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ABSTRACT

Sharp generalization bound for neural networks trained by gradient descent (GD)
is of central interest in statistical learning theory and deep learning. In this pa-
per, we consider nonparametric regression by an over-parameterized two-layer
NN trained by GD. We show that, if the neural network is trained by GD with
early stopping, then the trained network renders a sharp rate of the nonparametric
regression risk of O(g2), which is the same rate as that for the classical kernel
regression trained by GD with early stopping, where ¢,, is the critical popula-
tion rate of the Neural Tangent Kernel (NTK) associated with the network and
n is the size of the training data. It is remarked that our result does not require
distributional assumptions on the covariate as long as the covariate lies on the
unit sphere, in a strong contrast with many existing results which rely on spe-
cific distributions such as the spherical uniform data distribution or distributions
satisfying certain restrictive conditions. As a special case of our general result,

d
when the eigenvalues of the associated NTK decay at a rate of \; =< j~ -1 for
7 = 1 which happens under certain distributional assumption such as the train-
ing features follow the spherical uniform distribution, we immediately obtain the

minimax optimal rate of O(n~ T ), which is the major results of several existing
works in this direction. The neural network width in our general result is lower
bounded by a function of only d and ¢, and such width does not depend on the
minimum eigenvalue of the empirical NTK matrix whose lower bound usually
requires additional assumptions on the training data. Our results are built upon
two significant technical results which are of independent interest. First, uniform
convergence to the NTK is established during the training process by GD, so that
we can have a nice decomposition of the neural network function at any step of
the GD into a function in the Reproducing Kernel Hilbert Space associated with
the NTK and an error function with a small L°°-norm. Second, local Rademacher
complexity is employed to tightly bound the Rademacher complexity of the func-
tion class comprising all the possible neural network functions obtained by GD.
Our result formally fills the gap between training a classical kernel regression
model and training an over-parameterized but finite-width neural network by GD
for nonparametric regression without distributional assumptions about the spheri-
cal covariate.

1 INTRODUCTION

With the stunning success of deep learning in various areas of machine learning (LeCun et al., 2015),
generalization analysis for neural networks is of central interest for statistical learning learning and
deep learning. Considerable efforts have been made to analyze the optimization of deep neural net-
works showing that gradient descent (GD) and stochastic gradient descent (SGD) provably achieve
vanishing training loss (Du et al., 2019b; Allen-Zhu et al., 2019b; Du et al., 2019a; Arora et al., 2019;
Zou & Gu, 2019; Su & Yang, 2019). There are also extensive efforts devoted to generalization anal-
ysis of deep neural networks (DNNs) with algorithmic guarantees, that is, the generalization bounds
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for neural networks trained by gradient descent or its variants. It has been shown that with sufficient
over-parameterization, that is, with enough number of neurons in hidden layers, the training dynam-
ics of deep neural networks (DNNs) can be approximated by that of a kernel method with the kernel
induced by the neural network architecture, termed the Neural Tangent Kernel (NTK), while other
studies such as (Yang & Hu, 2021) show that infinite-width neural networks can still learn features.
The key idea of NTK based generalization analysis is that, for highly over-parameterized networks,
the network weights almost remain around their random initialization. As a result, one can use the
first-order Taylor expansion around initialization to approximate the neural network functions and
analyze their generalization capability (Cao & Gu, 2019; Arora et al., 2019; Ghorbani et al., 2021).

Many existing works in generalization analysis of neural networks focus on clean data, but it is a
central problem in statistical learning that how neural networks can obtain sharp convergence rates
for the risk of nonparametric regression where the observed data are corrupted by noise. Consider-
able research has been conducted in this direction which shows that various types of DNNs achieve
optimal convergence rates for smooth (Yarotsky, 2017; Bauer & Kohler, 2019; Schmidt-Hieber,
2020; Jiao et al., 2023; Zhang & Wang, 2023) or non-smooth (Imaizumi & Fukumizu, 2019) tar-
get functions for nonparametric regression. However, most of these works do not have algorithmic
guarantees, that is, the DNNs in these works are constructed specially to achieve optimal rates with
no guarantees that an optimization algorithm, such as GD or its variants, can obtain such constructed
DNNs. To this end, efforts have been made in the literature to study the minimax optimal risk rates
for nonparametric regression with over-parameterized neural networks trained by GD with either
early stopping (Li et al., 2024) or €2-regu1arization (Hu et al., 2021; Suh et al., 2022). However,
most existing works either require spherical uniform data distribution on the unit sphere (Hu et al.,
2021; Suh et al., 2022) or certain restrictive conditions on the data distribution.

It remains an interesting and important question for the statistical learning and theoretical deep
learning literature that if an over-parameterized neural network trained by GD can achieve sharp
risk rates for nonparametric regression with milder assumptions or restrictions on the distribution
of the covariate, so that theoretical guarantees can be obtained for data in more practical scenar-
ios. In this paper, we give a confirmative answer to this question. We present sharp risk rate for
nonparametric regression with an over-parameterized two-layer NN trained by GD with early stop-
ping, which is distribution-free in spherical covariate. Throughout this paper, distribution-free in
spherical covariate means that there are no distributional assumptions about the covariate as long as
the covariate lies on the unit sphere. Furthermore, our results give confirmative answers to certain
open questions or address particular concerns in the literature of training over-parameterized neural
networks by GD with early stopping for nonparametric regression with minimax optimal rates, such
as the characterization of the stopping time in the early-stopping mechanism, the lower bound for
the network width, and the constant learning rate used in GD. Benefiting from our analysis which
is distribution-free in spherical covariate, our answers to these open questions or concerns do not
require distributional assumptions about spherical covariate. Section 3 summarizes our main results
with their significance and comparison to existing works.

We organize this paper as follows. We first introduce the necessary notations in the remainder of
this section. We then introduce in Section 2 the problem setup for nonparametric regression. Our
main results are summarized in Section 3 and detailed in Section 5. The training algorithm for the
over-parameterized two-layer neural network is introduced in Section 4. The roadmap of proofs is
presented in Section 6.

Notations. We use bold letters for matrices and vectors, and regular lower letter for scalars through-
out this paper. The bold letter with a single superscript indicates the corresponding column of a
matrix, e.g., A; is the i-th column of matrix A, and the bold letter with subscripts indicates the
corresponding element of a matrix or vector. We put an arrow on top of a letter with subscript if it
denotes a vector, e.g., X; denotes the i-th training feature. ||-||  and [|-||,, denote the Frobenius norm
and the vector /P-norm or the matrix p-norm. [ : n] denotes all the natural numbers between m and
n inclusively, and [1: n] is also written as [n]. Var [-] denotes the variance of a random variable. I,, is
an X n identity matrix. Iy zy is an indicator function which takes the value of 1 if event F happens,
or 0 otherwise. The complement of a set A is denoted by A°, and |A| is the cardinality of the set
A. vec (+) denotes the vectorization of a matrix or a set of vectors, and tr (-) is the trace of a matrix.
We denote the unit sphere in d-dimensional Euclidean space by S¢~! := {x: x € R?, ||x||, = 1}.
Let L?(S?!, 1) denote the space of square-integrable functions on S?~! with probability mea-
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sure 4, and the inner product (-, -) , and H||i are defined as (f,g) ;> = [qus f(2)g(x)du(x) and
|\f||iz = Jear f2(x)dp(x) < oo. B (x;7r) is the Buclidean closed ball centered at x with radius
r. Given a function g: S¥~! — R, its L>-norm is denoted by ||g|| ., = supyega-1 [g(x)|. L is
the function class whose elements almost surely have bounded L>-norm. (-, -),, and ||-||,, denote
the inner product and the norm in the Hilbert space H. a = O(b) or a < b indicates that there exists
a constant ¢ > 0 such that a < ¢b. O indicates there are specific requirements in the constants of
the O notation. a = o(b) and @ = w(b) indicate that lim |a/b| = 0 and lim |a/b| = oo, respectively.
a =< bor a = ©(b) denotes that there exists constants ¢y, ¢ > 0 such that ¢;b < a < ¢ob. Through-
out this paper we let the input space X = S%~!, and Unif (X') denotes the uniform distribution on
X. The constants defined throughout this paper may change from line to line. For a Reproducing
Kernel Hilbert Space H, H (1) denotes the ball centered at the origin with radius p in H. We use
Ep [-] to denote the expectation with respect to the distribution P.

2 PROBLEM SETUP
We introduce the problem setups for nonparametric regression in this section.

2.1 TwO-LAYER NEURAL NETWORK

N n
We are given the training data {(xi7 yl)} where each data point is a tuple of feature vector

Qi € X and its response y; € R. Throughout this paper we assume that no two training features
coincide, that is, x; # x; forall 4,j € [n] and ¢ # j. We denote the training feature vectors by

S = {E\Z} , and denote by P,, the empirical distribution over S. All the responses are stacked
i=1

as avectory = [yi,...,yn] € R™. The response y; is given by y; = f*(?i) + w; for i € [n],
where {wi}?:l are i.i.d. sub-Gaussian random noise with mean 0 and variance proxy o3, that is,
E [exp(Aw;)] < exp(\202/2) forany A € R. f* is the target function to be detailed later. We define

~ . 1T
Y = [y1,. - ynl, W = [w1,...,wy,] ", and use f*(S) = [f*(xl),...,f*(xn)} to denote the

clean target labels. The feature vectors in S are drawn i.i.d. according to an underlying unknown
continuous data distribution P with p being the probability measure for P.

We consider a two-layer NN (NN) in this paper whose mapping function is
1 & ~ T
W, = 7= r r s 1
F(W,x) — 7; a,o (W x) (1)

where x € X is the input, o(-) = max{-,0} is the ReLU activation function, W = {VT’T}

r=1
with w, € R? for r € [m] denotes the weighting vectors in the first layer and m is the number of
neurons. @ = [ay,...,a,] € R™ denotes the weights of the second layer. Throughout this paper

we also write W as Wy so as to indicate that the weighting vectors in W are trained on the training
features S.

2.2 KERNEL AND KERNEL REGRESSION FOR NONPARAMETRIC REGRESSION

We define the kernel function

(u,v)
2

which is in fact the NTK associated with the two-layer NN (1), and K is a positive semi-definite

(PSD) kernel. Let the gram matrix of K over the training data S be K € R"*" K;; = K (;(\1, )_c\j)
fori,j € [n], and K,, :== K/n is the empirical NTK matrix. Let the eigendecomposition of K,

be K, = UXUT where U is a n x n orthogonal matrix, and ¥ is a diagonal matrix with its
n

diagonal elements {Xl} being eigenvalues of K,, and sorted in a non-increasing order. It is

K(u,v) = (m — arccos (u,v)), Vu,vedX, )

proved in existing works,Z 'such as (Du et al., 2019b), that K, is non-singular, and it can be verified
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that A; € (0,1/2). Let Hx be the Reproducing Kernel Hilbert Space (RKHS) associated with
K. Because K is continuous on the compact set X' x X, the integral operator T : L*(X,u) —
L2(X, ), (T f) (x) = [, K(x,x') f(x')du(x’) is a positive, self-adjoint, and compact operator
on L*(X, ). By the spectral theorem, there is a countable orthonormal basis {e;} ., € L*(X, u)
and {\;} 5, with 5 > A1 > Ao > ... > 0 such that e; is the eigenfunction of T with \; being the
corresponding eigenvalue. That is, Te; = Aje;,j > 1. Let {u} ¢>1 be the distinct eigenvalues

associated with T, and let my be the be the sum of multiplicity of the eigenvalue { }ﬁ,zl. That is,
myg — my—1 1S the multiplicity of p,r. It is well known that {vj =/ ej}j -1 is an orthonormal

basis of Hrc. For a positive constant 119, we define Hx (110) = {f € Hx: || fllyy < po} as the
closed ball in H  centered at 0 with radius p9. We note that H x (o) is also specified by H (po) =

{Fer2,m: =532 B¢, 555, B2/ < 3}
The Task of Nonparametric Regression. With f* € Hx (uo), the task of the analysis for non-

~ N mn
parametric regression is to find an estimator f from the training data {(xi, yz)} so that the risk
=1

~ 2 :
Ep {( f—rf *) } can converge to 0 with a fast rate. In this work, we aim to establish a sharp rate of

the risk where the over-parameterized neural network (1) trained by GD with early stopping serves
as the estimator f.

Sharp rate of the risk of nonparametric regression using classical kernel regression. The sta-
tistical learning literature has established rich results in the sharp convergence rates for the risk of
nonparametric kernel regression (Stone, 1985; Yang & Barron, 1999; Raskutti et al., 2014; Yuan &
Zhou, 2016), with one representative result in (Raskutti et al., 2014) about kernel regression trained
by GD with early stopping. Let €, be the critical population rate of the PSD kernel K, which is
also referred to as the critical radius (Wainwright, 2019) of K. (Raskutti et al., 2014, Theorem
2) shows the following sharp bound for the nonparametric regression risk of a kernel regression
model trained by GD with early stopping when f* € Hx (uo). That is, with probability at least
1 — O (exp(—O(ne2)),

Ep[(fr—1)"] S22, 3)

where T is the stopping time whose formal definition is deferred to Section 5.1, and f4 is the kernel

regressor at the T-th step of GD for the optimization problem of kernel regression. The risk bound
(3) is rather sharp, since it is minimax optimal in several popular learning setups, such as the setup
where the eigenvalues {); },- exhibit a certain polynomial decay. Such risk bound (3) also holds
for a general PSD kernel rather than the NTK (2), and the risk bound (3) is also minimax optimal
when the PSD kernel is low rank. It is also remarked that the risk bound (3) is distribution-free in
the bounded covariate, that is, there are no distributional assumptions about the covariate when it is
in a bounded input space. Interested readers are referred to (Raskutti et al., 2014) for more details.

The main result of this paper is that the over-parameterized two-layer NN (1) trained by GD with
early stopping achieves the same order of risk rate as that in (3) with arbitrary continuous distribution
of the spherical covariate, which are summarized in the next section.

3  SUMMARY OF MAIN RESULTS.
Our main results are summarized in this section.

First, Theorem 5.1 in Section 5.2 shows that the neural network (1) trained by GD with early stop-
ping using Algorithm 1 enjoys a sharp rate of the nonparametric regression risk, O (5%), which is
the same as that for the classical kernel regression in (3). Such rate of nonparametric regression
risk in Theorem 5.1 is distribution-free in spherical covariate, and it immediately leads to minimax
optimal rates for certain special cases. For example, when the eigenvalues of the integral operator

associated with K has a particular polynomial eigenvalue decay rate (EDR), that is, \; < j~ -1
for 5 > 1, then in this case 5,% = n_ﬁ according to (Raskutti et al., 2014, Corollary 3), and

d
Theorem 5.1 renders the rate of the nonparametric regression risk of O(n ™ 2¢-7) which is minimax
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Table 1: Comparison between our result and the existing works on the risk rates and assumptions
for nonparametric regression by training over-parameterized neural networks with algorithmic guar-
antees, and the listed results here are under a common and popular setup that f* € Hz and the

n .. . . . .
responses {y; },_, are corrupted by i.i.d. Gaussian noise with zero mean and variance o2,
Existing Works and Our Result Distributional A ion: Eig lue Decay Rate (EDR) | Rate of Nonparametric Regression Risk
(Kuzborskij & Szepesvari, 2021, Theorem 2) No — Not minimax optimal, 0% + O(nﬁ)
(Hueetal, 2021, Theorem 5.2), P is Unif (X) YR j’ﬁ minimax optimal, O(n T )

(Suh et al., 2022, Theorem 3.11)

P satisfies

a restrictive condition: e o ) L

the density p(x) for x € R satisfies A =TT minimax optimal, O(n7@-1)
p() S (1+[Jx]5) 272,

(Li et al., 2024, Proposition 13)

O (%), which leads to the minimax
No distributional assumption about P . . optimal rate O(n?7=T) claimed in
as long as X = sd-1 No requirement for EDR (Hu et al., 2021; Suh et al., 2022)
and (Li et al., 2024)
as special cases.

Our Result (Theorem 5.1)

optimal for this special case (Stone, 1985; Yang & Barron, 1999; Yuan & Zhou, 2016). We refer to
such EDR the polynomial EDR in the sequel. It is shown in (Bietti & Mairal, 2019; Bietti & Bach,
2021; Li et al., 2024) that the polynomial EDR holds for our NTK in (2) if P = Unif (X), or P
satisfies the distributional assumption for (Li et al., 2024, Proposition 13) in Table 1.

We remark that such a minimax optimal rate O(nfﬁ) is derived from Theorem 5.1 under the
special case of polynomial EDR, and this minimax optimal rate is also the major result of a series
of existing works in nonparametric regression by training over-parameterized neural networks (Hu
etal., 2021; Suh et al., 2022; Li et al., 2024) when the target function f* belongs to H ;, the RKHS
associated with the NTK K of the network in each particular existing work. We note that K is
the NTK of the network considered in a particular existing work which may not be the same as
our NTK in (2). We also note that one needs to set s = 1 in (Li et al., 2024, Proposition 13)
so that f* € Hg, and in this case the risk rate for nonparametric regression in (Li et al., 2024,

Proposition 13) is O(n_ﬁd—l). To the best of our knowledge, Theorem 5.1 presents the first sharp
risk rate for nonparametric regression which is distribution-free in spherical covariate, which is
closer to practical scenarios. In contrast, the minimax rates in (Hu et al., 2021; Suh et al., 2022)
require spherical uniform data distribution on &X'. The recent work (Ko & Huo, 2024) also requires
certain distributional assumptions for the results about regression convergence rates which does not
have algorithmic guarantees. Although the minimax rate in another recent work (Li et al., 2024)
does not need the spherical uniform distribution, it still requires a restrictive condition on the data
distributions detailed in Table 1, and such condition is met by sub-Gaussian distributions. It is
under this condition that (Li et al., 2024) derives the polynomial EDR. Table 1 compares our work
to existing works for nonparametric regression with a common setup, that is, f* € H and the
responses {yz}z;l are corrupted by i.i.d. Gaussian noise. We further note that although the result in
(Kuzborskij & Szepesvari, 2021, Theorem 2) does not require distributional assumptions about the
covariate, its risk rate under this common setup is not minimax optimal due to the term o2 in the risk

bound. Furthermore, the other term (’)(n%) in its risk bound suffers from the curse of dimension
with a slow rate to 0 for high-dimensional data. We also note that (Kuzborskij & Szepesvari, 2021,

.. . __2 . . .
Theorem 1) shows the minimax optimal rate of O(n™ 2+4 ), however, this rate is derived for the
noiseless case where the responses are not corrupted by noise.

Second, our results provide confirmative answers to several outstanding open questions or address
particular concerns in the existing literature about training over-parameterized neural networks for
nonparametric regression by GD with early stopping and sharp risk rates, which are detailed below.

Stopping time in the early-stopping mechanism. An open question raised in (Kuzborskij &
Szepesvdri, 2021; Hu et al., 2021) is how to characterize the stopping time in the early-stopping

mechanism when training the over-parameterized network by GD. Let T' be the stopping time, (Li
et al., 2024, Proposition 13) shows that the stopping time should satisfy 7' =< n7@=1 under the distri-
butional assumption in Table 1. In contrast, Theorem 5.1 provides a characterization of 7' showing

that T = e;,2, which is distribution-free in spherical covariate. Theorem 5.1 further suggests that
for each neural network function f; obtained at the ¢-th step of GD with ¢ < .2, the sharp risk rate
of O (£2) is obtained.
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Lower bound for the network width m. Our main result, Theorem 5.1, requires that the network
width m, which is the number of neurons in the first layer of the network, satisfies m > d?/(¢16).
Such lower bound for m solely depends on d and ¢,,. Under the polynomial EDR, Corollary 5.2,

which is a direct consequence of Theorem 5.1, shows that m should satisfy m 2 n2ei1d2 with

a =d/(2(d—1)) (see (12)) so that GD with early stopping leads to the minimax rate of O(n~ T ).
We remark that this is the first time that the lower bound for the network width m is specified only
in terms of n and d under the polynomial EDR with a minimax optimal risk rate for nonparamet-
ric regression, which can be easily estimated from the training data. In contrast, under the same
polynomial EDR, all the existing works (Hu et al., 2021; Suh et al., 2022; Li et al., 2024) require
m 2 poly(n,1/X,). The problem here is that one needs additional assumptions on the training

data (Bartlett et al., 2021; Nguyen et al., 2021) to find the lower bound for Xn which is the minimal
eigenvalue of the empirical NTK matrix K,,, to further estimate the lower bound for m using the
training data.

Corollary 5.2 also gives a competitive and smaller lower bound for the network width m than
some existing works which give explicit orders of the lower bound for m. For example, un-
der the assumption of uniform spherical distribution, (Suh et al., 2022, Theorem 3.11) requires
that m/logm > L*°n2* where L is the number of layers of the DNN used in that work, and
m/logm = 229n?4 even with L = 2 for the two-layer network (1) used in our work. Furthermore,
the proof of (Li et al., 2024, Proposition 13) suggests that m > n?*(logm)'2. Both lower bounds
for m in (Suh et al., 2022, Theorem 3.11) and (Li et al., 2024, Proposition 13) are much larger than

our lower bound for m, n;aﬁifl d?, when n — oo and d is fixed, which is the setup considered in
(Li et al., 2024). It is worthwhile to mention that (Suh et al., 2022; Li et al., 2024) use DNNs with
multiple layers for nonparametric regression. As shown in Table 1, through our careful analysis, a
shallow two-layer NN (1) exhibits the same minimax risk rate as its deeper counterpart under the
same assumptions with much smaller network width. This observation further support the claim
in (Bietti & Bach, 2021) that a shallow over-parameterized neural networks with ReL.U activations
exhibit the same approximation properties as its deeper counterpart, in our nonparametric regression
setup.

Training the network with learning rate n = O(1). It is also worthwhile to mention that our
main result, Theorem 5.1, suggests that a constant learning rate = ©(1) can be used for GD
when training the two-layer NN (1), which could lead to better empirical optimization performance
in practice. Some existing works in fact require an infinitesimal 7. For example, (Li et al., 2024,
Proposition 13) is obtained by gradient flow where n — 0 instead of the practical GD. Furthermore,
(Hu et al., 2021, Theorem 5.2) requires the learnlng rates for both the squared loss and the £2-

regularization term to have the order of o(n~ ZE 1) — 0 asn — oo. We note that (Nitanda &
Suzuki, 2021) also employs constant learning rate in SGD to train neural networks.

More discussion about the literature. We herein provide more discussion about the results of this
work and comparison to the existing relevant works with sharp rates for nonparametric regression.
While this paper establishes sharp rate which is distribution-free in spherical covariate, such rate
still depends on bounded input space (X = S%1) and the condition that the target function f* €
H (o). Some other existing works consider target function f* not belonging to the RKHS ball
centered at the origin with constant or low radius, such as (Haas et al., 2023; Bordelon et al., 2024).
A more detailed discussion is deferred to Section B of the appendix.

4 TRAINING BY GRADIENT DESCENT AND PRECONDITIONED GRADIENT
DESCENT

In the training process of our network (1), only W is op-
timized with a randomly initialized to &1 and then fixed.
The following quadratic loss function is minimized dur-
ing the training process:

Algorithm 1 Training the Two-Layer NN

by GD
1 & N 2 1: W(T) « Training-by-GD(T', W (0))
L(W) = m Z (f(W, X;) — yz) . (CO NP inp(utg T, W (0) ©
i=1 3:for t=1,...,T do
4:  Perform the ¢-th step of GD by (5)
6 5: end for
6: return W (7'
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In the (¢ + 1)-th step of GD with ¢ > 0, the weights of
the neural network, Wg, are updated by one-step of GD
through

vee (Ws(t +1)) = vee (Ws (1)) = —Zs(1)(3 (1) — ).

&)
where y; = y;, ¥(t) € R™ with [y (¢)], = f(W(?), ;). The notations with the subscripts S indicate
the dependence on the training features S. We also denote f(W (), -) as fi(-) as the neural network

function with weighting vectors W (¢) obtained after the ¢-th step of GD. We define Zs (t) € R™*"
which is computed by

1 — .
(Zs(0)(r—1)a+1:rai = ﬁﬂ{a,.(miizo}xia“ i € [n],r € [m], (6)

where (Zs(t))((—1)a41:rd1i € R? is a vector with elements in the i-th column of Zg (t) with indices
in[(r —1)d+ 1 : rd]. We employ the following particular symmetric random initialization so

that y(0) = 0, which has been used in existing works such as (Chizat et al., 2019; Zhang et al.,
N m/2
2020). In our two-layer NN, m is even, {WQT/ (O)} and {az, } 1 are initialized randomly and

independently according to
o (0) ~ N(0, K21,), ag, ~ unif ({—1,1}), V' € [m/2], 7)
where NV (p, X)) denotes a Gaussian distribution with mean p and covariance X, unif ({—1,1})

denotes a uniform distribution over {1, —1}, 0 < k < 1 controls the magnitude of initialization.

We set v_\\zgw_l(O) = G\/QTI(O) and ag, 1 = —ag, for all ¥’ € [m/2]. It then can be verified that
¥(0) = 0, that is, the initial output of the two-layer network (1) is zero. Once randomly initialized,
a is fixed during the training. We use W (0) to denote the set of all the random weighting vectors

N m
at initialization, that is, W(0) = {WT(O)} . We run Algorithm 1 to train the two-layer NN by

GD, where T is the total number of steps for GD Early stopping is enforced in Algorithm 1 through
abounded T'viaT < T.

5 MAIN RESULTS

We present the definition of kernel complexity in this section, and then introduce the main results
for nonparametric regression of this paper.

5.1 KERNEL COMPLEXITY

The local kernel complexity has been studied by (Bartlett et al., 2005; Koltchinskii, 2006; Mendel-

son, 2002). For the PSD kernel K, we define the empirical kernel complexity R x and the population
kernel complexity Ry as

= NN ol
Ric(e) = n;mln{)\i,sz}, Ric(e) = E;mln{)\i,eg}. )

It can be verified that both o R (¢) and o R () are sub-root functions (Bartlett et al., 2005) in terms
of 2. The formal definition of sub-root functions is deferred to Definition A.2 in the appendix. For
a given noise ratio o, the critical empirical radius &,, > 0 is the smallest positive solution to the
inequality Ri (¢) < £2/o, where 22 is the also the fixed point of o R () as a function of £:
U}A%K(gn) = £2. Similarly, the critical population rate ¢,, is defined to be the smallest positive
solution to the inequality Ry (¢) < &2/, where €2 is the fixed point of o R () as a function of £2:
oRk(e,) = 2. In this paper we consider the case that ne2 — oo as n — oo, which is also used

in standard analysis of nonparametric regression with minimax rates by kernel regression (Raskutti
et al., 2014).
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Let i, := nt for all £ > 0, we then define the stopping time T as

T = min {t: Ric(V/1/n) > (Unt)_l} ~ 1. )

The stopping time in fact limit the number of steps 7" in for Algorithm 1 as to be shown in Sec-
tion 5.2, which in turn enforces the early stopping mechanism.

5.2 RESULTS

Theorem 5.1. Let cr,c; € (0, 1] be arbitrary positive constants, and cT <T < T. Suppose
f* € Hi (o), and m satisfies
d2

~Y 6}"67

(10)

and the neural network f(W (t),-) is trained by GD using Algorithm 1 with the learning rate 7 €
[1,2) and T < T. Then for every ¢ € [¢,T: T), with probability at least 1 — exp (—O(n)) —
7 exp (—@(nsi)) — 2/n over the random noise w, the random training features S and the random
initialization W (0), the stopping time satisfies T = e, 2, and f(W(t),-) = f; satisfies

pl(fi—f)?] Sea (11)

Significance of Theorem 5.1 and comparison to existing works. To the best of our knowledge,
Theorem 5.1 is the first theoretical result which proves that over-parameterized neural network
trained by gradient descent with early stopping achieves sharp rate of O(c2), without distributional
assumption on the covariate as long as the input space X' is S*~!. To understand the sharpness of
the bound for the risk in (11), Corollary 5.2 shows that when the polynomial EDR holds, that is,
Aj < jfﬁ, then €2 =< ndefl, and the rate of the risk is O(ndefl) which is minimax optimal
under the polynomial EDR for f* € H g (uo) (Stone, 1985; Yang & Barron, 1999; Yuan & Zhou,
2016). (Bietti & Mairal, 2019; Bietti & Bach, 2021; Li et al., 2024) show that such polynomial EDR
holds for our NTK (2) if P is Unif (X), or P satisfies the distributional assumption for (Li et al.,
2024, Proposition 13) in Table 1. The existing works (Hu et al., 2021; Suh et al., 2022; Li et al.,
2024) prove the same minimax optimal rate for an over-parameterized neural network trained by GD
with either regularization or early stopping. However, it is remarked that such minimax optimal rates
in these works are proved either for spherical uniform distribution on X (Hu et al., 2021; Suh et al.,
2022), or for distributions satisfying certain restrictive condition (Li et al., 2024). Table 1 compares
our result to existing works from the perspective of risk rates for nonparametric regression, required
distributional assumptions on the covariate, and the associated EDR.

We also emphasize that Theorem 5.1, for the first time, shows that the network width m required to
achieve the minimax rate can be quantized in terms of a well known quantity about the kernel K,
the critical population rate €,,, and d in the manner of distribution-free in spherical covariate. More
discussions are referred to “Significance of Corollary 5.2”.

Furthermore, Theorem 5.1, for the first time, gives an explicit characterization of the stopping time

T for training an over-parameterized neural network by GD with early stopping which is of the

order T' = ¢;,2 and distribution-free in spherical covariate. This result suggests that ¢ should be of
the order ©(g,,2) to ensures the sharp rate (11). Such result gives an order of the number of steps
for GD when training the over-parameterized NN (1) so as to achleve the sharp risk bound O(g2).

Under the polynomial EDR, the stopping time T satisfies T = n77 , which recovers the same
result about the stopping time in (Li et al., 2024, Proposition 13).

When the polynomial EDR holds, we can apply Theorem 5.1 to obtain the following corollary.
Corollary 5.2 (Applying Theorem 5.1 to the special case of polynomial EDR) Suppose A< e

for j > 1and o > 1/2. Let ¢, ¢; € (0,1] be positive constants, and ;7 < T < T. Suppose m
satisfies

m > nestd?, (12)
and the neural network f(W(t),-) is trained by GD using Algorithm 1 with the learning rate ) €
[1,2) and T < T. Then for every t € [c;T: T, with probability at least 1 — exp (—O(n)) —
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7exp (—O(ne2)) — 2/n over the random noise w, the random training features S and the random
initialization W (0), the stopping time satisfies T = o=t
) 1\ 79T
plfe= 1] 3 (n> : (13)

Significance of Corollary 5.2. Corollary 5.2 shows that under the polynomial EDR, GD finds an

over-parameterized neural network with minimax optimal rate of O(n™ 22%) =0(n~ i ), where
a =d/(2(d— 1)), with a specific quantization of m in terms of only o and d in (12). In contrast, all

the existing works (Hu et al., 2021; Suh et al., 2022; Li et al., 2024) require m 2 poly(n, 1/:\\,1), and
additional assumptions on the training data (Bartlett et al., 2021; Nguyen et al., 2021) are required

to bound Xn from below so as to estimate the lower bound for m from the training data.

6 ROADMAP OF PROOFS
We present the roadmap of our theoretical results which lead to the main result, Theorem 5.1 in

Section 5. We first present in the next subsection our results about the uniform convergence to the
NTK (2) and more, which are crucial in the analysis of training dynamics by GD.

6.1 UNIFORM CONVERGENCE TO THE NTK AND MORE

‘We define functions

~ 1 -
h(W7X7y) = XTy]I{wazo}]I{wTyzo}, h’(WaX7 y) = E Zh(WT‘?X7 y)a (14)
- Lo o
'UR(WaX) = ]I{|wa|§R}a UR(WaX) = E ZvR(WmX)' (15)
r=1

Then we have the following theorem stating the uniform convergence of E(W(O), -,-)to K(+,-) and
uniform convergence of (W (0), x) to \/275& for a positive number R < nT'/+/m. While existing

works such as (Li et al., 2024) also has uniform convergence results for over-parameterized neural
network, our result does not depend on the Holder continuity of the NTK.

Theorem 6.1. The following results hold with m > max {d, n,4} and m/logm > d.

(1) With probability at least 1 — 1/n over the random initialization W (0) = {;VT(O)} -
r=1

sup  |K(x,y) — h(W(0),x,y) §C1(m7d,1/n)§q/dk:§m. (16)

xeX,yeX

(2) Suppose m > (cunT/ Ro)2 for an arbitrary absolute positive constant Ry < k. Then with
N m
probability at least 1 — 1/n over the random initialization W (0) = {WT(O)} ,
r=1

Vd nT

where C4y(m,d,1/n),Ca(m, Ry, 1/n) are two positive numbers depending on (m,d,n) and
(m, Ro,n), respectively, with their formal definitions deferred to (39) and (41) in Section C.2 of
the appendix.

+ CQ(ma R07 l/n) SJ

Proof. This theorem follows from Theorem C.1 and Theorem C.2 in Section C.2 of the appendix.
Note that h(W,x,y) = L Z h(W,,x,y) = ) Z h(wa,(0),x,y), then part (1) directly fol-

lows from Theorem C.1. Slmllarly, part (2) dlrectly follows from Theorem C.2, and noting that
m > (canT/Ry)? indicates R < R. O
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Define

Wy = {W(0): (16), (17) hold} (18)
be the set of all the good random initializations which satisfy (16) and (17) in Theorem 6.1.
Theorem 6.1 shows that we have good random initialization with high probability, that is,

Pr[W(0) € Wy] > 1 — 2/n. When W(0) € W, the uniform convergence results, (16) and (17),
hold with high probability, which is crucial for our main result in Theorem 5.1.

6.2 ROADMAP OF PROOFS

Because our main result, Theorem 5.1, is proved by Theorem C.10 and Theorem C.11 deferred
to Section C.2, we illustrate in Figure 1, deferred to the appendix, the roadmap containing the
intermediate theoretical results which lead to our main result, Theorem 5.1.

Summary of the technical approaches and novel results in the proofs. Theorem C.8 is the first
novel result in this work, showing that with high probability, the neural network function f(W (%), -)
at step ¢ of GD can be decomposed into two functions by f(W (¢),-) = fi = h+e, where h € Hc is
a function in the RKHS associated with K with bounded H g -norm. The error function e has a small
L>-norm, that is, ||e|| ., < w with w being a small number controlled by the network width m, that
is, larger m leads to smaller w. Theorem C.10 is the second novel result, where we derive sharp and
novel bound for the nonparametric regression risk of the neural network function f(W (t), -) in The-
orem C.10, thatis, Ep [(f; — f*)?] = 2Ep, [(fi — f*)?] < €2 4 w. To the best of our knowledge,
Theorem C.10 is among the first in the literature to employ local Rademacher complexity so as to
obtain sharp rate for the risk of nonparametric regression which is distribution-free in spherical co-
variate, and local Rademacher complexity is employed to tightly bound the Rademacher complexity
of the function class comprising all the possible neural network functions obtained by GD.

Novel proof strategy of this work. We remark that the proof strategy of our main result, Theo-
rem 5.1, is significantly novel and different from the existing works in training over-parameterized
neural networks for nonparametric regression with minimax rates (Hu et al., 2021; Suh et al., 2022;
Li et al., 2024). In particular, the common proof strategy in these works uses the decomposi-

tion f; — f* = (f; — :(NTK)) + (At(NTK) — f*) and then show that both Hft - :(NTK)‘ , and
.
‘ FINTK) _ f*’ , are bounded by certain minimax optimal rate, where FNTK) s the kernel re-
L

gressor obtained by either kernel ridge regression (Hu et al., 2021; Suh et al., 2022) or GD with
early stopping (Li et al., 2024). The remark after Theorem C.8 details a formulation of ﬂNTK).

NTK *
L

) is bounded by the minimax optimal rate under certain distributional assumptions
L

in the covariate, and this is one reason for the distributional assumptions about the covariate in exist-
ing works such as (Hu et al., 2021; Suh et al., 2022; Li et al., 2024). In a strong contrast, our analysis
does not rely on such decomposition of f; — f*. Instead of approximating f; by :(NTK), we have a

new decomposition of f; by f; = hy + e; where f; is approximated by &, with e; being the approxi-
mation error. As suggested by the remark after Theorem C.8, we have h; = /ENTK) + e5(+,t) so that

fi = f(tNTK) + €2(-,t) + e;. Our analysis only requires the network width m to be suitably large so
that the H x-norm of éx(-, ) is bounded by a positive constant and ||e;|| ., < w, while the common
proof strategy in(Hu et al., 2021; Suh et al., 2022; Li et al., 2024) needs m to be sufficiently large so
that both ||éx(-, 1), and ||es|| ., are bounded by an infinitesimal number (a minimax optimal rate

such as O(niﬁ) and then || f; — f;(NTK) H , is bounded by such minimax optimal rate. Detailed
L

lloo

in Section 3, such novel proof strategy leads to our sharp analysis, rendering a smaller lower bound
for m in our main result compared to some existing works.

7 CONCLUSION

In this paper, we show that an over-parameterized two-layer neural network trained by gradient
descent (GD) with early stopping renders a sharp rate of the nonparametric regression risk with the
order of ©(£2) with ,, being the critical population rate or the critical radius of the NTK, which is
distribution-free in spherical covariate. We compare our results to the current state-of-the-art with a
detailed roadmap of our technical approaches and results in our proofs.

10
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We present the basic mathematical results required in our proofs in Section A, then present proofs
in the subsequent sections.

A  MATHEMATICAL TOOLS

We introduce the basic definitions and mathematical results as the basic tools for the subsequent
results in the next sections of this appendix.

Definition A.1. Let {o;}""_, be n i.i.d. random variables such that Pr[o; = 1] = Pro; = —1] = 1.
The Rademacher complexity of a function class F is defined as
R(F)=E . an F(x5) (19)
= L n n sup — ag; X .
{xi}i:1,{a7¢ =1 | feF n i—1
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The empirical Rademacher complexity is defined as

~ 1 < -
R(F) =Egp3n - |sup — oif(x (20)
(F) =E@ar, [fef”; (xi)

For simplicity of notations, Rademacher complexity and empirical Rademacher complexity are also
n n

denoted by E [supfejT 1L aif(gi)} and B, [supcr = 3 aif(zi)} respectively.
’ i=1 ’ i=1

.\ n
For data {x} and a function class F, we define the notation R,F by R,F =

=1

SUPfer n Z UZf(XL)
=
n

Theorem A.1 ((Bartlett et al., 2005, Theorem 2.1)). Let X', P be a probability space, {;1} be
i=1
independent random variables distributed according to P. Let F be a class of functions that map X’

into [a, b]. Assume that there is some > 0 such that for every f € F,Var [ f (21)} < r. Then, for

x

every x > (, with probability at least 1 — e~ 7,

2rx
sup (Ep[f(x)] = Ex~p, [f(¥)]) < mf( { 3 e BT 4= =

+(b—a) <;+i> Z) @1

x

and with probability at least 1 — 2e™7,

sup (Ep[f(x)] — Ex~p, [f(x)]) < inf (ME{U;}?l[RnF] + \/?

feF a€(0,1) —
1 1 1+« T
— -+ -+ —]—]. 22
+ (b a)<3+a+2a(1_a))n> (22)

P, is the empirical distribution over {Ql} with Exp, [f(x)] = 2 3 f (A ). Moreover, the
i=1 i=1

same results hold for sup ;¢ = (Ex~p, [f(x)] — Ep[f(x)]).

In addition, we have the contraction property for Rademacher complexity, which is due to Ledoux
and Talagrand (Ledoux, 1991).

Theorem A.2. Let ¢ be a contraction,that is, |¢(z) — ¢(y)| < |z — y| for u > 0. Then, for every
function class F,

E{O’i}?zl [Rn¢) o ]:] < /’LE{Ui};Lzl [Rnf] 5 (23)
where ¢ o F is the function class defined by ¢ o F = {¢po f: f € F}.
Definition A.2 (Sub-root function,(Bartlett et al., 2005, Definition 3.1)). A function : [0,00) —

[0, 00) is sub-root if it is nonnegative, nondecreasing and if % is nonincreasing for r > 0.

Theorem A.3 ((Bartlett et al., 2005, Theorem 3.3)). Let F be a class of functions with ranges in
[a, b] and assume that there are some functional T': 7 — R+ and some constant B such that for
every f € F, Var[f] < T(f) < BP(f). Let % be a sub-root function and let * be the fixed point
of . Assume that ¢ satisfies, for any r > r*, ¢(r) > BR({f € F: T(f) < r}). Fix z > 0, then
for any Ky > 1, with probability at least 1 — e™%,

704K, L2 (11(b — a) + 26 BK)
T .

E E _
VSEF, Bplf] < £ tgEe 1+ 5 -
Also, with probability at least 1 —e™",
Ko+1 704Ky , = (11(b—a + 26BK,
VfeF, Ep, [f]< OK Ep [f] + BOT+ (11 T)L ).
0
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Proposition A.4. Let F be a class of functions with ranges in [0, b] for some positive constant b. Let
1) be a sub-root function such that for all » > 0, R({f € F: Ep [f(x)] < r}) < 9(r), and let r* be
the fixed point of 1. Then for any K > 1, with probability 1 — exp(—z), every f € F satisfies

T04Ky |, x(11(b — a) +26DK,)

Ep [f] < o oBr, [f]+ 1 .

Ko—1

. 24)

B PROOFS FOR THEOREM 5.1 AND COROLLARY 5.2

Optimization

Lemma C.4 Feer o EeEEeoEefeeSrefeereanreneeafeeeeateereneetetrene e
\ Generalization
) o

Lemma C.5 / Lemma C.3 \

Theorem C.8‘\

Lemma C.6

Theorem C.10 » Theorem 5.1

Lemma C.947

Lemma C.7

Theorem C.11

Figure 1: Roadmap of major results leading to the main result, Theorem 5.1. The uniform conver-
gence results in Theorem 6.1 are used in all the optimization results and Theorem C.8.

More discussion about the literature. We herein provide more discussion about the results of this
work and comparison to the existing relevant works with sharp rates for nonparametric regression.
While this paper establishes sharp rate which is distribution-free in spherical covariate, such rate
still depends on bounded input space (X = S?~!) and the condition that the target function f* &
H (o). Some other existing works consider target function f* not belonging to the RKHS ball
centered at the origin with constant or low radius, such as (Haas et al., 2023; Bordelon et al., 2024).
We also note that in this work, only the first layer of an over-parameterized two-layer neural network
is trained, while the weights of the second layer are randomly initialized and then fixed in the training
process. In existing works such as (Hu et al., 2021; Suh et al., 2022; Allen-Zhu et al., 2019a), all
the layers of a deep neural networks with more than two-layers are trained by GD or its variants.
However, this work shows that only training the first layer still leads to sharp rate for nonparametric
regression, which supports the claim in (Bietti & Bach, 2021) that a shallow over-parameterized
neural networks with ReLU activations exhibit the same approximation properties as its deeper
counterpart.

Proof of Theorem 5.1. We use Theorem C.10 and Theorem C.11 to prove this theorem.
First of all, it follows by Theorem C.11 that with probability at least 1 — exp (—O(n?)),

3 2
Ep, [(fi — f*)?] < p (gz +6) .

Plugging such bound for Ep, [(f; — f*)?] in (117) of Theorem C.10 leads to

2
Ep [(fe — f9)?] - % (gg + 6) < cp(e2 +w). (25)

Due to the definition of 7 and 5,21, we have

2
<2 <o (26)

&<
n(T + 1)

d’ﬂ>‘ -
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Lemma C.15 suggests that with probability at least 1 — 4 exp(—©(ne2)) over S, £2 =< 2. Since

T =< f, for any ¢ € [¢;T, T, we have
1 1

~

1
X — X — < E2 xe2. (27)
nt 0T T

We have Pr[Wp] > 1 — 2/n. Let w = €2, we now verify that w € (0,1). Due to the definition of
the fixed point, w > 0. Since Y~ \; = [, K(x,x)du(x) = 1/2, we have
i>1

_1 USVRCIUE S o SN 3
O<wfn;m1n{)\z,sn}§n;)\1§2n<1.

(11) then follows from (25) with w = 5%, (27) and the union bound. The condition on m in (85) in
Theorem C.10, together with w = 5% and (27) leads to the condition on m in (10). Furthermore,

T = e;2 follows from (27) and ) = ©(1).
O
Proof of Corollary 5.2. We apply Theorem 5.1 to prove this corollary.

It is well known, such as (Raskutti et al., 2014, Corollary 3), that 5% = n_%. It then can be
verified by direct calculations that the condition on m, (10) in Theorem 5.1, is satisfied with the

given condition (12). It then follows from (11) in Theorem 5.1 that Ep [( 75— f*)Q] < n" T,
O

C DETAILED PROOFS

Because Theorem 5.1 is proved by Theorem C.10 and Theorem C.11, in this section, we establish
and prove all the theoretical results which lead to Theorem C.10 and Theorem C.11, along with the
proof of Theorem C.10 and Theorem C.11.

C.1 BASIC DEFINITIONS
We introduce the following definitions for the proof of Theorem 5.2. We define

u(t) = 5(t) - . 28)

Let 7 < 1 be a positive number, and £y € (0, 1) is an arbitrary positive constant. For ¢ > 0 and
T > 1 we define the following quantities (or recall their definitions if defined before),

Cu = ,uo/min{Q, 2677} +o+T7+1,

_ nelT

R\/m7

(29)

Vt = {V eER™: v= _<In_77Kn)t f*(s)}7 (30)

Eir = {e: e= gl + E\Q € R”7gl =—(I, - nKn)tw,

€2H2 < \/ET}. 31)

We define the set of neural network weights and the set of functions represented by the neural
network during training as follows.

W(S,W(0),T) = {W: 3t € [T] s.t. vec (W) = vec (W(0)) — Z_: %Zs(t’)u(t’),
/=0

16
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ut) eR"ut')=vt')+el),v(t') € Vv, e(t') € E -, forallt’ € [0,t — 1]} . (32

W(S,W(0),T) is the set of weights of neural networks trained by GD on the training data S
and random initialization W (0) with the preconditioner M generated by Q and the steps of
GD no greater than 7. The set of functions represented by the two-layer NN with weights in
W(S, W(0),T) is then defined as

}—NN(S7W<O)’T) = {ft = f(W(t)’ ) dt e [T]’W(t) € W(S,W(O),T)} . (33)

We define the function class Fext(w, T') for any w > 0 as
Fext(w,T) ={f: f=h+e hecHxg(Bs) el <w}, (34)
where
B, = o +1+V2. (35)

C.2 THEOREM C.10, THEOREM C.11, AND THEIR PROOFS WITH RELATED THEORETICAL
RESULTS

Theorem C.10 (repeat). Suppose w € (0, 1) and m satisfy

(nT)* (x/ﬁ + 1)4

w2

,(nT)%d* 5,

m 2 max

and the neural network f(W(t),-) is trained by GD in Algorithm | with the learning rate n €
0,1/ Xl) on random initialization W(0), and 7' < T. Then for every t € [T'], with probability
at least 1 — exp (—O(n)) — exp (—O(né2)) — exp (—ne2) — 2/n over the random noise w, the
random training features S and the random initialization W (0),

Ep [(f: — f9)?] — 2Ep, [(f: — £)?]

o 1/2y 2
2 A
B / =
SCO min OCBer( Q+1>+Bh N;l ,
0<@<n n n n

Furthermore, with probability at least 1 — exp (—O(n)) — exp (—O(n€2)) — exp (—ne2) — 2/n
over the random noise w, the random training features S and the random initialization W (0),

Ep [(fe — f*)?] = 2Ep, [(fe — f)?] < chlel +w). (36)

Here By, cp, ¢, are absolute positive constants depending on o, and ¢, also depends on o.
Theorem C.11 (repeat). Suppose the neural network trained after the ¢-th step of gradient descent,
fi = F(W(t),-), satisfies u(t) = fi(S) —y = v(¢) + e(¢) with v(t) € V; and e(t) € &, and
T<T.If

1

1,2 < —

nelh2), <5

then for every ¢ € [T7, with probability at least 1 — exp (—©(n&2)) over the random noise w, we
have

Ep, [(fi — [*)?] < 3 (M(Q) +3) :

nt \ 2e

We have the following two theorems regarding the uniform convergence of /f\L(W(O), ) to K(+y)

and the uniform convergence of (W (0), -) to \/22*}:,@ , which lay the foundation of the main results

of this paper. The proofs are deferred to Section C.4.

17
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Theorem C.1. Let W(0) = {V_\\IT(O)} 71, where each w,.(0) ~ N(0, 21) for r € [m]. Then for
any § € (0, 1), with probability at least 1— 6 over W(0),

sup ‘K(X7Y) _/B(W(O)aX7Y)’ S Cl(mada 6)7 (37)
xeX,yeX
where
d
1 2(1 + 2m)d 1 Tlog 2+2m)”
d,d) = — 1+ BvVd \/21 _ — — 4 38

and B is an absolute positive constant in Lemma C.19. In addition, when m > max{d,n,4},
m/logm > d,and 6 < 1/n,

\(m,d, 8) < /dlogm dlogm /dlogm (39)

Theorem C.2. Let W(0) = {WT(O)} , where each w,.(0) ~ N(0, k2I,) for r € [m]. Suppose

R < Ry for an arbitrary absolute posmve constant Ry < k. B is an absolute positive constant in
Lemma C.19. Then for any ¢ € (0, 1), with probability at least 1 — § over W (0),

2R
sup |0 (W(0), x) — < Cy(m, Ry, 5), 40
ilelg UR( ( ) X) \/%:‘i = 2(m 0 ) ( )

where
_ p2y2
1 X <_( 4H§) m)

Cy(m, Ry, d) =3 (B\/g—i— 1) m-I 4+ — +
m /m*§+—

2og 2(1+2m) Tlog 2(1+2m)
+ (4D
m 3m
In addition, when m > max {d, n,4}, m/logm > d, and § < 1/n,
Vd dlogm  dlogm Vd
CQ(va(]75) g m1/4 m + m S, m1/47
Lemma C.3. Suppose
m 2 (1) (Vd + 1)t/ (42)

and the neural network f(W (¢), ) trained by gradient decent with the learning rate 7 € (0,1/A1)
on random initialization W(0) € W),. Then with probability at least 1 — exp (—©(n)) over the
random noise w, W (t) € W(S, W(0),T). Moreover, for all t € [0,T], u(t) = v(t) + e(t) where
u(t) =y(t) -y, v(t) € Vi e(t) € Ext.r and |Ju(t)], < cxuyn.

Proof. First, when m > (nT)*(\/d + /7)*/7* with a proper constant, it can be verified that
E,.,r < 7v/n/T where E,, ,, ; is defined by (52) of Lemma C.5. Also, Theorem C.1 and Theo-
rem C.2 hold when (42) holds. We then use mathematical induction to prove the lemma. We will
first prove that u(t) = v(t) + e(t) where v(t) € V4, e(t) € & -, and ||u(t)||, < cuy/n for for all
te[0,7T].

forall ¢ € [0, 7], where >F,_, - = 0 for t < 1, and
When ¢ = 0, we have
u(0) = —y = v(0) +(0), 43)

where v(0) = —f*(S) = — (I—1K,)" f*(S), e(0) = —w = e1(0) + e2(0) with e,(0) =
—(I- nKn)Ow and e(0) = 0. Therefore, v(0) € Vy and e(0) € & ;. Also, it follows from the

18
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proof of Lemma C.4 that ||u(0)||, < ¢, with probability at least 1 — exp (—©(n)) over the random
noise w.

Suppose that for all ¢; € [0,¢] with ¢t € [0,T — 1], u(t1) = v(t1) + e(t1) where v(t1) € Vi,

and e(t;) = e (t)) + ea(ty) with v(t;) € V,, and e(t1) € &, -, and [[u(ty)||, < cur/n for all
t; € [O,t]

Then it follows from Lemma C.5 that the recursion u(t’ + 1) = (I — nK,,) u(¢') + E(¢' + 1) holds
forall ¢’ € [0,t]. As aresult, we have

ut+1)=T-nK,)u(t) +E(t+1)
= —(T—7K,)" " f1(8) - (1—nK,)' w
+ > (I—nK,)" " E(¥)

t'=1
=v(t+1)+e(t+1), (44)

where v(t + 1) and e(t + 1) are defined as

v(t+1) = — (T—nK,)"™ f7(S) € Vg, (45)
t+1 ,
et +1):=—T-7K,) " w+> (I-nK,) """ E). (46)
e (t+1) =t
ea(t+1)

We now prove the upper bound for e (¢ + 1). With i) € (0,1/A;), we have ||T — nK,|, € (0,1).
It follows that

ezt + 1,
41
17 ’
<D= Kl IE@)
t'=1
<7Vn, 47

where the last inequality follows from the fact that ||E(¢)|, < E,, ,, » < 7y/n/T forall t € [T] and
the induction hypothesis. It follows that e(t + 1) € .41 . Also, it follows from Lemma C.4 that

lu(t + 1)l < vt + Dlly + |[ert+ 1)+ [eatt + 1)

< ( 'L%n+o+7+1>\/ﬁcu\/ﬁ,

This fact completes the induction step, which also completes the proof. O

2

Lemma Cd. Lett € [T], v =—(I—nK,)" f*(S).e = — I —nK,)" ™ w,and 5 € (0,1/\,).
Then with probability at least 1 — exp (—©(n)) over the random noise w,

Vil + llell < <\/%7 +o+ 1) v (48)

Proof. Whenv €V, fort > 1, we have v = — (I — nK,,)" *(S), and
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IN®

(=] V]

np
, 49
2en (49)

~~

Here (D follows Lemma C.13, @ follows by Lemma C.12.

Moreover, it follows from the concentration inequality about quadratic forms of sub-Gaussian ran-
dom variables in (Wright, 1973) that

Pr [|[wll; —E [l > n] < exp(~0(n)). (50)

and E [ w],] < /E [||w||§] = /no. Therefore, Pr [||wl|, — o > v/n] < exp (—O(n)).

As a result, we have

¥l + llell < 1/ 28 4wy < (<2 4 04 1) va
P 2e T Ve

O

Lemma C.5. Let0 <1 < 1,0 <t <T —1forT > 1, and suppose that |y (t') — y||, < cuv/n
holds for all 0 < ¢/ < ¢t. Then

yt+1) —y=1-1K,) (¥t —y) +E(t+1), (51)
where |E(t + 1), < Ep, .7, and E,,, ,, ; is defined by
2R
Emﬂ],‘r = T]Cu\/ﬁ (3 (\/Tﬂ-ﬁ + CQ(m/Q, R0,6)> + Cl(m/Q, d, 6))
Vd nT
< =

Proof. Because ||y(t') — y|l, < /ncy holds for all ¢ € [0, t], by Lemma C.6, we have

Hvﬁr(t’)—vﬁr(o)H2 <R, VO<t <t+l (53)

Define two sets of indices

Ei g = {T € [m]: ‘WT(O)T;i

> R} 5 Ei,R = [m] \ Ei,R-

We have
1 & T N G N
vit+1) —y:(t) = — r t+1)x; | — t)x;
41 =500 = oS (o (Ve er 1%, —o (W5,0%,) )
1 T ~ T
= — ar (0’ (WS’T(t + 1)xi> -0 (WS T(t)m))
m TGELR
=D
1 T N G
+ T Z ar (0’ (ws,r(t + 1)xi) —0o (ws,r(t)xl))
rel; r
::Egl)
DV +EW, (54)

and DM E() € R” is a vector with their i-th element being Dgl) and Egl) defined on the RHS of
(54). Now we derive the upper bound for EZ(-I). For all ¢ € [n] we have

] = 75 3 ar (o (are+07R) - (R, 075)

TEEi,R
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ﬁ
m
Ej |
E

3
m
S_ljw
B

1
vm
1
vm
@ \/% Z HQ [Zs ()] 1(r—1yar1:0a) (Y (E) — Y)H
%

— n 2
rel; r
o) "
< P
TEEi,R \/m
< ey - [l (55)
m

Here @D, @ follow from (72) and (73) in the proof of Lemma C.6.

Let m be sufficiently large such that R < Ry for the absolute positive constant Ry < x specified
in Theorem 6.1. Then it follows from Theorem C.2 that for any § € (0, 1), with probability at least
1 — & over W(0),

2R

21K

sup [0r(W(0),x) —

xXeEX

S 02(m/27R0a6)7 (56)

where (W (0),x) = L+ 3° ]I{‘?v (0)7x| <R} so that Tr(W(0),x;) = |Eig|/m. It follows
r=1 XS
from (55), (56) and the induction hypothesis that

(1) 2R
B < e (\/% + cz(m/mo,a)) . 57)

It follows from (57) that ||E(1) ||2 can be bounded by

2R

E(l)H <nc n(
H Q_UUI \/ﬂ,«;

+02(m/2,R075)) . (58)

Dl(.l) on the RHS of (54) is expressed by

1 =T - we ()%
Dgl) = ﬁ Z ar (0' (Ws,r(t + 1)X1> -0 (WS,r(t)Xi)>
r€E; R
1 - w =
T Vm > arﬂ{v‘vs,r(t)@iz()} (WS’T(t+1) 7WS’T<t)> .

reE; r

:j%E:w%ahmqeﬂ(*%@ﬂquwwﬂﬂﬂ*yn xi

+% 2 G 7% i20) (% Zs (D) (r—1yaira) F(E) = Y)>T xi
r€l; r
= L HE®), F0) -y)
::Dgz)
1 " y %
tm 2 G 7520} (ﬁ [Zs ()] 1(—1)dira) (Y (T) *Y)> i
rel; r

=E®

K3

21



Under review as a conference paper at ICLR 2025

-D? 4+ EP, (59)

where H(¢) € R™*™ is a matrix specified by

G N
X, Xq

H;Dq(t) = m Z:l ]I{VTfs,r(t)T;pZO}]I{\?VT(O)TquO}’ Vpe€ [{n‘]v VIS [TL]

m

Let D) E(?) € R” be a vector with their i-the element being Dl(?) and E§2) defined on the RHS
of (59). E® can be expressed by E(?) = ZE®) (y(¢) — y) with E(?) € R"*" and

. 1 T 1 ‘Ez R|
(2 — — = — ,
B = 2 LGe 20 s, 074,20} Xa X < 7 2. 1=
TGEi,R T’GEi,R
for all p € [n],q € [n]. The spectral norm of E(® is bounded by
. . E;r| © 2R
E(2)H <HE(2)H <n’ o <n< + C. m2,R,5), 60
H 2 F m V27K 2(m/ 09) (60)

where (D follows from (56). Also,
that ||E(?)||, can be bounded by

H®®)|, < |[H(@)||g < vVnN forall t > 0. It follows from (60)

[E@|, < Z[&@ ] ly® - 31
< neav/ (;% + Co(m)2, R0,6)> . 61)

Dgz) on the RHS of (59) is expressed by

=E4)

=D + EG L EW, (62)
On the RHS of (62), D) EG) E®) ¢ R” are vectors which are analyzed as follows. HE(?’) H2 is
bounded by
IK —H(0)[l, < [[K - H(0)||p <nCi(m/2,d,), (63)
where the last inequality holds with probability 1 — é over W (0) according to Theorem C.1.

In order to bound E(*), we first estimate the upper bound for |H;;(t) — H;;(0)| for all 4, j € [n].
We note that

wior % jer) Y050 -y O

SH{

|
{][{ﬁs,T(t)T?i}ﬂ{me)T?i}}
It follows from (64) that
[H,;(t) — H;;(0)|
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T

m z; (H{v?s.r(miizt)}H{v@(O)T?ij} - H{w(O)T?izO}H{m(O)T?ij})

r=

IN

| —
\ME
=

mi3 {I{xsj<t>T§i20}ﬂ{$T<0)T?i20}}
(1 ) Yo 500] 1))

~ . ® 2R

<wvr(W(0),x;) <

= R( ( ) ) \/ﬂﬁ;
where D follows from (56).

It follows from (63) and (65) that || E®||,, || E||, are bounded by

INA
3|~
HM§

w(0)Tx;

+ CZ(m/QvROa(S)v (65)

=]
2

IN

2K ~ HO)I9(6) - vl

2L nCi(m/2,d,5) - |y (t) = vl

newV/nCi(m/2,d, d), (66)
ZIE(0) — H),5(1) - vl

IN

IN

=]

IN

s”~n<23 +QMWZRm®)Wﬂﬂym

n 21K
2R
< newv/n (\/2—7”{ + C2(m/2, Ry, 5)) . (67)

It follows from (59) and (62) that
D" =D + EP + E +EY. (68)
It then follows from (54) that
yit+1) - 9:(t) =DV + BV
=D® +E" +E® +EP +E{
=E,

K(y() -y) +Ei (69)

n
n
where E € R™ with its i-th element being E;, and E = E() + E?) + EG) 4 E®). It then follows
from (58), (61), (66), and (67) that

2R

IE[l, < neavn <3 (\/27”{ + Cg(m/2,R0,5)> +Ci(m/2,d, 5)) . (70)

Finally, (69) can be rewritten as
§(t+1) -y = (I- 1K) 3() - y) + Bt + 1),
which proves (51) with the upper bound for ||E||, in (70).
O

Lemma C.6. Suppose that ¢ € [0,7 — 1] for T > 1, and ||[y(t') — y|, < v/ncy holds for all
0 <t <t. Then

—

Hv?s,r(t/) - WT(O)HQ <R, VO<t <t+l. (1)
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Proof. Let [Zg(t)]((,_1)4.q denotes the submatrix of Zg(¢) formed by the the rows of Zq(t) with
row indices in [(r — 1)d : rd]. By the GD update rule we have for ¢ € [0,7" — 1] that

wso(t+1) — ws(t)
= = 2O 1ya0a FO —¥). (72)

We have H[Zs( Nir=1)ara)

’ < y/n/m. It then follows from (72) that

NCu

[wsrte 1) = ws, )], < T1ZsOalg ) - vl < T 3)

Note that (71) trivially holds for ¢ = 0. For ¢’ € [1,¢ + 1], it follows from (73) that

t'—1
[Wsr@) = w, | < D [wsrt” + 1) = W),
t''=0

t'—1
<=
t” 0
neaT
< =R 74
< m ; (74)
which completes the proof. O

Lemma C.7. Let h(-) = Y5} (-, t') fort € [T], T < T where
h('7t/) = U('7t/) + é\('7t/)7

o t) = TSR0,

. N = =
et = D K(xj,x)e;(t)),
j=1

where v(t') € Vy, e(t') € &, forall 0 < ¢/ < ¢ — 1. Suppose that 7 <
probability at least 1 — exp (—O(n&2)) over the random noise w,

1Bll2, < Bn=po+1+V2, (75)

1/(nT), then with

and By, is also defined in (35).

Proof. Wehavey = f*(S)+w, v(t) = — (I —nKy,)" f*(S), e(t) = e1(t)+ es(t) with e (t) =
—(I-7K,)'w gz(t)"Q < /nT. We define

n

au(t) = ZiK@,x) [ea(t)] . @) = T K(x;x) [eat)]

j=1

Let X be the diagonal matrix containing eigenvalues of K,,, we then have
t—1 n t—1

> i) = 233 [k 9] K
t'=0 j=1t'=
"Zn:tZI[U (I-n=)" UT (s )} K(x;.%). (76)
j=1t'=

It follows from (76) that

t—1
Z U('a t/)
=0

2

Hi
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2 t—1 t—1
77 * ! ! *
= 5F(8)TUY (1-n%) UTKU Y (I-9%)" UTf(S)
t’'=0 t'=0
2
1
n

t—1
1K) 20 (1-n2)" UTf(s)
t’'=0

n (1—(1—7732»)
siz_; 5

< g, (77)

2

t) 2
[UT(S)];

)

where the last inequality follows from Lemma C.12.

Similarly, we have

2
N

e1(-,t < - — U'wl . 78
R T "R ™

It then follows from the argument in the proof of (Raskutti et al., 2014, Lemma 9) that the RHS
of (78) is bounded with high probability. We define a diagonal matrix R € R"*" with R;; =

(1-(1- nXi)t)z/Xi for i € [n]. Then the RHS of (78) is 1/n - tr (URU "ww ). It follows from
(Wright, 1973) that

Pr(l/n-tr (URU 'ww') —E [1/n-tr (URU 'ww')] >y
< exp (—cmin {nu/||R||2, n2u2/||R||§}) (79)
for all w > 0, and c is a positive constant. Recall that 1, = nt for all t > 0, we have
N 2
- (1— (1—%) )

E[1/n-tr (URUTwwT)] < =" =
i=1 i

Il
)
S|s
~M§
=
=

=1
= o* i R%(\/1/n) < 1. (80)

Here O follows from the fact that (1 — nxi)t > max{O, 1-— tnxi}, and @ follows from

min {a, b} < /ab for any nonnegative numbers a, b. Because t < T’ < T, we have ﬁK(\ /1/n) <
1/(one), so the last inequality holds.

Moreover, we have the upper bounds for |R ||, and ||R|| as follows. First, we have

) 2
1—(1—n\
Sl G

i(n] Ni
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1

We also have

1 S
—|IR||z = — =
alRlE =23 RE
3 n
M . 1 2
<= min ——, M
”; {W?A? ”}
@7]3 n ~ 1 ~ n
< It ind N\, — ¢ = 2R3 (\/1/m;) < % 82
< anm{ 77]t} ny Rie ( /77t)_027 (82)

where @) follows from

1 ~ ~ 1 ~ ~
min {SAZ,T]tAf} = )\z min {3/\3,77)5>\1} S )\z
;s i A;

Combining (78)- (82) with u = 1 in (79), we have
Pr(l/n-tr (URU'ww') —E [1/n-tr (URUTWWT)} > 1] < exp (—emin {n/n,no®/n, })

<exp(—nd/n) < exp (—c’né\i)

where ¢’ = cmin {1,0?}, and the last inequality is due to the fact that 1/, > &2 since t < T < T.

2
It follows that with probability at least 1 — exp (—©(ng2)), ;/—:10 et N < 2.
K
We now find the upper bound for HZE:O ea(-, ") 0 We have
N2 772 =T Y
12,813, < 5 €2 (F)Kea(t)
S 772/):17-2a
so that
t—1 t—1
> et < @)y,
t'=0 Hyx =0
< Ty hr <1, (83)
it <1/(nT).
Finally, we have
t—1 t—1 t—1
Al <|DoBCGO| + (D@t +{D]elt)
t'=0 Hi t'=0 Hi t'=0 Hi

<po+1+V2=DBy.
O

Theorem C.8. For every t € [T], let the neural network f(-) = f(W (¢),-) be trained by gradient
descent with the learning rate € (0, 1/\1) on the random initialization W (0) € W, with T < T..

Then with probability at least 1 — exp (—©(n)) — exp (—©(n&Z)) over the random noise w, f €
FNn(S, W(0),T), and f can be decomposed by

f=h+e€ Fexi(w,T), (84)
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where h € H i (By,) with By, defined in (35), e € L>°. When

4
(nT)* (\/ﬁ + 1)
m 2 max 1 ,(nT)3d? 3 (85)
w
then
lelloe < w (86)
In addition,
By,
o < —= +w. 87)
Ifllee = 5 (
Remark. We consider the kernel regression problem with the training loss L(a) = 1/2 -

1K, — y||§ Letting 8 = K+/?a and then performing GD on 3 with this training loss and
the learning rate 7, it can be verified that the kernel regressor right after the ¢-th step of GD is
t—1 n
N0 = L3S K x)al, (88)
/=0 i=1
where a®) = (I, — nKn)t’ y. Following from the proof of Lemma C.6 and Theorem C.8, under
the conditions of Theorem C.8 we have

he = fiN™ e (1),

where e3(-,t) = ’;;10 > K QJ) |:g\2(tl):| ~and e (t') appears in the definition of Eir
J
in (31). It is remarked that in our analysis, we approximate f; by h; € Hg(By) with a small

approximation error w, and we do not need to approximate f; by the kernel regressor :(NTK) with
a sufficiently small approximation error which is the common strategy used in existing works (Hu
et al., 2021; Suh et al., 2022; Li et al., 2024). In fact, our analysis only requires m is suitably

large so that the H i -norm of e5(-,t) = hy — :(NTK) is bounded by a positive constant rather than
an infinitesimal number as m — oo, that is, |[€2(+, )|, < 1, which is revealed by the proof of
Lemma C.7.

Proof. 1t follows from Lemma C.3 and its proof that conditioned on an event with probability at
least 1 — exp (—O(n)) — O (nN/nCd63/8) — (14 2N)* exp(—n®), f € Fan(S, W(0),T) with

m

W(0) € Wy. Moreover, f(-) = f(W,-) with W = {VT/T} € W(S,W(0),T), and vec (W) =
r=1

vec (Wg) = vec (W(0)) — ﬁ,;lo n/n - Zg(t')u(t’) for some ¢t € [T, where u(t’) € R, u(t') =

v(t') + e(t') with v(t') € Vy and e(t') € &y - forall t' € [0,t — 1].

w,. is expressed as

t—1

Wy = Ws,r(t) = V_‘\’r(o) - Z % [Zs(t/)][(r_l)d;rd] u(t/)a (89)
t'=0

where the notation v_\\rsﬂn emphasizes that v_\\/r depends on the training data S.
We define the event
E,(R) = {‘@T(O)Tx’ < R} . rem.

m

T
We now approximate f(W,x) by g(x) = \/—% Dot a"]I{vT;T(o)szo}wT x. We have

[f(W,x) — g(x)|

m

1 T S W
= ﬁ Z_; aro (Wr X) - Z;GTH{@T(O)TXZO}WT X
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1 & T T
= Um Z:l v (I[{ET(R)} + H{E(R)}) (J (Wr X) LG 0 xz0} W X)’
1 & T T
= ﬁ Zl H{ET(R)} g (WT X) — H{Q,,‘(O)TXZO}WT X
1 m T N N N
= T 2 Mimmn |7 (Wr X) o (wr0)"x) - LG, @m0} (Wr = Wr(0) Tx
r=1
R m
<= Lismy- (0)
Vi
Plugging R = ”\CF in (90), we have

2R &
|f(W,x) —g(x)| < T 7; Lip, (r)}

1 m
= 2nc T - o Z Iie.(r)y

r=1

= 2ncyT - r(W(0),x)
2R

Using (89), we can express g(x) as

g(X) = % ZarH{Qr(o)szo}Wr(O)Tx
.
_Z \FZ (w7 x>o}( Nir—1)azra) (t/)) x

=

AT
Z an {w o)rx>0} Z {w (TR, >O}uj x X, (92)

=Gy (x)

{WT(O)TXZO}WT(O)TX = f(W(0),x) = 0 due
to the particular initialization of the two-layer NN. For each G in the RHS of (92), we have

where (@ follows from the fact that = 377" | a1

" T
Gy (x @ im Z o)Tx>o} Zdt/ rg Wy (t )XJ X

T

im Z o)Tx>0} Z I[{w,(o X, >0}uJ )x; x
Z X, ZunJ
j=1

=F1(x)

[[@)
SI3

AT

+*Z [ )7 x>o}2dt LIRS ©3)

:=Fs(x)
where

iy = H{ﬁ(t')@ij} {Wr

\ \/
N
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in @, and and
g; = h(W(0), x;,%) — K(x;,x)
forall j € [n]in ®.
We now analyze each term on the RHS of (93). Let A(-,t'): X — R be defined by

hix,t') =1 X )u; ('
(Xat) ’I’LZK(X’ XJ)uJ(t )7
j=1
then h(-, ') is an element in the RKHS H j for each ¢’ € [0,¢ — 1]. We further define
t—1
h(-) =Y h(-t), (94)
=0

It follows from Theorem C.1 that, with probability 1 — ¢ over W(0), ¢; < C1(m/2,d, ¢) for all
J' € [n] with C1(m/2,d, ) defined in (38). Moreover, ||[Ks qll, < VaN, u(t’) < cyy/n with
high probability, so that we have

N\ n
1Bl = || ayu(t)| < —lu()ll,v/nCi(m/2,d, 5)
j=1 -
< neaCi(m/2,d, 0). 95)
We now bound the last term on the RHS of (93). Define X’ € R4*" with its j-column being
m - . T
Xi=Lym, H{@T(O)szo}dt"“ﬂ' x; forall j € [n], then E5(x) = L (X u(t'))  x.

m

We need to derive the upper bound for ||X'||,. Because H‘;T - VTIT(O)H < R, it follows that
2

when ‘v_\\rr(O)Tx;», > Rforall j* € [n]. Therefore,

]I{vm(t')@jzo} - ]I{?vr(oﬁijzo}

o'l = ‘]I{@T»(MTQQO} B H{W7-(0)T§j20} =1y

@,.(O)TQJ(SR}’

and it follows that

—

= AR(W(O)v Xj)

2 orsizoy | 2 el <T§1H{\QT<O)T§.¢|§R}

m m - m
2R
< + C?(m/27 R07 5)3 (96)
2TK

where U, is defined by (15), and the last inequality follows from Theorem C.2.

It follows from (96) that ||X'||, < /n ( + C2(m/2, Ry, 5)), and we have

2R

Vann
U

1E2(0)lle < X o fudt) o 1%,

2R
< ncu <\/2—7TH + 02(m/27R075)) . G

Combining (93), (95), and (97), for any ¢’ € [0,¢ — 1],
G (%) = h(x, )]l oo < 1Bl + 1 B2l

loo

< ney (Cl(m/Z, d,d) + % + Ca(m/2, R0,5)> ) (98)
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Define e(-) = f(W,-) — h(-), it then follows from (91), (92), and (98) that

le(®)[loo < IF(W,+) = glloe +1lg — Pll
t—1

< W) =gl + D 1Ge =)o, 4
t'=0

Q@ 2R
< ey T | —— + C 2, Ro, 0
< s (e + Caim/2.Ra.b))

2R
+ neuT (Cl(m/Q, d, (5) + \/277 + Cg(m/Q, Ry, 5))
TR
2R
< necuT’ (Cl(m/ld, 5)+3 <\/T + Ca(m/2, R0,5)>>
TR
= Am,n,N,cI,n,‘r,5~ (99)

We now give estimates for A, , N ¢, n,r.5. Since m > max {d,n,4}, we have ,/ dl"% < m\{%.
As aresult,

vd T
AmnNernrs ST <m1/4 tm )

By direct calculations, for any w > 0, when

. (nT)* (\/4&+ 1)4’

we have Am,n,N,c,,n,T,é < w.

It follows from Lemma C.7 that with probability at least 1 — exp (—@(né\%)) over the random noise
w,

Ihllye, < B (100)
where By, is defined in (35), and 7 are required to satisfy

TS 1/(T).
Lemma C.3 requires that m > (nT)*(v/d + /7)*/7*. As a result, we have

m > (nT)3d>.

It also follows from the Cauchy-Schwarz inequality that ||2|| . < Bp/+/2. This together with (99)
proves (87). O

For B, w > 0, we define the function class

F(B,w)={f:3h e Hg(B),Je € L=, |le|, <wst f=h+e}. (101)
Lemma C.9. For every B, w > 0 every r > 0,
R({feFB,w):Ep[f] <r}) <epuwl), (102)
where
oo 1/2
2 A
¢Bw(r) = min (ﬁ—kw)\/g ) e +w. (103)
’ Q: Q>0 n n
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Proof. We first decompose the Rademacher complexity of the function class
{f € F(B,w): Ep [f?] < r} into two terms as follows:

R({f: feF(B,w),Ep[f?] <r})
1 " ~
< -E sup oih(x;)
" | feF(Bw): Ep[f2)<r ;

sup oie(;c\i) . (104)
fEF(B,w): Ep[f2]<r Zz:;

1
+-E
n

=Rq =Ra
We now analyze the upper bounds for R1, Ro on the RHS of (104).
Derivation for the upper bound for R ;.

According to Definition 101 and Theorem C.8, for any f € F(Bw), we have f = h + e with
heHMg(B),ec L™, |el|, <w

When Ep [f2] < r, it follows from the triangle inequality that [|h|| ;. < || f|[,2 + |le]l 2 < V7 +
w = 1. We now consider h € H g (B) with ||h|| ;. < rp, in the remaining of this proof. We have

}:mfxz—E: (R + e(x)

i=1

= <h7ZUiK(',;i)> +Zai€(;i)- (105)
=1

Hix i=1
Because {vq}q>1 is an orthonormal basis of Hy, for any 0 < @ < n, we further express the first
term on the RHS of (105) as

),

(Sm s S (o) ),

q

K

<h Z<ZJZ X;) > vq> . (106)
>Q Hi Hi

Due to the fact that h € Hg, h = ) ﬁéh)vq = \/)\qﬂéh)eq with vy = /Ageq. Therefore,
q=1 q=1

2 x n)2
|wp=;Mm%md
Z

Q Q
Z VA (h, V)3, Va = Z \/)\q,@gh)vq
a=1 Hic a=1 Hi

- ZA M < k2 < . (107)

According to Mercer’s Theorem, because the kernel K is continuous symmetric positive definite, it
has the decomposition

so that we have

K
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=Y o/ hgeg(X0). (108)

Combining (106), (107), and (108), we have

i)

Z \/E <hv vq>7—1K Uq
q=1

Hi |71 =1 M g
o n
=+ ||hHHK : Z <Z UiK('a;C\i)qu> Vq
=Q+1 \i=1 Hi |y
Q n n
< lhllze ZZ Tieq( Xl Z Zaifeq
a=1 i=1 i q=Q+1 i=1 M

Z(Z gicq Xz) + B i (im@eq@)), (109)

q=1 g=Q+1 =1

where (D is due to Cauchy-Schwarz inequality. Moreover, by Jensen’s inequality we have

Q n N 2 Q n R 2
E Z (Zaieq(xi)> E <Zai€q(Xi)>

q=1 \i=1

IN

Q
<.|E Zzeg@)] = /nQ. (110)

and similarly,

- i (igi@eq(gio <\ E i Aqieé@‘) = (111)

a=Q+1 \i=1 =Q+1 i=1

Since (109)-(111) hold for all () > 0, it follows that

(112)

1 & -
E sup - Jih(xi)l < min

heH i (B), |l p2<r ™ = Q: Q>0

It follows from (104), (105), and (112) that
sup O'ih(;i)
heH ik (B),||h|l2<rn 1:21 1
00 1/2

S ot
< min |/ 24+ B| S . (113)
Q: Q>0 n n

Derivation for the upper bound for RRs.

Ri1 < —-E

1
n
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Because |1/n Y7, oie(X,)

< w when |e[| , < w, we have

1 n N
Ro < —E l sup Za,’e(xi)] <w. (114)
=1

N |eeLs: fle|l  <w iz

It follows from (113) and (114) that
R({f: f e F(B,w),Ep [f*] <r})

1/2

o)
5 (2
< min rw\/ — + DB =+ + w.
Q: Q>0 n n
Plugging 7}, in the RHS of the above inequality completes the proof. O
Theorem C.10. Suppose w € (0, 1) and m satisfy
4
() (Va+1)
m 2 max ,(nT)3d? 3 (115)

wh

and the neural network f(W(t),-) is trained by GD in Algorithm 1 with the learning rate n €
0,1/ Xl) on random initialization W (0), and T < T'. Then for every t € [T, with probability
at least 1 — exp (—O(n)) — exp (—O(né2)) — exp (—ne2) — 2/n over the random noise w, the
random training features S and the random initialization W (0),

Ep [(fe — f9)?] — 2Ep, [(f: — f)?]

- 1/2y 2
> A
B E
<o min | 294w (/Q41) 4B, | =2 , (116)
0<@<n n n n

Furthermore, with probability at least 1 — exp (—O(n)) — exp (—O(ng2)) — exp (—ne2) — 2/n
over the random noise w, the random training features S and the random initialization W (0),

Ep [(fe — f*)?] — 2Ep, [(fe — f*)?] < chlel +w). (117)

Here By, cp, ¢, are absolute positive constants depending on o, and ¢, also depends on o.

Proof. We first remark that the conditions on m, (115), is required by Lemma C.3 and Theorem C.8.

It follows from Lemma C.3 and Theorem C.38 that for every ¢ € [T], conditioned on an event

with probability at least 1 — exp (—O(n)) — exp (—©(né2)) over the random noise w, we have

W(t) e W(S,W(0),T), and
fF(W(t),-) = fi € Fan(S, W(0),T).
Moreover, conditioned on the event 2,
ft € Fee(Quw, T).

We then derive the sharp upper bound for Ep [( fi—f *)2] by applying Theorem A.3 to the function
class

Fo{P=(f- £V f e FBLw).
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Let By := By, /V2+ 1+ po/V/2 > By /V2+w+ po/+/2, then we have || F|| < B2 with F € F,
so that Ep [F?| < B3Ep [F]. Let T(F) = BEp [F] for F € F. Then Var[F] < Ep [F?] <
T(F) = B2Ep [F).
We have

R{{FeF:T(F)<r})

—n ({0 = r e PGB (- 1) < 45 })
® * *\2 T
<2803 ({7 - 75 f € FBuw) B [~ 1) < 5 )
) ) r
<483 ({1 € FBw)s Be (7] < 1 ). (118)
0
where (D is due to the contraction property of Rademacher complexity in Theorem A.2. Since

f* e F(Bp,w), f € F(Bp,w), we have f_Tf* € F(Bp,w) due to the fact that F(Bp,w) is
symmetric and convex, and it follows that @ holds.

It follows from (118) and Lemma C.9 that

BIR({F € F: T(F) <r}) <4BiR <{f: f € F(By,w),Ep 2] < ’“})

< 4Bjen, u <4;2) = u(r). (119)
0

1) defined as the RHS of (119) is a sub-root function since it is nonnegative, nondecreasing and @

is nonincreasing. Let r* be the fixed point of ¢, and 0 < r < r*. It follows from (Bartlett et al.,

2005, Lemma 3.2) that 0 < r < ¢)(r) = 4Bg’<p (ﬁ). Therefore, by the definition of ¢ in (103),
0

for every 0 < @Q < n, we have

00 1/2
> A
r VT Q q=Q+1
— < = ~+ B, | ———— . 120
4Bg_(230+w)\/n+ h - +w (120)
Solving the quadratic inequality (120) for r, we have
00 1/2
> A
8B} =
rﬁioQ-l-SBg w(\/Q—I—l) + By | EE : (121)
n n n
(121) holds for every 0 < @ < n, so we have
00 1/2
> A
B =
r <8B3 min 0Q+w<\/Q+1>+Bh =t . (122)
0<Q<n n n n

It then follows from (119) and Theorem A.3 that with probability at least 1 — exp(—z) over the
random training features S,

T 2 2
B [ 1]~ gip, [~ 7] - T B 2B0K0) TGy
0
or
Ep [(fi = )] = 2Ep, [(fe = FY] 7+ T (124)

34



Under review as a conference paper at ICLR 2025

with Ko = 2 in (123).
It follows from (122) and (124) that
Ep [(fi = £*)?] = 2Ep, [(fi — [*)?]

. 1/2
X A
B o
< min ()Q+w<1/Q+1>+Bh =t + 2
0<@<n n n n n

Let 2 = ne? in the above inequality, and we note that the above argument requires Theorem C.8
which holds with probability at least 1 — exp (—©(n)) — exp (—O(n2)) over the random noise w.
Then (116) is proved combined with the facts that Pr [Wy] > 1 — 2/n.

‘We now prove (117). First, it follows from the definition of ¢ p, ,, in (103) that

,
¥(r) = 4Bies, w (‘%>

0 1/2

> A
_ 3 . \/’F 9 =Q+1 3
_4BOQI:HQ1£0 <2B0+w>“n + By, . + 4Bjw

g [Q
<4B3By min | 4/55+ % +4ng< n+1>

4 3
< @ ~oRi(VT) + 8Bjw = ¥r(r),

where the last inequality follows from the Cauchy-Schwarz inequality. It can be verified that vy (r)
is a sub-root function. Let the fixed point of 11 (r) be 7. Because the fixed point of o Rk (/) as a
function of r is €2, it follows from Lemma C.17 that

rr < max{?ﬂ\/iggB%‘,l}ei + 16 Bjw. (125)
It then follows from Theorem A.3 with Ky = 2 that with probability at least 1 — exp(—z),
Ep [(fe = £)?) = 2Ep, [(fi = £)7] Sri+ .
Letting = ne?, then plugging the upper bound for 3, (125), in the above inequality leads to
Ep [(fi = £)?] = 2Bp, [(fi = £*)?] S &5 + 16Bw. (126)
Again, we note that the above argument requires Theorem C.8 which holds with probability at least

1 — exp (—O(n)) — exp (—O(ne2)) over the random noise w. Then (117) is proved with the fact
that Pr W] > 1 — 2/n and (126).

O

Theorem C.11. Suppose the neural network trained after the ¢-th step of gradient descent, f; =
F(W(t),-), satisfies u(t) = f,(S)—y = v(t) +e(t) withv(t) € Vyand e(t) € &, and T < T. If

1
1,2 < — 127
nell,2), TS (127)
then for every ¢ € [T, with probability at least 1 — exp (—©(n&2)) over the random noise w, we
have

. 3 2
Ep, [(ft — [*)*] < " (gz + 3) : (128)
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Proof. We have
f1(S) = f*(S) + w + v(t) + e(t), (129)

where v(t) € Vi, e(t) € . e(t) = ey(t) + es(t) with eq(t) = — (I, — nK,)' w and
HEQ(t)HQ < \/nT. We have n\; € (0,1) if 5 € [1,2). It follows from (129) that

Er, (i~ 1)) = HIA(S) — IS = TV +w + e(t)]3

= L £ 8) 4 (L — (T — ) w o B0

D3> N2t . 2 3 PN 2 3. 2
S (=) el (1 (o)) o] o]
@ 3,2 -
< §$t+%;(1—(1—’7>\¢)t)2[UTW]j+3T2

3 (ud 1 1« 2 2
gm(22+n>+3-n;(1—(1—mi)t) [UTWL

=FE¢

3 [ ~ 3 ([ ud

< (2—2 +2/\1) +3B: < (2—2 +4) + 3E.. (130)

Here (D follows from the Cauchy-Schwarz inequality, @ follows from (49) in the proof of
Lemma C.4. We then derive the upper bound for F. on the RHS of (130). We define the diag-

2
onal matrix R € R™"*" with R;; = (1 —(1- n)\i)t) . Then we have
E.=1/n -t (URU 'ww')
It follows from (Wright, 1973) that
Pr(l/n -t (URU 'ww')—E[1/n-tr(URU ww')] > u]
< exp <fcmin {nu/||R||2,n2u2/||R||§}) . (131)

for all w > 0, and c is a positive constant. With 1, = nt for all ¢ > 0, we have

n

o? ~\t)?
E[1/n-tr (URUTww')] < 23" (1 ) )
Zmin{lmf&f}
g~ " . l )
S S
g il rnin{1 /):}
= - 77t7 7

~ 1
= R (\/1/ms) < e

. (132)

Here @ follows from the fact that (1 — nXi)t > max{(), 1-— tan-}, and @ follows from

min {a, b} < vab for any nonnegative numbers a, b. Because t < T' < T, we have Ri(\/1/n:) <
1/(one), so the last inequality holds.
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Moreover, we have the upper bounds for | R||, and ||R|| as follows. First, we have
PN
|IR|l, < max <1 - (1 - 77/\1) )
i€[n]
< min {1,7,$X3} <1, (133)

We also have

1 ) 1 n Nt 4
SIRJE = = 1—(1— /\i)
SIRIE= S (1 (1))
< ntimin{l 773X4}
i T
@@imin b B2 (T < — (134)
on T K "= oy

If 1/m, < n3(X\)%, then min{unt,nf@)‘*} = 1/n,. Otherwise, we have ni\4 < 1, so that
mA; < 1and it follows that min {1/m, nf(xi)‘l} < nf:\\‘} < \i. As aresult, @ holds.
Combining (131)- (134), we have
Pr [1/n -tr (URUTWWT) —E [1/n -tr (URUTWWT)] > u] < exp (—cn min {u, uQUzr]t}) .
Let u = 1/ in the above inequality, we have

exp (—enmin {u, u’on, }) = exp (—'n/n;) < exp (—c'nes)

where ¢’ = ¢min {1, o2 }, and the last inequality is due to the fact that 1 /7, > 5% sincet < T < T.
It follows that with probability at least 1 — exp (—O(né2)),

n

1 2
E.<u+—=—. (135)
Ui e

It then follows from (130), (131)-(135) that

. 3 (b
En, (- £ < 2 (B 46)

holds with probability at least 1 — exp (—c'né2).

O
C.3 AUXILIARY RESULTS ABOUT REPRODUCING KERNEL HILBERT SPACES
Lemma C.12 (In the proof of (Raskutti et al., 2014, Lemma 8)). For any f € H (110), we have
2
1 n UT SI i
= M < . (136)
s Ai
T N2
Similarly, for f € Hx (po), we have L 37 | w < ud.
Lemma C.13. For any positive real number a € (0, 1) and natural number ¢, we have
1
l—a)l <e o< —, 137
( o) <e ~ eta (137)

Proof. The result follows from the facts that log(1 — a) < a for a € (0,1) and sup,,cp ue " <
1/e.
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Lemma C.14. ((Rosasco et al., 2010, Proposition 10)) With probability 1 — § over the training data
S, forall j € [n],

~ 21og 2
Y Y (138)

Lemma C.15. With probability at least 1 — 2 exp(—0(ne2)),

€2 < ¢ (139)

Furthermore, with probability at least 1 — 2 exp(—0(ne?)),

82 < ¢e? (140)

.
Here c; is an absolute positive constant depending on o.

Remark. Lemma C.15 shows that with probability at least 1 — 4 exp(—©(ne?)), e2 < 22, which
is also a fact used in kernel complexity or local Rademacher based analysis for kernel regression
in the statistical learning literature. We herein provide a detailed proof to ensure the mathematical
rigor of this paper.

Proof. Define function classes
Fo=Af €Hr: [l SLIfle <t} Fo={f € Mt [1Flag,e < 1151, <t}

where || f[|% == 1/n- 27, f2(x,). Let R(t) be the Rademacher complexity of F, that is,

sup = ZUz‘f(Xi):]

R(t) =R (F) = E{;i}{ai} fer, M
¢ =1

n

and we will also write R(t) = E [supfeft L5 oif(x,), } for simplicity of notations. We let R (t)

be the empirical Rademacher complexity of ]—"t_, that is,

1 n
sup — Zoif(xi).]
feF i

By results of (Mendelson, 2002), there are universal constants ¢, and C, with 0 < ¢, < C,, such
that when 2 > 1/n, we have

~

R(t) =E,

iRk (t) < R(t) < CuRk(t), ceRi(t) < R(t) < CuRk(2). (141)

1

When f € Fi, [[flloo < 10 = 7 It follows from Lemma C.16 that with probability at least

1 — exp(—ne?),
]:t - {f S HKZ Hf”HK < 1, ||an < \/CQ?f2 + 035%} = f\/m (142)

Moreover, by the relation between Rademacher complexity and its empirical version in (Bartlett
et al., 2005, Lemma A.4), for every x > 0, with probability at least 1 — exp(—x),

N - 1 ¢ - 2101
E _sup EZO’Z‘f(Xi) < 2E, _sup EZaif(xi) + 15 (143)
fer foZregs =1 fer oo =1
As a result,
@ 1 n IR
R(t) < E sup =) _oif(x;)
- n

S =
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©) 1 & — 2701
< 2E, _sup ﬁzgif(xi) —1—70
fe}-\/cztgi»c_gsi i=1

~ 2
=2R(\/cat? + c3e2) + Ly
n

Here D follows from (142), and @ follows from (143). It follows from (141) and the above inequal-
ity that

ce)o - oRi(t) <20, /0 - o Rk (\/cat? + c5e2) + Q’I—Tox,VtQ > 1/n.

Rewrite Ry (t) as a function of r = ¢2 as Ry (t) = Fi(r). Similarly, Ry (t) = F (r) with r = ¢2.
Then we have

=~ 2
0Fk(r) < max {2C, /cs, 1} - 0 Fg (cor + c362) + ont G(r),¥Yr > 1/n. (144)
ncy

It can be verified that G(r) is a sub-root function, and let r, be the fixed point of G. Let z >
ce/(2079), then 7§ > 1/n. Moreover, 0 F (1) and o F (r) are sub-root functions, and they have

fixed points €2 and £2, respectively. Set 7 = r, > 1/n in (144), we have

oFk(rg) <rés
and it follows from the above inequality and (Bartlett et al., 2005, Lemma 3.2) that 6% < 1.

Since co > 1, it then follows from the properties about the fixed point of a sub-root function in
Lemma C.17 that

4oToT

e 2c5e2
e <rg < max{20,/c, 1} (czei + 3”) + .
C2 nce

We can choose ¢z such that ¢; > 2¢3 max {2C,, /¢y, 1}2, then the above inequality indicates that

4oTpT

2 =2 0

€ Sy, +——
ncy

where ¢, ¢ is a constant depending on ¢;, C,, c2, c3, and (139) is proved with z = ¢/ nsi where
¢’ > 0 is a positive constant which is chosen such that 4c'o7g/cp < 1.

Similarly, it follows from Lemma C.16 that with probability at least 1 — exp(—ne2),
Foc{retn: 1y, 1Al S Vel v} = F o (149)

It follows from (Bartlett et al., 2005, Lemma A.4) again that for every z > 0, with probability at
least 1 — exp(—x),

1 & N 1 — N 107z
E, sup 55 oif(x;)| <2E sup EE oif(xi)| + 122. (146)
fer /c2t2+c35% i=1 fer /(:2t2+u35% i=1
As a result, we have
~ @ [ 1 & N ]
R(t) < E, sup - E oif(xi)
n
RV orormreg ]
o | 1 & o] 10
< 2E sup - E oif(xi)| + 0%
fer . n — 12n
" 77 Vot ez =1 J
5v/2x 1070
= 2R(y/cat? + c322 < 20, Ry (v/eat? T e322) + —20 |
R(\/cat? + c362) + o = CuRk (\eat® + csel) + on
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where (D follows from (145), and @ follows from (146). Using a similar argument for the proof of
the first inequality in (139), we have

107’0$
12n ’

oy, " 2c
g2 <1k <max{2C,/c;,1}° (02 + 023> e2 +

and the second inequality in (140) is approved with x = © (nsi)

O
Lemma C.16. Let K be a PSD kernel, then with probability at least 1 — exp (—ne2),
gz < callglly + esen, Vg € Hac(1). (147)
Furthermore, with probability at least 1 — exp (fnsfl),
lglls < eallgllze +each. Vg € He (1), (148)
Here co, c3 are positive constants with co > 1.
Proof. The results follow from Theorem A.1. O

Lemma C.17. Suppose ¢: [0,00) — [0, 00) is a sub-root function with the unique fixed point r*.
Then the following properties hold.

(1) Let a > 0, then 9 (r) 4 a as a function of r is also a sub-root function with fixed point r}, and
r* < <r* 4+ 2a.

(2) Letb > 1, ¢ > 0 then ¢(br + ¢) as a function of r is also a sub-root function with fixed point r,
and rf < br* 4 2¢/b.

(3) Letb > 1, then 1, (r) = btp(r) is also a sub-root function with fixed point 7, and 7} < b?r*.

Proof. (1). Let ¢, (r) = ¢(r) 4+ a. It can be verified that v, (r) is a sub-root function because its
nonnegative, nondecreasing and 1), (r)/+/7 is nonincreasing. It follows from (Bartlett et al., 2005,
Lemma 3.2) that ¢, has unique fixed point denoted by 7. Because r* = 9 (r*) < ¥(r*) + a =
Pa(r*), it follows from (Bartlett et al., 2005, Lemma 3.2) that r* < 7. Furthermore, since

42
Yalr* +20) = (" +20) + 0 < 9| T+ a V(20 Ha <+ 20,

T*

it follows from (Bartlett et al., 2005, Lemma 3.2) again that ; < r* 4 2a.

(2). Let ¥y(r) = 9(br + ¢). It can be verified that i, (r) a sub-root function by checking the
definition. Also, we have ¥(b(br* + 2¢/b) + ¢)/1/b(br* + 2¢/b) + ¢ < 1(r*) /+/r*. It follows that

* 26 % 20 " 3C .
Q/Jb(b’f’ +b)—’l/}(b<b’l” +b>+6>§b <T +b2>1"
3c 2c
< e —— ) < brf 4+ —.
_b(r +2b2>_br + b

Then it follows from (Bartlett et al., 2005, Lemma 3.2) that r; < br* + 2¢ /b.

(3). Let ¢ (r) = bip(r). It can be verified that v, (r) a sub-root function by checking the definition.

Also, we have 1 (b?r*) /vVb2r* < b(r*) /\/r*, s0 (b21*) < br* and oy, (b?r*) = bip(b>r*) < b2r*.
Then it follows from (Bartlett et al., 2005, Lemma 3.2) that r; < b2r*, O
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C.4 PROOFS OF THEOREM C.1 AND THEOREM C.2

We need the following definition of e-net for the proof of Theorem C.1 and Theorem C.2.

Definition C.1. (e-net) Let (X, d) be a metric space and let > 0. A subset N (X, d) is called an e-
net of X if for every point 2 € X, there exists some point y € N (X, d) such that d(x,y) < e. The
minimal cardinality of an e-net of X, if finite, is denoted by N (X, d,¢) and is called the covering
number of X at scale .

Proof of Theorem C.1. First, we have Ey,ar(0,x21,) [R(W,X,y)] = K(x,y). For any x € X and
s > 0, define function class

Hx,s = {h(-,x’,y): RIS R:x' eB(x;s)NX,y € X}. (149)

We first build an s-net for the unit sphere X. By (Vershynin, 2012, Lemma 5.2), there exists an s-net
No(X, ||-]l,) of X such that N (X, |[[|,,s) < (1+ 2).
In the sequel, a function in the class H s is also denoted as h(w), omitting the presence of variables

x’ and y when no confusion arises. Let P, be the empirical distribution over {V_\\/T(O)} so that

Ew~p, [h(w)] = h(W(0),x,y). Given x € N(X,s), we aim to estimate the upper bound for
the supremum of empirical process Ev xr(0,x21,) [M(W)] — Ew~p,, [2(W)] when function / ranges
over the function class Hx ;. To this end, we apply Theorem A.1 to the function class Hy s with

N m
W(0) = {WT(O)} . It can be verified that h € [0, 1] for any h € Hx s. It follows that we can
r=1

seta=0,b=1in Theorem A.1. With probability at least 1 — 2e~" over the random initialization
W(0),

sup  |Ewnro,x21,) [R(W)] = Ewnrp,, [(W)]|

h€Hx,s

1 & - 2rx 1 1\ =
< inf (2(1 E m — rh(w,. (0 4+ - -4+ =) ),
S oty B0+ W, [m G| 4T 00 (543) D)

(150)
where {U}Tzl are i.i.d. Rademacher random variables taking values of +1 with equal probability.

It can be verified that Var [h] < Ey, [h(w,x’,y)?] < 1. Setting & = £ in (150), it follows that with
probability at least 1 — 6,

~ 2log3  Tlog 3
sip K y) = RW(0), %, 3)| £ 3R(Hx) + | Tt + S55 as)

x'€B(x;s5)NX,yeX 3m

Here R(Hx,s) = Ew(0),{0,}™ [supheﬂxes L5 orh(w,(0))] is the Rademacher complexity of

r=1

the function class Hy 5. By Lemma C.18, R(Hxs) < —— + BVds(s + 1) + /s + s. Plugging

vm
such upper bound for R(#x ) in (151), we have
sup ‘K(x',y) —E(W(O),X',y)‘
x'€B(x;5)NX,yeX
1 2log 2 Tlog 2
<3( =+ BVas(s+ 1)+ Vot+s)+ —od 4 808 (152)
vm m 3m

1

Setting s = oo, We have
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s K y) = h(W(0),%,)|
x'€B(x;s)NX,yeX

1 BVd(1+ L+ 1 1 2log2  Tlog 2
<3 —+M+—+— + 55 DX3
v/m vm vm m m 3m
1 2 1 Tlog 2
<—|6(1+B 2log = | + — 3. 1
_\/E<6( + BVd) + 0g5>+m(3+ 3 ) (153)

By union bound, with probability at least 1 — (1 4 2m)® & over W(0), (153) holds for arbitrary
x € N(X,s). In this case, for any X’ € X,y € X, there exists x € N (X, ||-||,) such that
|x" — x|, < s, sothat x’ € B(x;s) N &, and (153) holds. Changing the notation x’ to x, the
conclusion is proved.

O

m N
Lemma C.18. Let R(Hx s) = Ew(0),{0,}m {suphefﬂx .23 o.h(w,(0))| be the Rademacher
N ’ r=1

complexity of the function class Hx s, B is a positive constant. Then

R(HMx,s) < % + BVds(s+ 1) + /s + s. (154)

Proof. We have

m

1 N
R(Hx,s) = Ew0),{o,}m l sup — Z o-h(w,.(0),x/, y)]

. m
x'€B(x;s),yeX —1

< Ri+ Ra, (155)

where

1 N
Ri=Ewo Ao sup — Urh(wr(0)7x7 y) )
©O-Aerkiss x'€B(x;s),yex M ;

m

N N

1
R2 =Ew(0) {o,}1, [ B yex M > o (h(Wr(O)a x',y) = h(w.(0),x, y))] . (156)
x X38)s r=1

m N
Here (155) follows from the subadditivity of superemum and the fact that Y o,.h(w,(0),x',y) =

S bW (0),5%,¥) + S0y o (h(w,(0),%,y) = h(w(0),%,¥)).

Now we bound R4 and R separately. For R, we have

m

1 N
Ri=E m - rh r 0 s Ky
1 W(0),{o,} ™, L’EB(S::E),yeX - ;U (wr(0),x Y)]

0 IR
= Ew(o) [E{m}:”l lelelg ooy ; UrxTyII{vT,T(o)szo} H{@,\(O)Tyzo}] ]

1 m
Efoym [sgg EYTH{@,«ofyzo} (Z_; UTXH{‘?VT@)TXZO})H

m

; UT'XH{WT(O)TXEO}

= Ew(o)

LG, 07y=0)

il

@ 1
< Ewo) [E,3m, 516125\\}’”2
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il

m 2
Ew) |Bgoyr, |- (jE;O’H{QTa»szo}>

o ]
= Ew(o) |E(or

Z U’”X]I (0) x>o}

I®

— 5
< Bwo) |0 | Egoyr, (2“]1{@(0%20})

1
= Ew() m Eoym, Z UTUT']I{ +(0) x>0} {W/(o =

re[m],r’' €[m]

©® 1 1
< Ew(o) [m ‘ \/ﬁ] = v (157)

In (157), @ is due to the fact that the operand of the supremum operator does not depend on x’
and the Fubini Theorem. @ follows from the Cauchy-Schwarz inequality. @ is due to the fact that
lyll, =1, ]I{vT/r(o)Tyzo} € {0,1}. @ follows from |x|[, = 1, and ® is due to the Jensen’s in-
equality. ® follows from the property of Rademacher variable, that is, E{a,-};’;l [or00] = ]I{T:r/},
and the fact that ]I{ () x>0} {w 0) x>0} € {0,1}.

For R», we first define

ZH{ ) P ) )

which is the average number of weights in W (0) whose inner products with x and x’ have different
then xTvTrr(O) has the same sign as

signs. Our observation is that, if ’xTvAvr(O)‘ > sHv?zAO) ,
2

x/ T\T\V,,(O). To see this, by the Cauchy-Schwarz inequality,

; (158)

X Tw, (0) = x W, (0)] < [Ix' = x|, |[w, () < 5w ()]

then we have XT\T\VT(O) > SHVT/'T(O)HQ = X/TVT/'T(O) > xTv_\\/T(O) - SHV_‘;T(O)Hz > 0, and

xTw,.(0) < sz?vr(O)H = xTw,(0) < x W, (0) + SHV_\\IT(O)H <0.

Asaresult, @ < .- Z {’xT (O)‘<€ H } and it follows that

[#-c

Ew (o) [Q] < Ew(o) U@ EE L. 0)] <] vmo)(z}] =P {‘XTQT(O)’ = s“QT(O)HQ}

N

‘XTWT(O)’
=Pr | +— <s|, (159)
&l
-,
where the last equality holds because each \z?fr(O)7 r € [m], follows a continuous Gaussian distribu-
tion. By Lemma C.19, Pr )x wr( )| < s| < BV/ds for an absolute positive constant B. According

to this inequality and (159), it follows that
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Ew(o) [Q] < BVds. (160)

By Markov’s inequality, we have

Pr[Q > \/s] < BVds, (161)

where the probability is with respect to the probability measure space of W (0). Let A be the event
that @ > /s. We denote by €2, the subset of the probability measure space of W (0) such that A
happens, then Pr[Q2,] < BV/ds. Now we aim to bound Ro by estimating its bound on ), and its
complement. First, we have

1 & -
Ra = Ew(0). {0}, [ sup — Y o, (h(wr(O),XC y) — h(w.(0),x, y))]

. m
x'€B(x;s),yeX —1

1 —
= EW(O)EQS,{ar s l sup — Z Or (h(wr(o)vxlv Y) - h(wr(0)7 X, Y))]

=1
! x'€B(x;s),yeX m r—1

Ra1

1 «— —
+ IEW 0)¢Qs,{or}"" sup —_ Or h(Wr(0)7X/,Y) - h(WT(O),X, Y)) 5
(O)F2s {or kit x'€B(x;s),yex M ; (

Ra2
(162)

where we used the convention that Ewy(oyea [-] = Ew (o) [T{w(0)ca} X -]. Now we estimate the
upper bound for Ry and R, separately. Let I = {r € [m]: ]I{x'TvT;, (0)>0} =+ H{XTVA\\IM(O)>O} }

When W(0) ¢ Q,, we have Q < /s. In this case, it follows that |I| < m./s. Moreover, when
r € I, either ]I{x'TszT(o)zo} =0or ]I{xTszT(o)zo} = 0. As aresult,

h(w:(0), X", y) = h(w(0),%,y)

’ ‘

X/Ty]I{vaTzr(o)zo} ]I{yTvT/T(())ZO} - XTyI[{xTvT/r(o)zo} ]I{yTvT/r(o)zo}

< max {X/Tyﬂ{x/T?vr(o)zo}]I{yﬂ?vr(o)zo}’XTy]I{xTvT/r(o)zo}]I{yTvT/T(o)zo}}
< max {X’Ty,xTy} <1 (163)

When r € [m] \ I, we have

—

1w (0),%',y) = h(w,(0),x.Y)|

X/Tyﬂ{x'w,(mzo}]I{yT?vr(mzo} - XTyI[{xT?vr(o)zo}]I{yTv?rw)zo}

.
(X/H{X'T@T(o)zo} - XH{xTvﬁr(o)zo}) y]I{yTvT;r(o)zo}

O]
<

(| . —xT, .
X {XTWT(O)ZO} X {xTwr,r(O)EO} 2||y||2

H{yTR-(O)EO}

)
<

T, —xI, +xI, N P ’
w20} T w020} TNk Tw 20} T xTw 0020} |,
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/
S HX _X||2 H{X/TVA\VT(O)ZO} + HXH2 H{X/T@r(o)zo} - ]I{XT\;\’T(O)ZO}
©)
< s, (164)
where (D follows from the Cauchy-Schwarz inequality, @ is due to the fact that |1 {yT\Tv > 0} €
{0,1} and |y|[, = 1. @ follows from x’ € B (x;s), I[{x’ﬂ?v,.(o)zo} e {0,1}, and

H{x'T@,‘(o)zo} = H{XT@T(O)ZO} because r ¢ I.

By (163) and (164), we have

% or (AW, (0),%',3) = (W, (0), x,¥))

= S o (B 0), % y) b 0)53)) 4 S o (AW 0), 5 y) — (W, (0), %)
rel re[m]\I

s1ZI|h<wr<o>,x',y>—h(v?rm),x,y)\+ S [rn(0), %, 3) = bW (0), %, )|

where (D uses the bounds in (163) and (164).
Using (165), we now estimate the upper bound for Ros by

1 & — —
Raz = EW(O)&QS,{OT _ [ sup — Z Or (h(wr(0)7X/7 y) — h(w,(0),x, y))]

x'€B(x;s),yeX m —1
< Bwyga. oy, [V 5] <Vsts. (166)
When W (0) € Q,, by the second last inequality of (164), we have

‘h(@r(o),x/,y) - h(vTIT(O),x,y)’

< %" = x|

+ Il

]I{X/T‘;;T(O)ZO} <s+1. (167)

]I{x/TvT/,.(o)zo} - ]I{xTvT/T(o)zo}

According to (167), for Ro1, we have

x/'€B(x;s),yex M ]

1 & ~ ~
Ro1 = EW(O)EQS,{07~ ) l sup — Z Or (h(WT(O), le y) - h(wr(0)7 X, Y))]

N

> Jor (nw, (), y) —h(wr<o>,x,y>)\]

1
< Ew(0)eq, {0, 1™ [ sup —

x'€B(x;s),yex M —1

D
< Ew(oyeq.,{or}m, 15 +1] = (s + Pr[Q,] < BVds(s + 1) (168)

=

Combining (162), (166), and (168), we have the upper bound for R as

Ro=Rao1 + Ras < B\/(E(S'f' 1)+\/§+S (169)
Plugging (157) and (169) in (155), we have
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1
R(Hxs) <R1+Ra < NG + BVds(s +1) + /5 + 5. (170)

O
Lemma C.19. Let w ~ AN(0,x%1;) with x > 0. Then for any ¢ € (0,1) and x € X,

.
Pr [x w| < 5} < B+/ds where B is an absolute positive constant.

Twll,
Remark. In fact, B can be set to 2 (27r)71/2 when d — oo.

T . . . .
Proof. Let z = X 1t can be verified that 22> ~ z; where z; is a random variable following

Twil
the Beta distribution Beta(%, %) Therefore, the distribution of z has the following continuous
probability density function p, with respect to the Lebesgue measure,
d—3
p(r) = (1 —2%) 7 Tyay<ny /B, (171)

where B’ = [ 711 (1—22) “3* dz is the normalization factor. It can be verified by standard calculation

that 1/B’ < BT\/E for an absolute positive constant B.

Because 1 — 22 < 1 over x € [—1, 1], we have B’ < 1. In addition,

|x"w]| [ 2y 453
Pr <e :Pr[fegzgs]:—// (1 —22)"% dz < BVde, (172)
[[wll, B
where the last inequality is due to the fact that 1 — 22 < 1 for z € [—¢,¢] with e € (0,1). O

Proof of Theorem C.2. We follow the same proof strategy as that for Theorem C.1.

First, we have Ey.r(0,x21,) [VR(W,x)] = Pr[|w'x| < R]. Forany x € X and s > 0, define
function class

Vi,s = {vr(-,x): RY 5 R:x' € B(x;s)N € X} (173)

We first build an s-net for the unit sphere X. By (Vershynin, 2012, Lemma 5.2), there exists an s-net
No(X, ||[l5) of X such that N(X, [|-[l5,s) < (1 + 2)".

In the sequel, a function in the class Vy is also denoted as vr(w), omitting the presence of x when
no confusion arises. Let P, be the empirical distribution over {?VT(O)} and Ewp, [vr(W)] =
vr(W(0),x).

Given x € N,(X,|-||5), we aim to estimate the upper bound for the supremum of empirical process
Ew~nr(0,:21,) [VR(W)] = Ew~p,, [vr(W)] when function vy ranges over the function class Vy . To
this end, we apply Theorem A.1 to the function class Vx , with W(0) = {vés/r(())}mﬂ. It can be

verified that v € [0,1] for any vg € Vy 4. It follows that we can set @ = 0,b = 1 in Theorem A.1.

Setting o = % in Theorem A.1, then with probability at least 1 —2e~" over the random initialization
W (0),

sup | Ewn(o,x21,) [VR(W)] = Ewnp,, [VR(W)]|

URGVX,S
. 1 Zm — 2re T(b—a)x
- aelg),l) ( WO dorkres |"URS;l£€’S m r:10 vR(Wr( )>] + m + 3m ) 74
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where {c'},"", are i.i.d. Rademacher random variables taking values of +1 with equal probability.

It can be verified that Var [vg] < Ew [vr(w,x)?] < 1, so r can be set to 1. It follows that with
probability at least 1 — 6,

2 2
sup  [5r(W(0),x) = Pr[|w x| < R]| < 3R (M) + 210% + %. (175)

x'€B(x;5)NX

Here R(Vx,s) = Ew(0) {0}, [SWPusevy .

e

o) R(;VT(O)):| is the Rademacher complexity

2 p2y2
_ (x®-R}) m)

of the function class V . By Lemma C.21, R(Vx s) < (BVd+1)Vm™2 + s+ -
m- 2+s

Plugging such upper bound for R(Vx s) in (175), we have

sup  [or(W(0),x') — Pr[|w'x/| < R]|
x'€B(x;5)NX

(r*—R3)” )
eXp (— R M 2log 2 Tlog 2
<3| (BVd+1)\ym 2 +5s+ 4 T e Y (176)
vVmT2 +s m 3m

1

Setting s = -, we have
m

sup  |[0r(W(0),x") —Pr[|w x| < R]|
x'€B(x;s)NX

(v*—R§)? )
€Xp (_ M 2log 2 Tlog 2
<3| (BVa+ 1) m+ =+ : IR T A ¥
m 11 m 3m

m*§+m

(177)

By union bound, with probability at least 1 — (1 4 2m)® & over W(0), (177) holds for arbitrary
x € N(X,s). In this case, for any X’ € X, there exists x € N (X, s) such that [|x’ — x]||, < s, so
that x’ € B (x;s) N X, and (177) holds.

Note that Pr [|w x| < R] < \/22%;,{ for any x’ € X, changing the notation x’ to x completes the
proof.

O
Lemma C.20. Let w € R be a Gaussian random vector distribute according to w ~ N(0, x%1).

/ vm r? )2 /
Then Pri|lw|, > R > 1 —exp | — (5~ — NG for any R’ > 0.

2
Proof. Let X = %, then X follows the chi-square distribution with m degrees of freedom, that
is, X ~ X2(m). By (Laurent & Massart, 2000, Lemma 1), we have the following concentration
inequalities for any z > 0,

Pr[X —m > 2v/mz 4 2z] < exp(—z),Pr [m — X > 2y/ma] < exp(—z). (178)

’ 2 /
Setting © = (@ - 2\}%2%2) in the second inequality in (178), we have m — 2/mx = %2 and

R
Pr|X > | 21— exp(~a). (179)
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It follows from (179) that

2
Jm R
Pr[[wl, > R]>1—exp(-z)=1—exp | — (2 N ) (180)

which completes the proof.
O

Lemma C.21. Suppose R for an absolute positive constant Ry < k. Let R(Vyx ) =

<
. 1
W(0),{or}y bup’UREVx,s m
class Vx . Then

Ry
Z ( ~(0 ))} be the Rademacher complexity of the function

(x*—R{)?
EXp|\ =gz M
R(Vxs) < (BVd+1)\/m™7 + s+ 5/47 ) (181)
m-2+s

where B is a positive constant.

Proof. We have

R(Vx,s) = EW(O),{O'T m, l sup ZUTUR )]
"eB(x;s) T
< Ri+Ra, (182)
where
Ri = Ew(0),{o,}m, [ sup ZUTUR )] ;
'eB(x;s) T
R =Bwoy oy | sup — iar (UR(?V,(O),X/) - vR(v?T(o),x)) . (183)
= x'€B(x;s) T r—1

Here (182) follows from the subadditivity of superemum and the fact that > o,v r(W,(0),x') =
r=1

N

wr(0)7x)).

Now we bound R and R separately. For R, we have

5> aon(we(0),5%) + 3 o (0 (W,(0),%) = vl

r=1 r=1

Rl = EW(OL{Ur}l”:l [ /:];1%) ZU'I"UR )] =0. (184)
X xs r=1

For R, we first define

1 m
"= {{w ol e ofsr} |

which is the number of weights in W (0) whose inner products with x and x’ have different signs.

Note that if HXT?VT(O)‘ —R‘ > sHvT/T(O) e Lo len) = Tjur To see

w.(0)| <R}’
this, by the Cauchy-Schwarz inequality,
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X Tw, (0) = x W (0)] < 1% = x],[w.(0)| <5
2

W (0)]

; (185)

T

thenwehave‘x VAVT(O)‘—R>SHVTIT(O)H =
2

x/T?vT(O)‘—R > ‘XTQT(O)‘—SHQT(O)HQ—R >

0, and ‘XT@T(O)‘ “R< —SHQT(O) xTw,(0)

| =
2

“R< |XT@T(0)‘ + SHV?T(O)HQ ~R<0.

As a result, Q < % Tgl ]I{|’xTvT/,,,(O)|7R|§s| ‘;T(O)HQ}. For any fixed » € [m], by Lemma C.20,

2y/mk2
for the constant Ry < . Because R < Ry, it follows that

N , 2
Pr [er(o)H2 > R’} >1—exp (— (gj _ R ) > holds for any B’ > 0. Set R’ = /mRq

R
Prl-——— <m 2| >Pr

[

R
w0
-0,

[N

2 p2y2
<m >1—exp —Mm . (186)
4k

2

Due to the fact that 1 { ’ ‘x we have

T orfzefw 0], } = s ol

w0}

Ew (o) {]I{\|xTwr<o>|—R|SsH3T(O>||2}}

v7r~<0>||2}}

< EQT(O) [H{|XT$,,.(0>|§R+S)

@®
< EQT(O): R 3 {]I{‘XT@T(o)‘gRJrsHQTm)HQ}] +E$T(O): R .3 [ {’x wT(O)’<R+usT(O)” }
[[wr@f], [[wr@]l,
®) |: (/12 - Rz)z
< E_ 1|1 N 1 N + exp (—70771)
W0 s {[<m%- @] <=3 4050, } At
x"w,.(0) 2 _ p2)2
B kI S N (-,
[, :
2 2\2
C%) B\/ﬁ(mf% +s)+exp (—L ;ﬂfO) m) , (187)
where we used the convention that E_. (0)eA [] = E?v,,.(o) []I{A} X ] in @O with A being an event.
xTwT 1 1
@ is due to (186). By Lemma C.19, Pr “Wﬂ <m7z+4+s| < B\/E(m_f + s) for an absolute
constant B, so Q) holds.
According to (187), we have
E Q Ly
wio (@< m 2 Y| pers oA <50}
< BVd(m™% + s) + exp (—(;fO)m) : (188)
K

Define s’ :== m~2 + s. By Markov’s inequality, we have

2 2\2
exp (—7('{ Zj") m)

Vs’ ’

Pr[Q > V¥ < BV + (189)
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where the probability is with respect to the probability measure space of W(0). Now we aim to
bound R, by estimating its bound on €2, and its complement. First, we have

1 « N ~
Ry = EW(O),{UT}:fL:l [ sup Z Or (UR(WT(O)a X/) - UR(WT(O)a X)>‘|

x'€B(x;s) T r—1
m

1 N N
= IEW(O): Q>Vs {o.3m [ sup .. Z Or (vR(WT’(O)v X/) - UR(WT(O)a X))]

.g) M
x'€B(x;s) r—1

Ra1
m

1 N N
T Ew(0): Qv foym, [ sup  — Z(’r (UR(Wr(O)vxl) - vR(WT(O)vx))] ,  (190)

.g) M
x'€B(x;s) —1

Ra2

Now we estimate the upper bound for Roy and Ro; separately. Let

I= {T € [m]: 11{ x T, (0)] <R} 7 ][{|xT$r(0)§R}}'

When Q < Vs, Il < mv's’. Moreover, when r € I, either ]I{
I[{‘XTV_\;T(O)|§R} = 0. As aresult,

< Two(0)| <R} T 0 or

’ N N

vr(wr(0),x') — vR(wT(O),X)’ - ‘]1{

x/TvT;T(o)|§R} - ]I{|xTvT/T(O)‘§R}

< max {1,

<1

x/T‘?vr(o)ng}’ ]I{|xTv?zr(o)§R}}

(191)
When r € [m] \ I, we have

— [N

vr(w.(0),x') — vR(wr(O),x)‘ - ’11{

=0. (192)

xfTszr(o)}gR} - ]I{‘xTvT/r(o)’gR}
By (191) and (192), we have

% i o, (UR(vT/T(O), x') — vp(w,(0), X))
=1

—

= =3 o0 (0rWo(0).%) = 0n @ (0)3)) + = 3 0 (vl (0),X) — om0 (0),%))

rel re[m]\I
]. — —_ ]_ — —
<=y ‘UR(WT(O),X’) - vR(wr(O),x)‘ = > ’vR(WT(O),x’) - vR(WT(O),x)’
rel re[m]\1
@D ’
DV g (193)
m

where (D uses the bounds in (191) and (192).

Using (193), we now estimate the upper bound for Roo by

N

1 & R
Raz = Ewyo): gevir (o [ sup Zor(vﬂwwoxx’)—vR<wT<o>’x>)]

.g) M
x'€B(x;s) —1
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< Ew(o): qeva o, |V9] = V5. (194)

r=1

—

When Q > V/s/, by (191), we still have vR(v_s\f,,(())7 x') —vr(w,(0),x)| < 1. For Ry, we have

N

1 & -
Ro1 = EW(O): Q>V5 o 3™, [ sup = — Z Or (UR(WT(O)v X/) - UR(WT(O>7 X))]

.g) M
x'€B(x;s) M I

1 & N BN
< Ewio): @2 Voo, [ up o3 Jor (v (0).x) = vn(W: (0),)) \1
X X;$ r=1
exp (_ (R m)

Vs

where the last inequality is due to (189). Combining (190), (194), and (195), we have the upper
bound for R5 as

< Ev). @avifonye, 11 = Pr[Q 2 V5] < BVAS + . (195)

2 212
exp (—7“ ;;f") m)

Ry = Ro1 + Raa < (BVd+ 1)V + (196)
Vs
Plugging (184) and (196) in (182), we have
exp (- LA )
R(Vx,s) S R1+Ra < (BVd+1)Vs + : (197)
Vs
which completes the proof.
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Figure 2: Illustration of the test loss by GD
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D SIMULATION STUDY

We present simulation results for GD in this section. We randomly sample n points {;Z} - asa
i.i.d. sample of random variables distributed uniformly on the unit sphere in R%°. n ranges within
[100, 1000] with a step size of 100. We set the target function to f*(x) = s ' x where s ~ Unif ()
is randomly sampled. We also uniformly and independenly sample 1000 points on the unit sphere
in R as the test data. We train the two-layer NN (1) using either GD by Algoirthm 1 or GD
by Algoirthm 1 with m =< n? on a NVIDIA A100 GPU card with a learning rate = 0.1, and
report the test loss in Figure 2. It can be observed that early-stopping is always helpful in training
neural networks with better generalization, as the test loss initially decreases and then increases
with over-training. Figure 2 illustrates the test loss with respect to the steps (or epochs) of GD for
n = 100, 500, 1000. For each n in [100, 1000] with a step size of 100, we find the step of GD where
minimum test loss is achieved, denoted by t,, which is the empirical early stopping time. We note
that the theoretically predicted early stopping time is £, = n~% (=1 and we compute the ratio
of early stopping time for each n by tn /&n. Such ratios for different values of n are illustrated in
the bottom right figure of Figure 2. It is observed that the ratio of early stopping time is roughly
stable and distributed between [8, 10], suggesting that predicted early stopping time is empirically
proportional to the empirical early stopping time.
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