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Abstract001

Generating presentation slides is a time-002
consuming task that urgently requires automa-003
tion. Due to their limited flexibility and lack004
of automated refinement mechanisms, exist-005
ing autonomous LLM-based agents face con-006
straints in real-world applicability. In this work,007
we decompose the task of generating missing008
presentation slides into two key components:009
content generation and layout generation,010
aligning with the typical process of creating011
academic slides. For content generation, we012
introduce a content generation approach that013
enhances coherence and relevance by incor-014
porating context from surrounding slides and015
leveraging section retrieval strategies. For lay-016
out generation, we propose a textual-to-visual017
self-verification process using a LLM-based018
Reviewer + Refiner workflow, transforming019
complex textual layouts into intuitive visual for-020
mats. This modality transformation simplifies021
the task, enabling accurate and human-like re-022
view and refinement. Experiments show that023
our approach significantly outperforms base-024
line methods in terms of alignment, logical025
flow, visual appeal, and readability.026

1 Introduction027

Effectively summarizing and presenting research028

findings through academic presentation slides is an029

essential part of scientific communication, enabling030

researchers to highlight key contributions and en-031

gage audiences at conferences and seminars (Guo032

et al., 2024; Mondal et al., 2024). However, creat-033

ing these slides is a time-consuming process that034

requires extracting core information from lengthy035

papers, organizing it coherently, and designing vi-036

sually consistent layouts across multiple slides (Fu037

et al., 2021). With the rapid growth in the vol-038

ume of research, the demand for automated solu-039

tions has increased significantly. Recent advances040

in large language models (LLMs) (OpenAI, 2023;041

Touvron et al., 2023; Templeton et al., 2024) have042

demonstrated remarkable capabilities in mimick- 043

ing human behavior for complex tasks (Hong et al., 044

2023; Park et al., 2023; Yao et al., 2022b; ?) beyond 045

text generation (Yao et al., 2022b,a; Xi et al., 2024; 046

Yang et al., 2024). Building on these strengths, 047

LLM-based agents offer a promising opportunity 048

to automate tasks like slide generation (Zheng et al., 049

2025), reducing manual effort while ensuring co- 050

herence and visual quality. 051

Despite its potential, generating high-quality aca- 052

demic presentation slides presents two major chal- 053

lenges: how to assign reasonable and adaptive 054

layouts for generated content and how to ensure 055

layout quality and consistency. 056

The first challenge lies in generating layout in- 057

formation that adapts to the unique visual structure 058

for different textual contents. Some methods fo- 059

cus solely on textual content, neglecting structural 060

aspects like positioning, spacing, and alignment, 061

leading to impractical outputs (Sun et al., 2021; 062

Bandyopadhyay et al., 2024). Existing template- 063

based methods provide a quick and straightforward 064

solution by populating predefined slots with gener- 065

ated content. However, they overlook the unique 066

structural style of each presentation, often leading 067

to rigid layouts that break the visual coherence. 068

The second challenge lies in achieving consis- 069

tent textual-visual results, complicated by the in- 070

herent difficulty of representing slide layouts in 071

structured textual formats. Unlike visual represen- 072

tations, where spatial relationships and element 073

alignment are easy to interpret, textual formats lack 074

this visual clarity (Xu et al., 2024; Hu et al., 2024). 075

This makes it difficult for models to fully com- 076

prehend the spatial and structural aspects of slide 077

design, leading to frequent errors such as text over- 078

flow, misalignment, and inconsistent spacing. 079

Furthermore, correcting these errors directly in 080

the textual format is non-trivial. Without a visual 081

reference, detecting overlapping elements or mis- 082

alignments becomes challenging, particularly in 083
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slides with complex layouts.084

A key component of our framework is a textual-085

to-visual iterative self-verification process to refine086

initial outputs. The initial slide layouts are gener-087

ated in a textual format, which—while structured088

and machine-readable—often contains errors due089

to the complexity of representing slide information090

in a non-visual form. Additionally, reviewing and091

refining these layouts in their original format is092

challenging and unintuitive. To address this, we093

introduce a modality transformation (Li et al.,094

2025) that converts the textual format into a vi-095

sualized form. This transformation significantly096

reduces the complexity of the task, making it easier097

for the LLM-based Reviewer + Refiner workflow098

to detect and correct issues such as alignment and099

text overflow in a human-like, intuitive manner.100

The reviewer provides feedback by analyzing the101

visual representation of the slide layout. The feed-102

back is then passed to the refiner, who applies the103

suggested adjustments to the structured layout in104

textual format. This iterative refinement process105

ensures higher-quality final outputs with improved106

coherence and visual consistency.107

Our key contributions are as follows.108

1. An agentic framework for slide generation in-109

cluding content and layout generation approaches,110

ensuring thematic consistency and visual coher-111

ence.112

2. A textual-to-visual iterative self-verification113

process with modality transformation, enabling in-114

tuitive and accurate refinement for slide layout.115

3. Extensive analyses and systematic evalua-116

tion, demonstrating the significant effectiveness117

and practical potential of our framework for auto-118

mated academic slide generation.119

2 Related Work120

In this section, we introduce the background of121

the LLM-based agent and existed studies on slides122

generations.123

2.1 LLM-based Agent124

LLMs have demonstrated impressive capabilities125

for complicated, interactive tasks (Yao et al.,126

2022b,a; Xi et al., 2024; Yang et al., 2024). LLM-127

based autonomous agents have achieved remark-128

able progress in a wide range of domains, includ-129

ing logic reasoning (Qi et al., 2024; Khattab et al.,130

2022), tool use (Qin et al., 2024), and social ac-131

tivities (Park et al., 2023). The current paradigm132

of agents relies on the language intelligence of 133

LLMs. The mainstream work pattern encompasses 134

environment perceiving, planning, reasoning, and 135

executing, forming a workflow to dive and conquer 136

intricate challenges. 137

Empowered by the recent progress of multi- 138

modal pre-training, those agents can understand 139

image, video, and audio channels (Wu et al., 2023; 140

Liu et al., 2023). (i) Visual knowledge can largely 141

facilitate reasoning and is integrated into Chain- 142

of-Thoughts (Zhang et al., 2023; Xu et al., 2024). 143

(ii) Multi-modal reasoning enables divergent think- 144

ing cross modalities and takes advantage of those 145

different modalities. Sketchpad (Hu et al., 2024) 146

allows LLMs to draw drafts to assist its planning 147

and reasoning, i.e., to draw auxiliary lines for ge- 148

ometry problems. Visualization-of-Thought (Wu 149

et al., 2024) generates visual rationales for spatial 150

reasoning tasks like mazes. For each stage of com- 151

plex multi-modal tasks, selecting an appropriate 152

modality as the main modality for reasoning can 153

leverage the natural characteristics of the modality 154

and stimulate the potential of LLMs (Park et al., 155

2025). 156

2.2 Slide Generation 157

Previous studies have explored extractive methods 158

and simplified this task as sentence selection, e.g., 159

to calculate the importance score and extract top 160

sentences (Wang et al., 2017). With the develop- 161

ment of small language models (Lewis et al., 2020; 162

Raffel et al., 2020), slide generation is unified as 163

abstractive, query-based document summarization 164

(Sun et al., 2021). 165

Despite their early success, the emergence of 166

LLMs exhibits exceptional performance and stim- 167

ulates the demands of intelligent slide generation. 168

Slide generation poses intricate challenges for au- 169

tonomous agents, as it requires document reading 170

comprehension and precise tool use to generate 171

layouts. Pioneer work focuses on modifying tar- 172

get elements, asking agents to execute a series of 173

specific instructions (Guo et al., 2024). The agent 174

needs to understand the status of the slide, navigate 175

to the element, and generate precise API calls. Re- 176

cent studies first plan the outlines and then generate 177

each page. To further control the style of presen- 178

tations, Mondal et al. (2024) introduce a reward 179

model trained on human feedback to guide both 180

topic generation and content extraction. Consid- 181

ering the visual quality of slides, Bandyopadhyay 182

et al. (2024) employ a visual LM to insert images. 183
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DOC2PPT (Fu et al., 2021) integrates an object184

placer to predict the position and size of each ele-185

ment by training small models. PPTAgent (Zheng186

et al., 2025) directly utilizes slide templates to fix187

the layout and then fill textboxes, ensuring visual188

harmony and aesthetic appeal.189

3 Methodology190

In this section, we propose an LLM-based agentic191

workflow to automate the generation of content and192

layout for academic paper slides.193

3.1 Task Formulation194

We first formally define our slide generation task.195

In this task, a presentation is represented as a col-196

lection of slide pages, where each page consists197

of multiple elements. Each element e ∈ E is a198

tuple (c, l), where c denotes the content (e.g., text,199

images, tables) and l specifies the corresponding200

layout information (e.g., position, size, font style).201

Our overall task is to generate the missing202

slide Ŝi given the paper D, the missing slide203

topic T , and the partially available slide set S =204

{S1, S2, . . . , Sn}.205

Input The input consists of: 1. A paper D =206

{d1, d2, . . . , dm}, where di denotes a section or207

paragraph in the paper. 2. A missing slide topic T ,208

describing the main focus of the missing slide. 3. A209

partially available slide set S = {S1, S2, . . . , Sn},210

where some slides Ŝi are missing. 4. The preced-211

ing slide Sprev and the following slide Snext as212

contextual information.213

Output The output is a structured textual file Ŝi,214

which describes the missing slide, including both215

content c and layout information l for each element216

e ∈ E. Formally,217

Ŝi = {ej = (cj , lj) | j = 1, 2, . . . , k}218

where k is the number of elements in the generated219

slide. The generated textual file can be directly220

converted into a PowerPoint slide.221

3.2 Slide Generation Framework222

The process of creating a presentation typically223

involves two key stages: (1) identifying the core224

content that needs to be presented on each slide,225

and (2) arranging this information into a visually226

coherent and consistent layout.227

The goal of content generation is to generate228

cj for each element ej based on the paper D, the229

missing slide’s title t, and contextual information 230

from the surrounding slides Sprev and Snext: 231

cj = Gcontent(D, t, Sprev, Snext) 232

Here, Gcontent represents the content generation pro- 233

cess, ensuring that the generated content is accurate, 234

concise, and contextually relevant. 235

The layout generation task determines the layout 236

lj for each element ej = (cj , lj) to maintain visual 237

consistency and readability. The initial layout draft 238

l
(0)
j is generated using the content cj and contextual 239

information from the surrounding slides: 240

l
(0)
j = Glayout_draft(cj , Sprev, Snext) 241

To refine the initial layout, a textual-to-visual 242

iterative self-verification process is applied. The 243

layout at step k (l(k)j ) is visualized as Image(l(k)j ), 244

allowing the LLM-based Reviewer + Refiner work- 245

flow to provide feedback and corrections: 246

l
(k+1)
j = Grefine

(
l
(k)
j , Image(l(k)j )

)
247

This iterative process continues until the layout 248

reaches the desired quality and visual coherence. 249

3.2.1 Content Generation 250

Determining the key contents on a slide page in- 251

volves understanding paper structures, extracting 252

critical texts and figures, and ensuring overall co- 253

herence for a logical flow and consistent style. 254

Our content generation stage adopts a multi-step 255

process with three sub-modules: Text Retriever, 256

Figure Extractor, and Content Generator, consisting 257

of a pipeline to identify relevant text segments, 258

recommend figures and tables, and then decide the 259

contents to present. 260

Text Retriever We build a text retriever to re- 261

trieve the most relevant sections of the paper. The 262

paper is divided into section-level granularity, with 263

each segment represented and indexed as a dense 264

embedding. Given the topic of a slide, the retriever 265

selects the most relevant segments by calculating 266

the cosine similarity between the dense embed- 267

dings of the slide topic and the indexed sections. 268

Figure Extractor Beyond the retrieved text, fig- 269

ure extractor focuses on extracting relevant figures 270

to provide visual elements for the slide content. 271

This process identifies references to figures and 272

tables within the text (e.g., “Figure 1”, “Table 2”) 273

and extracts their captions from the paper. 274
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Figure 1: Overall Framework

Content Generator The LLM agent performs275

three sub-tasks based on the related text segments276

and recommended figures. First, it generates con-277

cise slide text aligned with the slide’s topic and278

context. Second, it selects the most relevant figures279

and tables to complement the content and improve280

comprehension. Finally, it integrates surrounding281

slide content to maintain logical flow and ensure282

seamless transitions.283

The results of the Content Generator above are284

aggregated for the following layout generation,285

where the focus shifts to organizing the content286

into a visually coherent and well-structured slide287

layout.288

3.2.2 Layout Generation289

Slide layouts need to be flexible and controllable,290

rather than fully randomized or constrained by rigid291

templates. However, generating adaptive layouts is292

challenging and prone to issues such as text over-293

flow, misalignment, and inconsistent spacing, espe-294

cially when handling diverse content and styles.295

To address this, we design a textual-to-visual296

iterative self-verification process. The initial lay-297

out draft mimics surrounding slides for style con-298

sistency but remains difficult to review in its struc-299

tured textual format. By converting the draft into300

a visual representation, i.e. an image. We design301

an LLM-based Reviewer + Refiner workflow that302

validates and refines the layout respectively, im-303

proving accuracy and coherence through iterative 304

corrections. 305

Stage 1: Initial Layout Generation The initial 306

attempt is conducted by directly asking the LLM to 307

arrange the layout for each element of the generated 308

contents, specifying each element’s position, size, 309

font, and color. We also append surrounding slide 310

pages as demonstrations and carefully optimize the 311

prompt to instruct the LLM to mimic their layout 312

patterns for a visually consistent design. The layout 313

is normalized as a JSON format. 314

While this initial layout serves as a foundation, 315

our pilot experiments show that several factors con- 316

tribute to potential errors: 317

(i) Textual slide layout is inherently complex, re- 318

quiring detailed key-value pairs for positions, sizes, 319

fonts, and colors. Any inconsistency in this struc- 320

tured data can cause significant visual defects. 321

(ii) LLMs lack direct visual feedback and can- 322

not accurately assess how the generated layout will 323

appear in its final form. Unlike models specifi- 324

cally trained for visual tasks, LLMs rely on textual 325

context and structural patterns to predict layout in- 326

formation. This process is inherently limited, as it 327

depends heavily on imitation and pattern recogni- 328

tion without understanding visual balance or spatial 329

relationships. Consequently, the generated layouts 330

may exhibit issues such as poor alignment, over- 331

lapping elements, or inconsistent spacing, which 332
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require further refinement to ensure high-quality333

results.334

Stage 2: Textual-to-Visual Iterative Self-335

Verification To refine the initial layout, we in-336

troduce a self-verification process that combines337

modality transformation and a LLM-based agentic338

workflow.339

Modality Transformation We first convert340

the initial textual output into a visualized slide. The341

initialized layout is written into a slide and saved342

as an image. To facilitate visual perception, each343

visualized element in the slide is enclosed in a col-344

ored bounding box with a unique ID, matching its345

corresponding element in the textual file. This vi-346

sual augmentation simplifies the workload, largely347

relieving the burden of perception and enabling the348

Reviewer to quickly reference specific elements349

and detect potential issues.350

Reviewer The Reviewer simulates how a hu-351

man expert would evaluate slide quality, following352

a predefined set of evaluation criteria and adjust-353

ment rules. Specifically, it performs the following354

tasks: Object overlapping detection, Image qual-355

ity and distortion analysis, Element bounding and356

text overflow correction, Element positioning and357

alignment, Text formatting consistency and Overall358

composition and visual balance359

Each recommendation is output as a structured360

list of suggestions, identifying specific elements361

by their ID and providing precise numerical val-362

ues for adjustments. For example, the Reviewer363

might suggest increasing a text box’s height by364

1.2x to accommodate overflowing text or shifting365

an image downward by 10% of its height to resolve366

an overlap. Such a definite, specific advice format367

makes it easier for the Refiner to implement precise368

corrections in the subsequent refinement stage.369

Refiner The Refiner plays a role for execu-370

tion, translating the Reviewer’s visual feedback371

into precise modifications within the textual lay-372

out. To ensure accurate modifications, the Refiner373

follows a set of predefined rules based on the type374

of feedback received. For example, when the Re-375

viewer suggests repositioning an element, the Re-376

finer adjusts its bounding box coordinates accord-377

ingly while ensuring it remains within slide bound-378

aries. Each rule is applied systematically based on379

the Reviewer’s feedback. The Refiner’s task is to380

modify only the necessary fields while maintain-381

ing the basic structure, resulting in a complete and 382

refined file that reflects the intended adjustments. 383

Integration and Rendering The final output of 384

this process is a refined JSON-formatted layout 385

description that accurately represents the corrected 386

slide. This JSON is passed to the rendering module 387

to produce the final PowerPoint slide, ensuring that 388

the layout visually reasonable and aligns with the 389

overall presentation style. 390

4 Experiments 391

4.1 Dataset Construction 392

The dataset is sourced from the ACL 2024 In- 393

Person Poster Session 1, with data collected from 394

the public academic platform Underline. The 395

dataset consists of academic papers and their cor- 396

responding PowerPoint slides in PDF format, cov- 397

ering various research topics in natural language 398

processing. To facilitate processing and preserve 399

format details, all data is uniformly converted into 400

JSON format, containing element-level informa- 401

tion such as text content, font styles, positions, and 402

sizes. Text from papers was extracted using GRO- 403

BID (Kermitt2, 2020). Figures and captions were 404

extracted using PDFFigures 2.0 (Clark and Divvala, 405

2016). 406

4.2 Baseline 407

The baseline for Content Generation provides the 408

full paper and the corresponding slide topic directly 409

to the LLM, which generates content in a fixed for- 410

mat without retrieval or surrounding slide context. 411

The baseline for Layout Generation generates the 412

slide layout by directly using the generated content 413

and the JSON layout information from surrounding 414

slides. It does not mimic the style or structure of 415

neighboring slides and lacks iterative refinement. 416

4.3 Implementation 417

We compare the performance of three large lan- 418

guage models: Llama-31-8B-Instruct (Grattafiori 419

et al., 2024), GPT-4o (OpenAI et al., 2024), and 420

Qwen-2.5-7B (Qwen et al., 2025). The best- 421

performing model is selected to generate the final 422

structured content. In the layout generation mod- 423

ule, both the Reviewer and Refiner modules are 424

built on top of multimodal large language model. 425

For the retriever, we use the Salesforce SFR- 426

Embedding-Mistral (Wang et al., 2024) retriever 427

to compute similarity scores and select the top-k 428

most relevant sections. 429
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Figure 2: Iterative Layout Refinement in the Reviewer + Refiner Workflow

Our experiments are naturally organized in the430

form of ablations. In the w/o Section Retriever431

configuration, the model receives the entire paper432

as input without section-level retrieval. In the w/o433

Neighbor Slides configuration, the surrounding434

slide content is removed, which helps assess the435

role of contextual information in maintaining logi-436

cal flow and consistency.437

4.4 Evaluation438

Our evaluation method measures both content gen-439

eration and layout generation. The evaluation pro-440

cess combines quantitative metrics and structured441

qualitative assessment to ensure comprehensive442

analysis.443

Content Evaluation We use ROUGE (Lin, 2004)444

as the primary evaluation metric to measure the445

similarity between the generated slide content and446

the author-provided reference slides.447

Layout Evaluation We adopt LLM-as-Judge448

(Chen et al., 2024) to evaluate slide layouts across449

three levels:450

◦ Element Level: Assesses alignment, spacing,451

and positioning of individual elements to ensure a452

well-structured layout.453

◦ Slide Level: Focuses on logical flow and text-454

visual consistency, ensuring information is pre-455

sented clearly and supported by relevant visuals.456

◦ Overall Impression: Evaluates visual appeal457

and readability, ensuring cohesive design, appro-458

priate font size, and clear charts for an accessible459

presentation.460

4.5 Main Results 461

Content Generation Among the three models, 462

GPT-4o demonstrates the most consistent and high 463

performance, particularly in ROUGE-L F1 (21.97) 464

and ROUGE-2 Recall (15.71). Although Llama- 465

31-8B shows competitive performance in certain 466

cases (e.g., ROUGE-1 Recall 47.74 for the Base- 467

line), GPT-4o achieves a better balance between 468

precision and recall. Qwen2.5-7B shows moder- 469

ate performance, but its results are slightly more 470

variable compared to the other models. 471

Layout Generation For layout evaluation, Ta- 472

ble 2 summarizes the results of layout genera- 473

tion across three different configurations: Baseline, 474

Textual-Based Refinement, and Our Method. The 475

Reference Slide serves as a benchmark for assess- 476

ing the quality of generated layouts. 477

Baseline: This configuration represents the ini- 478

tial layout generated by the model without any 479

refinement. The layout is stored in a structured 480

JSON format describing element positions, sizes, 481

and other attributes. However, due to the complex- 482

ity of multi-element layouts and the lack of direct 483

visual feedback, this initial output often contains 484

errors such as misalignment, text overflow, and 485

inconsistent spacing. 486

Textual-Based Refinement: In this configura- 487

tion, the initial JSON file is refined through an au- 488

tomated rule-based review. The Reviewer analyzes 489

the JSON structure to detect layout issues, while 490

the Refiner applies corrective actions directly to the 491

JSON file. Although this approach improves some 492
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LLM Method ROUGE-1 ROUGE-2 ROUGE-L
P R F1 P R F1 P R F1

Llama-31-8B

Baseline 24.56 47.74 28.02 8.94 19.96 10.34 17.54 37.58 20.46
Proposed Method (3) 28.64 39.30 27.47 11.23 17.13 11.15 21.99 32.18 21.36
Proposed Method (5) 28.52 42.63 28.40 11.38 19.33 11.68 21.76 34.99 21.97
w/o Neighbor Slides 25.31 42.31 26.79 9.78 19.03 10.72 19.00 34.07 20.42
w/o Section Retriever 30.06 42.04 29.35 12.44 19.45 12.54 23.19 34.85 22.99

GPT-4o

Baseline 23.29 43.97 25.65 7.15 16.86 8.20 16.23 34.09 18.31
Proposed Method (3) 31.63 32.86 26.10 11.30 14.91 9.84 24.34 27.81 20.76
Proposed Method (5) 31.75 37.68 28.39 10.89 15.71 10.28 24.09 30.60 21.97
w/o Neighbor Pages 29.11 34.60 26.13 10.18 15.43 9.61 22.79 29.21 20.88
w/o Section Retriever 32.48 37.68 28.36 11.15 15.88 10.05 24.45 30.35 21.64

Qwen2.5-7B

Baseline 24.27 44.92 26.02 9.06 19.69 10.10 17.89 36.24 19.65
Proposed Method (3) 29.78 36.26 25.99 11.63 16.58 10.56 24.17 30.76 21.21
Proposed Method (5) 28.31 37.17 26.01 10.29 15.71 9.87 21.60 30.21 20.18
w/o Neighbor Pages 24.13 44.93 25.91 9.01 19.69 10.06 17.78 36.26 19.57
w/o Section Retriever 31.47 36.77 27.92 12.60 17.11 11.60 24.66 30.39 22.14

Table 1: Evaluation results for content generation

metrics, such as Coherence (3.4), it still struggles493

with Visual Appeal (1.8) and Alignment (2.1), in-494

dicating the limitations of rule-based refinement495

without visual feedback.496

Our Method: By introducing modality trans-497

formation, we convert the JSON layout into a fully498

visualized slide image, allowing the Reviewer +499

Refiner workflow to detect and correct issues more500

intuitively. This approach yields significant im-501

provements, especially in Alignment and Spacing502

(3.0) and Logical Flow (3.8), closely approaching503

the quality of the reference slides. Additionally,504

Visual Appeal (2.8) and Readability (3.0) show505

notable gains compared to the previous configura-506

tions.507

The results indicate that incorporating the Reviewer508

+ Refiner workflow and modality transformation509

significantly improves layout quality, especially in510

terms of visual appeal and overall readability.511

5 Analysis512

5.1 Ablation513

Effect of Neighbor Slides Neighbor slides sig-514

nificantly impact the quality of content generation.515

For instance, removing neighbor slides in Llama-516

31-8B (w/o Neighbor Slides) leads to a noticeable517

decrease in ROUGE-1 F1 (28.40 to 26.79) and518

ROUGE-2 F1 (11.68 to 10.72). Similar trends are519

observed in GPT-4o and Qwen2.5-7B, highlighting520

the importance of contextual information in main-521

taining logical coherence and reducing redundancy.522

Balancing Full Context vs. Section Retrieval 523

While using a section retriever helps reduce input 524

length and improve efficiency, it can also cause 525

minor variations in ROUGE scores. For exam- 526

ple, Llama-31-8B with Section Retriever achieves 527

slightly lower recall compared to its full-input coun- 528

terpart. When provided with the full paper, they can 529

better understand the broader context and underly- 530

ing relationships, resulting in more accurate and 531

coherent slide content. This suggests that LLMs 532

have strong capabilities in processing long docu- 533

ments. Thus, in scenarios where the input length 534

remains within the allowable range, feeding the full 535

paper is often more advantageous for generating 536

high-quality slides on a given topic. 537

However, in situations where the input length 538

exceeds the model’s context window or when the 539

paper contains a significant amount of irrelevant 540

information, Section Retrieval becomes essential. 541

Selecting an optimal number of sections (e.g., 3 542

vs. 5) helps balance relevance and completeness. 543

According to the results, Proposed Method (5) 544

generally offers better recall and overall F1 com- 545

pared to selecting fewer sections, as it provides 546

more comprehensive contextual information with- 547

out overwhelming the model with unnecessary de- 548

tails. 549

In summary, choosing between full-context in- 550

put and section retrieval depends on the specific 551

characteristics of the input paper. When the pa- 552

per is relatively concise and highly relevant to the 553

target topic, full-context input should be preferred. 554

In contrast, for longer papers with diverse content, 555
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Result Type Element-Level Slide-Level Overall Impression
Align & Space Logic Coherence Visual Appeal Readability

Reference Slide 4.5 3.7 3.8 3.5 3.8
Baseline 2.0 3.0 3.3 2 2.5
JSON-Based Refinement 2.1 2.6 3.4 1.8 2.4
Our Method 3.0 3.8 3.4 2.8 3

Table 2: Evaluation results for layout generation

section retrieval is crucial for ensuring relevance556

while maintaining efficiency.557

5.2 Factors Affecting Layout Quality558

Alignment and Spacing metrics evaluate whether559

elements are properly positioned, evenly spaced,560

and free from overlap. As shown in Table 2, our561

method achieved a notable improvement in the562

Alignment and Spacing score (3.0) compared to the563

Baseline (2.0) and JSON-Based Refinement (2.1).564

Specifically, we observed that self-verification on565

JSON-based textual layout cannot improve the lay-566

out quality, even compromise the Logic, Visual567

Appeal, and Readability. Our method eliminates568

this problem and achieves consistent improvement569

by introducing the textual-to-visual modality trans-570

formation.571

Taking a closer look at the wrong cases, the re-572

maining problems fall into three types. (i) The qual-573

ity of the initial layout plays a crucial role—severe574

errors, such as overlapping elements or inconsistent575

spacing, make it difficult for the Reviewer to pro-576

vide accurate corrections. For instance, when mul-577

tiple elements overlap, it becomes unclear which578

one should be adjusted. (ii) Additionally, the lack579

of diverse layout patterns in the training data, par-580

ticularly for slides with images, limits the model’s581

ability to position visual elements effectively. (iii)582

Finally, the complexity of multi-element layouts583

can cause small errors to propagate during refine-584

ment, leading to cascading issues that are chal-585

lenging to resolve without advanced optimization586

strategies.587

5.3 Complete Presentation Generation588

While our current framework focuses on generating589

slides given a specific topic, the methodology can590

be naturally extended to automate the generation591

of a complete presentation composed of various592

slides.593

Topic Generation and Slide Planning The first594

step in generating a full presentation is to extract595

key topics from the input paper. This can be 596

achieved by analyzing the paper’s structure (e.g., 597

Abstract, Introduction, Method, Results). Addition- 598

ally, keyword extraction and clustering techniques 599

can help create a sequence of logically connected 600

topics for the slides. Each generated topic corre- 601

sponds to a unique slide. 602

Multi-Page Content Generation Once the top- 603

ics are generated, the framework applies the content 604

generation strategy iteratively for each slide. By 605

incorporating context from the previously gener- 606

ated slides, the model maintains logical flow and 607

coherence across the entire presentation. Special 608

transition slides (e.g., Overview) can be inserted to 609

improve the presentation’s structure. 610

Consistent Layout and Visual Style The ex- 611

isting Reviewer + Refiner review process can be 612

fully reused to ensure layout consistency across all 613

slides. 614

This extension to full presentation generation 615

holds significant practical value. It allows re- 616

searchers to generate complete, high-quality pre- 617

sentations directly from academic papers, reducing 618

the manual effort involved in slide creation. 619

6 Conclusion 620

In this paper, we propose a novel framework for 621

generating academic presentation slides. By de- 622

composing the task into content generation and 623

layout generation, our method ensures adaptive lay- 624

outs and visually consistent slides. We introduce a 625

textual-to-visual iterative self-verification process 626

using an LLM-based Reviewer + Refiner workflow, 627

transforming complex textual layouts into visual 628

representations for intuitive review and refinement. 629

Experiments demonstrate that our approach sig- 630

nificantly improves alignment, logical flow, visual 631

appeal, and readability, offering a practical solution 632

for automating high-quality slide generation. 633
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Limitations634

While our framework shows promising results in635

generating academic slides, it has two main lim-636

itations. First, the dataset is restricted to scien-637

tific papers and corresponding presentation slides638

from publicly available sources, which may limit639

its generalizability to other types of presentations.640

Second, the focus of our approach is primarily on641

generating accurate content and structured layouts,642

without considering advanced visual design aspects643

such as color schemes, animations, or aesthetic en-644

hancements that contribute to overall slide polish645

and engagement.646
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A Detailed Descriptions of Reviewer and1110

Refiner Modules1111

A.1 Reviewer Module1112

The Reviewer module simulates an expert evalu-1113

ating the quality of a slide layout based on a set1114

of predefined criteria. It analyzes the visual repre-1115

sentation of the slide, identifies layout issues, and1116

provides precise feedback for improvements. This1117

feedback focuses on alignment, spacing, text over-1118

flow, and image distortion. The primary goal of1119

the Reviewer is to detect errors and ensure that all1120

elements are properly positioned and formatted for1121

a visually coherent slide.1122

Evaluation Criteria and Feedback Rules:1123

Object Overlapping: Identifies overlapping el-1124

ements and suggests repositioning or resizing to1125

maintain separation between elements.1126

Image Quality and Distortion: Detects blurry1127

or distorted images and recommends proportional1128

scaling to enhance clarity.1129

Element Bounding and Text Overflow: Ensures1130

text fits within its bounding box and suggests either1131

expanding the box size or reducing font size.1132

Element Positioning and Alignment: Checks for1133

consistent alignment and appropriate spacing be-1134

tween elements. Misaligned elements are adjusted1135

to the nearest grid line.1136

Text Formatting Consistency: Verifies font fam-1137

ily and text hierarchy, ensuring that title text is1138

larger than body text.1139

Overall Composition and Visual Balance: Eval-1140

uates the slide’s composition for symmetry and vi-1141

sual balance, recommending adjustments for better1142

harmony.1143

Example Output:1144

[1145
{" element ": 302, "recommendation ": "1146

Increase text box height by 1.2x1147
to fit overflowing text."},1148

{" element ": 303, "recommendation ": "1149
Move downward by 10% of its height1150
to resolve overlap with ID1151

302."} ,1152
{" element ": 304, "recommendation ": "1153

Reduce font size by 2pt to fit1154
within the bounding box."}1155

]1156

A.2 Refiner Module1157

The Refiner module applies the Reviewer’s feed-1158

back by modifying the structured layout described1159

in JSON format. The task of the Refiner is to ensure1160

that each adjustment improves the visual quality1161

of the slide while maintaining the overall structure. 1162

This module focuses on correcting bounding box 1163

positions, resizing elements, and preventing over- 1164

laps. 1165

The input to the Refiner consists of: 1166

JSON File: Describes the position, size, font, 1167

and content of each element on the slide. 1168

Reviewer’s Feedback: Provides detailed recom- 1169

mendations for modifying elements (e.g., move, 1170

resize, align). 1171

Slide Dimensions: Ensures all adjustments re- 1172

main within the boundaries of the slide. 1173

Modification Instructions: 1174

Move an Element: Adjust the element’s bound- 1175

ing box values to reposition it. Increase or decrease 1176

the top, bottom, left, and right values as required. 1177

Resize or Scale an Element: Modify the width 1178

and height of an element proportionally while pre- 1179

serving its aspect ratio. 1180

Avoid Overlap: Ensure no two elements overlap 1181

by repositioning or resizing conflicting elements. 1182

Maintain Slide Boundaries: Prevent elements 1183

from exceeding the slide’s width or height. 1184

Example Input and Output: 1185

Input JSON: 1186

{ 1187
"element ": 302, 1188
"Bounds ": [100, 200, 300, 400], 1189
"Font": {"size": 16}, 1190
"Text": "Sample Text" 1191

} 1192

Refined Output: 1193

{ 1194
"element ": 302, 1195
"Bounds ": [100, 220, 300, 420], 1196
"Font": {"size": 14}, 1197
"Text": "Sample Text" 1198

} 1199

By applying these refinements iteratively, the 1200

Refiner ensures that the final slide layout meets 1201

high visual and structural standards, resulting in an 1202

accurate and human-like output. 1203

B Layout Evaluation Criteria and 1204

Scoring Standards 1205

This section provides a detailed explanation of the 1206

evaluation criteria used to assess the quality of the 1207

generated slides. The evaluation process covers 1208

multiple aspects of slide design, including align- 1209

ment, logical flow, text-visual consistency, visual 1210

appeal, and readability. Each criterion is scored on 1211

a five-point scale from 1 (Poor) to 5 (Excellent). 1212
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B.1 Alignment and Spacing1213

This criterion evaluates whether elements on the1214

slide are properly positioned, evenly spaced, and1215

free from overlap. It ensures that the layout main-1216

tains visual balance and clarity.1217

• 1 Point (Poor): Severe misalignment; text1218

overlaps with visuals, creating a chaotic lay-1219

out.1220

• 3 Points (Average): Most elements are1221

aligned, but minor misplacements exist.1222

• 5 Points (Excellent): Perfect alignment and1223

spacing with a professional layout.1224

Example Output:1225

{1226
"reason ": "Most elements are well -1227

aligned , but the spacing between1228
the title and body text is1229
inconsistent .",1230

"score": 41231
}1232

B.2 Logical Flow1233

This criterion assesses the logical sequence of con-1234

tent, ensuring that the information presented in the1235

slide is clear and structured for easy audience un-1236

derstanding.1237

• 1 Point (Poor): Disorganized content; key1238

points do not follow a logical sequence.1239

• 3 Points (Average): Basic logical structure;1240

minor reordering could improve the flow.1241

• 5 Points (Excellent): Seamless logical se-1242

quence with clear and structured information.1243

Example Output:1244

{1245
"reason ": "The information is1246

structured logically , but the1247
second point would be clearer if1248
placed before the third.",1249

"score": 41250
}1251

B.3 Text-Visual Consistency1252

This criterion evaluates the consistency between1253

text and visual elements such as images and charts.1254

It ensures that visuals effectively support the textual1255

information.1256

• 1 Point (Poor): Visuals are irrelevant or con-1257

tradict the text.1258

• 3 Points (Average): Somewhat aligned, but 1259

better integration is needed. 1260

• 5 Points (Excellent): Perfectly integrated vi- 1261

suals that reinforce the message. 1262

Example Output: 1263

{ 1264
"reason ": "The visuals effectively 1265

support the content , but the chart 1266
could be labeled more clearly.", 1267

"score": 4 1268
} 1269

B.4 Visual Appeal 1270

This criterion assesses the overall aesthetic quality 1271

of the slide, focusing on color harmony, typography, 1272

and visual balance. 1273

• 1 Point (Poor): Inconsistent styling; visually 1274

unappealing design. 1275

• 3 Points (Average): Basic but functional color 1276

scheme; lacks enhancements. 1277

• 5 Points (Excellent): Cohesive and visually 1278

appealing design with engaging elements. 1279

Example Output: 1280

{ 1281
"reason ": "The color scheme is 1282

visually appealing and harmonious , 1283
but the background contrasts too 1284

strongly with the text.", 1285
"score": 4 1286

} 1287

B.5 Readability 1288

This criterion evaluates the readability and clarity 1289

of the text and graphical elements, ensuring that all 1290

content is easily understandable. 1291

• 1 Point (Poor): Text is too small or has low 1292

contrast, making it unreadable. 1293

• 3 Points (Average): Generally clear, but some 1294

areas need better contrast or spacing. 1295

• 5 Points (Excellent): Highly readable with 1296

optimal font size, spacing, and contrast. 1297

Example Output: 1298

{ 1299
"reason ": "The text is clear , well - 1300

spaced , and maintains good 1301
contrast. The charts are easy to 1302
read and properly scaled.", 1303

"score": 5 1304
} 1305
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These evaluation criteria ensure a comprehen-1306

sive and structured assessment of the generated1307

slides. By adhering to these standards, the evalua-1308

tion process becomes interpretable, consistent, and1309

reliable.1310
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