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Abstract

Vector Gaussian processes are becoming increasingly important in machine learning and
statistics, with applications to many branches of applied sciences. Recent efforts have al-
lowed to understand smoothness in scalar Gaussian processes defined over manifolds as well
as over product spaces involving manifolds.
Under assumptions of Gaussianity and mean-square continuity, the smoothness of a zero-
mean scalar process is in one-to-one correspondence with the smoothness of the covariance
kernel. Unfortunately, such a result is not available for vector-valued random fields, as the
way each component in the covariance kernel contributes to the smoothness of the vector
field is unclear.
This paper challenges the problem of quantifying smoothness of matrix-valued continuous
kernels that are associated with mean-square continuous vector Gaussian processes defined
over non-Euclidean product manifolds. After noting that a constructive RKHS approach
is unsuitable for this specific task, we proceed through the analysis of spectral properties.
Specifically, we find a spectral representation to quantify smoothness through Sobolev spaces
that are adapted to certain measure spaces of product measures obtained through the ten-
sor product of Haar measures with multivariate Gaussian measures. Our results allow to
measure smoothness in a simple way, and open for the study of foundational properties of
certain machine learning techniques over product spaces.

1 Introduction

1.1 Context

The paper deals with the smoothness of continuous matrix-valued kernels associated with mean-square
continuous vector-valued Gaussian processes defined on the product of two spaces, with one of them being
non-Euclidean, namely a hypersphere of d dimensions embedded in a (d + 1)-dimensional Euclidean space.
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Gaussian processes (Seeger, 2004) are ubiquitous in machine learning, statistics and numerical analysis. Vec-
tor (i.e., multivariate) Gaussian processes have recently received attention after the constructive approaches
proposed by Hutchinson et al. (2021). The impact of such processes on the machine learning community
ranges from regression (Chen et al., 2023), Bayesian optimization and active learning (see the discussion in
Hutchinson et al., 2021, and references therein), to relevance vector machines (Quinonero-Candela, 2004),
sensor networks (Osborne et al., 2008), text categorization (Kazawa et al., 2005), informance vector machines
(Lawrence et al., 2002), gradual learning (Yuan et al., 2022), and multitask learning (Bonilla et al., 2007;
Xing et al., 2021).

Vector Gaussian processes arise within the framework of multiple output learning of a vector-valued function
f = (f1, . . . , fp)⊤ that is observed over a finite set Y = f(X) := {f(x1), . . . , f(xN )}, from training data x
collected over the training set X = {x1, . . . , xN }. Specifically, we suppose that x is defined over a product
space Υ(d,k) = Sd × Rk, with Sd being the unit sphere of dimension d and Rk being the k-dimensional
Euclidean space. The output space Y, where f is defined, has dimension p.

The problem can be tackled either assuming that f belongs to a reproducing kernel Hilbert space (RKHS)
of vector-valued functions or assuming that f is drawn from a vector Gaussian process.

We start by illustrating the RKHS perspective for vector-valued functions that are reproduced through
matrix-valued kernels, denoted K̃ throughout, being matrix-valued functions from Υ(d,k) ×Υ(d,k) into Rp×p.
A vector RKHS is a Hilbert space, H

K̃
, composed of vector-valued functions f such that, for all c ∈ Rp and

all x ∈ Υ(d,k), the linear combination f(x)⊤c is obtained through

f(x)⊤c = ⟨f(·), K̃(·, x)c⟩H
K̃

, (1)

where ⟨·, ·, ⟩H
K̃

is the inner product on H
K̃

. The kernel K̃ is positive semidefinite: for any arbitrary system
{ck}N

k=1 of p-dimensional real vectors and any finite collection of points {xk}N
k=1 in the input space, we have

N∑
h=1

N∑
k=1

c⊤
h K̃(xh, xk)ck ≥ 0.

For a thorough review about RKHS for both scalar and vector-valued settings, as well for material about
regularization in RKHS, the reader is referred to Hofmann et al. (2008) and Alvarez et al. (2012).

Although RKHS are a powerful instrument to quantify smoothness of scalar Gaussian processes, the same
does not hold for the case of vector Gaussian processes, where the role of the matrix-valued kernel remains
unclear. Hence, we opt here for the alternative of matrix-valued kernels through vector-valued Gaussian
processes.

1.2 Why Study Smoothness? Why Product Spaces?

Smoothness plays a fundamental role in numerous applications to machine learning and statistics. We men-
tion here the most recent development in Gaussian process regression. The recent work by Rosa et al. (2023)
deals with Bayesian contraction rates under the framework of Gaussian process regression with random de-
sign. Posterior construction rates provide a nice way to illustrate how a given class of posteriors concentrates
around the true data generating process. Rosa et al. (2023) prove that the contraction rates depend on the
smoothness of the underlying Gaussian process, the prior of which is defined through a Matérn kernel (Porcu
et al., 2023).

Well-known results from probability theory connect the smoothness properties of a scalar Gaussian process
with those of the associated kernel (Yadrenko, 1983; Adler and Taylor, 2007). Unfortunately, these results
are not available for the vector-valued case, and the same definition of RKHS as in Equation (1) clearly shows
that the contribution of each component in K̃ to the smoothness of Z is unclear. This explains the lack of
literature in this direction and the fact that the available contributions are centered to the smoothness of
the kernel K̃ rather than the smoothness of Z.
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An intuitive way to look at the geometric smoothness properties of the kernel is by working under the
framework of Sobolev spaces.

Another relevant motivation for studying smoothness of Gaussian processes on manifolds is related to the
use of computational tools of kernel cubature and kernel discrepancy beyond the usual Euclidean manifold.
Barp et al. (2022) illustrate the importance of Sobolev spaces when quantifying kernel cubatures. These
topics have been popular in statistics, machine learning, and numerical analysis. Kernel cubature has been
applied in several contexts, and the reader is referred to Hubbert et al. (2023), with the references therein.

Studying smoothness on non-Euclidean manifolds has been important to several disciplines. For the special
case of the manifold being a d-dimensional sphere, applications include kernel cubature (Marques et al.,
2013; 2022), Stein’s method to numerically calculate posterior expectations in directional statistics (Barp
et al., 2022), and approximation of solutions of some classes of PDEs (see e.g. Fasshauer, 2007). Not to
mention that certain classes of kernels on spheres ensure that the solution of the PDE belongs to the RKHS
and, through the use of an appropriate kernel method, can be consistently approximated (see Fuselier and
Wright, 2009; 2012; Hubbert et al., 2015).

The product space Υ(d,k) has received increasing attention in the statistics and machine learning communities
(Atluri et al., 2018; Wang et al., 2022; Porcu et al., 2016; 2021). Applications from several branches of science
justify this context, such as

• atmospheric, environmental and oceanographic sciences: variables such as air pressure, air humidity,
wind speed, surface temperature, solar radiation, aerosol optical depth, daily ozone concentration,
ground level concentration of particulate matter, ocean current velocity, sea surface height anomaly,
sea surface salinity, sea surface chlorophyll-a concentration, or sea water density are indexed by the
position (longitude and latitude) on planet Earth (S2) and by time (R1) (Castruccio and Stein, 2013;
Oleson et al., 2013; Faghmous and Kumar, 2014; Jeong et al., 2017; Wu et al., 2022);

• geophysics: seismic and volcanic events can be represented by point processes indexed by a position
on planet Earth (S2) and by time (R1) (Illian et al., 2008; Connor et al., 2009);

• structural geology and geotechnics: variables such as the linear discontinuity frequency, the rock
quality designation, or the uniaxial compressive strength, used to measure the geotechnical quality
of a rock mass, are indexed by the position (easting, northing, elevation, i.e., a point of R3) of the
rock core sample in the rock mass and by the orientation (azimuth and dip, i.e., a point of S2) of
this sample (Sánchez et al., 2019; 2021);

• social science: crime and security data can be indexed by their position in the geographic space (R2)
and by time at the scale of a day (S1) (Tompson et al., 2015; Shirota and Gelfand, 2017);

• neuroscience: functional magnetic resonance imaging (fMRI), electroencephalography (EEG) and
magnetoencephalography (MEG) signals are indexed by the position on the human head (S2) and
by time (R1) (Wingeier et al., 2001; Atluri et al., 2016).

1.3 Challenges and Contribution

The smoothness of scalar Gaussian processes was studied in Lang and Schwab (2013) for the sphere, and in
Clarke De la Cerda et al. (2018) for the product of a sphere with R.

While scalar Gaussian processes are well understood, the literature on smoothness of matrix-valued kernels
in machine learning is scarce, with the notable exception of Cleanthous (2023), who provides an ingenious
construction for a Gaussian process defined over a ball embedded in Rk.

Our paper contributes in this direction. Specifically,
a) Section 2 considers mean-square continuous zero-mean vector Gaussian processes defined over the space
Υ(d,k) as being previously defined;
b) we take a spectral path to smoothness of their covariance kernels in Section 3, through a proper spectral
representation for a vector Gaussian process on Υ(d,k), and consequently for the related matrix-valued
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kernel;
c) we construct, in Section 3.3, a suitable Sobolev space for such a matrix-valued kernel;
d) Section 3.4 provides a spectral characterization of smoothness of the kernel.

1.4 Outline and Notation

Section 2 provides a succinct mathematical background. Section 3 illustrates the way to construct proper
Sobolev spaces through spectral representations over the space Υ(d,k). Proofs are technical and deferred to
Appendix A. Section 5 concludes the paper with a discussion.

Hereinafter, Z is the set of integer numbers, Z+ = {κ ∈ Z : κ ≥ 0}, i stands for the complex imaginary
unit, p, d and k for positive integers, and ∥ · ∥ for the Euclidean norm on Rk. Bold letters denote vectors or
matrices of size p × p. A refers to the conjugate of a complex matrix A, and A⊤ to its transpose. In order
to work in multidimensional spaces, we consider the multi-index notation: for α = (α1, . . . , αk) ∈ Zk

+ and
h = (h1, . . . , hk) ∈ Rk, we set

|α| =
k∑

i=1
αi , α! =

k∏
i=1

αi! , ∂αf(h) = ∂α1
h1

∂α2
h2

. . . ∂αk

hk
f(h),

and for α, β ∈ Zk
+

αβ =
k∏

i=1
αβi

i , α ≥ β ⇐⇒ αi ≥ βi, ∀ i,

with the usual understanding that 00 = 1.

2 Vector Gaussian Processes

Let
Υ(d,k) := Sd × Rk = {x = (x, t) ∈ Rd+1 × Rk : ∥x∥ = 1, t ∈ Rk}.

A p-variate (vector) Gaussian process, {Z(x) : x ∈ Υ(d,k)} is an uncountable collection of random vectors
such that, for any finite collection of points x1, . . . , xN ∈ Υ(d,k), the vector (Z(x1)⊤, . . . , Z(xN )⊤)⊤, having
dimension (p × N) × 1, is a Gaussian random vector. In what follows, without loss of generality, we suppose
that such a Gaussian process has a zero mean at any point x in Υ(d,k).

A p-variate covariance kernel on Υ(d,k) is a matrix-valued function

K̃ : Υ(d,k) × Υ(d,k) → Rp×p

defined as
K̃ (x, x′) = [K̃ij (x, x′)]pi,j=1, x, x′ ∈ Υ(d,k),

where K̃ij (x, x′) = K̃ji (x′, x) for all i, j ∈ {1, . . . , p} and x, x′ ∈ Υ(d,k), and where K̃ is positive semidef-
inite, that is, the pN × pN block matrix [K̃ (xm, xn)]Nm,n=1 is symmetric and nonnegative definite for any
set of points x1, . . . , xN ∈ Υ(d,k).

Hereinafter, we focus on the case where the mapping K̃ is continuous, isotropic on Sd and stationary in Rk,
meaning that

K̃(x, x′) = K
(
⟨x, x′⟩, t − t′), x = (x, t), x′ = (x′, t′), (2)

with ⟨·, ·⟩ denoting the dot product in Rd+1, and K : [−1, 1] × Rk → Rp×p being a continuous mapping.
Throughout, K will be called a kernel for simplicity, albeit this should be called the isotropic profile of the
kernel K̃. This will not give rise to confusion as, from now, only the mapping K will be used.
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On the one hand, Alegría et al. (2019, Theorem 6.2) proved that a continuous kernel K of the type (2) can
be uniquely decomposed as follows:

K(s, h) =
∞∑

n=0
dim(Hd

n) Cd
n(h)G(d−1)/2

n (s), s ∈ [−1, 1], h ∈ Rk, (3)

for a sequence {Cd
n(·)}∞

n=0 of matrix-valued stationary covariance kernels such that {dim(Hd
n)Cd

n(0)}∞
n=0 is

summable. For d > 1, G(d−1)/2
n is defined in terms of the Gegenbauer (ultraspherical) polynomial G

(d−1)/2
n ,

normalizing as G
(d−1)/2
n = G

(d−1)/2
n /G

(d−1)/2
n (1), while for d = 1, G0

n = Tn is the nth Chebyshev polynomial
of the first kind.

On the other hand, the generalized addition theorem for spherical harmonics (Erdélyi, 1953, Equation 11.4.2)
states that ∑

q∈An,d

Yn,q,d(x)Yn′,q′,d(x′) = dim(Hd
n)G(d−1)/2

n (⟨x, x′⟩), x, x′ ∈ Sd, n ∈ Z+, (4)

where An,d is a set of finite cardinality dim(Hd
n) associated with the spherical harmonics Yn,q,d, which form

an orthonormal basis for all Lebesgue-square-integrable measurable functions on the d-dimensional sphere
Sd.

Owing to Equations (3) and (4), the Karhunen theorem on the generalized spectral representation of ran-
dom processes (Yaglom, 1987b, Equation (2.31’)) allows decomposing a mean-square continuous p-variate
Gaussian process Z having a zero mean and K as its covariance kernel in the following fashion:

Z(x) =
∞∑

n=0

∑
q∈An,d

Ad
n,q(t)Yn,q,d(x), x = (x, t) ∈ Υ(d,k), (5)

where {Ad
n,q(·)} is a sequence of mean-square continuous zero-mean vector Gaussian processes in Rk such

that (cov refers to the covariance operator)

cov
(
Ad

n,q(t), Ad
n′,q′(t′)

)
= δn,n′ δq,q′ Cd

n(t − t′), t, t′ ∈ Rk, n, n′ ∈ Z+, q ∈ An,d, q′ ∈ An′,d. (6)

The reciprocal, that a vector Gaussian process of the form (5) has a covariance kernel of the form (3), has
been established in the scalar case (p = 1) by Clarke De la Cerda et al. (2018, Proposition 3.1). For the
reader’s convenience, we sketch the proof for the vector case. For any x = (x, t) and x′ = (x′, t′) in Υ(d,k),
the bilinearity of the covariance implies

K̃(x, x′) = cov (Z(x), Z(x′))

= cov

 ∞∑
n=0

∑
q∈An,d

Ad
n,q(t)Yn,q,d(x),

∞∑
n′=0

∑
q′∈An′,d

Ad
n′,q′(t′)Yn′,q′,d(x′)


=

∞∑
n=0

∑
q∈An,d

∞∑
n′=0

∑
q′∈An′,d

Yn,q,d(x)Yn′,q′,d(x′) cov
(
Ad

n,q(t), Ad
n′,q′(t′)

)

=
∞∑

n=0

 ∑
q∈An,d

Yn,q,d(x)Yn′,q′,d(x′)

 Cd
n(t − t′)

=
∞∑

n=0
dim(Hd

n) Cd
n(t − t′)G(d−1)/2

n (⟨x, x′⟩),

with the last two equalities derived from Equations (6) and (4).

Equation (5) can be coupled with the spectral representation of the mean-square continuous stationary
random process Ad

n,q(·) (see Yaglom (1987a, Equation (4.70)) or Chilès and Delfiner (2012, Equation (2.16)))
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to attain

Z(x) =
∞∑

n=0

∑
q∈An,d

∫
Rk

ei⟨t,ω⟩ξn,q(dω)Yn,q,d(x), x = (x, t) ∈ Υ(d,k), (7)

where {ξn,q(d·)}∞
n,q is a sequence of vector-valued measures with orthogonal increments, that is,

E
(

ξn,q(A)ξn′,q(B)
)

= δn=n′Fn(A
⋂

B), for all q, n, n′ and all Borel sets A and B in Rk, where Fn is
a matrix-valued measure of bounded variation such that Fn(dω) is a positive semidefinite matrix for all
ω ∈ Rk.

Under the additional condition
∑

n dim(Hd
n)

∫
Rk ξn,ζ(dω) < ∞, Equation (3) becomes

K(s, h) =
∞∑

n=0
dim(Hd

n)
( ∫

Rk

ei⟨h,ω⟩Fn(dω)
)
G(d−1)/2

n (s), s ∈ [−1, 1], h ∈ Rk. (8)

Clearly, Cd
n is real matrix-valued if, and only if, Fn(A) = Fn(−A), for all Borel sets A in Rk. A stronger

condition for this to happen is that ξn(−A) = ξn(A)⊤. Throughout, we shall always work under the
assumption of real matrix-valued covariance kernels.

3 Understanding Regularities of Matrix-Valued Kernels

To study the properties of the matrix-valued kernel K, an intuitive approach is to provide a Karhunen-Loève
expansion of a vector Gaussian process in Rp, with input space Υ(d,k). Since the product space Υ(d,k) is not
compact, an extension of the arguments provided for the scalar case by Clarke De la Cerda et al. (2018)
suggests that a sensible strategy is needed to provide a legitimate Karhunen-Loève expansion of vector-valued
functions. There are indeed two possibilities:
a) to compactify the space Υ(d,k) by considering the space Υ(d,k)

T := Sd × [0, T ]k, with T a positive constant.
Under such a construction, a Karhunen-Loève expansion can be namely obtained. Yet, this approach has
a cost in that it does not allow for traditional spectral expansions as much as in Equations (7) and (8),
respectively;
b) to consider the measure space (

Υ(d,k),B, µΥ(d,k)

)
, (9)

where B is the Borel sigma-algebra over Υ(d,k), and where µΥ(d,k) is a product measure defined through

µΥ(d,k)(dx) = σd(dx) × ν(dt), x ∈ Υ(d,k),

where σd is the Haar measure, i.e., the Lebesgue measure for the sphere, and ν is the Gaussian measure in
Rk with zero-vector mean and identity covariance matrix, i.e.,

ν(dt) = (2π)−k/2e−∥t∥2/2dt . (10)

Under this choice, the Karhunen-Loève expansion for the vector Gaussian process Z can be attained at the
expense of defining a suitable orthonormal basis that is legitimate for this measure space. Our paper takes
this path. Hence, we start by defining a proper orthonormal basis for the case considered here.

We illustrate our routine through the following scheme.
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The Route to Smoothness

1. Consider the measure space in Equation (9).

2. Provide an orthonormal basis.

3. Provide a suitable Karhunen-Loève expansion.

4. Define a proper Sobolev space.

5. Quantify smoothness of the kernel K.

The following sections detail each of the steps in this routine.

3.1 A Constructive Approach to Orthonormal Bases

Consider the normalized Hermite polynomials Hκ on the real line defined by (Olver et al., 2010, Table 18.3.1)

Hκ(ξ) = (−1)κ

(κ!)1/2 e
ξ2
2

dκ

dξκ
e

−ξ2
2 , ξ ∈ R, κ = 0, 1, 2, . . . .

The family {Hκ}κ∈Z+
forms a complete orthonormal system for L2(R, ν), with the standard Gaussian mea-

sure dν = (2π)−1/2e−ξ2/2dξ, i.e.,

1√
2π

∫ ∞

−∞
Hκ(ξ)Hκ′(ξ)e

−ξ2
2 dξ = δκ,κ′ . (11)

Moreover, the l-th derivative of the Hermite polynomials satisfies

dl

dξl
Hκ(ξ) =

√
κ!

(κ − l)! Hκ−l(ξ). (12)

On Rk, k ≥ 2, we define the normalized multiple Hermite functions Φα, with α ∈ Zk
+ through the identity

Φα(h) =
k∏

i=1
Hαi

(hi) , h ∈ Rk. (13)

It can be verified via Fubini’s theorem, by Equation (11) and the definition of ν in Equation (10), that these
functions form an orthonormal basis of L2 (

Rk, ν
)
.

Hence, we have completed Step 2 in our Route to Smoothness.

3.2 Expansion for the Matrix-Valued Kernel

The sequence {Cn(·)}∞
n=0 in the series expansion (3) is summable at zero. Further, from well-known

properties of matrix-valued positive semidefinite functions (Chilès and Delfiner, 2012), we have that,
for every n = 0, 1, . . ., the matrix-valued function Cn having elements Cij,n, i, j = 1, . . . , p, satisfies
Cij,n(h)2 ≤ Cii,n(0)Cjj,n(0), for i, j = 1, . . . , p. This in turn implies that, for every finite measure λ,
the mapping Cn is in L2(Rk, λ) for all n. This is obviously true when λ is the Gaussian measure ν.

From Equation (3) in concert with the fact that∣∣∣G(d−1)/2
n (s)

∣∣∣ =
∣∣∣∣∣G

(d−1)/2
n (s)

G
(d−1)/2
n (1)

∣∣∣∣∣ ≤ 1, s ∈ [−1, 1],

we conclude that the convergence of the series (3) is uniform.
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At this point, since the multivariate Hermite polynomials that have been defined in Equation (13) form
a complete orthonormal basis in L2(Rk, ν), we have that, for every n = 0, 1, . . ., the positive semidefinite
functions Cn : Rk → Rp×p can be uniquely expanded in terms of Hermite polynomials, that is,

Cd
n(h) =

∑
α∈Zk

+

γd
n,αΦα(h), h ∈ Rk,

where the series converges in L2(Rk, ν), and where
{

γd
n,α

}
α∈Zk

+
⊂ Cp×p is a summable sequence of matrices

such that
γd

n,α =
∫
Rk

Cd
n(h)Φα(h) ν(dh), n ∈ Z+, α ∈ Zk

+. (14)

Consequently, the kernel K in Equation (3) can be uniquely expanded as

K(s, h) =
∞∑

n=0
dim(Hd

n)
∑

α∈Zk
+

γd
n,αΦα(h)G(d−1)/2

n (s), (s, h) ∈ [−1, 1] × Rk. (15)

We call the indexed set
{

γd
n,α

}
(n,α)∈Ωk

⊂ Cp×p the Gegenbauer-Hermite spectrum of the p-variate kernel K,
where the indices take value in the set

Ωk := {(n, α) : n ∈ Z+, α ∈ Zk
+}. (16)

3.3 Defining the Sobolev Spaces

For given ζ, m ∈ Z+, let Cζ,m((−1, 1),Rk; Rp×p) be the space of functions R defined in (−1, 1) × Rk, with
values in Rp×p, such that dj

dsj ∂βR exist and are continuous for j = 0, 1, . . . , ζ and 0 ≤ |β| ≤ m, where d
ds

represents the differentiation in (−1, 1) and ∂β the partial derivative in Rk of multi-index β.

Define

∥R∥2
W ζ,m

d,k

:=
ζ∑

j=0

∑
|β|≤m

∫
Rk

∫ 1

−1

∥∥∥∥ dj

dsj
∂βR(s, h)

∥∥∥∥2

F

(
1 − s2)d/2−1+j ds ν(dh), (17)

where ∥·∥F is the Fröebenius norm in Rp×p, induced by the Fröebenius inner product ⟨A, B⟩F := tr(AB⊤),
so that ∥A∥2

F = tr(AA⊤), with tr denoting the trace operator.

Finally, define the Sobolev space W ζ,m
d,k ((−1, 1),Rk; Rp×p) as the completion of the space

Cζ,m((−1, 1),Rk; Rp×p) with respect to the norm (17) (with the usual identification of a.e. equal functions).
Remark 3.1. The choice of this particular norm is due to the actual meaning of the variables in our setting:
in fact the differentiation with respect to s is connected to a differentiation on the sphere with respect to the
geodesic distance, defined as arccos(⟨·, ·⟩) between any pair of points on the spherical shell. The measure(
1 − s2)d/2−1 ds corresponds to the surface (Haar) measure σd on Sd.

3.4 Quantifying Smoothness

In the following we intend to obtain estimates from below and from above for the Sobolev norm (17). We
will use the equivalence relation f ∼ g to relate functions f, g, meaning that cg ≤ f ≤ Cg with constants
c, C > 0 that can only depend on (d, k, ζ, m). Note that this is the case if the constants depend also on j
or on β, since it will always be intended that j ≤ ζ and |β| ≤ m, so they only take values in a finite set
depending on ζ, m, k.

Our search from smoothness starts by defining a proper spectral inversion of K under the Fröebenius norm
∥ · ∥2

F . To do so, for β ∈ Zk
+ and j ∈ Z+ such that |β| ≤ m and j ≤ ζ, we define

Ij,β :=
∫
Rk

∫ 1

−1

∥∥∥∥ dj

dsj
∂βK(s, h)

∥∥∥∥2

F

(
1 − s2)d/2−1+j ds ν(dh). (18)
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We now define a sequence {sj,β}j,β with generic element sj,β being identically equal to

sj,β :=
∞∑

n=j

∑
α≥β

∥∥γd
n,α

∥∥2
F

(n + 1)d−1+2jαβ. (19)

We are going to prove that the quantities (18) and (19) are actually related, and that they are both crucial
to quantify smoothness.

We start with a technical result that clearly illustrates the relation between these two quantities.
Proposition 3.1. Let ζ, m ∈ Z+. Given the continuous kernel K : (−1, 1) × Rk → Rp×p that is isotropic
on Sd and stationary on Rk as in Equation (15), we have that

∥K∥2
W ζ,m

d,k

=
ζ∑

j=0

∑
|β|≤m

Ij,β ∼
ζ∑

j=0

∑
|β|≤m

sj,β.

Hence, ∥K∥2
W ζ,m

d,k

< ∞ if and only if sj,β < ∞, for all j ≤ ζ and β ∈ Zk
+ such that |β| ≤ m.

Proposition 3.1 derives from Lemma A.2 given in Appendix A. Clearly, it does not provide a friendly way
to check when a given function K belongs to the Sobolev space W ζ,m

d,k for given quadruple (d, k, ζ, m) of
suitable integers. The next result (see the proof in Appendix A.2) provides an estimate that helps shedding
some light in this direction.
Proposition 3.2. In the conditions of Proposition 3.1,

∥K∥2
W ζ,m

d,k

∼ s0,0 + sζ,0 +
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ .

A further step ahead can be done by introducing the space of square summable multi-sequences, with respect
to a measure µ in the set Ωk defined in Equation (16):

ℓ2(µ) :=

{γn,α}(n,α)∈Ωk
⊂ Cp×p :

∞∑
n=0

∑
α≥0

∥γn,α∥2
F µn,α < ∞

 .

We are ready to state the main result (see the proof in Appendix A.2), which completes our quest for
smoothness over product spaces, giving a condition on the Gegenbauer-Hermite spectrum

{
γd

n,α

}
(n,α)∈Ωk

of the p-variate kernel K, which holds true if and only if K ∈ W ζ,m
d,k ((−1, 1),Rk; Rp×p), thus quantifying its

smoothness in terms of the two parameters ζ, m ∈ Z+.
Theorem 3.3. Let ζ, m ∈ Z+ and the measure µ̃ζ,m be defined as

µ̃ζ,m
n,α = (n + 1)d−1 [

1 + (n + 1)2ζχn≥ζ

] 1 +
∑

|β′|=m

αβ′
χα≥β′

 , (n, α) ∈ Ωk, (20)

with χn≥ζ and χα≥β′ being equal to 1 if n ≥ ζ and α ≥ β′, respectively, and to 0 otherwise. Then, for a
given continuous kernel K : (−1, 1)×Rk → Rp×p that is isotropic on Sd and stationary on Rk as in Equation
(15), we have that K belongs to the space W ζ,m

d,k if and only if
{

γd
n,α

}
∈ ℓ2(µ̃ζ,m).

Hence, we have proved that, under the spectral construction proposed in this paper for a Gaussian measure
space, quantifying smoothness is equivalent to prove summability conditions for the matrices γd

n,α. One can
certainly argue that these conditions are analytically tricky to check. Yet, Theorem 3.3 provides the building
block to deduce the simpler condition below (see the proof in Appendix A.2).

9
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Corollary 3.4. Consider µζ,m one of the following measures in Ωk

µζ,m
n,α = (n + 1)d−1 [

1 + (n + 1)2ζ
] 1 +

∑
|β′|=m

αβ′

 , (n, α) ∈ Ωk, (21)

or
µζ,m

n,α = (n + 1)d−1 [
1 + (n + 1)2ζ

]
[1 + |α|m] (n, α) ∈ Ωk. (22)

If
{

γd
n,α

}
∈ ℓ2(µζ,m), then K belongs to the space W ζ,m

d,k .
Remark 3.2. Our work is general, and the following special cases are covered:

1. The case k = 0 and p = 1 has been considered by Lang and Schwab (2013).

2. The case k = 1 and p = 1 has been considered by Clarke De la Cerda et al. (2018).

3. The case d = 0, general case, but the domain restricted to Bk ⊂ Rk, with Bk denoting the k-
dimensional ball, has been considered by Cleanthous (2023).

The work of Cleanthous (2023) is the first, to our knowledge, where multivariate smoothness is considered
in the literature.

4 Example

For d > 1, a ≥ 0, b > 0 and η ∈ (0, 1), consider the following univariate nonseparable kernel (Emery et al.,
2021):

K(s, h; a, b, η) = (1 − η)d−1 exp(−b∥h∥2)
(1 − 2ηs exp(−a∥h∥2) + η2 exp(−2a∥h∥2)(d−1)/2 , s ∈ [−1, 1], h ∈ Rk.

To calculate its Gegenbauer-Hermite spectrum, we start with the Gegenbauer expansion (Emery et al., 2021)

K(s, h; a, b, η) = (1 − η)d−1
∞∑

n=0
ηn exp(−(an + b)∥h∥2)G(d−1)/2

n (s)

=
∞∑

n=0
dim(Hd

n)Cd
n(h; a, b, η)G(d−1)/2

n (s), s ∈ [−1, 1], h ∈ Rk,

with
Cd

n(h; a, b, η) = (d − 1)(1 − η)d−1ηn

2n + d − 1 exp(−(an + b)∥h∥2).

The Gegenbauer-Hermite spectrum is given by Equation (14). Accounting for the properties of Hermite
polynomials (Magnus et al., 1966, Section 5.6.2), one finds

γd
n,α =

∫
Rk

Cd
n(h; a, b, η)Φα(h)dh

=

0 if one or more components of α is odd
(d−1)(1−η)d−1ηn

2n+d−1
2−|α|/2

(α/2)!

√
πkα!

(1/2+an+b)k

(
1

1+2(an+b) − 1
)|α|/2

otherwise.

Using the duplication formula for the gamma function (Olver et al., 2010, formula 5.5.5), it is seen that
2−|α|/2

(α/2)!

√
πkα!

(1/2+an+b)k belongs to (0, (2π)k/2]. Since, furthermore, ( 1
1+2(an+b) − 1) and η belong to (−1, 1) and

(0, 1), respectively, it follows that
{

γd
n,α

}
∈ ℓ2(µ̃ζ,m) for any ζ, m ∈ Z+. Accordingly, owing to Theorem 3.3,

K belongs to W ζ,m
d,k for any ζ, m ∈ Z+.

10



Published in Transactions on Machine Learning Research (MM/YYYY)

5 Conclusions

Our work provides the foundations to smoothness quantification of Gaussian processes defined over some
specific product space involving a d-dimensional sphere. Some comments are in order. The results presented
in Section 3 can be extended to product spaces involving other manifolds. For instance, classic harmonic
analysis arguments prove that the d-dimensional sphere might be replaced by a compact two-point homoge-
neous space at the expense of replacing the normalized Gegenbauer polynomials in Equation (3) with their
counterpart over such spaces, known as Jacobi polynomials (Cleanthous et al., 2020). We are not aware of
whether our results would hold for other general networks such as graphs with Euclidean edges (Porcu et al.,
2023). For such cases, even spectral representations become questionable, so that more mathematical effort
is needed in this direction.

Future works may involve the verification of the results presented in this paper for specific classes of scalar
and matrix-valued kernels, such as the ones proposed by Porcu et al. (2016; 2018), Alegría et al. (2019) and
Emery et al. (2021).

Also, extensions to our work to kernels that are not isotropic on the sphere could be based on spectral
characterizations such as the one proposed by Jones (1963) for axially symmetric processes on S2, i.e.,
processes that are stationary over longitudes, but not over latitudes, of the 2-sphere. Having some insight
in this direction would help to overcome the restrictive assumption of isotropy and allow for wider classes of
kernels in vector Gaussian process regression.
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A Appendix

A.1 Technical Lemmas

Lemma A.1. Let α, β, ε ∈ Zk
+. If α+ε ≥ β, then one has:

(α+ε)!
(α+ε − β)! ∼ αβ. (23)

Proof. The claim holds because c1(βi, εi)αβi

i ≤ (αi+εi)!
(αi+εi−βi)! ≤ c2(βi, εi)αβi

i , i = 1, 2, . . . , k (Olver et al., 2010,
formula 5.11.12). In particular, the constants depend on β and ε.

For the next lemma we will need to state some formulas. From Olver et al. (2010, formulas 18.9.19, 18.9.21
and 18.7.4), we have

dj

dsj
Gλ

n(s) = 2j (λ)j Gλ+j
n−j(s) ∼ Gλ+j

n−j(s), ∀ n ≥ j, ∀ λ > 0, (24)

d
ds

G0
n(s) = d

ds
Tn(s) = nG1

n−1(s), ∀ n ≥ 1, (25)

where (λ)j = Γ(λ+j)
Γ(λ) is the Pochhammer symbol (Olver et al., 2010, formula 5.2.5). Using Olver et al. (2010,

Table 18.3.1 and formula 18.14.4), we get∫ 1

−1
Gλ

n(s)Gλ
n′(s)

(
1 − s2)λ−1/2 ds = π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δn,n′ , ∀ n, n′ ≥ 0, ∀ λ > 0, (26)

∫ 1

−1
G0

n(s)G0
n′(s)

(
1 − s2)−1/2 ds ∼ δn,n′ , ∀ n, n′ ≥ 0. (27)

Finally, from Muller (1966, equation 11),

dim(Hd
n)

G
(d−1)/2
n (1)

= 2n + d − 1
d − 1 , ∀ n ≥ 1, ∀ d > 1, (28)

dim(H1
n) = 2, ∀ n ≥ 1.

Lemma A.2. Let ζ, m ∈ Z+. For β ∈ Zk
+ and j ∈ Z+ such that |β| ≤ m and j ≤ ζ, define Ij,β and sj,β as

per Equations (18) and (19). Then the following estimates hold:

Ij,β ∼
∞∑

n=j

∑
α≥β

∥∥γd
n,α

∥∥2
F

(n + 1)d−1+2j α!
(α − β)! (29)

and
Ij,β ∼ sj,β. (30)

Proof. By Equation (15),

Ij,β =
∫
Rk

∫ 1

−1

∥∥∥∥∥∥
∞∑

n=0
dim(Hd

n)
∑

|α|≥0

γd
n,α ∂βΦα(h) dj

dsj
G(d−1)/2

n (s)

∥∥∥∥∥∥
2

F

(
1 − s2)d/2−1+j ds ν(dh)

=
∞∑

n,n′=0

∑
|α|,|α′|≥0

⟨γd
n,α γd

n′,α′⟩F J̃n,n′Jα,α′ ,

12
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where
J̃n,n′ := dim(Hd

n)dim
(
Hd

n′

) ∫ 1

−1

dj

dsj
G(d−1)/2

n (s) dj

dsj
G

(d−1)/2
n′ (s)

(
1 − s2)d/2−1+j ds

and
Jα,α′ :=

∫
Rk

∂βΦα(h)∂βΦα′(h) ν(dh).

Note that, J̃n,n′ = 0 for n < j. For n ≥ j ≥ 0, we distinguish two cases, depending on whether d is greater
than 1 or not. First, let us examine the case when d > 1 and n ≥ j ≥ 0. In this case, we have, by Equation
(24),

J̃n,n′ = dim(Hd
n)

G
(d−1)/2
n (1)

dim
(
Hd

n′

)
G

(d−1)/2
n′ (1)

∫ 1

−1

dj

dsj
G(d−1)/2

n (s) dj

dsj
G

(d−1)/2
n′ (s)

(
1 − s2)d/2−1+j ds

∼ dim(Hd
n)

G
(d−1)/2
n (1)

dim
(
Hd

n′

)
G

(d−1)/2
n′ (1)

∫ 1

−1
G

(d−1)/2+j
n−j (s)G(d−1)/2+j

n′−j (s)
(
1 − s2)d/2−1+j ds .

By Equations (26) and (28), we obtain

J̃n,n′ ∼
(

2n + d − 1
d − 1

) (
2n′ + d − 1

d − 1

) ∫ 1

−1
G

(d−1)/2+j
n−j (s)G(d−1)/2+j

n′−j (s)
(
1 − s2)d/2−1+j ds

=
(

2n + d − 1
d − 1

)2
π22−d−2jΓ(n + j + d − 1)

(n − j)!(n + d−1
2 )Γ( d−1

2 + j)2 δn,n′ .

Since
2n + d − 1

d − 1 ∼ n + 1

and (Olver et al., 2010, formula 5.11.12)

π22−d−2jΓ(n + j + d − 1)
(n − j)!(n + d−1

2 )Γ( d−1
2 + j)2 ∼ (n + 1)d−3+2j ,

the previous result simplifies into

J̃n,n′ ∼ (n + 1)d−1+2jδn,n′ . (31)

Let us now address the case when d = 1. For n ≥ j = 0, we have

J̃n,n′ = dim(H1
n)dim

(
H1

n′

) ∫ 1

−1
G0

n(s)G0
n′(s)

(
1 − s2)−1/2 ds

∼ δn,n′ ,

based on Equation (27). For n ≥ j > 0, we have, by Equations (23), (24), (25) and (26):

J̃n,n′ = dim(H1
n)dim

(
H1

n′

) ∫ 1

−1

dj

dsj
G0

n(s) dj

dsj
G0

n′(s)
(
1 − s2)j−1/2 ds

= dim(H1
n)dim

(
H1

n′

)
nn′4j−1[(j − 1)!]2

∫ 1

−1
Gj

n−j(s)Gj
n′−j(s)

(
1 − s2)j−1/2 ds

= dim(H1
n)dim

(
H1

n′

)
n

π(n + j − 1)!
2(n − j)! δn,n′

∼ (n + 1)2jδn,n′ .

Hence, Equation (31) remains valid when d = 1.

13
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On the other hand,

Jα,α′ =
∫
Rk

∂β
k∏

j=1
Hαj

(hj) ∂β
k∏

j=1
Hα′

j
(hj) ν(dh)

=
∫
Rk

k∏
j=1

∂βj Hαj (hj)
k∏

j=1
∂βj Hα′

j
(hj) ν(dh)

=
∫
Rk

k∏
j=1

√
αj !

(αj − βj)! Hαj−βj (hj)
k∏

j=1

√
α′

j !
(α′

j − βj)! Hα′
j
−βj

(hj) ν(dh)

=
√

α!
(α − β)!

√
α′!

(α′ − β)!

∫
Rk

k∏
j=1

Hαj−βj
(hj)

k∏
j=1

Hα′
j
−βj

(hj) ν(dh)

=
√

α!
(α − β)!

√
α′!

(α′ − β)!

∫
Rk

Φα−β (h) Φα′−β (h) ν(dh)

and then, since the multivariate Hermite polynomials are an orthonormal basis of L2(Rk, ν),

Jα,α′ = α!
(α − β)!δα,α′ , α ≥ β. (32)

Thus, from Equations (31) and (32) we obtain Equation (29) and then Equation (30) using Equation (23).

Lemma A.3. Let α, β, β′ ∈ Zk
+. If α ≥ β′ ≥ β ≥ 0, then αβ ≤ αβ′ .

Proof. In the scalar case, a, b, b′ ∈ Z+ with a ≥ b′ ≥ b implies ab ≤ ab′ . By applying this to each component
we obtain the claim.

Fix β ∈ Z+ with |β| ≤ m, let
Iβ := {β′ ∈ Z+ : β′ ≥ β, |β′| = m}

and
Aβ := {α ∈ Z+ : α ≥ β} .

Lemma A.4. The set Aβ can be written as

Aβ = Ãβ ∪
⋃

β′∈Iβ

Aβ′ (33)

where Ãβ = {α ∈ Z+ : |α| < m, α ≥ β} .

Proof. If α ∈ Aβ, then either |α| < m or there exists β′ ∈ Iβ such that β ≤ β′ ≤ α. One can construct
such β′ by increasing those components βi of β that satisfy βi < αi until reaching |β′| = m.

A.2 Proofs of the main statements

Proof of Proposition 3.2. Given j ≤ ζ and |β| ≤ m, in the definition (19) of sj,β, the sum runs over every
n ≥ j and α ∈ Aβ .
We have that

• if n ≥ ζ then (n + 1)2j ≤ (n + 1)2ζ ,

• if n < ζ then (n + 1)2j ≤ (ζ + 1)2ζ .

14
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Moreover, by Equation (33), if α ∈ Aβ then either α ∈ Ãβ or α ∈ Aβ′ for some β′ ∈ Iβ:

• if α ∈ Ãβ then αβ ≤ mm,

• if α ∈ Aβ′ with β′ ∈ Iβ, then by Lemma A.3, it holds αβ ≤ αβ′ .

Then we can estimate from above all the terms
∥∥γd

n,α

∥∥2
F

(n + 1)d−1+2jαβ in the definition (19) of sj,β with
the corresponding term

• in sζ,β′ with α ≥ β′ ≥ β if |α| ≥ m, n ≥ ζ,

• in (ζ + 1)2ζs0,β′ with α ≥ β′ ≥ β if |α| ≥ m, n < ζ,

• in mmsζ,0 if |α| < m, n ≥ ζ,

• in (ζ + 1)2ζmms0,0 if |α| < m, n < ζ.

As a consequence

sj,β ≤ (ζ + 1)2ζmms0,0 + mmsζ,0 + (ζ + 1)2ζ
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ ,

and then summing up all the terms (the number of such terms only depends on ζ, k, m), we get

∥K∥2
W ζ,m

d,k

∼
ζ∑

j=0

∑
|β|≤m

sj,β ∼ s0,0 + sζ,0 +
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ ,

since the estimate from below is trivial.

Proof of Theorem 3.3. By Proposition 3.2, all we have to do is to prove that

s0,0 + sζ,0 +
∑

|β′|=m

s0,β′ +
∑

|β′|=m

sζ,β′ =
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
F

µ̃ζ,m
n,α, (34)

where µ̃ζ,m
n,α is given in Equation (20). Indeed, from Equation (19), one has:

s0,0 =
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
F

(n + 1)d−1α0,

sζ,β′ =
∞∑

n=ζ

∑
α≥β′

∥∥γd
n,α

∥∥2
F

(n + 1)d−1+2ζαβ′
=

∞∑
n=0

∑
α≥0

∥∥γd
n,α

∥∥2
F

(n + 1)d−1+2ζχn≥ζ αβ′
χα≥β′ ,

sζ,0 =
∞∑

n=ζ

∑
α≥0

∥∥γd
n,α

∥∥2
F

(n + 1)d−1+2ζα0 =
∞∑

n=0

∑
α≥0

∥∥γd
n,α

∥∥2
F

(n + 1)d−1+2ζχn≥ζ α0,

s0,β′ =
∞∑

n=0

∑
α≥β′

∥∥γd
n,α

∥∥2
F

(n + 1)d−1αβ′
=

∞∑
n=0

∑
α≥0

∥∥γd
n,α

∥∥2
F

(n + 1)d−1αβ′
χα≥β′ ,

where α0 = 1. This all adds up into

µ̃ζ,m
n,α = (n + 1)d−1

1 + (n + 1)2ζχn≥ζ

∑
|β′|=m

αβ′
χα≥β′ + (n + 1)2ζχn≥ζ +

∑
|β′|=m

αβ′
χα≥β′


= (n + 1)d−1 [

1 + (n + 1)2ζχn≥ζ

] 1 +
∑

|β′|=m

αβ′
χα≥β′

 .

15
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Proof of Corollary 3.4. Obviously,

µ̃ζ,m
n,α ≤ (n + 1)d−1 [

1 + (n + 1)2ζ
] 1 +

∑
|β′|=m

αβ′

 .

Moreover, αβ′ ≤ |α|m, so that
∑

|β′|=m αβ′ ≤ D(m, k)|α|m, where D(m, k) > 1 is the number of multi-
indices in Zk

+ of module m (an integer depending only m and k). Accordingly,

µ̃ζ,m
n,α ≤ (n + 1)d−1 [

1 + (n + 1)2ζ
]

[1 + D(m, k)|α|m]
≤ D(m, k)(n + 1)d−1 [

1 + (n + 1)2ζ
]

[1 + |α|m] .

Thus, considering the measure in Equation (22) or in Equation (21), if
{

γd
n,α

}
∈ ℓ2(µζ,m), then

{
γd

n,α

}
∈

ℓ2(µ̃ζ,m) and the result follows by Theorem 3.3.
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