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ABSTRACT

Sharp generalization bound for neural networks trained by gradient descent (GD)
is of central interest in statistical learning theory and deep learning. In this pa-
per, we consider nonparametric regression by an over-parameterized two-layer
NN trained by GD. We show that, if the neural network is trained by GD with
early stopping, then the trained network renders a sharp rate of the nonparametric
regression risk of O(ε2n), which is the same rate as that for the classical kernel
regression trained by GD with early stopping, where εn is the critical popula-
tion rate of the Neural Tangent Kernel (NTK) associated with the network and
n is the size of the training data. It is remarked that our result does not require
distributional assumptions on the covariate as long as the covariate lies on the
unit sphere, in a strong contrast with many existing results which rely on spe-
cific distributions such as the spherical uniform data distribution or distributions
satisfying certain restrictive conditions. As a special case of our general result,
when the eigenvalues of the associated NTK decay at a rate of λj ≍ j−

d
d−1 for

j ≥ 1 which happens under certain distributional assumption such as the train-
ing features follow the spherical uniform distribution, we immediately obtain the
minimax optimal rate ofO(n−

d
2d−1 ), which is the major results of several existing

works in this direction. The neural network width in our general result is lower
bounded by a function of only d and εn, and such width does not depend on the
minimum eigenvalue of the empirical NTK matrix whose lower bound usually
requires additional assumptions on the training data. Our results are built upon
two significant technical results which are of independent interest. First, uniform
convergence to the NTK is established during the training process by GD, so that
we can have a nice decomposition of the neural network function at any step of
the GD into a function in the Reproducing Kernel Hilbert Space associated with
the NTK and an error function with a small L∞-norm. Second, local Rademacher
complexity is employed to tightly bound the Rademacher complexity of the func-
tion class comprising all the possible neural network functions obtained by GD.
Our result formally fills the gap between training a classical kernel regression
model and training an over-parameterized but finite-width neural network by GD
for nonparametric regression without distributional assumptions about the spheri-
cal covariate.

1 INTRODUCTION

With the stunning success of deep learning in various areas of machine learning (LeCun et al., 2015),
generalization analysis for neural networks is of central interest for statistical learning learning and
deep learning. Considerable efforts have been made to analyze the optimization of deep neural net-
works showing that gradient descent (GD) and stochastic gradient descent (SGD) provably achieve
vanishing training loss (Du et al., 2019b; Allen-Zhu et al., 2019b; Du et al., 2019a; Arora et al., 2019;
Zou & Gu, 2019; Su & Yang, 2019). There are also extensive efforts devoted to generalization anal-
ysis of deep neural networks (DNNs) with algorithmic guarantees, that is, the generalization bounds
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for neural networks trained by gradient descent or its variants. It has been shown that with sufficient
over-parameterization, that is, with enough number of neurons in hidden layers, the training dynam-
ics of deep neural networks (DNNs) can be approximated by that of a kernel method with the kernel
induced by the neural network architecture, termed the Neural Tangent Kernel (NTK), while other
studies such as (Yang & Hu, 2021) show that infinite-width neural networks can still learn features.
The key idea of NTK based generalization analysis is that, for highly over-parameterized networks,
the network weights almost remain around their random initialization. As a result, one can use the
first-order Taylor expansion around initialization to approximate the neural network functions and
analyze their generalization capability (Cao & Gu, 2019; Arora et al., 2019; Ghorbani et al., 2021).

Many existing works in generalization analysis of neural networks focus on clean data, but it is a
central problem in statistical learning that how neural networks can obtain sharp convergence rates
for the risk of nonparametric regression where the observed data are corrupted by noise. Consider-
able research has been conducted in this direction which shows that various types of DNNs achieve
optimal convergence rates for smooth (Yarotsky, 2017; Bauer & Kohler, 2019; Schmidt-Hieber,
2020; Jiao et al., 2023; Zhang & Wang, 2023) or non-smooth (Imaizumi & Fukumizu, 2019) tar-
get functions for nonparametric regression. However, most of these works do not have algorithmic
guarantees, that is, the DNNs in these works are constructed specially to achieve optimal rates with
no guarantees that an optimization algorithm, such as GD or its variants, can obtain such constructed
DNNs. To this end, efforts have been made in the literature to study the minimax optimal risk rates
for nonparametric regression with over-parameterized neural networks trained by GD with either
early stopping (Li et al., 2024) or ℓ2-regularization (Hu et al., 2021; Suh et al., 2022). However,
most existing works either require spherical uniform data distribution on the unit sphere (Hu et al.,
2021; Suh et al., 2022) or certain restrictive conditions on the data distribution.

It remains an interesting and important question for the statistical learning and theoretical deep
learning literature that if an over-parameterized neural network trained by GD can achieve sharp
risk rates for nonparametric regression with milder assumptions or restrictions on the distribution
of the covariate, so that theoretical guarantees can be obtained for data in more practical scenar-
ios. In this paper, we give a confirmative answer to this question. We present sharp risk rate for
nonparametric regression with an over-parameterized two-layer NN trained by GD with early stop-
ping, which is distribution-free in spherical covariate. Throughout this paper, distribution-free in
spherical covariate means that there are no distributional assumptions about the covariate as long as
the covariate lies on the unit sphere. Furthermore, our results give confirmative answers to certain
open questions or address particular concerns in the literature of training over-parameterized neural
networks by GD with early stopping for nonparametric regression with minimax optimal rates, such
as the characterization of the stopping time in the early-stopping mechanism, the lower bound for
the network width, and the constant learning rate used in GD. Benefiting from our analysis which
is distribution-free in spherical covariate, our answers to these open questions or concerns do not
require distributional assumptions about spherical covariate. Section 3 summarizes our main results
with their significance and comparison to existing works.

We organize this paper as follows. We first introduce the necessary notations in the remainder of
this section. We then introduce in Section 2 the problem setup for nonparametric regression. Our
main results are summarized in Section 3 and detailed in Section 5. The training algorithm for the
over-parameterized two-layer neural network is introduced in Section 4. The roadmap of proofs is
presented in Section 6.

Notations. We use bold letters for matrices and vectors, and regular lower letter for scalars through-
out this paper. The bold letter with a single superscript indicates the corresponding column of a
matrix, e.g., Ai is the i-th column of matrix A, and the bold letter with subscripts indicates the
corresponding element of a matrix or vector. We put an arrow on top of a letter with subscript if it
denotes a vector, e.g.,

⇀
x i denotes the i-th training feature. ∥·∥F and ∥·∥p denote the Frobenius norm

and the vector ℓp-norm or the matrix p-norm. [m : n] denotes all the natural numbers betweenm and
n inclusively, and [1 : n] is also written as [n]. Var [·] denotes the variance of a random variable. In is
a n×n identity matrix. 1I{E} is an indicator function which takes the value of 1 if event E happens,
or 0 otherwise. The complement of a set A is denoted by Ac, and |A| is the cardinality of the set
A. vec (·) denotes the vectorization of a matrix or a set of vectors, and tr (·) is the trace of a matrix.
We denote the unit sphere in d-dimensional Euclidean space by Sd−1 := {x : x ∈ Rd, ∥x∥2 = 1}.
Let L2(Sd−1, µ) denote the space of square-integrable functions on Sd−1 with probability mea-
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sure µ, and the inner product ⟨·, ·⟩µ and ∥·∥2µ are defined as ⟨f, g⟩L2 :=
∫
Sd−1 f(x)g(x)dµ(x) and

∥f∥2L2 :=
∫
Sd−1 f

2(x)dµ(x) < ∞. B (x; r) is the Euclidean closed ball centered at x with radius
r. Given a function g : Sd−1 → R, its L∞-norm is denoted by ∥g∥∞ := supx∈Sd−1 |g(x)|. L∞ is
the function class whose elements almost surely have bounded L∞-norm. ⟨·, ·⟩H and ∥·∥H denote
the inner product and the norm in the Hilbert spaceH. a = O(b) or a ≲ b indicates that there exists
a constant c > 0 such that a ≤ cb. Õ indicates there are specific requirements in the constants of
the O notation. a = o(b) and a = w(b) indicate that lim |a/b| = 0 and lim |a/b| =∞, respectively.
a ≍ b or a = Θ(b) denotes that there exists constants c1, c2 > 0 such that c1b ≤ a ≤ c2b. Through-
out this paper we let the input space X = Sd−1, and Unif (X ) denotes the uniform distribution on
X . The constants defined throughout this paper may change from line to line. For a Reproducing
Kernel Hilbert Space H, H(µ0) denotes the ball centered at the origin with radius µ0 in H. We use
EP [·] to denote the expectation with respect to the distribution P .

2 PROBLEM SETUP

We introduce the problem setups for nonparametric regression in this section.

2.1 TWO-LAYER NEURAL NETWORK

We are given the training data
{
(
⇀
x i, yi)

}n
i=1

where each data point is a tuple of feature vector
⇀
x i ∈ X and its response yi ∈ R. Throughout this paper we assume that no two training features
coincide, that is,

⇀
x i ̸=

⇀
xj for all i, j ∈ [n] and i ̸= j. We denote the training feature vectors by

S =
{
⇀
x i

}n
i=1

, and denote by Pn the empirical distribution over S. All the responses are stacked

as a vector y = [y1, . . . , yn]
⊤ ∈ Rn. The response yi is given by yi = f∗(

⇀
x i) + wi for i ∈ [n],

where {wi}ni=1 are i.i.d. sub-Gaussian random noise with mean 0 and variance proxy σ2
0 , that is,

E [exp(λwi)] ≤ exp(λ2σ2
0/2) for any λ ∈ R. f∗ is the target function to be detailed later. We define

y := [y1, . . . , yn], w := [w1, . . . , wn]
⊤, and use f∗(S) :=

[
f∗(

⇀
x1), . . . , f

∗(
⇀
xn)

]⊤
to denote the

clean target labels. The feature vectors in S are drawn i.i.d. according to an underlying unknown
continuous data distribution P with µ being the probability measure for P .

We consider a two-layer NN (NN) in this paper whose mapping function is

f(W,x) =
1√
m

m∑
r=1

arσ

(
⇀
wr

⊤
x

)
, (1)

where x ∈ X is the input, σ(·) = max {·, 0} is the ReLU activation function, W =
{
⇀
wr

}m
r=1

with
⇀
wr ∈ Rd for r ∈ [m] denotes the weighting vectors in the first layer and m is the number of

neurons. a = [a1, . . . , am] ∈ Rm denotes the weights of the second layer. Throughout this paper
we also write W as WS so as to indicate that the weighting vectors in W are trained on the training
features S.

2.2 KERNEL AND KERNEL REGRESSION FOR NONPARAMETRIC REGRESSION

We define the kernel function

K(u,v) :=
⟨u,v⟩
2π

(π − arccos ⟨u,v⟩) , ∀ u,v ∈ X , (2)

which is in fact the NTK associated with the two-layer NN (1), and K is a positive semi-definite
(PSD) kernel. Let the gram matrix of K over the training data S be K ∈ Rn×n,Kij = K(

⇀
x i,

⇀
xj)

for i, j ∈ [n], and Kn := K/n is the empirical NTK matrix. Let the eigendecomposition of Kn

be Kn = UΣU⊤ where U is a n × n orthogonal matrix, and Σ is a diagonal matrix with its

diagonal elements
{
λ̂i

}n
i=1

being eigenvalues of Kn and sorted in a non-increasing order. It is
proved in existing works, such as (Du et al., 2019b), that Kn is non-singular, and it can be verified
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that λ̂1 ∈ (0, 1/2). Let HK be the Reproducing Kernel Hilbert Space (RKHS) associated with
K. Because K is continuous on the compact set X × X , the integral operator TK : L2(X , µ) →
L2(X , µ), (TKf) (x) :=

∫
X K(x,x′)f(x′)dµ(x′) is a positive, self-adjoint, and compact operator

on L2(X , µ). By the spectral theorem, there is a countable orthonormal basis {ej}j≥1 ⊆ L2(X , µ)
and {λj}j≥1 with 1

2 ≥ λ1 ≥ λ2 ≥ . . . > 0 such that ej is the eigenfunction of TK with λj being the
corresponding eigenvalue. That is, TKej = λjej , j ≥ 1. Let {µℓ}ℓ≥1 be the distinct eigenvalues

associated with TK , and letmℓ be the be the sum of multiplicity of the eigenvalue {µℓ′}ℓℓ′=1. That is,
mℓ′ −mℓ′−1 is the multiplicity of µℓ′ . It is well known that

{
vj =

√
λjej

}
j ≥1

is an orthonormal
basis of HK . For a positive constant µ0, we define HK(µ0) := {f ∈ HK : ∥f∥H ≤ µ0} as the
closed ball inHK centered at 0 with radius µ0. We note thatHK(µ0) is also specified byHK(µ0) ={
f ∈ L2(X , µ) : f =

∑∞
j=1 βjej ,

∑∞
j=1 β

2
j /λj ≤ µ2

0

}
.

The Task of Nonparametric Regression. With f∗ ∈ HK(µ0), the task of the analysis for non-

parametric regression is to find an estimator f̂ from the training data
{
(
⇀
x i, yi)

}n
i=1

so that the risk

EP
[(
f̂ − f∗

)2]
can converge to 0 with a fast rate. In this work, we aim to establish a sharp rate of

the risk where the over-parameterized neural network (1) trained by GD with early stopping serves
as the estimator f̂ .

Sharp rate of the risk of nonparametric regression using classical kernel regression. The sta-
tistical learning literature has established rich results in the sharp convergence rates for the risk of
nonparametric kernel regression (Stone, 1985; Yang & Barron, 1999; Raskutti et al., 2014; Yuan &
Zhou, 2016), with one representative result in (Raskutti et al., 2014) about kernel regression trained
by GD with early stopping. Let εn be the critical population rate of the PSD kernel K, which is
also referred to as the critical radius (Wainwright, 2019) of K. (Raskutti et al., 2014, Theorem
2) shows the following sharp bound for the nonparametric regression risk of a kernel regression
model trained by GD with early stopping when f∗ ∈ HK(µ0). That is, with probability at least
1−Θ

(
exp(−Θ(nε2n)

)
,

EP
[(
fT̂ − f

∗)2] ≲ ε2n, (3)

where T̂ is the stopping time whose formal definition is deferred to Section 5.1, and fT̂ is the kernel
regressor at the T̂ -th step of GD for the optimization problem of kernel regression. The risk bound
(3) is rather sharp, since it is minimax optimal in several popular learning setups, such as the setup
where the eigenvalues {λi}i≥1 exhibit a certain polynomial decay. Such risk bound (3) also holds
for a general PSD kernel rather than the NTK (2), and the risk bound (3) is also minimax optimal
when the PSD kernel is low rank. It is also remarked that the risk bound (3) is distribution-free in
the bounded covariate, that is, there are no distributional assumptions about the covariate when it is
in a bounded input space. Interested readers are referred to (Raskutti et al., 2014) for more details.

The main result of this paper is that the over-parameterized two-layer NN (1) trained by GD with
early stopping achieves the same order of risk rate as that in (3) with arbitrary continuous distribution
of the spherical covariate, which are summarized in the next section.

3 SUMMARY OF MAIN RESULTS.
Our main results are summarized in this section.

First, Theorem 5.1 in Section 5.2 shows that the neural network (1) trained by GD with early stop-
ping using Algorithm 1 enjoys a sharp rate of the nonparametric regression risk, O

(
ε2n
)
, which is

the same as that for the classical kernel regression in (3). Such rate of nonparametric regression
risk in Theorem 5.1 is distribution-free in spherical covariate, and it immediately leads to minimax
optimal rates for certain special cases. For example, when the eigenvalues of the integral operator
associated with K has a particular polynomial eigenvalue decay rate (EDR), that is, λj ≍ j−

d
d−1

for j ≥ 1, then in this case ε2n ≍ n−
d

2d−1 according to (Raskutti et al., 2014, Corollary 3), and
Theorem 5.1 renders the rate of the nonparametric regression risk of O(n−

d
2d−1 ) which is minimax

4
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Table 1: Comparison between our result and the existing works on the risk rates and assumptions
for nonparametric regression by training over-parameterized neural networks with algorithmic guar-
antees, and the listed results here are under a common and popular setup that f∗ ∈ HK̃ and the
responses {yi}ni=1 are corrupted by i.i.d. Gaussian noise with zero mean and variance σ2.

Existing Works and Our Result Distributional Assumptions Eigenvalue Decay Rate (EDR) Rate of Nonparametric Regression Risk
(Kuzborskij & Szepesvári, 2021, Theorem 2) No – Not minimax optimal, σ2 +O(n

−2
2+d )

(Hu et al., 2021, Theorem 5.2),
(Suh et al., 2022, Theorem 3.11) P is Unif (X ) λj ≍ j−

d
d−1 minimax optimal, O(n

−d
2d−1 )

(Li et al., 2024, Proposition 13)

P satisfies
a restrictive condition:

the density p(x) for x ∈ Rd satisfies
p(x) ≲ (1 + ∥x∥22)−(d+2)/2.

λj ≍ j−
d

d−1 minimax optimal, O(n
−d

2d−1 )

Our Result (Theorem 5.1)
No distributional assumption about P

as long as X = Sd−1 No requirement for EDR

O
(
ε2n
)
, which leads to the minimax

optimal rate O(n
−d

2d−1 ) claimed in
(Hu et al., 2021; Suh et al., 2022)

and (Li et al., 2024)
as special cases.

optimal for this special case (Stone, 1985; Yang & Barron, 1999; Yuan & Zhou, 2016). We refer to
such EDR the polynomial EDR in the sequel. It is shown in (Bietti & Mairal, 2019; Bietti & Bach,
2021; Li et al., 2024) that the polynomial EDR holds for our NTK in (2) if P = Unif (X ), or P
satisfies the distributional assumption for (Li et al., 2024, Proposition 13) in Table 1.

We remark that such a minimax optimal rate O(n−
d

2d−1 ) is derived from Theorem 5.1 under the
special case of polynomial EDR, and this minimax optimal rate is also the major result of a series
of existing works in nonparametric regression by training over-parameterized neural networks (Hu
et al., 2021; Suh et al., 2022; Li et al., 2024) when the target function f∗ belongs toHK̃ , the RKHS
associated with the NTK K̃ of the network in each particular existing work. We note that K̃ is
the NTK of the network considered in a particular existing work which may not be the same as
our NTK in (2). We also note that one needs to set s = 1 in (Li et al., 2024, Proposition 13)
so that f∗ ∈ HK̃ , and in this case the risk rate for nonparametric regression in (Li et al., 2024,
Proposition 13) is O(n−

d
2d−1 ). To the best of our knowledge, Theorem 5.1 presents the first sharp

risk rate for nonparametric regression which is distribution-free in spherical covariate, which is
closer to practical scenarios. In contrast, the minimax rates in (Hu et al., 2021; Suh et al., 2022)
require spherical uniform data distribution on X . The recent work (Ko & Huo, 2024) also requires
certain distributional assumptions for the results about regression convergence rates which does not
have algorithmic guarantees. Although the minimax rate in another recent work (Li et al., 2024)
does not need the spherical uniform distribution, it still requires a restrictive condition on the data
distributions detailed in Table 1, and such condition is met by sub-Gaussian distributions. It is
under this condition that (Li et al., 2024) derives the polynomial EDR. Table 1 compares our work
to existing works for nonparametric regression with a common setup, that is, f∗ ∈ HK̃ and the
responses {yi}ni=1 are corrupted by i.i.d. Gaussian noise. We further note that although the result in
(Kuzborskij & Szepesvári, 2021, Theorem 2) does not require distributional assumptions about the
covariate, its risk rate under this common setup is not minimax optimal due to the term σ2 in the risk
bound. Furthermore, the other term O(n

−2
2+d ) in its risk bound suffers from the curse of dimension

with a slow rate to 0 for high-dimensional data. We also note that (Kuzborskij & Szepesvári, 2021,
Theorem 1) shows the minimax optimal rate of O(n−

2
2+d ), however, this rate is derived for the

noiseless case where the responses are not corrupted by noise.

Second, our results provide confirmative answers to several outstanding open questions or address
particular concerns in the existing literature about training over-parameterized neural networks for
nonparametric regression by GD with early stopping and sharp risk rates, which are detailed below.

Stopping time in the early-stopping mechanism. An open question raised in (Kuzborskij &
Szepesvári, 2021; Hu et al., 2021) is how to characterize the stopping time in the early-stopping
mechanism when training the over-parameterized network by GD. Let T̂ be the stopping time, (Li
et al., 2024, Proposition 13) shows that the stopping time should satisfy T̂ ≍ n

d
2d−1 under the distri-

butional assumption in Table 1. In contrast, Theorem 5.1 provides a characterization of T̂ showing
that T̂ ≍ ε−2

n , which is distribution-free in spherical covariate. Theorem 5.1 further suggests that
for each neural network function ft obtained at the t-th step of GD with t ≍ ε−2

n , the sharp risk rate
of O

(
ε2n
)

is obtained.

5
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Lower bound for the network width m. Our main result, Theorem 5.1, requires that the network
width m, which is the number of neurons in the first layer of the network, satisfies m ≳ d2/(ε16n ).
Such lower bound for m solely depends on d and εn. Under the polynomial EDR, Corollary 5.2,
which is a direct consequence of Theorem 5.1, shows that m should satisfy m ≳ n

16α
2α+1 d2 with

α = d/(2(d−1)) (see (12)) so that GD with early stopping leads to the minimax rate ofO(n−
d

2d−1 ).
We remark that this is the first time that the lower bound for the network width m is specified only
in terms of n and d under the polynomial EDR with a minimax optimal risk rate for nonparamet-
ric regression, which can be easily estimated from the training data. In contrast, under the same
polynomial EDR, all the existing works (Hu et al., 2021; Suh et al., 2022; Li et al., 2024) require
m ≳ poly(n, 1/λ̂n). The problem here is that one needs additional assumptions on the training
data (Bartlett et al., 2021; Nguyen et al., 2021) to find the lower bound for λ̂n, which is the minimal
eigenvalue of the empirical NTK matrix Kn, to further estimate the lower bound for m using the
training data.

Corollary 5.2 also gives a competitive and smaller lower bound for the network width m than
some existing works which give explicit orders of the lower bound for m. For example, un-
der the assumption of uniform spherical distribution, (Suh et al., 2022, Theorem 3.11) requires
that m/ logm ≳ L20n24 where L is the number of layers of the DNN used in that work, and
m/ logm ≳ 220n24 even with L = 2 for the two-layer network (1) used in our work. Furthermore,
the proof of (Li et al., 2024, Proposition 13) suggests that m ≳ n24(logm)12. Both lower bounds
for m in (Suh et al., 2022, Theorem 3.11) and (Li et al., 2024, Proposition 13) are much larger than
our lower bound for m, n

16α
2α+1 d2, when n → ∞ and d is fixed, which is the setup considered in

(Li et al., 2024). It is worthwhile to mention that (Suh et al., 2022; Li et al., 2024) use DNNs with
multiple layers for nonparametric regression. As shown in Table 1, through our careful analysis, a
shallow two-layer NN (1) exhibits the same minimax risk rate as its deeper counterpart under the
same assumptions with much smaller network width. This observation further support the claim
in (Bietti & Bach, 2021) that a shallow over-parameterized neural networks with ReLU activations
exhibit the same approximation properties as its deeper counterpart, in our nonparametric regression
setup.

Training the network with learning rate η = Θ(1). It is also worthwhile to mention that our
main result, Theorem 5.1, suggests that a constant learning rate η = Θ(1) can be used for GD
when training the two-layer NN (1), which could lead to better empirical optimization performance
in practice. Some existing works in fact require an infinitesimal η. For example, (Li et al., 2024,
Proposition 13) is obtained by gradient flow where η → 0 instead of the practical GD. Furthermore,
(Hu et al., 2021, Theorem 5.2) requires the learning rates for both the squared loss and the ℓ2-
regularization term to have the order of o(n−

3d−1
2d−1 ) → 0 as n → ∞. We note that (Nitanda &

Suzuki, 2021) also employs constant learning rate in SGD to train neural networks.

More discussion about the literature. We herein provide more discussion about the results of this
work and comparison to the existing relevant works with sharp rates for nonparametric regression.
While this paper establishes sharp rate which is distribution-free in spherical covariate, such rate
still depends on bounded input space (X = Sd−1) and the condition that the target function f∗ ∈
HK(µ0). Some other existing works consider target function f∗ not belonging to the RKHS ball
centered at the origin with constant or low radius, such as (Haas et al., 2023; Bordelon et al., 2024).
A more detailed discussion is deferred to Section B of the appendix.

4 TRAINING BY GRADIENT DESCENT AND PRECONDITIONED GRADIENT
DESCENT

Algorithm 1 Training the Two-Layer NN
by GD

1: W(T )← Training-by-GD(T,W(0))
2: input: T,W(0)
3: for t = 1, . . . , T do
4: Perform the t-th step of GD by (5)
5: end for
6: return W(T )

In the training process of our network (1), only W is op-
timized with a randomly initialized to ±1 and then fixed.
The following quadratic loss function is minimized dur-
ing the training process:

L(W) :=
1

2n

n∑
i=1

(
f(W,

⇀
x i)− yi

)2
. (4)

6
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In the (t + 1)-th step of GD with t ≥ 0, the weights of
the neural network, WS, are updated by one-step of GD
through

vec (WS(t+ 1))− vec (WS(t)) = −
η

n
ZS(t)(ŷ(t)− y),

(5)

where yi = yi, ŷ(t) ∈ Rn with [ŷ(t)]i = f(W(t),
⇀
x i). The notations with the subscripts S indicate

the dependence on the training features S. We also denote f(W(t), ·) as ft(·) as the neural network
function with weighting vectors W(t) obtained after the t-th step of GD. We define ZS(t) ∈ Rmd×n
which is computed by

(ZS(t))[(r−1)d+1:rd]i =
1√
m
1I{⇀

wr(t)⊤
⇀
x i≥0

}⇀x iar, i ∈ [n], r ∈ [m], (6)

where (ZS(t))[(r−1)d+1:rd]i ∈ Rd is a vector with elements in the i-th column of ZS(t) with indices
in [(r − 1)d + 1 : rd]. We employ the following particular symmetric random initialization so
that ŷ(0) = 0, which has been used in existing works such as (Chizat et al., 2019; Zhang et al.,

2020). In our two-layer NN, m is even,
{
⇀
w2r′(0)

}m/2
r′=1

and {a2r′}m/2r′=1 are initialized randomly and
independently according to

⇀
w2r′(0) ∼ N (0, κ2Id), a2r′ ∼ unif ({−1, 1}) , ∀r′ ∈ [m/2], (7)

where N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ, unif ({−1, 1})
denotes a uniform distribution over {1,−1}, 0 < κ ≤ 1 controls the magnitude of initialization.
We set

⇀
w2r′−1(0) =

⇀
w2r′(0) and a2r′−1 = −a2r for all r′ ∈ [m/2]. It then can be verified that

ŷ(0) = 0, that is, the initial output of the two-layer network (1) is zero. Once randomly initialized,
a is fixed during the training. We use W(0) to denote the set of all the random weighting vectors

at initialization, that is, W(0) =
{
⇀
wr(0)

}m
r=1

. We run Algorithm 1 to train the two-layer NN by
GD, where T is the total number of steps for GD. Early stopping is enforced in Algorithm 1 through
a bounded T via T ≤ T̂ .

5 MAIN RESULTS

We present the definition of kernel complexity in this section, and then introduce the main results
for nonparametric regression of this paper.

5.1 KERNEL COMPLEXITY

The local kernel complexity has been studied by (Bartlett et al., 2005; Koltchinskii, 2006; Mendel-
son, 2002). For the PSD kernelK, we define the empirical kernel complexity R̂K and the population
kernel complexity RK as

R̂K(ε) :=

√√√√ 1

n

n∑
i=1

min
{
λ̂i, ε2

}
, RK(ε) :=

√√√√ 1

n

∞∑
i=1

min {λi, ε2}. (8)

It can be verified that both σRK(ε) and σR̂K(ε) are sub-root functions (Bartlett et al., 2005) in terms
of ε2. The formal definition of sub-root functions is deferred to Definition A.2 in the appendix. For
a given noise ratio σ, the critical empirical radius ε̂n > 0 is the smallest positive solution to the
inequality R̂K(ε) ≤ ε2/σ, where ε̂2n is the also the fixed point of σR̂K(ε) as a function of ε2:
σR̂K(ε̂n) = ε̂2n. Similarly, the critical population rate εn is defined to be the smallest positive
solution to the inequality RK(ε) ≤ ε2/σ, where ε2n is the fixed point of σR̂K(ε) as a function of ε2:
σRK(εn) = ε2n. In this paper we consider the case that nε2n → ∞ as n → ∞, which is also used
in standard analysis of nonparametric regression with minimax rates by kernel regression (Raskutti
et al., 2014).
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Let ηt := ηt for all t ≥ 0, we then define the stopping time T̂ as

T̂ := min
{
t : R̂K(

√
1/ηt) > (σηt)

−1
}
− 1. (9)

The stopping time in fact limit the number of steps T in for Algorithm 1 as to be shown in Sec-
tion 5.2, which in turn enforces the early stopping mechanism.

5.2 RESULTS

Theorem 5.1. Let cT , ct ∈ (0, 1] be arbitrary positive constants, and cT T̂ ≤ T ≤ T̂ . Suppose
f∗ ∈ HK(µ0), and m satisfies

m ≳
d2

ε16n
, (10)

and the neural network f(W(t), ·) is trained by GD using Algorithm 1 with the learning rate η ∈
[1, 2) and T ≤ T̂ . Then for every t ∈ [ctT : T ], with probability at least 1 − exp (−Θ(n)) −
7 exp

(
−Θ(nε2n)

)
− 2/n over the random noise w, the random training features S and the random

initialization W(0), the stopping time satisfies T̂ ≍ ε−2
n , and f(W(t), ·) = ft satisfies

EP
[
(ft − f∗)2

]
≲ ε2n. (11)

Significance of Theorem 5.1 and comparison to existing works. To the best of our knowledge,
Theorem 5.1 is the first theoretical result which proves that over-parameterized neural network
trained by gradient descent with early stopping achieves sharp rate of O(ε2n), without distributional
assumption on the covariate as long as the input space X is Sd−1. To understand the sharpness of
the bound for the risk in (11), Corollary 5.2 shows that when the polynomial EDR holds, that is,
λj ≍ j−

d
d−1 , then ε2n ≍ n−

d
2d−1 , and the rate of the risk is O(n−

d
2d−1 ) which is minimax optimal

under the polynomial EDR for f∗ ∈ HK(µ0) (Stone, 1985; Yang & Barron, 1999; Yuan & Zhou,
2016). (Bietti & Mairal, 2019; Bietti & Bach, 2021; Li et al., 2024) show that such polynomial EDR
holds for our NTK (2) if P is Unif (X ), or P satisfies the distributional assumption for (Li et al.,
2024, Proposition 13) in Table 1. The existing works (Hu et al., 2021; Suh et al., 2022; Li et al.,
2024) prove the same minimax optimal rate for an over-parameterized neural network trained by GD
with either regularization or early stopping. However, it is remarked that such minimax optimal rates
in these works are proved either for spherical uniform distribution on X (Hu et al., 2021; Suh et al.,
2022), or for distributions satisfying certain restrictive condition (Li et al., 2024). Table 1 compares
our result to existing works from the perspective of risk rates for nonparametric regression, required
distributional assumptions on the covariate, and the associated EDR.

We also emphasize that Theorem 5.1, for the first time, shows that the network width m required to
achieve the minimax rate can be quantized in terms of a well known quantity about the kernel K,
the critical population rate εn, and d in the manner of distribution-free in spherical covariate. More
discussions are referred to “Significance of Corollary 5.2”.

Furthermore, Theorem 5.1, for the first time, gives an explicit characterization of the stopping time
T̂ for training an over-parameterized neural network by GD with early stopping which is of the
order T̂ ≍ ε−2

n and distribution-free in spherical covariate. This result suggests that t should be of
the order Θ(ε−2

n ) to ensures the sharp rate (11). Such result gives an order of the number of steps
for GD when training the over-parameterized NN (1) so as to achieve the sharp risk bound O(ε2n).
Under the polynomial EDR, the stopping time T̂ satisfies T̂ ≍ n

d
2d−1 , which recovers the same

result about the stopping time in (Li et al., 2024, Proposition 13).

When the polynomial EDR holds, we can apply Theorem 5.1 to obtain the following corollary.
Corollary 5.2 (Applying Theorem 5.1 to the special case of polynomial EDR). Suppose λj ≍ j−2α

for j ≥ 1 and α > 1/2. Let cT , ct ∈ (0, 1] be positive constants, and cT T̂ ≤ T ≤ T̂ . Suppose m
satisfies

m ≳ n
16α

2α+1 d2, (12)

and the neural network f(W(t), ·) is trained by GD using Algorithm 1 with the learning rate η ∈
[1, 2) and T ≤ T̂ . Then for every t ∈ [ctT : T ], with probability at least 1 − exp (−Θ(n)) −

8
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7 exp
(
−Θ(nε2n)

)
− 2/n over the random noise w, the random training features S and the random

initialization W(0), the stopping time satisfies T̂ ≍ n
d

2d−1 ,

EP
[
(ft − f∗)2

]
≲

(
1

n

) 2α
2α+1

. (13)

Significance of Corollary 5.2. Corollary 5.2 shows that under the polynomial EDR, GD finds an
over-parameterized neural network with minimax optimal rate ofO(n−

2α
2α+1 ) = O(n−

d
2d−1 ), where

α = d/(2(d− 1)), with a specific quantization of m in terms of only n and d in (12). In contrast, all
the existing works (Hu et al., 2021; Suh et al., 2022; Li et al., 2024) requirem ≳ poly(n, 1/λ̂n), and
additional assumptions on the training data (Bartlett et al., 2021; Nguyen et al., 2021) are required
to bound λ̂n from below so as to estimate the lower bound for m from the training data.

6 ROADMAP OF PROOFS

We present the roadmap of our theoretical results which lead to the main result, Theorem 5.1 in
Section 5. We first present in the next subsection our results about the uniform convergence to the
NTK (2) and more, which are crucial in the analysis of training dynamics by GD.

6.1 UNIFORM CONVERGENCE TO THE NTK AND MORE

We define functions

h(w,x,y) := x⊤y1I{w⊤x≥0}1I{w⊤y≥0}, ĥ(W,x,y) :=
1

m

m∑
r=1

h(
⇀
wr,x,y), (14)

vR(w,x) := 1I{|w⊤x|≤R}, v̂R(W,x) :=
1

m

m∑
r=1

vR(
⇀
wr,x). (15)

Then we have the following theorem stating the uniform convergence of ĥ(W(0), ·, ·) to K(·, ·) and
uniform convergence of v̂R(W(0),x) to 2R√

2πκ
for a positive number R ≲ ηT/

√
m. While existing

works such as (Li et al., 2024) also has uniform convergence results for over-parameterized neural
network, our result does not depend on the Hölder continuity of the NTK.
Theorem 6.1. The following results hold with m ≥ max {d, n, 4} and m/ logm ≥ d.

(1) With probability at least 1− 1/n over the random initialization W(0) =
{
⇀
wr(0)

}m
r=1

,

sup
x∈X ,y∈X

∣∣∣K(x,y)− ĥ(W(0),x,y)
∣∣∣ ≤ C1(m, d, 1/n) ≲

√
d logm

m
. (16)

(2) Suppose m ≥ (cuηT/R0)
2 for an arbitrary absolute positive constant R0 < κ. Then with

probability at least 1− 1/n over the random initialization W(0) =
{
⇀
wr(0)

}m
r=1

,

sup
x∈X
|v̂R(W(0),x)| ≤ 2R√

2πκ
+ C2(m,R0, 1/n) ≲

√
d

m1/4
+

ηT√
m
, (17)

where C1(m, d, 1/n), C2(m,R0, 1/n) are two positive numbers depending on (m, d, n) and
(m,R0, n), respectively, with their formal definitions deferred to (39) and (41) in Section C.2 of
the appendix.

Proof. This theorem follows from Theorem C.1 and Theorem C.2 in Section C.2 of the appendix.

Note that ĥ(W,x,y) = 1
m

m∑
r=1

h(
⇀
wr,x,y) =

1
m/2

m/2∑
r′=1

h(
⇀
w2r(0),x,y), then part (1) directly fol-

lows from Theorem C.1. Similarly, part (2) directly follows from Theorem C.2, and noting that
m ≥ (cuηT/R0)

2 indicates R ≤ R0.

9
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Define
W0 := {W(0) : (16), (17) hold} (18)

be the set of all the good random initializations which satisfy (16) and (17) in Theorem 6.1.
Theorem 6.1 shows that we have good random initialization with high probability, that is,
Pr [W(0) ∈ W0] ≥ 1 − 2/n. When W(0) ∈ W0, the uniform convergence results, (16) and (17),
hold with high probability, which is crucial for our main result in Theorem 5.1.

6.2 ROADMAP OF PROOFS

Because our main result, Theorem 5.1, is proved by Theorem C.10 and Theorem C.11 deferred
to Section C.2, we illustrate in Figure 1, deferred to the appendix, the roadmap containing the
intermediate theoretical results which lead to our main result, Theorem 5.1.

Summary of the technical approaches and novel results in the proofs. Theorem C.8 is the first
novel result in this work, showing that with high probability, the neural network function f(W(t), ·)
at step t of GD can be decomposed into two functions by f(W(t), ·) = ft = h+e, where h ∈ HK is
a function in the RKHS associated withK with boundedHK-norm. The error function e has a small
L∞-norm, that is, ∥e∥∞ ≤ w with w being a small number controlled by the network width m, that
is, larger m leads to smaller w. Theorem C.10 is the second novel result, where we derive sharp and
novel bound for the nonparametric regression risk of the neural network function f(W(t), ·) in The-
orem C.10, that is, EP

[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ ε2n +w. To the best of our knowledge,

Theorem C.10 is among the first in the literature to employ local Rademacher complexity so as to
obtain sharp rate for the risk of nonparametric regression which is distribution-free in spherical co-
variate, and local Rademacher complexity is employed to tightly bound the Rademacher complexity
of the function class comprising all the possible neural network functions obtained by GD.

Novel proof strategy of this work. We remark that the proof strategy of our main result, Theo-
rem 5.1, is significantly novel and different from the existing works in training over-parameterized
neural networks for nonparametric regression with minimax rates (Hu et al., 2021; Suh et al., 2022;
Li et al., 2024). In particular, the common proof strategy in these works uses the decomposi-
tion ft − f∗ = (ft − f̂ (NTK)

t ) + (f̂ (NTK)
t − f∗) and then show that both

∥∥∥ft − f̂ (NTK)
t

∥∥∥
L2

and∥∥∥f̂ (NTK)
t − f∗

∥∥∥
L2

are bounded by certain minimax optimal rate, where f̂ (NTK)
t is the kernel re-

gressor obtained by either kernel ridge regression (Hu et al., 2021; Suh et al., 2022) or GD with
early stopping (Li et al., 2024). The remark after Theorem C.8 details a formulation of f̂ (NTK)

t .∥∥∥f̂ (NTK)
t − f∗

∥∥∥
L2

is bounded by the minimax optimal rate under certain distributional assumptions
in the covariate, and this is one reason for the distributional assumptions about the covariate in exist-
ing works such as (Hu et al., 2021; Suh et al., 2022; Li et al., 2024). In a strong contrast, our analysis
does not rely on such decomposition of ft − f∗. Instead of approximating ft by f̂ (NTK)

t , we have a
new decomposition of ft by ft = ht+ et where ft is approximated by ht with et being the approxi-
mation error. As suggested by the remark after Theorem C.8, we have ht = f̂ (NTK)

t + ê2(·, t) so that
ft = f̂ (NTK)

t + ê2(·, t) + et. Our analysis only requires the network width m to be suitably large so
that the HK-norm of ê2(·, t) is bounded by a positive constant and ∥et∥∞ ≤ w, while the common
proof strategy in(Hu et al., 2021; Suh et al., 2022; Li et al., 2024) needs m to be sufficiently large so
that both ∥ê2(·, t)∥∞ and ∥et∥∞ are bounded by an infinitesimal number (a minimax optimal rate

such as O(n−
d

2d−1 ) and then
∥∥∥ft − f̂ (NTK)

t

∥∥∥
L2

is bounded by such minimax optimal rate. Detailed
in Section 3, such novel proof strategy leads to our sharp analysis, rendering a smaller lower bound
for m in our main result compared to some existing works.

7 CONCLUSION

In this paper, we show that an over-parameterized two-layer neural network trained by gradient
descent (GD) with early stopping renders a sharp rate of the nonparametric regression risk with the
order of Θ(ε2n) with εn being the critical population rate or the critical radius of the NTK, which is
distribution-free in spherical covariate. We compare our results to the current state-of-the-art with a
detailed roadmap of our technical approaches and results in our proofs.
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We present the basic mathematical results required in our proofs in Section A, then present proofs
in the subsequent sections.

A MATHEMATICAL TOOLS

We introduce the basic definitions and mathematical results as the basic tools for the subsequent
results in the next sections of this appendix.
Definition A.1. Let {σi}ni=1 be n i.i.d. random variables such that Pr[σi = 1] = Pr[σi = −1] = 1

2 .
The Rademacher complexity of a function class F is defined as

R(F) = E{
⇀
x i

}n

i=1
,{σi}n

i=1

[
sup
f∈F

1

n

n∑
i=1

σif(
⇀
x i)

]
. (19)
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The empirical Rademacher complexity is defined as

R̂(F) = E{σi}n
i=1

[
sup
f∈F

1

n

n∑
i=1

σif(
⇀
x i)

]
, (20)

For simplicity of notations, Rademacher complexity and empirical Rademacher complexity are also

denoted by E
[
supf∈F

1
n

n∑
i=1

σif(
⇀
x i)

]
and Eσ

[
supf∈F

1
n

n∑
i=1

σif(
⇀
x i)

]
respectively.

For data
{
⇀
x
}n
i=1

and a function class F , we define the notation RnF by RnF :=

supf∈F
1
n

n∑
i=1

σif(
⇀
x i).

Theorem A.1 ((Bartlett et al., 2005, Theorem 2.1)). Let X , P be a probability space,
{
⇀
x i

}n
i=1

be
independent random variables distributed according to P . Let F be a class of functions that map X
into [a, b]. Assume that there is some r > 0 such that for every f ∈ F ,Var

[
f(
⇀
x i)
]
≤ r. Then, for

every x > 0, with probability at least 1− e−x,

sup
f∈F

(
EP [f(x)]− Ex∼Pn

[f(x)]
)
≤ inf
α>0

(
2(1 + α)E{

⇀
x i

}n

i=1
,{σi}n

i=1

[RnF ] +
√

2rx

n

+ (b− a)
(
1

3
+

1

α

)
x

n

)
, (21)

and with probability at least 1− 2e−x,

sup
f∈F

(
EP [f(x)]− Ex∼Pn [f(x)]

)
≤ inf
α∈(0,1)

(
2(1 + α)

1− α
E{σi}n

i=1
[RnF ] +

√
2rx

n

+ (b− a)
(
1

3
+

1

α
+

1 + α

2α(1− α)

)
x

n

)
. (22)

Pn is the empirical distribution over
{
⇀
x i

}n
i=1

with Ex∼Pn
[f(x)] = 1

n

n∑
i=1

f(
⇀
x i). Moreover, the

same results hold for supf∈F
(
Ex∼Pn

[f(x)]− EP [f(x)]
)
.

In addition, we have the contraction property for Rademacher complexity, which is due to Ledoux
and Talagrand (Ledoux, 1991).
Theorem A.2. Let ϕ be a contraction,that is, |ϕ(x)− ϕ(y)| ≤ µ |x− y| for µ > 0. Then, for every
function class F ,

E{σi}n
i=1

[Rnϕ ◦ F ] ≤ µE{σi}n
i=1

[RnF ] , (23)

where ϕ ◦ F is the function class defined by ϕ ◦ F = {ϕ ◦ f : f ∈ F}.
Definition A.2 (Sub-root function,(Bartlett et al., 2005, Definition 3.1)). A function ψ : [0,∞) →
[0,∞) is sub-root if it is nonnegative, nondecreasing and if ψ(r)√

r
is nonincreasing for r > 0.

Theorem A.3 ((Bartlett et al., 2005, Theorem 3.3)). Let F be a class of functions with ranges in
[a, b] and assume that there are some functional T : F → R+ and some constant B̄ such that for
every f ∈ F , Var [f ] ≤ T (f) ≤ B̄P (f). Let ψ be a sub-root function and let r∗ be the fixed point
of ψ. Assume that ψ satisfies, for any r ≥ r∗, ψ(r) ≥ B̄R({f ∈ F : T (f) ≤ r}). Fix x > 0, then
for any K0 > 1, with probability at least 1− e−x,

∀f ∈ F , EP [f ] ≤ K0

K0 − 1
EPn [f ] +

704K0

B̄
r∗ +

x
(
11(b− a) + 26B̄K0

)
n

.

Also, with probability at least 1− e−x,

∀f ∈ F , EPn [f ] ≤ K0 + 1

K0
EP [f ] +

704K0

B̄
r∗ +

x
(
11(b− a) + 26B̄K0

)
n

.
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Proposition A.4. LetF be a class of functions with ranges in [0, b] for some positive constant b. Let
ψ be a sub-root function such that for all r ≥ 0, R({f ∈ F : EP [f(x)] ≤ r}) ≤ ψ(r), and let r∗ be
the fixed point of ψ. Then for any K0 > 1, with probability 1− exp(−x), every f ∈ F satisfies

EP [f ] ≤ K0

K0 − 1
EPn

[f ] +
704K0

b
r∗ +

x (11(b− a) + 26bK0)

n
. (24)

B PROOFS FOR THEOREM 5.1 AND COROLLARY 5.2

Lemma C.3 

Lemma C.4 

Lemma C.5 

Lemma C.6 

Lemma C.7 

Optimization  

Theorem C.8 

Lemma C.9 
Theorem C.10 

Generalization  

Theorem C.11 

Theorem 5.1 

Figure 1: Roadmap of major results leading to the main result, Theorem 5.1. The uniform conver-
gence results in Theorem 6.1 are used in all the optimization results and Theorem C.8.

More discussion about the literature. We herein provide more discussion about the results of this
work and comparison to the existing relevant works with sharp rates for nonparametric regression.
While this paper establishes sharp rate which is distribution-free in spherical covariate, such rate
still depends on bounded input space (X = Sd−1) and the condition that the target function f∗ ∈
HK(µ0). Some other existing works consider target function f∗ not belonging to the RKHS ball
centered at the origin with constant or low radius, such as (Haas et al., 2023; Bordelon et al., 2024).
We also note that in this work, only the first layer of an over-parameterized two-layer neural network
is trained, while the weights of the second layer are randomly initialized and then fixed in the training
process. In existing works such as (Hu et al., 2021; Suh et al., 2022; Allen-Zhu et al., 2019a), all
the layers of a deep neural networks with more than two-layers are trained by GD or its variants.
However, this work shows that only training the first layer still leads to sharp rate for nonparametric
regression, which supports the claim in (Bietti & Bach, 2021) that a shallow over-parameterized
neural networks with ReLU activations exhibit the same approximation properties as its deeper
counterpart.

Proof of Theorem 5.1. We use Theorem C.10 and Theorem C.11 to prove this theorem.

First of all, it follows by Theorem C.11 that with probability at least 1− exp
(
−Θ(nε̂2n)

)
,

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 6

)
.

Plugging such bound for EPn

[
(ft − f∗)2

]
in (117) of Theorem C.10 leads to

EP
[
(ft − f∗)2

]
− 6

ηt

(
µ2
0

2e
+ 6

)
≤ c′0(ε2n + w). (25)

Due to the definition of T̂ and ε̂2n, we have

ε̂2n ≤
1

ηT̂
≤ 2

η(T̂ + 1)
≤ 2ε̂2n. (26)
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Lemma C.15 suggests that with probability at least 1 − 4 exp(−Θ(nε2n)) over S, ε̂2n ≍ ε2n. Since
T ≍ T̂ , for any t ∈ [ctT, T ], we have

1

ηt
≍ 1

ηT
≍ 1

ηT̂
≍ ε̂2n ≍ ε2n. (27)

We have Pr [W0] ≥ 1 − 2/n. Let w = ε2n, we now verify that w ∈ (0, 1). Due to the definition of
the fixed point, w > 0. Since

∑
i≥1

λi =
∫
X K(x,x)dµ(x) = 1/2, we have

0 < w =
1

n

∑
i≥1

min
{
λi, ε

2
n

}
≤ 1

n

∑
i≥1

λi ≤
1

2n
< 1.

(11) then follows from (25) with w = ε2n, (27) and the union bound. The condition on m in (85) in
Theorem C.10, together with w = ε2n and (27) leads to the condition on m in (10). Furthermore,
T̂ ≍ ε−2

n follows from (27) and η = Θ(1).

Proof of Corollary 5.2. We apply Theorem 5.1 to prove this corollary.

It is well known, such as (Raskutti et al., 2014, Corollary 3), that ε2n ≍ n−
2α

2α+1 . It then can be
verified by direct calculations that the condition on m, (10) in Theorem 5.1, is satisfied with the
given condition (12). It then follows from (11) in Theorem 5.1 that EP

[
(fT̂ − f

∗)2
]
≲ n−

2α
2α+1 .

C DETAILED PROOFS

Because Theorem 5.1 is proved by Theorem C.10 and Theorem C.11, in this section, we establish
and prove all the theoretical results which lead to Theorem C.10 and Theorem C.11, along with the
proof of Theorem C.10 and Theorem C.11.

C.1 BASIC DEFINITIONS

We introduce the following definitions for the proof of Theorem 5.2. We define

u(t) := ŷ(t)− y. (28)

Let τ ≤ 1 be a positive number, and ε0 ∈ (0, 1) is an arbitrary positive constant. For t ≥ 0 and
T ≥ 1 we define the following quantities (or recall their definitions if defined before),

cu = µ0/min
{
2,
√
2eη
}
+ σ + τ + 1,

R =
ηcuT√
m
, (29)

Vt :=
{
v ∈ Rn : v = − (In − ηKn)

t
f∗(S)

}
, (30)

Et,τ :=
{
e : e =

⇀
e 1 +

⇀
e 2 ∈ Rn,⇀e 1 = − (In − ηKn)

t
w,
∥∥∥⇀e 2

∥∥∥
2
≤
√
nτ
}
. (31)

We define the set of neural network weights and the set of functions represented by the neural
network during training as follows.

W(S,W(0), T ) :=

{
W : ∃t ∈ [T ] s.t. vec (W) = vec (W(0))−

t−1∑
t′=0

η

n
ZS(t

′)u(t′),
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u(t′) ∈ Rn,u(t′) = v(t′) + e(t′),v(t′) ∈ Vt′ , e(t′) ∈ Et′,τ , for all t′ ∈ [0, t− 1]

}
. (32)

W(S,W(0), T ) is the set of weights of neural networks trained by GD on the training data S
and random initialization W(0) with the preconditioner M generated by Q and the steps of
GD no greater than T . The set of functions represented by the two-layer NN with weights in
W(S,W(0), T ) is then defined as

FNN(S,W(0), T ) := {ft = f(W(t), ·) : ∃ t ∈ [T ],W(t) ∈ W(S,W(0), T )} . (33)

We define the function class Fext(w, T ) for any w > 0 as

Fext(w, T ) := {f : f = h+ e, h ∈ HK(Bh), ∥e∥∞ ≤ w} , (34)

where

Bh := µ0 + 1 +
√
2. (35)

C.2 THEOREM C.10, THEOREM C.11, AND THEIR PROOFS WITH RELATED THEORETICAL
RESULTS

Theorem C.10 (repeat). Suppose w ∈ (0, 1) and m satisfy

m ≳ max


(ηT )4

(√
d+ 1

)4
w4

, (ηT )8d2

 ,

and the neural network f(W(t), ·) is trained by GD in Algorithm 1 with the learning rate η ∈
(0, 1/λ̂1) on random initialization W(0), and T ≤ T̂ . Then for every t ∈ [T ], with probability
at least 1 − exp (−Θ(n)) − exp

(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
− 2/n over the random noise w, the

random training features S and the random initialization W(0),

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]

≤ c0 min
0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2

2

,

Furthermore, with probability at least 1 − exp (−Θ(n)) − exp
(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
− 2/n

over the random noise w, the random training features S and the random initialization W(0),

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≤ c′0(ε2n + w). (36)

Here B0, c0, c
′
0 are absolute positive constants depending on µ0, and c′0 also depends on σ.

Theorem C.11 (repeat). Suppose the neural network trained after the t-th step of gradient descent,
ft = f(W(t), ·), satisfies u(t) = ft(S) − y = v(t) + e(t) with v(t) ∈ Vt and e(t) ∈ Et,τ and
T ≤ T̂ . If

η ∈ [1, 2), τ ≤ 1

ηT
,

then for every t ∈ [T ], with probability at least 1 − exp
(
−Θ(nε̂2n)

)
over the random noise w, we

have

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 3

)
.

We have the following two theorems regarding the uniform convergence of ĥ(W(0), ·, ·) to K(·, ·)
and the uniform convergence of v̂R(W(0), ·) to 2R√

2πκ
, which lay the foundation of the main results

of this paper. The proofs are deferred to Section C.4.
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Theorem C.1. Let W(0) =
{
⇀
wr(0)

}m
r=1

, where each
⇀
wr(0) ∼ N (0, κ2Id) for r ∈ [m]. Then for

any δ ∈ (0, 1), with probability at least 1− δ over W(0),

sup
x∈X ,y∈X

∣∣∣K(x,y)− ĥ(W(0),x,y)
∣∣∣ ≤ C1(m, d, δ), (37)

where

C1(m, d, δ) :=
1√
m

(
6(1 +B

√
d) +

√
2 log

2(1 + 2m)d

δ

)
+

1

m

(
3 +

7log 2(1+2m)d

δ

3

)
, (38)

and B is an absolute positive constant in Lemma C.19. In addition, when m ≥ max {d, n, 4},
m/ logm ≥ d, and δ ≍ 1/n,

C1(m, d, δ) ≲

√
d logm

m
+
d logm

m
≲

√
d logm

m
. (39)

Theorem C.2. Let W(0) =
{
⇀
wr(0)

}m
r=1

, where each
⇀
wr(0) ∼ N (0, κ2Id) for r ∈ [m]. Suppose

R ≤ R0 for an arbitrary absolute positive constant R0 < κ. B is an absolute positive constant in
Lemma C.19. Then for any δ ∈ (0, 1), with probability at least 1− δ over W(0),

sup
x∈X

∣∣∣∣v̂R(W(0),x)− 2R√
2πκ

∣∣∣∣ ≤ C2(m,R0, δ), (40)

where

C2(m,R0, δ) :=3

(B
√
d+ 1)

√
m− 1

2 +
1

m
+

exp
(
− (κ2−R2

0)
2

4κ4 m
)

√
m− 1

2 + 1
m


+

√
2log 2(1+2m)d

δ

m
+

7log 2(1+2m)d

δ

3m
. (41)

In addition, when m ≥ max {d, n, 4}, m/ logm ≥ d, and δ ≍ 1/n,

C2(m,R0, δ) ≲

√
d

m1/4
+

√
d logm

m
+
d logm

m
≲

√
d

m1/4
,

Lemma C.3. Suppose

m ≳ (ηT )4(
√
d+
√
τ)4/τ4. (42)

and the neural network f(W(t), ·) trained by gradient decent with the learning rate η ∈ (0, 1/λ̂1)
on random initialization W(0) ∈ W0. Then with probability at least 1 − exp (−Θ(n)) over the
random noise w, W(t) ∈ W(S,W(0), T ). Moreover, for all t ∈ [0, T ], u(t) = v(t) + e(t) where
u(t) = ŷ(t)− y, v(t) ∈ VK,t, e(t) ∈ EK,t,τ , and ∥u(t)∥2 ≤ cK,u

√
n.

Proof. First, when m ≳ (ηT )4(
√
d+
√
τ)4/τ4 with a proper constant, it can be verified that

Em,η,τ ≤ τ
√
n/T where Em,η,τ is defined by (52) of Lemma C.5. Also, Theorem C.1 and Theo-

rem C.2 hold when (42) holds. We then use mathematical induction to prove the lemma. We will
first prove that u(t) = v(t) + e(t) where v(t) ∈ Vt, e(t) ∈ Et,τ , and ∥u(t)∥2 ≤ cu

√
n for for all

t ∈ [0, T ].

for all t ∈ [0, T ], where
∑t
t′=1 · = 0 for t < 1, and

When t = 0, we have

u(0) = −y = v(0) + e(0), (43)

where v(0) := −f∗(S) = − (I− ηKn)
0
f∗(S), e(0) = −w =

⇀
e 1(0) +

⇀
e 2(0) with

⇀
e 1(0) =

−
(
I − ηKn

)0
w and

⇀
e 2(0) = 0. Therefore, v(0) ∈ V0 and e(0) ∈ E0,τ . Also, it follows from the
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proof of Lemma C.4 that ∥u(0)∥2 ≤ cu with probability at least 1− exp (−Θ(n)) over the random
noise w.

Suppose that for all t1 ∈ [0, t] with t ∈ [0, T − 1], u(t1) = v(t1) + e(t1) where v(t1) ∈ Vt1 ,
and e(t1) =

⇀
e 1(t1) +

⇀
e 2(t1) with v(t1) ∈ Vt1 and e(t1) ∈ Et1,τ , and ∥u(t1)∥2 ≤ cu

√
n for all

t1 ∈ [0, t]

Then it follows from Lemma C.5 that the recursion u(t′ + 1) = (I− ηKn)u(t
′) +E(t′ + 1) holds

for all t′ ∈ [0, t]. As a result, we have

u(t+ 1) = (I− ηKn)u(t) +E(t+ 1)

= − (I− ηKn)
t+1

f∗(S)− (I− ηKn)
t
w

+

t∑
t′=1

(I− ηKn)
t−t′

E(t′)

= v(t+ 1) + e(t+ 1), (44)

where v(t+ 1) and e(t+ 1) are defined as

v(t+ 1) := − (I− ηKn)
t+1

f∗(S) ∈ Vt+1, (45)

e(t+ 1) := − (I− ηKn)
t+1

w︸ ︷︷ ︸
⇀
e 1(t+1)

+

t+1∑
t′=1

(I− ηKn)
t+1−t′

E(t′)︸ ︷︷ ︸
⇀
e 2(t+1)

. (46)

We now prove the upper bound for
⇀
e 2(t + 1). With η ∈ (0, 1/λ̂1), we have ∥I− ηKn∥2 ∈ (0, 1).

It follows that ∥∥∥⇀e 2(t+ 1)
∥∥∥
2

≤
t+1∑
t′=1

∥I− ηKn∥t+1−t′
2 ∥E(t′)∥2

≤ τ
√
n, (47)

where the last inequality follows from the fact that ∥E(t)∥2 ≤ Em,η,τ ≤ τ
√
n/T for all t ∈ [T ] and

the induction hypothesis. It follows that e(t+ 1) ∈ Et+1,τ . Also, it follows from Lemma C.4 that

∥u(t+ 1)∥2 ≤ ∥v(t+ 1)∥2 +
∥∥∥⇀e 1(t+ 1)

∥∥∥
2
+
∥∥∥⇀e 2(t+ 1)

∥∥∥
2

≤
(

µ0√
2eη

+ σ + τ + 1

)√
n = cu

√
n,

This fact completes the induction step, which also completes the proof.

Lemma C.4. Let t ∈ [T ], v = − (I− ηKn)
t
f∗(S), e = − (I− ηKn)

t+1
w, and η ∈ (0, 1/λ̂1).

Then with probability at least 1− exp (−Θ(n)) over the random noise w,

∥v∥2 + ∥e∥2 ≤
(

µ0√
2eη

+ σ + 1

)√
n (48)

Proof. When v ∈ Vt for t ≥ 1, we have v = − (I− ηKn)
t
f∗(S), and

∥v(t)∥22 =

n∑
i=1

(
1− ηλ̂i

)2t [
U⊤f∗(S)

]2
i

1⃝
≤

n∑
i=1

1

2eηλ̂it

[
U⊤f∗(S)

]2
i
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2⃝
≤ nµ2

0

2eηt
. (49)

Here 1⃝ follows Lemma C.13, 2⃝ follows by Lemma C.12.

Moreover, it follows from the concentration inequality about quadratic forms of sub-Gaussian ran-
dom variables in (Wright, 1973) that

Pr
[
∥w∥22 − E

[
∥w∥22

]
> n

]
≤ exp (−Θ(n)) , (50)

and E [∥w∥2] ≤
√
E
[
∥w∥22

]
=
√
nσ. Therefore, Pr [∥w∥2 −

√
nσ >

√
n] ≤ exp (−Θ(n)).

As a result, we have

∥v∥2 + ∥e∥2 ≤

√
nµ2

0

2eη
+ ∥w∥2 ≤

(
µ0√
2eη

+ σ + 1

)√
n.

Lemma C.5. Let 0 < η < 1, 0 ≤ t ≤ T − 1 for T ≥ 1, and suppose that ∥ŷ(t′)− y∥2 ≤ cu
√
n

holds for all 0 ≤ t′ ≤ t. Then

ŷ(t+ 1)− y = (I− ηKn) (ŷ(t)− y) +E(t+ 1), (51)

where ∥E(t+ 1)∥2 ≤ Em,η,τ , and Em,η,τ is defined by

Em,η,τ := ηcu
√
n

(
3

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
+ C1(m/2, d, δ)

)
≲ η
√
n

( √
d

m1/4
+

ηT√
m

)
. (52)

Proof. Because ∥ŷ(t′)− y∥2 ≤
√
ncu holds for all t′ ∈ [0, t], by Lemma C.6, we have∥∥∥⇀wr(t

′)− ⇀
wr(0)

∥∥∥
2
≤ R, ∀ 0 ≤ t′ ≤ t+ 1. (53)

Define two sets of indices

Ei,R :=
{
r ∈ [m] :

∣∣∣wr(0)
⊤⇀x i

∣∣∣ > R
}
, Ēi,R := [m] \ Ei,R.

We have

ŷi(t+ 1)− ŷi(t) =
1√
m

m∑
r=1

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))
=

1√
m

∑
r∈Ei,R

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))
︸ ︷︷ ︸

:=D
(1)
i

+
1√
m

∑
r∈Ēi,R

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))
︸ ︷︷ ︸

:=E
(1)
i

= D
(1)
i +E

(1)
i , (54)

and D(1),E(1) ∈ Rn is a vector with their i-th element being D
(1)
i and E

(1)
i defined on the RHS of

(54). Now we derive the upper bound for E(1)
i . For all i ∈ [n] we have∣∣∣E(1)

i

∣∣∣ =
∣∣∣∣∣∣ 1√
m

∑
r∈Ēi,R

ar

(
σ
(
⇀
wS,r(t+ 1)⊤

⇀
x i

)
− σ

(
⇀
wS,r(t)

⊤⇀x i

))∣∣∣∣∣∣
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≤ 1√
m

∑
r∈Ēi,R

∣∣∣⇀wS,r(t+ 1)⊤
⇀
x i −

⇀
wS,r(t)

⊤⇀x i

∣∣∣
≤ 1√

m

∑
r∈Ēi,R

∥∥∥⇀wS,r(t+ 1)− ⇀
wS,r(t)

∥∥∥
2

1⃝
=

1√
m

∑
r∈Ēi,R

∥∥∥ η
n
[ZS(t)][(r−1)d+1:rd] (ŷ(t)− y)

∥∥∥
2

2⃝
≤ cu√

m

∑
r∈Ēi,R

η√
m

≤ ηcu ·
∣∣Ēi,R∣∣
m

. (55)

Here 1⃝, 2⃝ follow from (72) and (73) in the proof of Lemma C.6.

Let m be sufficiently large such that R ≤ R0 for the absolute positive constant R0 < κ specified
in Theorem 6.1. Then it follows from Theorem C.2 that for any δ ∈ (0, 1), with probability at least
1− δ over W(0),

sup
x∈X

∣∣∣∣v̂R(W(0),x)− 2R√
2πκ

∣∣∣∣ ≤ C2(m/2, R0, δ), (56)

where v̂R(W(0),x) = 1
m

m∑
r=1

1I{∣∣∣⇀wr(0)⊤x
∣∣∣≤R}, so that v̂R(W(0),

⇀
x i) =

∣∣Ēi,R∣∣ /m. It follows

from (55), (56) and the induction hypothesis that

∣∣∣E(1)
i

∣∣∣ ≤ ηcu( 2R√
2πκ

+ C2(m/2, R0, δ)

)
. (57)

It follows from (57) that
∥∥E(1)

∥∥
2

can be bounded by

∥∥∥E(1)
∥∥∥
2
≤ ηcu

√
n

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
. (58)

D
(1)
i on the RHS of (54) is expressed by

D
(1)
i =

1√
m

∑
r∈Ei,R

ar

(
σ

(
⇀
w

⊤
S,r(t+ 1)

⇀
x i

)
− σ

(
⇀
w

⊤
S,r(t)

⇀
x i

))

=
1√
m

∑
r∈Ei,R

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} (⇀wS,r(t+ 1)− ⇀
wS,r(t)

)⊤⇀
x i

=
1√
m

m∑
r=1

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} (− η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y)

)⊤⇀
x i

+
1√
m

∑
r∈Ēi,R

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} ( η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y)

)⊤⇀
x i

= − η
n
[H(t)]i (ŷ(t)− y)︸ ︷︷ ︸

:=D
(2)
i

+
1√
m

∑
r∈Ēi,R

ar1I{⇀
wS,r(t)⊤

⇀
x i≥0

} ( η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y)

)⊤⇀
x i︸ ︷︷ ︸

:=E
(2)
i
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= D
(2)
i +E

(2)
i , (59)

where H(t) ∈ Rn×n is a matrix specified by

Hpq(t) =

⇀
x

⊤
p

⇀
xq

m

m∑
r=1

1I{⇀
wS,r(t)⊤

⇀
xp≥0

}1I{⇀
wr(0)⊤

⇀
x q≥0

}, ∀ p ∈ [n], q ∈ [n].

Let D(2),E(2) ∈ Rn be a vector with their i-the element being D
(2)
i and E

(2)
i defined on the RHS

of (59). E(2) can be expressed by E(2) = η
n Ẽ

(2) (ŷ(t)− y) with Ẽ(2) ∈ Rn×n and

Ẽ(2)
pq =

1

m

∑
r∈Ēi,R

1I{⇀
wS,r(t)⊤

⇀
xp≥0

}1I{⇀
wr(0)⊤

⇀
q q≥0

}⇀x⊤
q

⇀
xp ≤

1

m

∑
r∈Ēi,R

1 =

∣∣Ēi,R∣∣
m

for all p ∈ [n], q ∈ [n]. The spectral norm of Ẽ(2) is bounded by∥∥∥Ẽ(2)
∥∥∥
2
≤
∥∥∥Ẽ(2)

∥∥∥
F
≤ n

∣∣Ēi,R∣∣
m

1⃝
≤ n

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
, (60)

where 1⃝ follows from (56). Also, ∥H(t)∥2 ≤ ∥H(t)∥F ≤
√
nN for all t ≥ 0. It follows from (60)

that
∥∥E(2)

∥∥
2

can be bounded by∥∥∥E(2)
∥∥∥
2
≤ η

n

∥∥∥Ẽ(2)
∥∥∥
2
∥y(t)− y∥2

≤ ηcu
√
n

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
. (61)

D
(2)
i on the RHS of (59) is expressed by

D(2) = − η
n
H(t) (ŷ(t)− y)

= − η
n
K (ŷ(t)− y)︸ ︷︷ ︸

:=D(3)

+
η

n
(K−H(0)) (ŷ(t)− y)︸ ︷︷ ︸

:=E(3)

+
η

n
(H(0)−H(t)) (ŷ(t)− y)︸ ︷︷ ︸

:=E(4)

= D(3) +E(3) +E(4). (62)

On the RHS of (62), D(3),E(3),E(4) ∈ Rn are vectors which are analyzed as follows.
∥∥∥Ẽ(3)

∥∥∥
2

is
bounded by

∥K−H(0)∥2 ≤ ∥K−H(0)∥F ≤ nC1(m/2, d, δ), (63)

where the last inequality holds with probability 1− δ over W(0) according to Theorem C.1.

In order to bound E(4), we first estimate the upper bound for |Hij(t)−Hij(0)| for all i, j ∈ [n].
We note that

1I{
1I{⇀wS,r(t)⊤⇀

x i} ̸=1I{wr(0)⊤⇀
x i}

} ≤ 1I{∣∣∣wr(0)⊤
⇀
x i

∣∣∣≤R} + 1I{∥∥∥wS,r(t)−
⇀
wr(0)

∥∥∥
2
>R

}. (64)

It follows from (64) that

|Hij(t)−Hij(0)|
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=

∣∣∣∣∣∣
⇀
x

⊤
i

⇀
xj

m

m∑
r=1

(
1I{⇀

wS,r(t)⊤
⇀
x i≥0

}1I{⇀
wr(0)⊤

⇀
x j≥0

} − 1I{
wr(0)⊤

⇀
x i≥0

}1I{
wr(0)⊤

⇀
x j≥0

})∣∣∣∣∣∣
≤ 1

m

m∑
r=1

1I{
1I{⇀wS,r(t)⊤⇀

x i≥0} ̸=1I{⇀wr(0)⊤⇀
x i≥0}

}

≤ 1

m

m∑
r=1

(
1I{∣∣∣⇀wr(0)⊤

⇀
x i

∣∣∣≤R} + 1I{∥∥∥wS,r(t)−
⇀
wr(0)

∥∥∥
2
>R

})
≤ vR(W(0),

⇀
x i)

1⃝
≤ 2R√

2πκ
+ C2(m/2, R0, δ), (65)

where 1⃝ follows from (56).

It follows from (63) and (65) that
∥∥E(3)

∥∥
2
,
∥∥E(4)

∥∥
2

are bounded by∥∥∥E(3)
∥∥∥
2
≤ η

n
∥K−H(0)∥2∥ŷ(t)− y∥2

≤ η

n
· nC1(m/2, d, δ) · ∥y(t)− y∥2

≤ ηcu
√
nC1(m/2, d, δ), (66)∥∥∥E(4)

∥∥∥
2
≤ η

n
∥H(0)−H(t)∥2∥ŷ(t)− y∥2

≤ η

n
· n
(

2R√
2πκ

+ C2(m/2, R0, δ)

)
· ∥y(t)− y∥2

≤ ηcu
√
n

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
. (67)

It follows from (59) and (62) that

D
(1)
i = D

(3)
i +E

(2)
i +E

(3)
i +E

(4)
i . (68)

It then follows from (54) that

ŷi(t+ 1)− ŷi(t) = D
(1)
i +E

(1)
i

= D
(3)
i +E

(1)
i +E

(2)
i +E

(3)
i +E

(4)
i︸ ︷︷ ︸

:=Ei

= − η
n
K (ŷ(t)− y) +Ei, (69)

where E ∈ Rn with its i-th element being Ei, and E = E(1) +E(2) +E(3) +E(4). It then follows
from (58), (61), (66), and (67) that

∥E∥2 ≤ ηcu
√
n

(
3

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
+ C1(m/2, d, δ)

)
. (70)

Finally, (69) can be rewritten as

ŷ(t+ 1)− y =
(
I− η

n
K
)
(ŷ(t)− y) +E(t+ 1),

which proves (51) with the upper bound for ∥E∥2 in (70).

Lemma C.6. Suppose that t ∈ [0, T − 1] for T ≥ 1, and ∥ŷ(t′)− y∥2 ≤
√
ncu holds for all

0 ≤ t′ ≤ t. Then ∥∥∥⇀wS,r(t
′)− ⇀

wr(0)
∥∥∥
2
≤ R, ∀ 0 ≤ t′ ≤ t+ 1. (71)
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Proof. Let [ZS(t)][(r−1)d:rd] denotes the submatrix of ZS(t) formed by the the rows of ZQ(t) with
row indices in [(r − 1)d : rd]. By the GD update rule we have for t ∈ [0, T − 1] that

⇀
wS,r(t+ 1)− ⇀

wS,r(t)

= − η
n
[ZS(t)][(r−1)d:rd] (ŷ(t)− y) , (72)

We have
∥∥∥[ZS(t)][(r−1)d:rd]

∥∥∥
2
≤
√
n/m. It then follows from (72) that∥∥∥⇀wS,r(t+ 1)− ⇀

wS,r(t)
∥∥∥
2
≤ η

n
∥ZS(t)∥2∥ŷ(t)− y∥2 ≤

ηcu√
m
. (73)

Note that (71) trivially holds for t′ = 0. For t′ ∈ [1, t+ 1], it follows from (73) that∥∥∥⇀wS,r(t
′)− ⇀

wr(0)
∥∥∥
2
≤

t′−1∑
t′′=0

∥∥∥⇀wS,r(t
′′ + 1)− ⇀

wS,r(t
′′)
∥∥∥
2

≤ η√
m

t′−1∑
t′′=0

cu

≤ ηcuT√
m

= R, (74)

which completes the proof.

Lemma C.7. Let h(·) =
∑t−1
t′=0 h(·, t′) for t ∈ [T ], T ≤ T̂ where

h(·, t′) = v(·, t′) + ê(·, t′),

v(·, t′) = η

n

n∑
j=1

K(
⇀
xj ,x)vj(t

′),

ê(·, t′) = η

n

n∑
j=1

K(
⇀
xj ,x)

⇀
e j(t

′),

where v(t′) ∈ Vt′ , e(t′) ∈ Et′,τ for all 0 ≤ t′ ≤ t − 1. Suppose that τ ≲ 1/(ηT ), then with
probability at least 1− exp

(
−Θ(nε̂2n)

)
over the random noise w,

∥h∥HK
≤ Bh = µ0 + 1 +

√
2, (75)

and Bh is also defined in (35).

Proof. We have y = f∗(S)+w, v(t) = − (I− ηKn)
t
f∗(S), e(t) =

⇀
e 1(t)+

⇀
e 2(t) with

⇀
e 1(t) =

− (I− ηKn)
t
w,
∥∥∥⇀e 2(t)

∥∥∥
2
≲
√
nτ . We define

ê1(·, t) =
η

n

n∑
j=1

K(
⇀
xj ,x)

[
⇀
e 1(t

′)
]
j
, ê2(·, t) =

η

n

n∑
j=1

K(
⇀
xj ,x)

[
⇀
e 2(t

′)
]
j
,

Let Σ be the diagonal matrix containing eigenvalues of Kn, we then have
t−1∑
t′=0

v(x, t′) =
η

n

n∑
j=1

t−1∑
t′=0

[
(I− ηKn)

t′
f∗(S)

]
j
K(

⇀
xj ,x)

=
η

n

n∑
j=1

t−1∑
t′=0

[
U (I− ηΣ)

t′
U⊤f∗(S)

]
j
K(

⇀
xj ,x). (76)

It follows from (76) that∥∥∥∥∥
t−1∑
t′=0

v(·, t′)

∥∥∥∥∥
2

HK
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=
η2

n2
f∗(S)⊤U

t−1∑
t′=0

(I− ηΣ)
t′
U⊤KU

t−1∑
t′=0

(I− ηΣ)
t′
U⊤f∗(S)

=
1

n

∥∥∥∥∥η (Kn)
1/2

U

t−1∑
t′=0

(I− ηΣ)
t′
U⊤f∗(S)

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

λ̂i

[
U⊤f∗(S)

]2
i

≤ µ2
0, (77)

where the last inequality follows from Lemma C.12.

Similarly, we have

∥∥∥∥∥
t−1∑
t′=0

ê1(·, t′)

∥∥∥∥∥
2

HK

≤ 1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

λ̂i

[
U⊤w

]2
i
. (78)

It then follows from the argument in the proof of (Raskutti et al., 2014, Lemma 9) that the RHS
of (78) is bounded with high probability. We define a diagonal matrix R ∈ Rn×n with Rii =(
1− (1− ηλ̂i)t

)2
/λ̂i for i ∈ [n]. Then the RHS of (78) is 1/n · tr

(
URU⊤ww⊤). It follows from

(Wright, 1973) that

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ u]

≤ exp
(
−cmin

{
nu/∥R∥2, n

2u2/∥R∥2F
})

(79)

for all u > 0, and c is a positive constant. Recall that ηt = ηt for all t ≥ 0, we have

E
[
1/n · tr

(
URU⊤ww⊤)] ≤ σ2

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

λ̂i

1⃝
≤ σ2

n

n∑
i=1

min

{
1

λ̂i
, η2t λ̂i

}

≤ σ2ηt
n

n∑
i=1

min

{
1

ηtλ̂i
, ηtλ̂i

}
2⃝
≤ σ2ηt

n

n∑
i=1

min
{
1, ηtλ̂i

}
=
σ2η2t
n

n∑
i=1

min
{
η−1
t , λ̂i

}
= σ2η2t R̂

2
K(
√

1/ηt) ≤ 1. (80)

Here 1⃝ follows from the fact that (1 − ηλ̂i)
t ≥ max

{
0, 1− tηλ̂i

}
, and 2⃝ follows from

min {a, b} ≤
√
ab for any nonnegative numbers a, b. Because t ≤ T ≤ T̂ , we have R̂K(

√
1/ηt) ≤

1/(σηt), so the last inequality holds.

Moreover, we have the upper bounds for ∥R∥2 and ∥R∥F as follows. First, we have

∥R∥2 ≤ max
i∈[n]

(
1−

(
1− ηλ̂i

)t)2

λ̂i
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≤ min

{
1

λ̂i
, η2t λ̂i

}
≤ ηt. (81)

We also have

1

n
∥R∥2F =

1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)4

(λ̂i)2

≤ η3t
n

n∑
i=1

min

{
1

η3t λ̂
2
i

, ηtλ̂
2
i

}
3⃝
≤ η3t

n

n∑
i=1

min

{
λ̂i,

1

ηt

}
= η3t R̂

2
K(
√
1/ηt) ≤

ηt
σ2
, (82)

where 3⃝ follows from

min

{
1

η3t λ̂
2
i

, ηtλ̂
2
i

}
= λ̂imin

{
1

η3t λ̂
3
i

, ηtλ̂i

}
≤ λ̂i.

Combining (78)- (82) with u = 1 in (79), we have

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ 1

]
≤ exp

(
−cmin

{
n/ηt, nσ

2/ηt
})

≤ exp (−nc′/ηt) ≤ exp
(
−c′nε̂2n

)
where c′ = cmin

{
1, σ2

}
, and the last inequality is due to the fact that 1/ηt ≥ ε̂2n since t ≤ T ≤ T̂ .

It follows that with probability at least 1− exp
(
−Θ(nε̂2n)

)
,
∥∥∥∑t−1

t′=0 ê1(·, t′)
∥∥∥2
HK

≤ 2.

We now find the upper bound for
∥∥∥∑t−1

t′=0 ê2(·, t′)
∥∥∥
HK

. We have

∥ê2(·, t′)∥
2
HK
≤ η2

n2
⇀
e
⊤
2 (t

′)K
⇀
e 2(t

′)

≤ η2λ̂1τ2,

so that ∥∥∥∥∥
t−1∑
t′=0

ê2(·, t′)

∥∥∥∥∥
HK

≤
t−1∑
t′=0

∥ê2(·, t′)∥HK

≤ Tη
√
λ̂1τ ≤ 1, (83)

if τ ≲ 1/(ηT ).

Finally, we have

∥h∥HK
≤

∥∥∥∥∥
t−1∑
t′=0

v̂(·, t′)

∥∥∥∥∥
HK

+

∥∥∥∥∥
t−1∑
t′=0

ê1(·, t′)

∥∥∥∥∥
HK

+

∥∥∥∥∥
t−1∑
t′=0

ê2(·, t′)

∥∥∥∥∥
HK

≤ µ0 + 1 +
√
2 = Bh.

Theorem C.8. For every t ∈ [T ], let the neural network f(·) = f(W(t), ·) be trained by gradient
descent with the learning rate η ∈ (0, 1/λ̂1) on the random initialization W(0) ∈ W0 with T ≤ T̂ .
Then with probability at least 1 − exp (−Θ(n)) − exp

(
−Θ(nε̂2n)

)
over the random noise w, f ∈

FNN(S,W(0), T ), and f can be decomposed by

f = h+ e ∈ Fext(w, T ), (84)
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where h ∈ HK(Bh) with Bh defined in (35), e ∈ L∞. When

m ≳ max


(ηT )4

(√
d+ 1

)4
w4

, (ηT )8d2

 , (85)

then

∥e∥∞ ≤ w. (86)

In addition,

∥f∥∞ ≤
Bh√
2
+ w. (87)

Remark. We consider the kernel regression problem with the training loss L(α) = 1/2 ·
∥Knα− y∥22. Letting β = K

1/2
n α and then performing GD on β with this training loss and

the learning rate η, it can be verified that the kernel regressor right after the t-th step of GD is

f̂ (NTK)
t =

η

n

t−1∑
t′=0

n∑
i=1

K(·,⇀x i)α(t′)
i , (88)

where α(t′) = (In − ηKn)
t′
y. Following from the proof of Lemma C.6 and Theorem C.8, under

the conditions of Theorem C.8 we have

ht = f̂ (NTK)
t + ê2(·, t),

where ê2(·, t) = η
n

∑t−1
t′=0

∑n
j=1K(·,⇀xj)

[
⇀
e 2(t

′)
]
j

and
⇀
e 2(t

′) appears in the definition of Et,τ
in (31). It is remarked that in our analysis, we approximate ft by ht ∈ HK(Bh) with a small
approximation error w, and we do not need to approximate ft by the kernel regressor f̂ (NTK)

t with
a sufficiently small approximation error which is the common strategy used in existing works (Hu
et al., 2021; Suh et al., 2022; Li et al., 2024). In fact, our analysis only requires m is suitably
large so that the HK-norm of ê2(·, t) = ht − f̂ (NTK)

t is bounded by a positive constant rather than
an infinitesimal number as m → ∞, that is, ∥ê2(·, t)∥HK

≤ 1, which is revealed by the proof of
Lemma C.7.

Proof. It follows from Lemma C.3 and its proof that conditioned on an event with probability at
least 1− exp (−Θ(n))−Θ

(
nN/ncdε

2
0/8
)
− (1 + 2N)

2d
exp(−ncx), f ∈ FNN(S,W(0), T ) with

W(0) ∈ W0. Moreover, f(·) = f(W, ·) with W =
{
⇀
wr

}m
r=1
∈ W(S,W(0), T ), and vec (W) =

vec (WS) = vec (W(0))−
∑t−1
t′=0 η/n · ZS(t

′)u(t′) for some t ∈ [T ], where u(t′) ∈ Rn,u(t′) =
v(t′) + e(t′) with v(t′) ∈ Vt′ and e(t′) ∈ Et′,τ for all t′ ∈ [0, t− 1].
⇀
wr is expressed as

⇀
wr =

⇀
wS,r(t) =

⇀
wr(0)−

t−1∑
t′=0

η

n
[ZS(t

′)][(r−1)d:rd] u(t
′), (89)

where the notation
⇀
wS,r emphasizes that

⇀
wr depends on the training data S.

We define the event

Er(R) :=
{∣∣∣⇀wr(0)

⊤x
∣∣∣ ≤ R} , r ∈ [m].

We now approximate f(W,x) by g(x) := 1√
m

∑m
r=1 ar1I

{
⇀
wr(0)⊤x≥0

}⇀w⊤
r x. We have

|f(W,x)− g(x)|

=
1√
m

∣∣∣∣∣
m∑
r=1

arσ

(
⇀
w

⊤
r x

)
−

m∑
r=1

ar1I{⇀
wr(0)⊤x≥0

}⇀w⊤
r x

∣∣∣∣∣
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≤ 1√
m

m∑
r=1

∣∣∣∣ar (1I{Er(R)} + 1I{Ēr(R)}
)(

σ

(
⇀
w

⊤
r x

)
− 1I{⇀

wr(0)⊤x≥0
}⇀w⊤

r x

)∣∣∣∣
=

1√
m

m∑
r=1

1I{Er(R)}

∣∣∣∣σ(⇀w⊤
r x

)
− 1I{⇀

wr(0)⊤x≥0
}⇀w⊤

r x

∣∣∣∣
=

1√
m

m∑
r=1

1I{Er(R)}

∣∣∣∣σ(⇀w⊤
r x

)
− σ

(
⇀
wr(0)

⊤x
)
− 1I{⇀

wr(0)⊤x≥0
}(⇀wr −

⇀
wr(0))

⊤x

∣∣∣∣
≤ 2R√

m

m∑
r=1

1I{Er(R)}. (90)

Plugging R = ηcuT√
m

in (90), we have

|f(W,x)− g(x)| ≤ 2R√
m

m∑
r=1

1I{Er(R)}

= 2ηcuT ·
1

m

m∑
r=1

1I{Er(R)}

= 2ηcuT · v̂R(W(0),x)

≤ 2ηcuT

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
. (91)

Using (89), we can express g(x) as

g(x) =
1√
m

m∑
r=1

ar1I{⇀
wr(0)⊤x≥0

}⇀wr(0)
⊤x

−
t−1∑
t′=0

1√
m

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} ( η
n
[ZS(t

′)][(r−1)d:rd] u(t
′)
)⊤

x

1⃝
= −

t−1∑
t′=0

η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

1I{⇀
wr(t′)⊤

⇀
x j≥0

}uj(t′)⇀x⊤
j x︸ ︷︷ ︸

:=Gt′ (x)

, (92)

where 1⃝ follows from the fact that 1√
m

∑m
r=1 ar1I

{
⇀
wr(0)⊤x≥0

}⇀wr(0)
⊤x = f(W(0),x) = 0 due

to the particular initialization of the two-layer NN. For each Gt′ in the RHS of (92), we have

Gt′(x)
2⃝
=

η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

dt′,r,juj(t
′)
⇀
x

⊤
j x

+
η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

1I{⇀
wr(0)⊤

⇀
x j≥0

}uj(t′)⇀x⊤
j x

3⃝
=
η

n

n∑
j=1

K(x,
⇀
xj)uj(t

′) +
η

n

n∑
j=1

qjuj(t
′)︸ ︷︷ ︸

:=E1(x)

+
η

nm

m∑
r=1

1I{⇀
wr(0)⊤x≥0

} n∑
j=1

dt′,r,juj(t
′)
⇀
x

⊤
j x︸ ︷︷ ︸

:=E2(x)

. (93)

where
dt′,r,j := 1I{⇀

wr(t′)⊤
⇀
x j≥0

} − 1I{⇀
wr(0)⊤

⇀
x j≥0

}
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in 2⃝, and and

qj := ĥ(W(0),
⇀
xj ,x)−K(

⇀
xj ,x)

for all j ∈ [n] in 3⃝.

We now analyze each term on the RHS of (93). Let h(·, t′) : X → R be defined by

h(x, t′) :=
η

n

n∑
j=1

K(x,
⇀
xj)uj(t

′),

then h(·, t′) is an element in the RKHSHK for each t′ ∈ [0, t− 1]. We further define

h(·) :=
t−1∑
t′=0

h(·, t′), (94)

It follows from Theorem C.1 that, with probability 1 − δ over W(0), qj ≤ C1(m/2, d, δ) for all
j′ ∈ [n] with C1(m/2, d, δ) defined in (38). Moreover, ∥KS,Q∥2 ≤

√
nN , u(t′) ≤ cu

√
n with

high probability, so that we have

∥E1∥∞ =

∥∥∥∥∥∥ ηn
n∑
j=1

qjuj(t
′)

∥∥∥∥∥∥
∞

≤ η

n
∥u(t′)∥2

√
nC1(m/2, d, δ)

≤ ηcuC1(m/2, d, δ). (95)

We now bound the last term on the RHS of (93). Define X′ ∈ Rd×n with its j-column being
X′
j =

1
m

∑m
r=1 1I

{
⇀
wr(0)⊤x≥0

}dt′,r,j⇀xj for all j ∈ [n], then E2(x) =
η
n (X′u(t′))

⊤
x.

We need to derive the upper bound for ∥X′∥2. Because
∥∥∥⇀wr −

⇀
wr(0)

∥∥∥
2
≤ R, it follows that

1I{⇀
wr(t′)⊤

⇀
x j≥0

} = 1I{⇀
wr(0)⊤

⇀
x j≥0

} when
∣∣∣⇀wr(0)

⊤x′
j′

∣∣∣ > R for all j′ ∈ [n]. Therefore,

|dt′,r,j′ | =
∣∣∣∣1I{⇀

wr(t′)⊤
⇀
x j≥0

} − 1I{⇀
wr(0)⊤

⇀
x j≥0

}∣∣∣∣ ≤ 1I{∣∣∣⇀wr(0)⊤
⇀
x j

∣∣∣≤R},
and it follows that

∣∣∣∣ m∑
r=1

1I{⇀
wr(0)⊤

⇀
x i≥0

}dt′,r,j
∣∣∣∣

m
≤

m∑
r=1
|dt′,r,j |

m
≤

m∑
r=1

1I{∣∣∣⇀wr(0)⊤
⇀
x j

∣∣∣≤R}
m

= v̂R(W(0),
⇀
xj)

≤ 2R√
2πκ

+ C2(m/2, R0, δ), (96)

where v̂R is defined by (15), and the last inequality follows from Theorem C.2.

It follows from (96) that ∥X′∥2 ≤
√
n
(

2R√
2πκ

+ C2(m/2, R0, δ)
)

, and we have

∥E2(x)∥∞ ≤
η

n
∥X′∥2∥u(t

′)∥2∥x∥2

≤ ηcu
(

2R√
2πκ

+ C2(m/2, R0, δ)

)
. (97)

Combining (93), (95), and (97), for any t′ ∈ [0, t− 1],

∥Gt′(x)− h(x, t′)∥∞ ≤ ∥E1∥∞ + ∥E2∥∞

≤ ηcu
(
C1(m/2, d, δ) +

2R√
2πκ

+ C2(m/2, R0, δ)

)
. (98)
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Define e(·) = f(W, ·)− h(·), it then follows from (91), (92), and (98) that

∥e(x)∥∞ ≤ ∥f(W, ·)− g∥∞ + ∥g − h∥∞

≤ ∥f(W, ·)− g∥∞ +

t−1∑
t′=0

∥Gt′ − h(·, t′)∥Ωε0,Q

2⃝
≤ 2ηcuT

(
2R√
2πκ

+ C2(m/2, R0, δ)

)
+ ηcuT

(
C1(m/2, d, δ) +

2R√
2πκ

+ C2(m/2, R0, δ)

)
≤ ηcuT

(
C1(m/2, d, δ) + 3

(
2R√
2πκ

+ C2(m/2, R0, δ)

))
:= ∆m,n,N,cx,η,τ,δ. (99)

We now give estimates for ∆m,n,N,cx,η,τ,δ . Since m ≥ max {d, n, 4}, we have
√

d logm
m ≤

√
d

m1/4 .
As a result,

∆m,n,N,cx,η,τ,δ ≲ ηT

( √
d

m1/4
+

ηT√
m

)
.

By direct calculations, for any w > 0, when

m ≳
(ηT )4

(√
d+ 1

)4
w4

,

we have ∆m,n,N,cx,η,τ,δ ≤ w.

It follows from Lemma C.7 that with probability at least 1− exp
(
−Θ(nε̂2n)

)
over the random noise

w,

∥h∥HK
≤ Bh, (100)

where Bh is defined in (35), and τ are required to satisfy

τ ≲ 1/(ηT ).

Lemma C.3 requires that m ≳ (ηT )4(
√
d+
√
τ)4/τ4. As a result, we have

m ≳ (ηT )8d2.

It also follows from the Cauchy-Schwarz inequality that ∥h∥∞ ≤ Bh/
√
2. This together with (99)

proves (87).

For B,w > 0, we define the function class

F(B,w) := {f : ∃h ∈ HK(B),∃e ∈ L∞, ∥e∥∞ ≤ w s.t. f = h+ e} . (101)

Lemma C.9. For every B,w > 0 every r > 0,

R
({
f ∈ F(B,w) : EP

[
f2
]
≤ r
})
≤ φB,w(r), (102)

where

φB,w(r) := min
Q : Q≥0

(
√
r + w)

√
Q

n
+B


∞∑

q=Q+1

λq

n


1/2+ w. (103)
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Proof. We first decompose the Rademacher complexity of the function class{
f ∈ F(B,w) : EP

[
f2
]
≤ r
}

into two terms as follows:

R
({
f : f ∈ F(B,w),EP

[
f2
]
≤ r
})

≤ 1

n
E

[
sup

f∈F(B,w) : EP [f2]≤r

n∑
i=1

σih(
⇀
x i)

]
︸ ︷︷ ︸

:=R1

+
1

n
E

[
sup

f∈F(B,w) : EP [f2]≤r

n∑
i=1

σie(
⇀
x i)

]
︸ ︷︷ ︸

:=R2

. (104)

We now analyze the upper bounds forR1,R2 on the RHS of (104).

Derivation for the upper bound forR1.

According to Definition 101 and Theorem C.8, for any f ∈ F(B,w), we have f = h + e with
h ∈ HK(B), e ∈ L∞, ∥e∥∞ ≤ w.

When EP
[
f2
]
≤ r, it follows from the triangle inequality that ∥h∥L2 ≤ ∥f∥L2 + ∥e∥L2 ≤

√
r +

w := rh. We now consider h ∈ HK(B) with ∥h∥L2 ≤ rh in the remaining of this proof. We have
n∑
i=1

σif(
⇀
x i) =

n∑
i=1

σi

(
h(
⇀
x i) + e(

⇀
x i)
)

=

〈
h,

n∑
i=1

σiK(·,⇀x i)

〉
HK

+

n∑
i=1

σie(
⇀
x i). (105)

Because {vq}q≥1 is an orthonormal basis of HK , for any 0 ≤ Q ≤ n, we further express the first
term on the RHS of (105) as〈

h,

n∑
i=1

σiK(·,⇀x i)

〉
HK

=

〈
Q∑
q=1

√
λq ⟨h, vq⟩HK

vq,

Q∑
q=1

1√
λq

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

〉
HK

+

〈
h,
∑
q>Q

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

〉
HK

. (106)

Due to the fact that h ∈ HK , h =
∞∑
q=1

β
(h)
q vq =

∞∑
q=1

√
λqβ

(h)
q eq with vq =

√
λqeq . Therefore,

∥h∥2L2 =
∞∑
q=1

λqβ
(h)
q

2
, and∥∥∥∥∥

Q∑
q=1

√
λq ⟨h, vq⟩HK

vq

∥∥∥∥∥
HK

=

∥∥∥∥∥
Q∑
q=1

√
λqβ

(h)
q vq

∥∥∥∥∥
HK

=

√√√√ Q∑
q=1

λqβ
(h)
q

2
≤ ∥h∥L2 ≤ rh. (107)

According to Mercer’s Theorem, because the kernel K is continuous symmetric positive definite, it
has the decomposition

K(·,⇀x i) =
∞∑
j=1

λjej(·)ej(
⇀
x i),

so that we have 〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

=

〈
n∑
i=1

σi

∞∑
j=1

λjejej(
⇀
x i), vq

〉
HK
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=

〈
n∑
i=1

σi

∞∑
j=1

√
λjej(

⇀
x i) · vj , vq

〉
HK

=

n∑
i=1

σi
√
λqeq(

⇀
x i). (108)

Combining (106), (107), and (108), we have〈
h,

n∑
i=1

σiK(·,⇀x i)

〉
1⃝
≤

∥∥∥∥∥
Q∑
q=1

√
λq ⟨h, vq⟩HK

vq

∥∥∥∥∥
HK

·

∥∥∥∥∥∥
Q∑
q=1

1√
λq

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

∥∥∥∥∥∥
HK

+ ∥h∥HK
·

∥∥∥∥∥∥
∞∑

q=Q+1

〈
n∑
i=1

σiK(·,⇀x i), vq

〉
HK

vq

∥∥∥∥∥∥
HK

≤ ∥h∥L2

∥∥∥∥∥
Q∑
q=1

n∑
i=1

σieq(
⇀
x i)vq

∥∥∥∥∥
HK

+B

∥∥∥∥∥∥
∞∑

q=Q+1

n∑
i=1

σi
√
λqeq(

⇀
x i)vq

∥∥∥∥∥∥
HK

≤ rh

√√√√ Q∑
q=1

(
n∑
i=1

σieq(
⇀
x i)

)2

+B

√√√√ ∞∑
q=Q+1

(
n∑
i=1

σi
√
λqeq(

⇀
x i)

)2

, (109)

where 1⃝ is due to Cauchy-Schwarz inequality. Moreover, by Jensen’s inequality we have

E


√√√√ Q∑

q=1

(
n∑
i=1

σieq(
⇀
x i)

)2
 ≤

√√√√√E

 Q∑
q=1

(
n∑
i=1

σieq(
⇀
x i)

)2


≤

√√√√E

[
Q∑
q=1

n∑
i=1

e2q(
⇀
x i)

]
=
√
nQ. (110)

and similarly,

E


√√√√ ∞∑
q=Q+1

(
n∑
i=1

σi
√
λqeq(

⇀
x i)

)2
 ≤

√√√√√E

 ∞∑
q=Q+1

λq

n∑
i=1

e2q(
⇀
x i)

 =

√√√√n

∞∑
q=Q+1

λq. (111)

Since (109)-(111) hold for all Q ≥ 0, it follows that

E

[
sup

h∈HK(B),∥h∥L2≤rh

1

n

n∑
i=1

σih(
⇀
x i)

]
≤ min
Q : Q≥0

rh√nQ+B

√√√√n

∞∑
q=Q+1

λq

 . (112)

It follows from (104), (105), and (112) that

R1 ≤
1

n
E

[
sup

h∈HK(B),∥h∥L2≤rh

n∑
i=1

σih(
⇀
x i)

]

≤ min
Q : Q≥0

rh
√
Q

n
+B


∞∑

q=Q+1

λq

n


1/2 . (113)

Derivation for the upper bound forR2.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Because
∣∣∣1/n∑n

i=1 σie(
⇀
x i)
∣∣∣ ≤ w when ∥e∥∞ ≤ w, we have

R2 ≤
1

n
E

[
sup

e∈L∞ : ∥e∥∞≤w

n∑
i=1

σie(
⇀
x i)

]
≤ w. (114)

It follows from (113) and (114) that

R
({
f : f ∈ F(B,w),EP

[
f2
]
≤ r
})

≤ min
Q : Q≥0

rh
√
Q

n
+B


∞∑

q=Q+1

λq

n


1/2+ w.

Plugging rh in the RHS of the above inequality completes the proof.

Theorem C.10. Suppose w ∈ (0, 1) and m satisfy

m ≳ max


(ηT )4

(√
d+ 1

)4
w4

, (ηT )8d2

 , (115)

and the neural network f(W(t), ·) is trained by GD in Algorithm 1 with the learning rate η ∈
(0, 1/λ̂1) on random initialization W(0), and T ≤ T̂ . Then for every t ∈ [T ], with probability
at least 1 − exp (−Θ(n)) − exp

(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
− 2/n over the random noise w, the

random training features S and the random initialization W(0),

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]

≤ c0 min
0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2

2

, (116)

Furthermore, with probability at least 1 − exp (−Θ(n)) − exp
(
−Θ(nε̂2n)

)
− exp

(
−nε2n

)
− 2/n

over the random noise w, the random training features S and the random initialization W(0),

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≤ c′0(ε2n + w). (117)

Here B0, c0, c
′
0 are absolute positive constants depending on µ0, and c′0 also depends on σ.

Proof. We first remark that the conditions onm, (115), is required by Lemma C.3 and Theorem C.8.

It follows from Lemma C.3 and Theorem C.8 that for every t ∈ [T ], conditioned on an event Ω
with probability at least 1 − exp (−Θ(n)) − exp

(
−Θ(nε̂2n)

)
over the random noise w, we have

W(t) ∈ W(S,W(0), T ), and

f(W(t), ·) = ft ∈ FNN(S,W(0), T ).

Moreover, conditioned on the event Ω,

ft ∈ Fext(Q, w, T ).

We then derive the sharp upper bound for EP
[
(ft − f∗)2

]
by applying Theorem A.3 to the function

class

F =
{
F = (f − f∗)2 : f ∈ F(Bh, w)

}
.
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Let B0 := Bh/
√
2+1+µ0/

√
2 ≥ Bh/

√
2+w+µ0/

√
2, then we have ∥F∥∞ ≤ B2

0 with F ∈ F ,
so that EP

[
F 2
]
≤ B2

0EP [F ]. Let T (F ) = B2
0EP [F ] for F ∈ F . Then Var [F ] ≤ EP

[
F 2
]
≤

T (F ) = B2
0EP [F ].

We have

R ({F ∈ F : T (F ) ≤ r})

= R

({
(f − f∗)2 : f ∈ F(Bh, w),EP

[
(f − f∗)2

]
≤ r

B2
0

})
1⃝
≤ 2B0R

({
f − f∗ : f ∈ F(Bh, w),EP

[
(f − f∗)2

]
≤ r

B2
0

})
2⃝
≤ 4B0R

({
f ∈ F(Bh, w) : EP

[
f2
]
≤ r

4B2
0

})
, (118)

where 1⃝ is due to the contraction property of Rademacher complexity in Theorem A.2. Since
f∗ ∈ F(Bh, w), f ∈ F(Bh, w), we have f−f∗

2 ∈ F(Bh, w) due to the fact that F(Bh, w) is
symmetric and convex, and it follows that 2⃝ holds.

It follows from (118) and Lemma C.9 that

B2
0R ({F ∈ F : T (F ) ≤ r}) ≤ 4B3

0R

({
f : f ∈ F(Bh, w),EP

[
f2
]
≤ r

4B2
0

})
≤ 4B3

0φBh,w

(
r

4B2
0

)
:= ψ(r). (119)

ψ defined as the RHS of (119) is a sub-root function since it is nonnegative, nondecreasing and ψ(r)√
r

is nonincreasing. Let r∗ be the fixed point of ψ, and 0 ≤ r ≤ r∗. It follows from (Bartlett et al.,
2005, Lemma 3.2) that 0 ≤ r ≤ ψ(r) = 4B3

0φ
(

r
4B2

0

)
. Therefore, by the definition of φ in (103),

for every 0 ≤ Q ≤ n, we have

r

4B3
0

≤
( √

r

2B0
+ w

)√
Q

n
+Bh


∞∑

q=Q+1

λq

n


1/2

+ w. (120)

Solving the quadratic inequality (120) for r, we have

r ≤ 8B4
0Q

n
+ 8B3

0

w
(√

Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2 . (121)

(121) holds for every 0 ≤ Q ≤ n, so we have

r ≤ 8B3
0 min
0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2 . (122)

It then follows from (119) and Theorem A.3 that with probability at least 1 − exp(−x) over the
random training features S,

EP
[
(ft − f∗)2

]
− K0

K0 − 1
EPn

[
(ft − f∗)2

]
−
x
(
11B2

0 + 26B2
0K0

)
n

≤ 704K0

B2
0

r∗, (123)

or

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ r∗ +

x

n
, (124)
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with K0 = 2 in (123).

It follows from (122) and (124) that

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]

≲ min
0≤Q≤n

B0Q

n
+ w

(√
Q

n
+ 1

)
+Bh


∞∑

q=Q+1

λq

n


1/2+

x

n
.

Let x = nε2n in the above inequality, and we note that the above argument requires Theorem C.8
which holds with probability at least 1− exp (−Θ(n))− exp

(
−Θ(nε̂2n)

)
over the random noise w.

Then (116) is proved combined with the facts that Pr [W0] ≥ 1− 2/n.

We now prove (117). First, it follows from the definition of φBh,w in (103) that

ψ(r) = 4B3
0φBh,w

(
r

4B2
0

)

= 4B3
0 min
Q : Q≥0


( √

r

2B0
+ w

)√
Q

n
+Bh


∞∑

q=Q+1

λq

n


1/2+ 4B3

0w

≤ 4B3
0Bh min

Q : Q≥0


√
Qr

n
+


∞∑

q=Q+1

λq

n


1/2+ 4B3

0w

(√
Q

n
+ 1

)

≤ 4
√
2B3

0Bh
σ

· σRK(
√
r) + 8B3

0w := ψ1(r),

where the last inequality follows from the Cauchy-Schwarz inequality. It can be verified that ψ1(r)
is a sub-root function. Let the fixed point of ψ1(r) be r∗1 . Because the fixed point of σRK(

√
r) as a

function of r is ε2n, it follows from Lemma C.17 that

r∗1 ≤ max

{
32
√
2B6

0B
2
h

σ2
, 1

}
ε2n + 16B3

0w. (125)

It then follows from Theorem A.3 with K0 = 2 that with probability at least 1− exp(−x),

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ r∗1 +

x

n
.

Letting x = nε2n, then plugging the upper bound for r∗1 , (125), in the above inequality leads to

EP
[
(ft − f∗)2

]
− 2EPn

[
(ft − f∗)2

]
≲ ε2n + 16B3

0w. (126)

Again, we note that the above argument requires Theorem C.8 which holds with probability at least
1 − exp (−Θ(n)) − exp

(
−Θ(nε̂2n)

)
over the random noise w. Then (117) is proved with the fact

that Pr [W0] ≥ 1− 2/n and (126).

Theorem C.11. Suppose the neural network trained after the t-th step of gradient descent, ft =

f(W(t), ·), satisfies u(t) = ft(S)−y = v(t)+ e(t) with v(t) ∈ Vt and e(t) ∈ Et,τ and T ≤ T̂ . If

η ∈ [1, 2), τ ≤ 1

ηT
, (127)

then for every t ∈ [T ], with probability at least 1 − exp
(
−Θ(nε̂2n)

)
over the random noise w, we

have

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 3

)
. (128)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Proof. We have

ft(S) = f∗(S) +w + v(t) + e(t), (129)

where v(t) ∈ Vt, e(t) ∈ Et,τ ,
⇀
e (t) =

⇀
e 1(t) +

⇀
e 2(t) with

⇀
e 1(t) = − (In − ηKn)

t
w and∥∥∥⇀e 2(t)

∥∥∥
2
≤
√
nτ . We have ηλ1 ∈ (0, 1) if η ∈ [1, 2). It follows from (129) that

EPn

[
(ft − f∗)2

]
=

1

n
∥ft(S)− f∗(S)∥22 =

1

n
∥v(t) +w + e(t)∥22

=
1

n

∥∥∥− (I− ηKn)
t f∗(S) +

(
In − (In − ηKn)

t)w +
⇀
e 2(t)

∥∥∥2

2

1⃝
≤ 3

n

n∑
i=1

(
1− ηλ̂i

)2t [
U⊤f∗(S)

]2
i
+

3

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t
)2 [

U⊤w
]2
i
+

3

n

∥∥∥⇀
e 2(t)

∥∥∥2

2

2⃝
≤ 3µ2

0

2eηt
+

3

n

n∑
i=1

(
1− (1− ηλi)

t)2 [U⊤w
]2
i
+ 3τ2

≤ 3

ηt

(
µ2
0

2e
+

1

η

)
+ 3 · 1

n

n∑
i=1

(
1− (1− ηλi)

t)2 [U⊤w
]2
i︸ ︷︷ ︸

:=Eε

≤ 3

ηt

(
µ2
0

2e
+ 2λ̂1

)
+ 3Eε ≤ 3

ηt

(
µ2
0

2e
+ 4

)
+ 3Eε. (130)

Here 1⃝ follows from the Cauchy-Schwarz inequality, 2⃝ follows from (49) in the proof of
Lemma C.4. We then derive the upper bound for Eε on the RHS of (130). We define the diag-

onal matrix R ∈ Rn×n with Rii =
(
1− (1− ηλi)t

)2
. Then we have

Eε = 1/n · tr
(
URU⊤ww⊤)

It follows from (Wright, 1973) that

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ u]

≤ exp
(
−cmin

{
nu/∥R∥2, n

2u2/∥R∥2F
})

. (131)

for all u > 0, and c is a positive constant. With ηt = ηt for all t ≥ 0, we have

E
[
1/n · tr

(
URU⊤ww⊤)] ≤ σ2

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)2

1⃝
≤ σ2

n

n∑
i=1

min
{
1, η2t λ̂

2
i

}
≤ σ2ηt

n

n∑
i=1

min

{
1

ηt
, ηtλ̂

2
i

}
2⃝
≤ σ2ηt

n

n∑
i=1

min

{
1

ηt
, λ̂i

}
= σ2ηtR̂

2
K(
√
1/ηt) ≤

1

ηt
. (132)

Here 1⃝ follows from the fact that (1 − ηλ̂i)
t ≥ max

{
0, 1− tηλ̂i

}
, and 2⃝ follows from

min {a, b} ≤
√
ab for any nonnegative numbers a, b. Because t ≤ T ≤ T̂ , we have RK(

√
1/ηt) ≤

1/(σηt), so the last inequality holds.
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Moreover, we have the upper bounds for ∥R∥2 and ∥R∥F as follows. First, we have

∥R∥2 ≤ max
i∈[n]

(
1−

(
1− ηλ̂i

)t)2

≤ min
{
1, η2t λ̂

2
i

}
≤ 1. (133)

We also have

1

n
∥R∥2F =

1

n

n∑
i=1

(
1−

(
1− ηλ̂i

)t)4

≤ ηt
n

n∑
i=1

min

{
1

ηt
, η3t λ̂

4
i

}
3⃝
≤ ηt

n

n∑
i=1

min

{
λ̂i,

1

ηt

}
= ηtR̂

2
K(
√

1/ηt) ≤
1

σ2ηt
. (134)

If 1/ηt ≤ η3t (λ̂i)
4, then min

{
1/ηt, η

3
t (λ̂i)

4
}

= 1/ηt. Otherwise, we have η4t λ̂
4
i < 1, so that

ηtλ̂i < 1 and it follows that min
{
1/ηt, η

3
t (λ̂i)

4
}
≤ η3t λ̂4i ≤ λ̂i. As a result, 3⃝ holds.

Combining (131)- (134), we have

Pr
[
1/n · tr

(
URU⊤ww⊤)− E

[
1/n · tr

(
URU⊤ww⊤)] ≥ u] ≤ exp

(
−cnmin

{
u, u2σ2ηt

})
.

Let u = 1/ηt in the above inequality, we have

exp
(
−cnmin

{
u, u2σ2ηt

})
= exp (−c′n/ηt) ≤ exp

(
−c′nε̂2n

)
where c′ = cmin

{
1, σ2

}
, and the last inequality is due to the fact that 1/ηt ≥ ε̂2n since t ≤ T ≤ T̂ .

It follows that with probability at least 1− exp
(
−Θ(nε̂2n)

)
,

Eε ≤ u+
1

ηt
=

2

ηt
. (135)

It then follows from (130), (131)-(135) that

EPn

[
(ft − f∗)2

]
≤ 3

ηt

(
µ2
0

2e
+ 6

)
holds with probability at least 1− exp

(
−c′nε̂2n

)
.

C.3 AUXILIARY RESULTS ABOUT REPRODUCING KERNEL HILBERT SPACES

Lemma C.12 (In the proof of (Raskutti et al., 2014, Lemma 8)). For any f ∈ HK(µ0), we have

1

n

n∑
i=1

[
U⊤f(S′)

]2
i

λ̂i
≤ µ2

0. (136)

Similarly, for f ∈ HK(µ0), we have 1
n

∑n
i=1

[U⊤f(S′)]
2

i

λi
≤ µ2

0.

Lemma C.13. For any positive real number a ∈ (0, 1) and natural number t, we have

(1− a)t ≤ e−ta ≤ 1

eta
. (137)

Proof. The result follows from the facts that log(1 − a) ≤ a for a ∈ (0, 1) and supu∈R ue
−u ≤

1/e.
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Lemma C.14. ((Rosasco et al., 2010, Proposition 10)) With probability 1− δ over the training data
S, for all j ∈ [n],

∣∣∣λj − λ̂j∣∣∣ ≤
√

2 log 2
δ

n
. (138)

Lemma C.15. With probability at least 1− 2 exp(−Θ(nε2n)),

ε2n ≤ c1ε̂2n. (139)

Furthermore, with probability at least 1− 2 exp(−Θ(nε2n)),

ε̂2n ≤ c1ε2n. (140)

Here c1 is an absolute positive constant depending on σ.

Remark. Lemma C.15 shows that with probability at least 1 − 4 exp(−Θ(nε2n)), ε
2
n ≍ ε̂2n, which

is also a fact used in kernel complexity or local Rademacher based analysis for kernel regression
in the statistical learning literature. We herein provide a detailed proof to ensure the mathematical
rigor of this paper.

Proof. Define function classes

Ft :=
{
f ∈ HK : ∥f∥HK

≤ 1, ∥f∥L2 ≤ t
}
, F̂t :=

{
f ∈ HK : ∥f∥HK

≤ 1, ∥f∥n ≤ t
}
,

where ∥f∥2n := 1/n ·
∑n
i=1 f

2(
⇀
x i). LetR(t) be the Rademacher complexity of Ft, that is,

R(t) = R (Ft) = E{
⇀
x i

}
,{σi}

[
sup
f∈Ft

1

n

n∑
i=1

σif(
⇀
x i),

]

and we will also writeR(t) = E
[
supf∈Ft

1
n

n∑
i=1

σif(
⇀
x i),

]
for simplicity of notations. We let R̂(t)

be the empirical Rademacher complexity of Ft, that is,

R̂(t) = Eσ

[
sup
f∈F̂t

1

n

n∑
i=1

σif(
⇀
x i).

]
By results of (Mendelson, 2002), there are universal constants cℓ and Cu with 0 < cℓ < Cu such
that when t2 ≥ 1/n, we have

cℓRK(t) ≤ R(t) ≤ CuRK(t), cℓR̂K(t) ≤ R̂(t) ≤ CuR̂K(t). (141)

When f ∈ Ft, ∥f∥∞ ≤ τ0 = 1√
2

. It follows from Lemma C.16 that with probability at least
1− exp(−nε2n),

Ft ⊆
{
f ∈ HK : ∥f∥HK

≤ 1, ∥f∥n ≤
√
c2t2 + c3ε2n

}
:= F̂√

c2t2+c3ε2n
. (142)

Moreover, by the relation between Rademacher complexity and its empirical version in (Bartlett
et al., 2005, Lemma A.4), for every x > 0, with probability at least 1− exp(−x),

E

 sup
f∈F̂√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)

 ≤ 2Eσ

 sup
f∈F̂√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)

+
2τ0x

n
. (143)

As a result,

R(t)
1⃝
≤ E

 sup
f∈F̂√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)
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2⃝
≤ 2Eσ

 sup
f∈F̂√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)

+
2τ0x

n

= 2R̂(
√
c2t2 + c3ε2n) +

2τ0x

n
.

Here 1⃝ follows from (142), and 2⃝ follows from (143). It follows from (141) and the above inequal-
ity that

cℓ/σ · σRK(t) ≤ 2Cu/σ · σR̂K(
√
c2t2 + c3ε2n) +

2τ0x

n
,∀t2 ≥ 1/n.

Rewrite RK(t) as a function of r = t2 as RK(t) = FK(r). Similarly, R̂K(t) = F̂K(r) with r = t2.
Then we have

σFK(r) ≤ max {2Cu/cℓ, 1} · σF̂K(c2r + c3ε
2
n) +

2στ0x

ncℓ
:= G(r),∀r ≥ 1/n. (144)

It can be verified that G(r) is a sub-root function, and let r∗G be the fixed point of G. Let x ≥
cℓ/(2στ0), then r∗G ≥ 1/n. Moreover, σFK(r) and σF̂K(r) are sub-root functions, and they have
fixed points ε2n and ε̂2n, respectively. Set r = r∗G ≥ 1/n in (144), we have

σFK(r∗G) ≤ r∗G,

and it follows from the above inequality and (Bartlett et al., 2005, Lemma 3.2) that ε2n ≤ r∗G.
Since c2 > 1, it then follows from the properties about the fixed point of a sub-root function in
Lemma C.17 that

ε2n ≤ r∗G ≤ max {2Cu/cℓ, 1}2
(
c2ε̂

2
n +

2c3ε
2
n

c2

)
+

4στ0x

ncℓ
.

We can choose c2 such that c2 > 2c3 max {2Cu/cℓ, 1}2, then the above inequality indicates that

ε2n ≤ cu,ℓε̂2n +
4στ0x

ncℓ
,

where cu,ℓ is a constant depending on cℓ, Cu, c2, c3, and (139) is proved with x = c′nε2n where
c′ > 0 is a positive constant which is chosen such that 4c′στ0/cℓ < 1.

Similarly, it follows from Lemma C.16 that with probability at least 1− exp(−nε2n),

F̂t ⊆
{
f ∈ HK : ∥f∥HK

≤ 1, ∥f∥L2 ≤
√
c2t2 + c3ε2n

}
= F√

c2t2+c3ε2n
. (145)

It follows from (Bartlett et al., 2005, Lemma A.4) again that for every x > 0, with probability at
least 1− exp(−x),

Eσ

 sup
f∈F√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)

 ≤ 2E

 sup
f∈F√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)

+
10τ0x

12n
. (146)

As a result, we have

R̂(t)
1⃝
≤ Eσ

 sup
f∈F√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)


2⃝
≤ 2E

 sup
f∈F√

c2t2+c3ε2n

1

n

n∑
i=1

σif(
⇀
x i)

+
10τ0x

12n

= 2R(
√
c2t2 + c3ε2n) +

5
√
2x

12n
≤ 2CuRK(

√
c2t2 + c3ε2n) +

10τ0x

12n
,

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

where 1⃝ follows from (145), and 2⃝ follows from (146). Using a similar argument for the proof of
the first inequality in (139), we have

ε̂2n ≤ r∗G ≤ max {2Cu/cℓ, 1}2
(
c2 +

2c3
c2

)
ε2n +

10τ0x

12n
,

and the second inequality in (140) is approved with x = Θ
(
nε2n

)
.

Lemma C.16. Let K be a PSD kernel, then with probability at least 1− exp
(
−nε2n

)
,

∥g∥2L2 ≤ c2∥g∥2n + c3ε
2
n, ∀g ∈ HK(1). (147)

Furthermore, with probability at least 1− exp
(
−nε2n

)
,

∥g∥2n ≤ c2∥g∥
2
L2 + c3ε

2
n, ∀g ∈ HK(1). (148)

Here c2, c3 are positive constants with c2 > 1.

Proof. The results follow from Theorem A.1.

Lemma C.17. Suppose ψ : [0,∞) → [0,∞) is a sub-root function with the unique fixed point r∗.
Then the following properties hold.

(1) Let a ≥ 0, then ψ(r) + a as a function of r is also a sub-root function with fixed point r∗a, and
r∗ ≤ r∗a ≤ r∗ + 2a.

(2) Let b ≥ 1, c ≥ 0 then ψ(br + c) as a function of r is also a sub-root function with fixed point r∗b ,
and r∗b ≤ br∗ + 2c/b.

(3) Let b ≥ 1, then ψb(r) = bψ(r) is also a sub-root function with fixed point r∗b , and r∗b ≤ b2r∗.

Proof. (1). Let ψa(r) = ψ(r) + a. It can be verified that ψa(r) is a sub-root function because its
nonnegative, nondecreasing and ψa(r)/

√
r is nonincreasing. It follows from (Bartlett et al., 2005,

Lemma 3.2) that ψa has unique fixed point denoted by r∗a. Because r∗ = ψ(r∗) ≤ ψ(r∗) + a =
ψa(r

∗), it follows from (Bartlett et al., 2005, Lemma 3.2) that r∗ ≤ r∗a. Furthermore, since

ψa(r
∗ + 2a) = ψ(r∗ + 2a) + a ≤ ψ(r∗)

√
r∗ + 2a

r∗
+ a ≤

√
r∗(r∗ + 2a) + a ≤ r∗ + 2a,

it follows from (Bartlett et al., 2005, Lemma 3.2) again that r∗a ≤ r∗ + 2a.

(2). Let ψb(r) = ψ(br + c). It can be verified that ψb(r) a sub-root function by checking the
definition. Also, we have ψ(b(br∗ +2c/b)+ c)/

√
b(br∗ + 2c/b) + c ≤ ψ(r∗)/

√
r∗. It follows that

ψb

(
br∗ +

2c

b

)
= ψ

(
b

(
br∗ +

2c

b

)
+ c

)
≤ b

√(
r∗ +

3c

b2

)
r∗

≤ b
(
r∗ +

3c

2b2

)
≤ br∗ + 2c

b
.

Then it follows from (Bartlett et al., 2005, Lemma 3.2) that r∗b ≤ br∗ + 2c/b.

(3). Let ψb(r) = bψ(r). It can be verified that ψb(r) a sub-root function by checking the definition.
Also, we have ψ(b2r∗)/

√
b2r∗ ≤ ψ(r∗)/

√
r∗, so ψ(b2r∗) ≤ br∗ and ψb(b2r∗) = bψ(b2r∗) ≤ b2r∗.

Then it follows from (Bartlett et al., 2005, Lemma 3.2) that r∗b ≤ b2r∗.
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C.4 PROOFS OF THEOREM C.1 AND THEOREM C.2

We need the following definition of ε-net for the proof of Theorem C.1 and Theorem C.2.
Definition C.1. (ε-net) Let (X, d) be a metric space and let ε > 0. A subset Nε(X, d) is called an ε-
net of X if for every point x ∈ X , there exists some point y ∈ Nε(X, d) such that d(x, y) ≤ ε. The
minimal cardinality of an ε-net of X , if finite, is denoted by N(X, d, ε) and is called the covering
number of X at scale ε.

Proof of Theorem C.1. First, we have Ew∼N (0,κ2Id) [h(w,x,y)] = K(x,y). For any x ∈ X and
s > 0, define function class

Hx,s :=
{
h(·,x′,y) : Rd → R : x′ ∈ B (x; s) ∩ X ,y ∈ X

}
. (149)

We first build an s-net for the unit sphere X . By (Vershynin, 2012, Lemma 5.2), there exists an s-net
Ns(X , ∥·∥2) of X such that N(X , ∥·∥2, s) ≤

(
1 + 2

s

)d
.

In the sequel, a function in the classHx,s is also denoted as h(w), omitting the presence of variables

x′ and y when no confusion arises. Let Pm be the empirical distribution over
{
⇀
wr(0)

}
so that

Ew∼Pm
[h(w)] = ĥ(W(0),x,y). Given x ∈ N(X , s), we aim to estimate the upper bound for

the supremum of empirical process Ew∼N (0,κ2Id) [h(w)]−Ew∼Pm
[h(w)] when function h ranges

over the function class Hx,s. To this end, we apply Theorem A.1 to the function class Hx,s with

W(0) =
{
⇀
wr(0)

}m
r=1

. It can be verified that h ∈ [0, 1] for any h ∈ Hx,s. It follows that we can

set a = 0, b = 1 in Theorem A.1. With probability at least 1− 2e−x over the random initialization
W(0),

sup
h∈Hx,s

∣∣Ew∼N (0,κ2Id) [h(w)]− Ew∼Pm [h(w)]
∣∣

≤ inf
α∈(0,1)

(
2(1 + α)EW(0),{σr}m

r=1

[
sup

h∈Hx,s

1

m

m∑
r=1

σrh(
⇀
wr(0))

]
+

√
2rx

m
+ (b− a)

(
1

3
+

1

α

)
x

m

)
,

(150)

where {σ}mr=1 are i.i.d. Rademacher random variables taking values of ±1 with equal probability.

It can be verified that Var [h] ≤ Ew

[
h(w,x′,y)2

]
≤ 1. Setting α = 1

2 in (150), it follows that with
probability at least 1− δ,

sup
x′∈B(x;s)∩X ,y∈X

∣∣∣K(x′,y)− ĥ(W(0),x′,y)
∣∣∣ ≤ 3R(Hx,s) +

√
2log 2

δ

m
+

7log 2
δ

3m
. (151)

HereR(Hx,s) = EW(0),{σr}m
r=1

[
suph∈Hx,s

1
m

m∑
r=1

σrh(
⇀
wr(0))

]
is the Rademacher complexity of

the function class Hx,s. By Lemma C.18, R(Hx,s) ≤ 1√
m

+ B
√
ds(s + 1) +

√
s + s. Plugging

such upper bound forR(Hx,s) in (151), we have

sup
x′∈B(x;s)∩X ,y∈X

∣∣∣K(x′,y)− ĥ(W(0),x′,y)
∣∣∣

≤ 3

(
1√
m

+B
√
ds(s+ 1) +

√
s+ s

)
+

√
2log 2

δ

m
+

7log 2
δ

3m
. (152)

Setting s = 1
m , we have
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sup
x′∈B(x;s)∩X ,y∈X

∣∣∣K(x′,y)− ĥ(W(0),x′,y)
∣∣∣

≤ 3

(
1√
m

+
B
√
d
(
1 + 1

m

)
√
m

+
1√
m

+
1

m

)
+

√
2log 2

δ

m
+

7log 2
δ

3m

≤ 1√
m

(
6(1 +B

√
d) +

√
2 log

2

δ

)
+

1

m

(
3 +

7log 2
δ

3

)
. (153)

By union bound, with probability at least 1 − (1 + 2m)
d
δ over W(0), (153) holds for arbitrary

x ∈ N(X , s). In this case, for any x′ ∈ X ,y ∈ X , there exists x ∈ Ns(X , ∥·∥2) such that
∥x′ − x∥2 ≤ s, so that x′ ∈ B (x; s) ∩ X , and (153) holds. Changing the notation x′ to x, the
conclusion is proved.

Lemma C.18. LetR(Hx,s) := EW(0),{σr}m
r=1

[
suph∈Hx,s

1
m

m∑
r=1

σrh(
⇀
wr(0))

]
be the Rademacher

complexity of the function classHx,s, B is a positive constant. Then

R(Hx,s) ≤
1√
m

+B
√
ds(s+ 1) +

√
s+ s. (154)

Proof. We have

R(Hx,s) = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σrh(
⇀
wr(0),x

′,y)

]
≤ R1 +R2, (155)

where

R1 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σrh(
⇀
wr(0),x,y)

]
,

R2 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)]

. (156)

Here (155) follows from the subadditivity of superemum and the fact that
m∑
r=1

σrh(
⇀
wr(0),x

′,y) =∑m
r=1 σrh(

⇀
wr(0),x,y) +

∑m
r=1 σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)

.

Now we boundR1 andR2 separately. ForR1, we have

R1 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σrh(
⇀
wr(0),x,y)

]
1⃝
= EW(0)

[
E{σr}m

r=1

[
sup
y∈X

1

m

m∑
r=1

σrx
⊤y1I{⇀

wr(0)
⊤
x≥0

}1I{⇀
wr(0)

⊤
y≥0

}
]]

= EW(0)

[
E{σr}m

r=1

[
sup
y∈X

1

m
y⊤1I{⇀

wr(0)
⊤
y≥0

}
(

m∑
r=1

σrx1I{⇀
wr(0)

⊤
x≥0

}
)]]

2⃝
≤ EW(0)

[
E{σr}m

r=1

[
sup
y∈X

1

m
∥y∥2

∣∣∣∣1I{⇀
wr(0)

⊤
y≥0

}∣∣∣∣
∥∥∥∥∥
m∑
r=1

σrx1I{⇀
wr(0)

⊤
x≥0

}
∥∥∥∥∥
2

]]
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3⃝
≤ EW(0)

[
E{σr}m

r=1

[
1

m

∥∥∥∥∥
m∑
r=1

σrx1I{⇀
wr(0)

⊤
x≥0

}
∥∥∥∥∥
2

]]

4⃝
= EW(0)

E{σr}m
r=1

 1

m

√√√√( m∑
r=1

σr1I{⇀
wr(0)

⊤
x≥0

}
)2



5⃝
≤ EW(0)

 1

m

√√√√√E{σr}m
r=1

( m∑
r=1

σr1I{⇀
wr(0)

⊤
x≥0

}
)2



= EW(0)

 1

m

√√√√√E{σr}m
r=1

 ∑
r∈[m],r′∈[m]

σrσr′1I{⇀
wr(0)

⊤
x≥0

}1I{⇀
wr′ (0)

⊤
x≥0

}



6⃝
≤ EW(0)

[
1

m
·
√
m

]
=

1√
m
. (157)

In (157), 1⃝ is due to the fact that the operand of the supremum operator does not depend on x′

and the Fubini Theorem. 2⃝ follows from the Cauchy-Schwarz inequality. 3⃝ is due to the fact that
∥y∥2 = 1, 1I{⇀

wr(0)
⊤
y≥0

} ∈ {0, 1}. 4⃝ follows from ∥x∥2 = 1, and 5⃝ is due to the Jensen’s in-

equality. 6⃝ follows from the property of Rademacher variable, that is, E{σr}m
r=1

[σrσr′ ] = 1I{r=r′},
and the fact that 1I{⇀

wr(0)
⊤
x≥0

}1I{⇀
wr′ (0)

⊤
x≥0

} ∈ {0, 1}.
ForR2, we first define

Q :=
1

m

m∑
r=1

1I{
1I{x′⊤⇀

wr(0)≥0} ̸=1I{x⊤⇀
wr(0)≥0}

},
which is the average number of weights in W(0) whose inner products with x and x′ have different
signs. Our observation is that, if

∣∣∣x⊤⇀wr(0)
∣∣∣ > s

∥∥∥⇀wr(0)
∥∥∥
2
, then x⊤⇀wr(0) has the same sign as

x′⊤⇀wr(0). To see this, by the Cauchy-Schwarz inequality,

∣∣∣x′⊤⇀wr(0)− x⊤⇀wr(0)
∣∣∣ ≤ ∥x′ − x∥2

∥∥∥⇀wr(0)
∥∥∥
2
≤ s
∥∥∥⇀wr(0)

∥∥∥
2
, (158)

then we have x⊤⇀wr(0) > s
∥∥∥⇀wr(0)

∥∥∥
2
⇒ x′⊤⇀wr(0) ≥ x⊤⇀wr(0) − s

∥∥∥⇀wr(0)
∥∥∥
2
> 0, and

x⊤⇀wr(0) < −s
∥∥∥⇀wr(0)

∥∥∥
2
⇒ x′⊤⇀wr(0) ≤ x⊤⇀wr(0) + s

∥∥∥⇀wr(0)
∥∥∥
2
< 0.

As a result, Q ≤ 1
m

m∑
r=1

1I{∣∣∣x⊤⇀
wr(0)

∣∣∣≤s∥∥∥⇀
wr(0)

∥∥∥
2

}, and it follows that

EW(0) [Q] ≤ EW(0)

[
1

m

m∑
r=1

1I{∣∣∣x⊤⇀
wr(0)

∣∣∣≤s∥∥∥⇀
wr(0)

∥∥∥
2

}
]
= Pr

[∣∣∣x⊤⇀wr(0)
∣∣∣ ≤ s∥∥∥⇀wr(0)

∥∥∥
2

]

= Pr


∣∣∣x⊤⇀wr(0)

∣∣∣∥∥∥⇀wr(0)
∥∥∥
2

≤ s

 , (159)

where the last equality holds because each
⇀
wr(0), r ∈ [m], follows a continuous Gaussian distribu-

tion. By Lemma C.19, Pr

[ ∣∣∣x⊤⇀
wr(0)

∣∣∣∥∥∥⇀
wr(0)

∥∥∥
2

≤ s

]
≤ B
√
ds for an absolute positive constantB. According

to this inequality and (159), it follows that
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EW(0) [Q] ≤ B
√
ds. (160)

By Markov’s inequality, we have

Pr
[
Q ≥

√
s
]
≤ B
√
ds, (161)

where the probability is with respect to the probability measure space of W(0). Let A be the event
that Q ≥

√
s. We denote by Ωs the subset of the probability measure space of W(0) such that A

happens, then Pr [Ωs] ≤ B
√
ds. Now we aim to bound R2 by estimating its bound on Ωs and its

complement. First, we have

R2 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)]

= EW(0)∈Ωs,{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)]

︸ ︷︷ ︸
R21

+ EW(0)/∈Ωs,{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)]

︸ ︷︷ ︸
R22

,

(162)

where we used the convention that EW(0)∈A [·] = EW(0)

[
1I{W(0)∈A} × ·

]
. Now we estimate the

upper bound for R21 and R22 separately. Let I =

{
r ∈ [m] : 1I{

x′⊤⇀
wr(0)≥0

} ̸= 1I{
x⊤⇀

wr(0)≥0
}}.

When W(0) /∈ Ωs, we have Q <
√
s. In this case, it follows that |I| ≤ m

√
s. Moreover, when

r ∈ I , either 1I{
x′⊤⇀

wr(0)≥0
} = 0 or 1I{

x⊤⇀
wr(0)≥0

} = 0. As a result,

∣∣∣h(⇀wr(0),x
′,y)− h(⇀wr(0),x,y)

∣∣∣
=

∣∣∣∣x′⊤y1I{
x′⊤⇀

wr(0)≥0
}1I{

y⊤⇀
wr(0)≥0

} − x⊤y1I{
x⊤⇀

wr(0)≥0
}1I{

y⊤⇀
wr(0)≥0

}∣∣∣∣
≤ max

{
x′⊤y1I{

x′⊤⇀
wr(0)≥0

}1I{
y⊤⇀

wr(0)≥0
},x⊤y1I{

x⊤⇀
wr(0)≥0

}1I{
y⊤⇀

wr(0)≥0
}}

≤ max
{
x′⊤y,x⊤y

}
≤ 1. (163)

When r ∈ [m] \ I , we have

∣∣∣h(⇀wr(0),x
′,y)− h(⇀wr(0),x,y)

∣∣∣
=

∣∣∣∣x′⊤y1I{
x′⊤⇀

wr(0)≥0
}1I{

y⊤⇀
wr(0)≥0

} − x⊤y1I{
x⊤⇀

wr(0)≥0
}1I{

y⊤⇀
wr(0)≥0

}∣∣∣∣
=

∣∣∣∣∣
(
x′1I{

x′⊤⇀
wr(0)≥0

} − x1I{
x⊤⇀

wr(0)≥0
})⊤

y1I{
y⊤⇀

wr(0)≥0
}
∣∣∣∣∣

1⃝
≤
∥∥∥∥x′1I{

x′⊤⇀
wr(0)≥0

} − x1I{
x⊤⇀

wr(0)≥0
}∥∥∥∥

2

∥y∥2

∣∣∣∣1I{y⊤⇀
wr(0)≥0

}∣∣∣∣
2⃝
≤
∥∥∥∥x′1I{

x′⊤⇀
wr(0)≥0

} − x1I{
x′⊤⇀

wr(0)≥0
} + x1I{

x′⊤⇀
wr(0)≥0

} − x1I{
x⊤⇀

wr(0)≥0
}∥∥∥∥

2
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≤ ∥x′ − x∥2

∣∣∣∣1I{x′⊤⇀
wr(0)≥0

}∣∣∣∣+ ∥x∥2 ∣∣∣∣1I{x′⊤⇀
wr(0)≥0

} − 1I{
x⊤⇀

wr(0)≥0
}∣∣∣∣

3⃝
≤ s, (164)

where 1⃝ follows from the Cauchy-Schwarz inequality, 2⃝ is due to the fact that
∣∣∣∣1I{y⊤⇀

wr(0)≥0
}∣∣∣∣ ∈

{0, 1} and ∥y∥2 = 1. 3⃝ follows from x′ ∈ B (x; s),
∣∣∣∣1I{x′⊤⇀

wr(0)≥0
}∣∣∣∣ ∈ {0, 1}, and

1I{
x′⊤⇀

wr(0)≥0
} = 1I{

x⊤⇀
wr(0)≥0

} because r /∈ I .

By (163) and (164), we have

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)

=
1

m

∑
r∈I

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)
+

1

m

∑
r∈[m]\I

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)

≤ 1

m

∑
r∈I

∣∣∣h(⇀wr(0),x
′,y)− h(⇀wr(0),x,y)

∣∣∣+ 1

m

∑
r∈[m]\I

∣∣∣h(⇀wr(0),x
′,y)− h(⇀wr(0),x,y)

∣∣∣
1⃝
≤ m

√
s

m
+
m−m

√
s

m
s ≤
√
s+ s, (165)

where 1⃝ uses the bounds in (163) and (164).

Using (165), we now estimate the upper bound forR22 by

R22 = EW(0)/∈Ωs,{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)]

≤ EW(0)/∈Ωs,{σr}m
r=1

[√
s+ s

]
≤
√
s+ s. (166)

When W(0) ∈ Ωs, by the second last inequality of (164), we have

∣∣∣h(⇀wr(0),x
′,y)− h(⇀wr(0),x,y)

∣∣∣
≤ ∥x′ − x∥2

∣∣∣∣1I{x′⊤⇀
wr(0)≥0

}∣∣∣∣+ ∥x∥2 ∣∣∣∣1I{x′⊤⇀
wr(0)≥0

} − 1I{
x⊤⇀

wr(0)≥0
}∣∣∣∣ ≤ s+ 1. (167)

According to (167), forR21, we have

R21 = EW(0)∈Ωs,{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

σr

(
h(
⇀
wr(0),x

′,y)− h(⇀wr(0),x,y)
)]

≤ EW(0)∈Ωs,{σr}m
r=1

[
sup

x′∈B(x;s),y∈X

1

m

m∑
r=1

∣∣∣σr(h(⇀wr(0),x
′,y)− h(⇀wr(0),x,y)

)∣∣∣]
1⃝
≤ EW(0)∈Ωs,{σr}m

r=1
[s+ 1] = (s+ 1)Pr [Ωs] ≤ B

√
ds(s+ 1) (168)

Combining (162), (166), and (168), we have the upper bound forR2 as

R2 = R21 +R22 ≤ B
√
ds(s+ 1) +

√
s+ s. (169)

Plugging (157) and (169) in (155), we have
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R(Hx,s) ≤ R1 +R2 ≤
1√
m

+B
√
ds(s+ 1) +

√
s+ s. (170)

Lemma C.19. Let w ∼ N (0, κ2Id) with κ > 0. Then for any ε ∈ (0, 1) and x ∈ X ,

Pr
[
|x⊤w|
∥w∥2

≤ ε
]
≤ B
√
dε where B is an absolute positive constant.

Remark. In fact, B can be set to 2 (2π)
−1/2 when d→∞.

Proof. Let z = x⊤w
∥w∥2

. It can be verified that z2 ∼ z1 where z1 is a random variable following

the Beta distribution Beta( 12 ,
d−1
2 ). Therefore, the distribution of z has the following continuous

probability density function pz with respect to the Lebesgue measure,

pz(x) = (1− x2)
d−3
2 1I{|x|≤1}/B

′, (171)

whereB′ =
∫ 1

−1
(1−x2) d−3

2 dx is the normalization factor. It can be verified by standard calculation

that 1/B′ ≤ B
√
d

2 for an absolute positive constant B.

Because 1− x2 ≤ 1 over x ∈ [−1, 1], we have B′ ≤ 1. In addition,

Pr

[∣∣x⊤w
∣∣

∥w∥2
≤ ε

]
= Pr [−ε ≤ z ≤ ε] = 1

B′

∫ ε

−ε
(1− x2)

d−3
2 dx ≤ B

√
dε, (172)

where the last inequality is due to the fact that 1− x2 ≤ 1 for x ∈ [−ε, ε] with ε ∈ (0, 1).

Proof of Theorem C.2. We follow the same proof strategy as that for Theorem C.1.

First, we have Ew∼N (0,κ2Id) [vR(w,x)] = Pr
[∣∣w⊤x

∣∣ ≤ R]. For any x ∈ X and s > 0, define
function class

Vx,s :=
{
vR(·,x′) : Rd → R : x′ ∈ B (x; s)∩ ∈ X

}
. (173)

We first build an s-net for the unit sphere X . By (Vershynin, 2012, Lemma 5.2), there exists an s-net
Ns(X , ∥·∥2) of X such that N(X , ∥·∥2, s) ≤

(
1 + 2

s

)d
.

In the sequel, a function in the class Vx is also denoted as vR(w), omitting the presence of x when
no confusion arises. Let Pm be the empirical distribution over

{
⇀
wr(0)

}
and Ew∼Pm

[vR(w)] =

v̂R(W(0),x).

Given x ∈ Ns(X , ∥·∥2), we aim to estimate the upper bound for the supremum of empirical process
Ew∼N (0,κ2Id) [vR(w)]−Ew∼Pm [vR(w)] when function vR ranges over the function class Vx,s. To

this end, we apply Theorem A.1 to the function class Vx,s with W(0) =
{
⇀
wr(0)

}m
r=1

. It can be

verified that vR ∈ [0, 1] for any vR ∈ Vx,s. It follows that we can set a = 0, b = 1 in Theorem A.1.
Setting α = 1

2 in Theorem A.1, then with probability at least 1−2e−x over the random initialization
W(0),

sup
vR∈Vx,s

∣∣Ew∼N (0,κ2Id) [vR(w)]− Ew∼Pm
[vR(w)]

∣∣
≤ inf
α∈(0,1)

(
3EW(0),{σr}m

r=1

[
sup

vR∈Vx,s

1

m

m∑
r=1

σrvR(
⇀
wr(0))

]
+

√
2rx

m
+

7(b− a)x
3m

)
, (174)
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where {σ}mr=1 are i.i.d. Rademacher random variables taking values of ±1 with equal probability.

It can be verified that Var [vR] ≤ Ew

[
vR(w,x)

2
]
≤ 1, so r can be set to 1. It follows that with

probability at least 1− δ,

sup
x′∈B(x;s)∩X

∣∣v̂R(W(0),x′)− Pr
[∣∣w⊤x′∣∣ ≤ R]∣∣ ≤ 3R(Hx,s) +

√
2log 2

δ

m
+

7log 2
δ

3m
. (175)

Here R(Vx,s) = EW(0),{σr}m
r=1

[
supvR∈Vx,s

1
m

m∑
r=1

σrvR(
⇀
wr(0))

]
is the Rademacher complexity

of the function class Vx,s. By Lemma C.21,R(Vx,s) ≤ (B
√
d+1)

√
m− 1

2 + s+
exp

(
− (κ2−R2

0)2

4κ4 m

)
√
m− 1

2 +s

.

Plugging such upper bound forR(Vx,s) in (175), we have

sup
x′∈B(x;s)∩X

∣∣v̂R(W(0),x′)− Pr
[∣∣w⊤x′∣∣ ≤ R]∣∣

≤ 3

(B
√
d+ 1)

√
m− 1

2 + s+
exp

(
− (κ2−R2

0)
2

4κ4 m
)

√
m− 1

2 + s

+

√
2log 2

δ

m
+

7log 2
δ

3m
. (176)

Setting s = 1
m , we have

sup
x′∈B(x;s)∩X

∣∣v̂R(W(0),x′)− Pr
[∣∣w⊤x′∣∣ ≤ R]∣∣

≤ 3

(B
√
d+ 1)

√
m− 1

2 +
1

m
+

exp
(
− (κ2−R2

0)
2

4κ4 m
)

√
m− 1

2 + 1
m

+

√
2log 2

δ

m
+

7log 2
δ

3m

(177)

By union bound, with probability at least 1 − (1 + 2m)
d
δ over W(0), (177) holds for arbitrary

x ∈ N(X , s). In this case, for any x′ ∈ X , there exists x ∈ N(X , s) such that ∥x′ − x∥2 ≤ s, so
that x′ ∈ B (x; s) ∩ X , and (177) holds.

Note that Pr
[∣∣w⊤x′

∣∣ ≤ R] ≤ 2R√
2πκ

for any x′ ∈ X , changing the notation x′ to x completes the
proof.

Lemma C.20. Let w ∈ Rd be a Gaussian random vector distribute according to w ∼ N (0, κ2Id).

Then Pr [∥w∥2 ≥ R′] ≥ 1− exp

(
−
(√

m
2 −

R′2

2
√
mκ2

)2)
for any R′ > 0.

Proof. Let X =
∥w∥2

2

κ2 , then X follows the chi-square distribution with m degrees of freedom, that
is, X ∼ χ2(m). By (Laurent & Massart, 2000, Lemma 1), we have the following concentration
inequalities for any x > 0,

Pr
[
X −m ≥ 2

√
mx+ 2x

]
≤ exp(−x),Pr

[
m−X ≥ 2

√
mx
]
≤ exp(−x). (178)

Setting x =
(√

m
2 −

R′2

2
√
mκ2

)2
in the second inequality in (178), we have m− 2

√
mx = R′2

κ2 and

Pr

[
X ≥ R′2

κ2

]
≥ 1− exp(−x). (179)
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It follows from (179) that

Pr [∥w∥2 ≥ R
′] ≥ 1− exp(−x) = 1− exp

−(√m
2
− R′2

2
√
mκ2

)2
 , (180)

which completes the proof.

Lemma C.21. Suppose R ≤ R0 for an absolute positive constant R0 < κ. Let R(Vx,s) :=

EW(0),{σr}m
r=1

[
supvR∈Vx,s

1
m

m∑
r=1

σrvR(
⇀
wr(0))

]
be the Rademacher complexity of the function

class Vx,s. Then

R(Vx,s) ≤ (B
√
d+ 1)

√
m− 1

2 + s+
exp

(
− (κ2−R2

0)
2

4κ4 m
)

√
m− 1

2 + s
, (181)

where B is a positive constant.

Proof. We have

R(Vx,s) = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σrvR(
⇀
wr(0),x

′)

]
≤ R1 +R2, (182)

where

R1 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σrvR(
⇀
wr(0),x)

]
,

R2 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)]
. (183)

Here (182) follows from the subadditivity of superemum and the fact that
m∑
r=1

σrvR(
⇀
wr(0),x

′) =

m∑
r=1

σrvR(
⇀
wr(0),x) +

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)
.

Now we boundR1 andR2 separately. ForR1, we have

R1 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σrvR(
⇀
wr(0),x)

]
= 0. (184)

ForR2, we first define

Q =
1

m

m∑
r=1

1I{
1I{|x′⊤⇀

wr(0)|≤R} ̸=1I{|x⊤⇀
wr(0)|≤R}

},

which is the number of weights in W(0) whose inner products with x and x′ have different signs.
Note that if

∣∣∣∣∣∣x⊤⇀wr(0)
∣∣∣−R∣∣∣ > s

∥∥∥⇀wr(0)
∥∥∥
2
, then 1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤R} = 1I{∣∣∣x′⊤⇀

wr(0)
∣∣∣≤R}. To see

this, by the Cauchy-Schwarz inequality,
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∣∣∣x′⊤⇀wr(0)− x⊤⇀wr(0)
∣∣∣ ≤ ∥x′ − x∥2

∥∥∥⇀wr(0)
∥∥∥
2
≤ s
∥∥∥⇀wr(0)

∥∥∥
2
, (185)

then we have
∣∣∣x⊤⇀wr(0)

∣∣∣−R > s
∥∥∥⇀wr(0)

∥∥∥
2
⇒
∣∣∣x′⊤⇀wr(0)

∣∣∣−R ≥ ∣∣∣x⊤⇀wr(0)
∣∣∣−s∥∥∥⇀wr(0)

∥∥∥
2
−R >

0, and
∣∣∣x⊤⇀wr(0)

∣∣∣−R < −s
∥∥∥⇀wr(0)

∥∥∥
2
⇒
∣∣∣x′⊤⇀wr(0)

∣∣∣−R ≤ ∣∣∣x⊤⇀wr(0)
∣∣∣+ s

∥∥∥⇀wr(0)
∥∥∥
2
−R < 0.

As a result, Q ≤ 1
m

m∑
r=1

1I{∣∣∣∣∣∣x⊤⇀
wr(0)

∣∣∣−R∣∣∣≤s∥∥∥⇀
wr(0)

∥∥∥
2

}. For any fixed r ∈ [m], by Lemma C.20,

Pr
[∥∥∥⇀wr(0)

∥∥∥
2
≥ R′

]
≥ 1 − exp

(
−
(√

m
2 −

R′2

2
√
mκ2

)2)
holds for any R′ ≥ 0. Set R′ =

√
mR0

for the constant R0 < κ. Because R ≤ R0, it follows that

Pr

 R∥∥∥⇀wr(0)
∥∥∥
2

≤ m− 1
2

 ≥ Pr

 R0∥∥∥⇀wr(0)
∥∥∥
2

≤ m− 1
2

 ≥ 1− exp

(
− (κ2 −R2

0)
2

4κ4
m

)
. (186)

Due to the fact that 1I{∣∣∣∣∣∣x⊤⇀
wr(0)

∣∣∣−R∣∣∣≤s∥∥∥⇀
wr(0)

∥∥∥
2

} ≤ 1I{∣∣∣x⊤⇀
wr(0)

∣∣∣≤R+s
∥∥∥⇀
wr(0)

∥∥∥
2

}, we have

EW(0)

[
1I{∣∣∣∣∣∣x⊤⇀

wr(0)
∣∣∣−R

∣∣∣≤s
∥∥∥⇀
wr(0)

∥∥∥
2

}]
≤ E⇀

wr(0)

[
1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤R+s

∥∥∥⇀
wr(0)

∥∥∥
2

}]
1⃝
≤ E⇀

wr(0) :
R

∥⇀
wr(0)∥

2

≤m
− 1

2

[
1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤R+s

∥∥∥⇀
wr(0)

∥∥∥
2

}]+ E⇀
wr(0) :

R

∥⇀
wr(0)∥

2

>m
− 1

2

[
1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤R+s

∥∥∥⇀
wr(0)

∥∥∥
2

}]
2⃝
≤ E⇀

wr(0) :
R

∥⇀
wr(0)∥

2

≤m
− 1

2

[
1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤(m

− 1
2 +s)

∥∥∥⇀
wr(0)

∥∥∥
2

}
]
+ exp

(
− (κ2 −R2

0)
2

4κ4
m

)

≤ Pr


∣∣∣x⊤⇀

wr(0)
∣∣∣∥∥∥⇀

wr(0)
∥∥∥
2

≤ m− 1
2 + s

+ exp

(
− (κ2 −R2

0)
2

4κ4
m

)
3⃝
≤ B

√
d(m− 1

2 + s) + exp

(
− (κ2 −R2

0)
2

4κ4
m

)
, (187)

where we used the convention that E⇀
wr(0)∈A

[·] = E⇀
wr(0)

[
1I{A} × ·

]
in 1⃝ with A being an event.

2⃝ is due to (186). By Lemma C.19, Pr

[ ∣∣∣x⊤⇀
wr(0)

∣∣∣∥∥∥⇀
wr(0)

∥∥∥
2

≤ m− 1
2 + s

]
≤ B
√
d(m− 1

2 +s) for an absolute

constant B, so 3⃝ holds.

According to (187), we have

EW(0) [Q] ≤ EW(0)

[
1

m

m∑
r=1

1I{∣∣∣∣∣∣x⊤⇀
wr(0)

∣∣∣−R∣∣∣≤s∥∥∥⇀
wr(0)

∥∥∥
2

}
]

≤ B
√
d(m− 1

2 + s) + exp

(
− (κ2 −R2

0)
2

4κ4
m

)
. (188)

Define s′ := m− 1
2 + s. By Markov’s inequality, we have

Pr
[
Q ≥

√
s′
]
≤ B
√
ds′ +

exp
(
− (κ2−R2

0)
2

4κ4 m
)

√
s′

, (189)
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where the probability is with respect to the probability measure space of W(0). Now we aim to
boundR2 by estimating its bound on Ωs and its complement. First, we have

R2 = EW(0),{σr}m
r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)]

= EW(0) : Q≥
√
s′,{σr}m

r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)]
︸ ︷︷ ︸

R21

+ EW(0) : Q<
√
s′,{σr}m

r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)]
︸ ︷︷ ︸

R22

, (190)

Now we estimate the upper bound forR22 andR21 separately. Let

I =

{
r ∈ [m] : 1I{∣∣∣x′⊤⇀

wr(0)
∣∣∣≤R} ̸= 1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤R}} .

When Q <
√
s′, |I| ≤ m

√
s′. Moreover, when r ∈ I , either 1I{∣∣∣x′⊤⇀

wr(0)
∣∣∣≤R} = 0 or

1I{∣∣∣x⊤⇀
wr(0)

∣∣∣≤R} = 0. As a result,

∣∣∣vR(⇀wr(0),x
′)− vR(

⇀
wr(0),x)

∣∣∣ = ∣∣∣∣1I{∣∣∣x′⊤⇀
wr(0)

∣∣∣≤R} − 1I{∣∣∣x⊤⇀
wr(0)

∣∣∣≤R}∣∣∣∣
≤ max

{
1I{∣∣∣x′⊤⇀

wr(0)
∣∣∣≤R}, 1I{∣∣∣x⊤⇀

wr(0)
∣∣∣≤R}}

≤ 1. (191)

When r ∈ [m] \ I , we have

∣∣∣vR(⇀wr(0),x
′)− vR(

⇀
wr(0),x)

∣∣∣ = ∣∣∣∣1I{∣∣∣x′⊤⇀
wr(0)

∣∣∣≤R} − 1I{∣∣∣x⊤⇀
wr(0)

∣∣∣≤R}∣∣∣∣ = 0. (192)

By (191) and (192), we have

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)
=

1

m

∑
r∈I

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)
+

1

m

∑
r∈[m]\I

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)
≤ 1

m

∑
r∈I

∣∣∣vR(⇀wr(0),x
′)− vR(

⇀
wr(0),x)

∣∣∣+ 1

m

∑
r∈[m]\I

∣∣∣vR(⇀wr(0),x
′)− vR(

⇀
wr(0),x)

∣∣∣
1⃝
≤ m

√
s′

m
≤
√
s′, (193)

where 1⃝ uses the bounds in (191) and (192).

Using (193), we now estimate the upper bound forR22 by

R22 = EW(0) : Q<
√
s′,{σr}m

r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)]
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≤ EW(0) : Q<
√
s′,{σr}m

r=1

[√
s′
]
=
√
s′. (194)

When Q ≥
√
s′, by (191), we still have

∣∣∣vR(⇀wr(0),x
′)− vR(

⇀
wr(0),x)

∣∣∣ ≤ 1. ForR21, we have

R21 = EW(0) : Q≥
√
s′,{σr}m

r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

σr

(
vR(

⇀
wr(0),x

′)− vR(
⇀
wr(0),x)

)]

≤ EW(0) : Q≥
√
s′,{σr}m

r=1

[
sup

x′∈B(x;s)

1

m

m∑
r=1

∣∣∣σr(vR(⇀wr(0),x
′)− vR(

⇀
wr(0),x)

)∣∣∣]

≤ EW(0) : Q≥
√
s′,{σr}m

r=1
[1] = Pr

[
Q ≥

√
s′
]
≤ B
√
ds′ +

exp
(
− (κ2−R2

0)
2

4κ4 m
)

√
s′

, (195)

where the last inequality is due to (189). Combining (190), (194), and (195), we have the upper
bound forR2 as

R2 = R21 +R22 ≤ (B
√
d+ 1)

√
s′ +

exp
(
− (κ2−R2

0)
2

4κ4 m
)

√
s′

. (196)

Plugging (184) and (196) in (182), we have

R(Vx,s) ≤ R1 +R2 ≤ (B
√
d+ 1)

√
s′ +

exp
(
− (κ2−R2

0)
2

4κ4 m
)

√
s′

, (197)

which completes the proof.

Figure 2: Illustration of the test loss by GD
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D SIMULATION STUDY

We present simulation results for GD in this section. We randomly sample n points
{
⇀
x i

}n
i=1

as a

i.i.d. sample of random variables distributed uniformly on the unit sphere in R50. n ranges within
[100, 1000] with a step size of 100. We set the target function to f∗(x) = s⊤x where s ∼ Unif (X )
is randomly sampled. We also uniformly and independenly sample 1000 points on the unit sphere
in R50 as the test data. We train the two-layer NN (1) using either GD by Algoirthm 1 or GD
by Algoirthm 1 with m ≍ n2 on a NVIDIA A100 GPU card with a learning rate η = 0.1, and
report the test loss in Figure 2. It can be observed that early-stopping is always helpful in training
neural networks with better generalization, as the test loss initially decreases and then increases
with over-training. Figure 2 illustrates the test loss with respect to the steps (or epochs) of GD for
n = 100, 500, 1000. For each n in [100, 1000] with a step size of 100, we find the step of GD where
minimum test loss is achieved, denoted by t̂n which is the empirical early stopping time. We note
that the theoretically predicted early stopping time is ε̂n = n−d/(2d−1), and we compute the ratio
of early stopping time for each n by t̂n/ε̂n. Such ratios for different values of n are illustrated in
the bottom right figure of Figure 2. It is observed that the ratio of early stopping time is roughly
stable and distributed between [8, 10], suggesting that predicted early stopping time is empirically
proportional to the empirical early stopping time.
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