matrixB and statisticsh j in Equation 4;
Compute the loss OT� (Pj ; Qj ) betweenPj andQj with Sinkhorn algorithm in Equation 6;
B  B + �g B , wheregB  r B [OT� (Pj ; Qj )]; �  � + �g � , whereg�  r � [OT� (Pj ; Qj )];

end while

then compares the distance between a query pointf � 1 (x ) to thezj in the same embedding space.
Motivated by the summary network, we further introduce a feed-forward networkg� 2 to map the
zj into theh j used to de�neQj distribution overB . Therefore, the functionsg� 2 andf � 1 can be
jointly optimized by minimizing the POT loss and the original classi�cation loss in ProtoNet,

min
� 1 ;� 2 ;B

V(� 1; � 2; B ) = L POT +
JX

j =1

N jX

i =1

CLS(yji ; ŷji ) (8)

whereh j is used for computing the POT loss,N j the number of samples in classj , ŷji the pre-
dicted label for samplex ji , conditioned onz1:J andf � 1 (x ji ), and CLS the classi�cation loss. Only
introducing matrixB andg� 2 , whose parameters are usually negligible compared tof � 1 , our pro-
posed method can bene�t the metric-based few-shot classi�cation by enforcing thef � 1 to learn more
powerful representationzj of each class and featuref � 1 (x ) of the query sample.

3.3 APPLICATION TO IMPLICIT META GENERATIVE MODELS

Considering implicit meta generative modeling is still a challenging but important task in meta-
learning, we further present how to construct the model by introducing set representationh j as
summary statistics, where we consider GAN-based implicit models. Speci�cally, givenpj � pM ,
we aim to construct a parametrized pushforward (i:e:, generator) of reference Gaussian distribution
� , denoted asT� (�; pj )]� , to approximate the marginal distributionpj , where� summarizes the
parameters of pushforward. Since it is unaccessible to the distribution of interestpj , we replacepj
with Pj and use the summary network to encode setD j into h j as discussed above, which is further
fed into the generator serving as the conditional information, denoted asT� (z; h j ); z � � . To
enforce the pushforwardT� (z; h j ) to �t the real distributionPj as well as possible, we introduce a
discriminatorf w following the standard GAN (Goodfellow et al., 2014). Generally, our GAN-based
model consists of three components. Summary networkS� (�) focuses on learning the summary
statisticsh j by minimizing OT� (Pj ; Qj ). The pushforward aims to push the combination of a
random noise vectorz and statisticsh j to generate samples that resemble the ones fromPj , where
we simply adopt a concatenation forh j andz although other choices are also available. Besides,
f w tries to distinguish the “fake” samples from the “real” samples in setD j . Therefore, we optimize
the implicit meta generative model by de�ning the objective function as:

min
B ;�;�

max
w

V(B ; �; �; w ) = L POT+
1
J

JX

j =1

Ex � P j [log f w (x )] + Ez � � [log(1� f w (T� (z; h j ))] (9)

In addition to the standard GAN loss, we can also adopt the Wasserstein GAN (WGAN) of Arjovsky
et al. (2017) to approximatePj . It is also �exibly to decide the input fed intof w . For example,
following the conditional GAN (CGAN) of Mirza & Osindero (2014), we can combineh j and data
points (generated or real), where the critic can be denoted asf w (x ; h j ) and f w (T� (z; h j ); h j ),
respectively. Since we focus on �tting the meta-distribution with the help of the summary network
and POT loss, we leave the problem-speci�c design of the generator, critic, and summary network as
future work for considerable �exibility in architectures. In Appendix A, we provide the illustration
of our proposed model in Fig. 3 and detailed algorithm in Algorithm 2.

4 RELATED WORK

Learning Summary Representation of Set-input. There are two lines for learning the set rep-
resentation. The �rst line aims to design more powerful summary networks, which are reviewed in
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Introduction and Section 2.1 and omitted here due to the limited space. The another line assumes
a/some to-be-learned reference set(s), and optimizes the distance between the original sets (or fea-
tures of the observed data points) and the reference set(s) with OT or other distance measures, to
learn set representation. For example, RepSet (Skianis et al., 2020) computes some comparison
costs between the input sets and some to-be-learned reference sets with a network �ow algorithm,
such as bipartite matching. These costs are then used as set representation in a subsequent neural
network. However, unlike our framework, RepSet does not allow unsupervised learning and mainly
focuses on classi�cation tasks. The Optimal Transport Kernel Embedding (OTKE) (Mialon et al.,
2021) marries ideas from OT and kernel methods (Schölkopf et al., 2002), and aligns features of a
given set to a trainable reference distribution. Wasserstein Embedding for Graph Learning (WEGL)
(Kolouri et al., 2021) also uses a similar idea to the linear Wasserstein embedding as a pooling oper-
ator for learning from sets of features. To the best of our knowledge, both of them view the reference
distribution as the barycenter and compute the set-speci�c representation by aggregating the features
(embedded with kernel methods) in a given set with adaptive weight, de�ned by the transport plan
between the given set and the reference. Different from them, we assumeJ probability distribu-
tions (rather than one reference distribution with an uniform measure) over these shared prototypes
by taking set representationsh1:J as the measures, to approximate the correspondingJ empirical
distributions, respectively. Then we naturally use the summary network as the encoder to compute
h1:J , which can be jointly optimized with the shared prototypes by minimizing the POT loss in
an unsupervised way. For a given set, we can directly compute its representation with summary
network, avoiding iteratively optimizing the transport plan between the given set and learned refer-
ence like OTKE and WEGL. These differences between the barycenter problem and ours, which are
further described in Appendix B, lead to different views of set representation learning and different
frameworks as well. To learn compact representations for sequential data, Cherian & Aeron (2020)
blend contrastive learning, adversarial learning, OT, and Riemannian geometry into one framework.
However, our work directly minimises the POT cost between empirical distribution and the to-be-
learned distribution, providing a laconic but effective way to learn set representation.

Metric-based few-shot classi�cation methods. Our method has a close connection with metric-
based few-shot classi�cation algorithms. For example, MatchingNet (Vinyals et al., 2016) and Pro-
toNet (Snell et al., 2017) learned to classify samples by computing distances to representatives of
each class. Using an attention mechanism over a learned embedding of the support set to predict
classes for the query set, MatchingNet (Vinyals et al., 2016) can be viewed as a weighted nearest-
neighbor classi�er applied within an embedding space. ProtoNet (Snell et al., 2017) takes a class's
prototype to be the mean of its support set in the learned embedding space, which further performs
classi�cation for an embedded query point by �nding the nearest class prototype. Importantly, the
global prototypes in our paper are shared among all sets, which is different from the speci�c proto-
type for each class in ProtoNet but suitable for our case. Due to the �exibility of our method, we can
project the average aggregated feature vector derived from the encoder in ProtoNet or MatchingNet,
into h j by introducing a simple neural network, which can be jointly optimized with the encoder by
minimizing the classi�cation loss and POT loss. Our novelty is that the POT loss can be naturally
used to improve the learning of encoder while largely maintaining existing model architectures or
algorithms. Another recent work for learning multiple centers is in�nite mixture prototypes (IMP)
(Allen et al., 2019), which represents each class by a set of clusters and infers the number of clus-
ters with Bayesian nonparametrics. However, in our work, the centers are shared for all classes and
set-speci�c feature extracted from the summary network serves as the proportion of centers, where
the centers and summary network can be jointly learned with the POT loss.

Meta GAN-based Models. As discussed by Hong et al. (2020a), meta GAN-based models can be
roughly divided into optimization-based, fusion-based, and transformation-based methods. Clouâtre
& Demers (2019) and Liang et al. (2020) integrated GANs with meta-learning algorithms to real-
ize the optimization-based methods, including model-agnostic meta-learning (MAML) (Finn et al.,
2017) and Reptile (Nichol et al., 2018). Hong et al. (2020b;c) fused multiple conditional images by
combining matching procedure with GANs, providing fusion-based methods. For transformation
based methods, Antoniou et al. (2017) and Hong et al. (2020a) combine only one image and the ran-
dom noise into the generator to produce a slightly different image from the same category, without
using the multiple images from same category. Besides, a recent work that connects existing sum-
mary network with GAN is MetaGAN (Zhang et al. 2018), which feeds the output of the summary
network into the generator and focuses on few-shot classi�cation using MAML. The key differences
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of these models from ours is that we develop POT to capture each sets' summary statistics, where
we can �exibly choose the summary network, generator, and discriminator for speci�c tasks.

5 EXPERIMENTS
We conduct extensive experiments to evaluate the performance of our proposed POT in improving
summary networks, few-shot generation, and few-shot classi�cation. Unless speci�ed otherwise, we
set the weight of entropic constraint as� =0 :1, the maximum iteration number in Sinkhorn algorithm
as200, and adopt the Adam optimizer (Kingma & Ba, 2015) with learning rate0:001. We repeat all
experiments5 times and report the mean and standard deviation on corresponding test datasets.

5.1 EXPERIMENTS ABOUTPOT LOSS IN SUMMARY NETWORK

To evaluate the effectiveness of POT in improving the summary network, we conduct three tasks
on two classical architectures: DeepSets (Zaheer et al. 2017) and Set Transformer (Lee et al.
2019), where the former uses standard feed-forward neural networks and the latter adopts the
attention-based network architecture. For Set Transformer and DeepSets, the summary network
is de�ned in Equation 1 and optimized by the task-speci�c loss; for Set Transformer(+POT) and
DeepSets(+POT), the summary network, de�ned as in Equations 1 and 7, is optimized by both the
POT loss and task-speci�c loss. More experimental details are provided in Appendix C.

Amortized Clustering with Mixture of Gaussians (MoGs): We consider the task of maximum
likelihood of MoGs withC components, denoted asP(x; � ) =

P C
c=1 � cN

�
x j � c; diag

�
� 2

c

��
.

Given the datasetX = f x1:n g generated from the MoG, the goal is to train a neural network,
which takesX as input set and outputs parameters� = f � c; � c; � cg1;C . Each dataset contains
n 2 [100; 500]points on a 2D plane, each of which is sampled from one ofC Gaussians. Table 1
reports the test average likelihood of different models with varyingC 2f 4; 8g, where we setK =50
prototypes for allC. We observe that Set Transformer outperforms DeepSets largely, validating
the effectiveness of attention mechanisms in this task. We note both Set Transformer(+POT) and
DeepSets(+POT) improve their baselines, showing that the POT loss can encourage the summary
networks to learn more ef�cient summary statistics.

Point Cloud Classi�cation: Here, we evaluate our method on the task of point cloud classi�cation
using the ModelNet40 (Chang et al., 2015) dataset1, which consists of 3D objects from40different
categories. By treating each object as a point cloud, we represent it as a set ofN vectors inR3 (x;
y; z-coordinates). Table 1 reports the classi�cation accuracy, where we perform the experiments
with varyingN 2 f 64; 1024g, setK = 40 prototypes. Clearly, both DeepSets and Set Transformer
can be improved by adding the POT loss. Notably, fewer points would lead to lower performance,
where the POT loss plays a more important role. Taking this task as the example, we further study
our model's sensitivity to hyper-parameter� in Fig. 4 of Appendix C.5.

Figure 2: Accuracy of digit sum-
mation with image inputs, where all
models are trained on tasks of length
10 at most and tested on examples of
length up to 100.

Sum of Digits: Following Zaheer et al. (2017), we aim to
compute the sum of a given set of digits, where we consider
MNIST8m (Loosli et al., 2007), consisting of 8 million instances
of 28 � 28 grey-scale stamps of digits inf 0; :::; 9g. By ran-
domly sampling a subset of maximumM = 10 images from
MNIST8m, we buildN = 100k “sets” of training, where we
denote the sum of digits in that set as the set-label. We construct
100k sets of test MNIST digits, where we vary theM starting
from 10 all the way up to100. The output of the summary net-
work is a scalar, predicting the sum ofM digits. In this case,
we adopt L1 as the task-speci�c loss and setK = 10 proto-
types. We show the accuracy of digit summation for different
algorithms in Fig. 2 and �nd that the POT loss can enhance the
summary networks to achieve better generalization. In this task,
we also explore the convergence rate and the learned transport
plan matrix of Sinkhorn algorithm in Fig. 5 of the Appendix C.6.

5.2 EXPERIMENTS ONFEW-SHOT CLASSIFICATION

To explore whether our proposed method can improve the metric-based few-shot classi�cation, we
consider two commonly-used algorithms as the baselines, including ProtoNet (Snell et al., 2017)

1We adopt the point-cloud dataset directly from the authors of Zaheer et al. 2017
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Table 1:Test performance of different methods, where left table denotes the likelihood for MoG with varying
C (number of components), oracle is the likelihood of true parameters for the test data, and right denotes the
test accuracy for point cloud classi�cation task with varyingN (number of points).

Task Test likelihood for MoG Test accuracy for the point cloud classi�cation
Algorithm C=4 C=5 C=6 C=7 C=8 N=64 N=128 N=256 N=512 N=1024
Oracle -1.473 -1.660 -1.820 -1.946 -2.058 - - - - -

DeepSets
-1.809
� 0.015

-1.812
� 0.016

-1.897
� 0.017

-2.115
� 0.016

-2.261
� 0.014

79.14
� 0.035

82.51
� 0.028

84.62
� 0.037

85.74
� 0.045

86.83
� 0.042

DeepSets(+POT)
-1.723
� 0.015

-1.743
� 0.017

-1.861
� 0.012

-2.078
� 0.018

-2.214
� 0.015

79.91
� 0.050

83.65
� 0.060

85.22
� 0.055

86.25
� 0.067

86.93
� 0.075

Set Transformer
-1.501
� 0.006

-1.721
� 0.006

-1.859
� 0.007

-2.003
� 0.007

-2.106
� 0.007

79.01
� 0.103

82.31
� 0.117

84.46
� 0.125

85.82
� 0.114

86.34
� 0.122

Set Transformer(+POT)
-1.486
� 0.007

-1.676
� 0.007

-1.828
� 0.006

-1.967
� 0.007

-2.084
� 0.007

80.00
� 0.111

83.32
� 0.130

85.64
� 0.121

86.51
� 0.124

86.84
� 0.115

and MatchNet (Vinyals et al., 2016). Denoting the feature extractor in each algorithm asf � 1 , we
consider several popular backbones, including ResNet10 and ResNet34 (He et al., 2016). Recalling
the discussions in Section 3.2, to enforcef � 1 to learn more powerful image features, we additionally
introduce matrixB and netg� 2 and learn the model by minimizing the POT loss and classi�cation
errors. We perform the experiments on the CUB (Welinder et al., 2010) and miniImageNet (Ravi &
Larochelle, 2016). As a �ne-grained few-shot classi�cation benchmark, CUB contains200different
classes of birds with a total of11; 788images of size84� 84� 3, where we split the dataset into100
base classes, 50 validation classes, and50novel classes following Chen et al. (2019). miniImageNet
is derived from ILSVRC-12 dataset (Russakovsky et al., 2015), consisting of84 � 84 � 3 images
from 100 classes with 600 random samples in each class. We follow the splits used in previous work
(Ravi & Larochelle, 2016), which splits the dataset into64 base classes,16 validation classes, and
20 novel classes. Table 2 reports the 5way5shot and 5way10shot classi�cation results of different
methods on miniImageNet and CUB. We see that introducing the POT loss and summary network
can consistently improve over baseline classi�ers, and the performance gain gradually increases
with the development of number of network layers. This suggests that our proposed plug-and-play
framework can be �exibly used to enhance the metric-based few-shot classi�cation, without the
requirement of designing complicated models on purpose.

Table 2: 5way5shot and 5way10shot classi�cation accuracy (%) on CUB and miniImageNet, respectively,
based on 1000 random trials. Here, (�) is thep-value computed with two-samplet-test, andp-value with blue
(red) color means the increase (reduce) of performance when introducing POT loss.

Datasets CUB miniImageNet
ProtoNet(resnet10) 84.32� 0.51 87.41� 0.49 72.74� 0.63 78.14� 0.56
ProtoNet(+OT) (resnet10) 84.44� 0.51(1e-7) 87.69� 0.53(1e-33) 72.94� 0.66(1e-12) 78.76� 0.49(1e-146)
ProtoNet(resnet34) 87.33� 0.48 91.75� 0.47 73.99� 0.64 78.64� 0.56
ProtoNet(+OT) (resnet34) 88.34� 0.46(0.0) 92.17� 0.48(1e-79) 75.15� 0.63(1e-265) 79.05� 0.52(1e-60)
MatchNet (resnet10) 82.98� 0.56 85.97� 0.53 68.82� 0.65 72.06� 0.54
MatchNet(+OT) (resnet10) 83.64� 0.58(1e-127) 86.02� 0.56(0.04) 68.95� 0.62(1e-6) 71.94� 0.56(1e-6)
MatchNet (resnet34) 84.66� 0.55 86.32� 0.56 68.32� 0.66 72.41� 0.63
MatchNet(+OT) (resnet34) 85.50� 0.66(1e-172) 86.75� 0.61(1e-57) 68.51� 0.64(1e-11) 71.98� 0.59(1e-53)

5.3 EXPERIMENTS ONFEW-SHOT GENERATION

Here, we consider few-shot generation task to investigate the effectiveness of our proposed implicit
meta generative framework, where we consider CGAN (Mirza & Osindero, 2014) and DAGAN
(Antoniou et al., 2017) as baselines for their ability to generate conditional samples. For CGAN-
based models, we adopt summary network as the encoder to extract the feature vectorh j from a
given setD j , which is further fed into the generator and discriminator as the conditional information.
Since the original DAGAN only assimilates one image into the generator, in our framework, we
replace the encoder in DAGAN with summary network to learn the set representation. For DAGAN-
based models, we adopt the same way with the original DAGAN to construct the real/samples for
the critic and explain here for clarity: we sample two sets (D1j ; D2j ) from the same distribution or
category; then we represent the real samples as the combination ofD1j andD2j and the fake ones
as the combination ofD1j andD̂1j from the generator (conditioned onD1j ). Different from our
framework that separately optimizes the summary network using the OT loss, all other models for
comparison in this paper jointly optimize the encoder (e.g., summary network) with the generator
by the generator loss. Besides, for a fair comparison, we also consider introducing the additional
reconstruction loss (mean square error, MSE) to optimize the generator and encoder in baselines. We
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consider the DeepSets as the summary network for its simple architecture. For 3D natural images,
we adopt the pretrained densenet (Iandola et al., 2014) to extract features from each data pints, and
take the features as the input to summary network. To evaluate the quality of generated samples,
we adopt commonly used metric Fréchet Inception Distance (FID) (Heusel et al., 2017), where we
only report the FID score (Heusel et al., 2017) considering the notable performance gap between our
model and the compared ones. We provide several examples on toy datasets to show the ef�ciency
of our proposed model in Appendix E.

Table 3:FID # of images generated by different methods with varying unseen anglesA on MNIST.
Algorithms A=-160 A=-120 A=-80 A=-40 A=0 A=40 A=80 A=120 A=160

CGAN
227.94
� 2.56

203.59
� 2.21

211.74
� 1.88

231.63
� 2.11

228.35
� 1.94

222.87
� 2.02

195.30
� 1.58

202.69
� 1.75

202.35
� 1.16

CGAN+MSE
225.56
� 2.05

201.09
� 1.62

209.11
� 0.91

222.54
� 2.13

223.61
� 1.55

220.18
� 1.47

193.75
� 1.39

200.12
� 1.08

201.13
� 2.33

CGAN+POT
213.30
� 1.35

193.42
� 1.25

196.56
� 1.61

217.28
� 1.58

210.27
� 2.04

206.44
� 1.78

181.05
� 0.99

190.19
� 1.22

191.22
� 1.37

DAGAN
169.85
� 1.56

201.58
� 1.98

157.95
� 1.45

204.23
� 2.31

218.42
� 1.96

196.70
� 1.75

160.35
� 1.57

198.24
� 2.14

164.64
� 1.85

DAGAN+MSE
169.77
� 1.51

200.12
� 2.10

155.87
� 1.41

202.16
� 1.89

215.12
� 1.97

194.61
� 2.10

159.08
� 1.74

197.48
� 2.05

163.23
� 1.84

DAGAN+ POT
159.51
� 1.57

174.07
� 1.63

135.89
� 1.17

177.64
� 1.88

197.09
� 1.46

186.17
� 1.90

142.40
� 1.33

174.75
� 1.59

146.69
� 1.47

Rotated MNIST: Following Wu et al. (2020), we arti�cially transform each image in MNIST
dataset (LeCun, 1998) with 18 rotations (� 180 to 180 by 20 degrees), leading to18 distributions
characterized by angleA. We choose9 interleaved distributions for training and the rest as unseen
distributions for testing. We consider the CGAN-based and DAGAN-based models, respectively.
During the test stage, for each unseen distribution, we randomly sample1000real images and gen-
erate20fake images based on every20real images and repeat this process50times (i:e:, 1000=20),
resulting in1000generated samples for each method. We summarize the test performance in Table 3
with varyingA. We can �nd that our proposed framework allows for better generalization to related
but unseen distributions at test time, indicating the POT loss can enforce the summary network to
capture more salient characteristics.

Natural Images: We further consider few-shot image generation on Flowers (Nilsback & Zisser-
man, 2008) and Animal Faces (Deng et al., 2009), where we follow seen/unseen split provided in
Liu et al. (2019). Flowers dataset contains8189images of102categories, which are divided into 85
training seen and 17 testing unseen categories; Animal Faces dataset contains117; 574animal faces
collected from 149 carnivorous animal categories, which are split into 119 training seen and 30 test-
ing unseen categories. We present the example images generated by DAGAN and DAGAN(+POT)
and network architectures in Appendix F for the limited space, where we also compute the FID
scores with the similar way in Rotated MNIST experiment. We �nd that our method achieves the
lowest FID and has the ability to generate more realistic natural images compared with baselines.
This indicates the summary network in our proposed framework can successfully capture the impor-
tant summary statistics within the set, bene�cial for the few-shot image generation.

6 CONCLUSION

In this paper, we present a novel method to improve existing summary networks designed for set-
structured input based on optimal transport, where a set is endowed with two distributions: one
is the empirical distribution over the data points, and another is the distribution over the learnable
global prototypes. Moreover, we use the summary network to encode input set as the prototype
proportion (i:e:, set representation) for global centers in corresponding set. To learn the distribution
over global prototypes and summary network, we minimize the prototype-oriented OT loss between
two distributions in terms of the de�ned cost function. Only additionally introducing the acceptable
parameters, our proposed model provides a natural and unsupervised way to improve the summary
network. In addition to the set-input problems, our plug-and-play framework has shown appealing
properties that can be applied to many meta-learning tasks, where we consider the cases of metric-
based few-shot classi�cation and implicit meta generative modeling. Extensive experiments have
been conducted, showing that our proposed framework achieves state-of-the-art performance on
both improving existing summary networks and meta-learning models for set-input problems. Due
to the �exibility and simplicity of our proposed framework, there are still some exciting extensions.
For example, an interesting future work would be to apply our method into approximate Bayesian
computation for posterior inference.
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Grégoire Mialon, Dexiong Chen, Alexandre d'Aspremont, and Julien Mairal. A trainable optimal
transport embedding for feature aggregation and its relationship to attention. InICLR 2021-The
Ninth International Conference on Learning Representations, 2021.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.CoRR, abs/1411.1784,
2014.

Alex Nichol, Joshua Achiam, and John Schulman. On �rst-order meta-learning algorithms.arXiv
preprint arXiv:1803.02999, 2018.

Maria-Elena Nilsback and Andrew Zisserman. Automated �ower classi�cation over a large num-
ber of classes. InSixth Indian Conference on Computer Vision, Graphics & Image Processing,
ICVGIP 2008, Bhubaneswar, India, 16-19 December 2008, pp. 722–729. IEEE Computer Soci-
ety, 2008.

11



Published as a conference paper at ICLR 2022
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Figure 3: The overview of our proposed implicit meta generative framework, where we sample the
j -th distribution from training sets, feed the data points into the summary network, generate the fake
samples with the random noise and summary output as the input, discriminate the real/fake samples.

Algorithm 2 The work�ow of our proposed implicit meta generative framework.
Require: DatasetsD1:J , initial discriminator parametersw, initial generator parameters� , initial
summary network parameters� , initial matrix B , the cost functionC, the number of critic itera-
tions per generator iteration� critic , the batch sizem, learning rate� and the hyper-parameter� .

while w, �; B ; � has not convergeddo
Randomly choosej from 1; 2; ::; J
for t = 1 ; � � � ; � critic do

Sample the real data setD j = f x ji gm
i =1 from j -th empirical distributionPj ;

Embed the observed batch data into the statisticsh j = Softmax( S� (D j )) ;
Sample a batch of prior samplesf zi gm

i =1 from p(z);
gw  �r w

1
m

P m
i =1 [log f w (x i

j ) + log(1 � f w (T� (zi ; h j )))] ;
w  w + �g w

end for;
Represent theQj with global prototype matrixB and set representation/statisticsh j
Compute the loss OT� (Pj ; Qj ) betweenPj andQj with Sinkhorn algorithm in Equation 6
gB  r B [OT� (Pj ; Qj )];
B  B + �g B ;
g�  r � [OT� (Pj ; Qj )];
�  � + �g � ; see Algorithm 1 for more details;
Sample a batch of latent variables

�
z( i )

	 m

i =1 � p(z);
g�  r �

�
1
m

P m
i =1 log (1 � f w (T� (zi ; h j )))

�
;

�  � + �g � ;
end while

A A LGORITHMS AND ILLUSTRATION OF OUR PROPOSED MODEL

The pseudo code for the implicit meta generative modeling is provided in Algorithm 2.
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B THE DIFFERENCE BETWEEN OUR MODEL AND BARYCENTER PROBLEM

In this section, we clarify the difference between Wasserstein barycenter and our method. Specif-
ically, for j -th distribution, we denotedPj as its empirical distribution consisting ofN j samples,
expressed asPj =

P N j
i =1

1
N j

� x ji ; x ji 2 Rd. Notably,a j = [ 1
N j

] 2 � N j represents the probability
measure for distributionPj .
For another thing, we can representPj with another to-be-learned distributionQj , de�ned as
Qj =

P K
k=1 hjk � � k ; � k 2 Rd. Herebj = [ hjk ] 2 � K is the probability measure for distribution

Qj , which can be computed using summary networkS� (x i; 1:N j ) and serves as the representation
for setj . And � k is thek-th prototype in the same space of the observed data points, which is the
k-th column ofB 2 RK � d, a learnable global prototype matrix. To optimize the� 1:K and the
summary networkS� for computingh j , we minimize the average OT loss (betweenQj andPj ) for
all training sets. We rewrite the Equation (6) here for convenience:

L OT = min
B ;�

1
J

JX

j =1

0

@
N jX

i

KX

k

Cik Tik � �
N jX

i

KX

k

� Tik lnTik

1

A = min
B ;�

1
J

JX

j =1

(OT� (Pj ; Qj )) :

Usually, this equation can also be represented:

min
B ;�

1
J

JX

j =1

(OT� (a j ; bj )) : (10)

In terms of Wasserstein barycenter, we adopt the same notations for consistency. Following
(Altschuler & Boix-Adser�a, 2021), givenJ empirical distributionsP1:J and their respective proba-
bility measures[a1; : : : ; aJ ] supported onRd and a vector� 2 � J , their corresponding Wasserstein
barycenter can be viewed as another distributionQ, i:e:, Q =

P K
k=1 mk � � k ; � k 2 Rd, where� k is

thek-th column ofB , m = [ mk ] 2 � K is the probability measure for distributionQ. Then we can
learn the barycenter (i:e:, B andm ) by minimizing

min
B ;m

1
J

JX

j =1

� j W (Pj ; Q) = min
B ;m

1
J

JX

j =1

� j W (a j ; m ) (11)

where aboveW(�; �) denotes the squared 2-Wasserstein distance. By comparing the equation 11 and
equation 10, we can �nd that our model learns aQj to approximatePj for each distributionj but
“barycenter” problem learns a sharedQ as the barycenter for allP1:J . Therefore, after minimizing
the average loss for all training sets with Equation (6), we can use the probability measurebj =
[hjk ] (i:e:, h j ) to represent the empirical distributionPj . Especially, we can directly map the test
set to its representation by using the summary network. However, since the probability measure
m in “barycenter” is shared by all distributions, it can not represent a speci�c set. Therefore, to
achieve the set representation, it might need to �rst compute the transport plan between test set and
the barycenterQ and then aggregate the data points (or features) within the test set by taking the
transport plan as the weight. Therefore, our model produces a more intuitive solution to learn the
set representation, which can take full advantage of the existing summary networks and provides a
promising tool for addressing set-input and meta-learning problems.

C EXPERIMENTAL SETTINGS ABOUT INTRODUCINGPOT LOSS INTO THE

SUMMARY NETWORKS

C.1 DETAILS FOR AMORTIZED CLUSTERING WITH MIXTURES OFGAUSSIANS

We generate the 2D toy datasets following the Lee et al. (2019), where we additionally vary theC
(the number of components) from4 to 8. Below, we present the detailed generation process about
the toy datasets:

1. Specify the number of componentsC for 2D toy dataset.
2. Generate the number of data points,n � Uniform(100; 500).
3. Sample the mean vector forC components.

� c;d � Uniform( � 4; 4); c = 1 ; : : : ; C; d = 1 ; 2
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4. Sample the cluster labels.

� � Dir
�

1>
�

; zi � Categorical(� ); i = 1 ; : : : ; n; zi = 1 ; : : : ; C

5. Generate data from spherical Gaussian.

x i � N
�
� zi ; (0:3)2I

�
; i = 1 ; : : : ; n

C.2 DETAILS ABOUT SET-TRANSFORMER-BASED AND DEEPSETS-BASED ARCHITECTURES
USED IN MOGS EXPERIMENTS

DeepSetsIn terms of the DeepSets, thef � 1 in summary network contains 3 permutation-equivariant
layers with 256 channels followed by mean-pooling over the set structure. Then the resulting vector
representationz j of the set is then fed to a fully connected layer with 512 units followed by a linear
layer 512� C(1 + 2 � 2), whereC denotes the number of components. We use ELU activation
at all layers. To introduce the POT loss into the DeepSets, we further feed thez j into a fully con-
nected layer with 512 units followed by a 50-way softmax unit and also introduce the global matrix
B 2 R2� 50.
Set Transformer To perform the MoGs experiments, we adopt the same architecture for Set Trans-
former following Lee et al. (2019), whose parameters are reported in Table 4. To introduce the POT
loss, we also add the two fully connected layers with 256 units on the resulting vectorz j followed
by a 50-way softmax unit, and a global prototype matrixB 2 R2� 50.

C.3 DETAILS ABOUT SET-TRANSFORMER-BASED AND DEEPSETS-BASED ARCHITECTURES
USED IN SUM OF DIGITS

DeepSetsFollowing the of�cial code in Zaheer et al. (2017), we adopt the default architecture
to implement the DeepSets, where we �rst project the image into a128-dimensional vector with
three convolutional layers and apply summary network on the128-dimensional vectors. To build
DeepSets(+POT), we take the set representationz j after sum-pooling in summary network as the
input and introduce fully connected layer with 128 units followed by a 10-way softmax unit, and a
global prototype matrixB 2 R128� 10.
Set Transformer For Set Transformer, we follow the similar structure used in MoGs experiments,
where we also project the image with three convolutional layers and output a scalar. To build Set
Transformer(+POT), we take the representationz j after sum-pooling in summary network as the
input and introduce fully connected layer with 128 units followed by a 10-way softmax unit, and a
center matrixB 2 R128� 10.

C.4 DETAILS ABOUT SET-TRANSFORMER-BASED AND DEEPSETS-BASED ARCHITECTURES
USED IN POINT CLOUD CLASSIFICATION

DeepSetsFor original DeepSets, we adopt the same architecture with Zaheer et al. (2017). In a
speci�c, thef � 1 in summary network contains 3 permutation-equivariant layers with 256 channels
followed by max-pooling over the set structure. Then the resulting vector representationz j of the
set is then fed to a fully connected layer with 256 units followed by a 40-way softmax unit. We
use Tanh activation at all layers and dropout on the layers after set-max-pooling (i:e:, two dropout
operations) with 50% dropout rate. To introduce the POT loss into the DeepSets, we further feed the
z j into a fully connected layer with 256 units followed by a 40-way softmax unit, with70%dropout
rate. Besides, we additionally introduce the center matrixB 2 R3� 40.

Set Transformer We also adopt the same architecture to implement the Set Transformer, where we
summarize the parameters in Table 5, following Lee et al. (2019). To improve the Set Transformer
with POT loss, we also introduce a fully connected layer with 256 units followed by a 40-way
softmax unit, with90%dropout rate, and a center matrixB 2 R3� 40.

C.5 PARAMETER SENSITIVITY

In the previous experiments, we �x the value of� as 0:1, controlling the weight of the entropic
regularisation in the Sinkhorn algorithm. Notably, unless speci�ed otherwise, we specify the con-
struction ofC asCik = 1 � cos (x ji ; � k ). Therefore, the cost function provides an upper-bounded
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Table 4: Detailed architectures of Set Transformer used in the MoGs experiments, cited from Lee et al. (2019),
where C denotes the number of components.

Encoder Decoder
rFF SAB ISAB Pooling PMA
FC(128, ReLU) SAB(128, 4) ISABm(128, 4) mean PMA4(128, 4)
FC(128, ReLU) SAB(128, 4) ISABm(128, 4) FC(128, ReLU) SAB(128, 4)
FC(128, ReLU) - - FC(128, ReLU) FC(C · (1 + 2 · 2), )
FC(128, ReLU) - - FC(128, ReLU) FC(C · (1 + 2 · 2), )
- - - FC(C · (1 + 2 · 2), ) -

Table 5: Detailed architectures of Set Transformer used in the point cloud classification experiments, cited
from Lee et al. (2019).

Encoder Decoder
rFF ISAB Pooling PMA
FC(256, ReLU) ISAB(256, 4) max Dropout(0.5)
FC(256, ReLU) ISAB(256, 4) Dropout(0.5) PMA1(256, 4)
FC(256, ReLU) - FC(256, ReLU) Dropout(0.5)
FC(256, ) - Dropout(0.5) FC(40, )
- - FC(40, ) -
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Figure 4: Parameter sensitivity of DeepSets(+POT) on point cloud classification task, with varying �, where
each object is represented as a set of N = 20 vectors.

positive similarity metric, making the � has the corresponding reasonable range as a prior knowledge.
Here, we study our DeepSets(+POT)’s sensitivity to �. We consider the point cloud classification
task and each object is represented as a set of N = 20 vectors. As shown in Fig. 4, we report the
performance of DeepSets(+POT) on point cloud classification task with varying �, where DeepSets
serves as the baseline. It can be seen that our model is robust to the �. Besides, all the results of
DeeepSets(+POT) with different � are superior than that of DeeepSets, indicating the effectiveness
of our method. By fine-tuning � for each dataset in each task, we might obtain better results than
those reported in our experiments. However, we aim to validate our method instead of exhaustively
tuning this hyper-parameter and thus we set � = 0:1, which can achieve the acceptable result.

C.6 CONVERGENCE RATE OF SINKHORN ALGORITHM

In this paper, we set the maximum iteration number as Itermax = 200 in Sinkhorn algorithm for
all experiments. As shown in Fig. 5, we visualize the convergence rate of Sinkhorn algorithm,
where we consider the task about “sum of digits” (DeepSets+POT). The upper figure shows the
convergence rate of Sinkhorn algorithm. The bottom figure visualizes the transport plan matrix
with varying iterations. We find that the 200 iterations are typically enough for Sinkhorn algorithm
and we can learn a sparse transport plan matrix T when the algorithm converge. Notably, the
transport plan matrix needs to satisfy two marginal constraints, defined by the probability measures
of two distributions, respectively. Recall that the empirical distribution has an unchanged uniform
probability measure, so the learned transport plan matrix is dense for the Nj observed samples. In
terms of another distribution, its probability measure is the set-specific representation, weighting the
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Figure 5: Top: the convergence rate of Sinkhorn for c(x; y) = 1� cosine(x; y), and � = 0:1, as measured in
term of marginal constraint violation 1

J

∑J
j

∑Nj

i ju
l+1
ij �u

l
ij j, where l is the iteration index andu is the scaling

variable; please see page 67 in Peyré & Cuturi (2019) for more details. Bottom: evolution of the transport plan
matrix T = diag

(
u(‘)

)
K diag

(
v(‘)

)
computed at iteration of Sinkhorn’s iterations.

importance of K shared centers for corresponding set. Therefore, it is reasonable that transport plan
matrix is sparse for K centers.

D EXPERIMENTAL SETTINGS ABOUT FEW-SHOT CLASSIFICATION

Denote the prototype for set j (computed by f�1
) in few-shot classification as cj . We consider two

backbones for f�1
, including ResNet10 and ResNet34, which produce the 512-dimensional cj . To

improve the metric-based few-shot classification with our framework, taking the cj as input, we
further construct the g�2 . Specifically, we introduce a fully connected network with architecture
as 512 ! 256 units with ReLU function followed by a X-way (X=64 for CUB, and X=128 for
miniImageNet) Softmax function and a center matrix B 2 R512�X. We conduct 10000 tasks of the
training set Dtr to train the model while 1000 tasks of the test set Dte to evaluate the learned model.
And Dtr \ Dte = ;. We run 60 epochs to train the model on CUB and miniImageNet. The model
is trained using Adam optimizer with default settings (learning rate 1e � 3, � = (0:9; 0:999), and
� = 1e� 8) on one Nvidia Geforce RTX3090 GPU.

E ADDITIONAL EXPERIMENTAL RESULTS ON FEW-SHOT GENERATION
ABOUT TOY DATASETS

We test our algorithm through a series of synthetic data sets and realistic data sets. For synthetic
datasets, we set T� , fw and S� as fully connected neural networks, where T� , fw have 4 hidden
layers and f�1

and g�2
(we adopt DeepSets) have 3 hidden layers. Each layer has 200 nodes, and

the activation function is chosen as RELU, where we adopt the softmax in the final layer.

Normal distribution on 2D toy data: We first consider the 2D normal case, where the training
data contains 10K sets and each set contains 100 data points from N(�;�). We sample the mean,
variance, and covariance from U [�5; 5], U [1; 2], and U [�0:5; 0:5], respectively. Fig. 6 shows
the real (gray points) and generated samples (red points) by different models given unseen test sets,
where we only consider CGAN-based methods for the simple toy data. We find that our model (third
column) can improve the resistance to mode collapse compared with CGAN+MSE (second column)
and better fit the unseen test distributions than CGAN (first column). This result indicates the POT
loss can spur the summary network to capture more desired statistics for unseen distributions.
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Figure 6: Examples of few-shot generation for two dimensional Gaussian distributions, where we visualize the
real samples from the true distributions (gray points) and generated samples (red points) by different models
(from first to third column: CGAN, CGAN+MSE and our proposed CGAN+POT), where we also plot the
contour of each Gaussian distribution.

One-dimensional Gaussian distributions: In this case, we generate another collection of synthetic
1 � D datasets based on Gaussian parametric family, where the means and variances are sampled
from U[�1; 1] and U[0:5; 2] respectively. The training data contains 10K sets each containing 50
samples. We also visualize the pdfs of gaussian distributions with randomly means and variance
in Fig 7, which are used to sample test data, and show the 500 data points generated by the push-
forward. For this experiment, we set the dimension of z and summary vector s as 2.

Multi-family distribution on 1D toy data: To validate if our proposed model can capture many
types of distributional families simultaneously, we construct a collection of synthetic 1-D datasets
each containing 100 samples from either an Exponential, Gaussian or Laplacian distribution with
equal probability. For Gaussian and Laplacian distributions, means and variances are sampled from
U [�1; 1] and U [0:5; 2] respectively; for Exponential distributions, rates are sampled from U [0:5; 2].
Fig. 8 visualizes the pdfs of six one-dimensional test distributions with different means and variances
and the generated data points. It is interesting to observe that the generated data points can fit the
corresponding pdf well, indicating our model can generalize to different distributions with varying
parameters. Besides, our model performs slightly worse on the Exponential distributions, perhaps
attributing to the fact that it is the only non-symmetric distribution.

F DETAILS ABOUT NATURAL IMAGE GENERATIONS AND THE RESULTS

We use denseNet proposed by Huang et al. (2018) as the backbone of summary network, then
a pooling operation is conducted as Zaheer et al. (2017) does. And a 2-layer fully connected
network with ReLU activation function is finally employed to embed the 4096-D visual features
into the corresponding 512-D set representations hj . As for conditional generator (conditioned
on set representations as well as Gaussian noise), we introduce a 2-layer embedding network
[100!600!100] with LeakyReLU activation function to embed the input noise n. Besides, we
use a 5-layer deconvolution network [ConvTranspose2d(X + 100, 512, 4, 1, 0)! ConvTrans-
pose2d(512, 256, 4, 2, 1)!ConvTranspose2d(512, 128, 4, 2, 1)!ConvTranspose2d(128, 64, 4,
2, 1)!ConvTranspose2d(64, 3, 4, 2, 1)], where X = 64; 128 for oxford and animal face datasets
respectively with BatchNorm along channels and ReLU activation function to deconvolute the con-
catenated noise embeddings and set representations cat([n;hj ]) as fake output images xfake :
RN�3�64�64. Finally, a 5-layer discriminator network [Conv2d(2*3, 64, 4, 2, 1)!Conv2d(64,
128, 4, 2, 1))!Conv2d(128, 256, 4, 2, 1)!Conv2d(256, 512, 4, 2, 1)!Conv2d(512, 1, 4, 1, 0)]
with BatchNorm as well as LeakyReLU activation function at the first fourth deconvolutional layers
and the last layer without BatchNorm while with sigmoid activation funtion to distinguish the true
or fake generated images. We present the generated results in Figure 9.

18



Published as a conference paper at ICLR 2022

Figure 7: Examples of few-shot generation for one dimensional Gaussian distributions, where we
visualize the generated samples by our GAN+POT (conditioned on the test samples from the unseen
distribution) and the PDF of the unseen true distribution.

Figure 8: Examples of few-shot generation for multi-distributions, where we visualize the generated
samples (green) by our GAN+POT (conditioned on the test samples from the unseen distribution)
and the PDF (red) of the unseen true distribution.
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