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Abstract

Recent subquadratic architectures show exciting
progress, now rivaling Transformers in various
quality metrics. However, scaling these models up
to modern large language model (LLM) sizes can
be prohibitively costly. We thus study how to ef-
ficiently linearize existing LLMs–swapping their
attentions with fast analogs, before only adapting
the fast analog weights–to quickly create high-
quality linear-time and constant memory LLMs.
Our approach, Low-rank Linear Conversion via
Attention Transfer (LOLCAT), is a simple two-step
method that (1) learns expressive yet efficient at-
tention analogs by training linear attentions to
match the outputs of LLM softmax attentions, be-
fore (2) replacing the attentions and adjusting for
this swap with only low-rank adaptation (LoRA).
By linearizing Llama 3 8B and Mistral-7B, LOL-
CAT produces strong linear attention LLMs that
outperform state-of-the-art non-Transformer 7B
LLMs, achieving 1.8-4.7 higher points on pop-
ular LM Evaluation Harness (LM Eval) tasks,
while only training 0.4% of their model parame-
ters with 0.003% of their training tokens. LOL-
CAT-linearized LLMs further achieve 2.5 - 4× the
throughput of original FlashAttention-2 LLMs,
while only increasing memory 1.1× when scaling
generation length 512× from 512 to 131K tokens.
Finally, LOLCAT significantly improves lineariza-
tion quality and training efficiency, leading to 5.0
higher LM Eval points than concurrent methods
with only 0.2% of their training tokens.

1. Introduction
Large language models (LLMs) with billions of parameters
and trillions of training tokens have enabled various exciting
deep learning capabilities (Brown et al., 2020; Wei et al.,
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2022; Kojima et al., 2022). However, they incur high com-
putational demands in their deployment and development.

Considering deployment, popular state-of-the-art LLMs
such as GPT-4 (Achiam et al., 2023), Llama-3-70B (Tou-
vron et al., 2023a;b; AI@Meta, 2024) and Mistral-7B (Jiang
et al., 2023) are Transformer-based (Vaswani et al., 2017).
They require linearly-growing KV-caches for inference that
can bottleneck long-context and large-batch workflows.

Meanwhile, while this motivates developing efficient Trans-
former alternatives (Katharopoulos et al., 2020; Gu et al.,
2021; Peng et al., 2023; Poli et al., 2023a; Arora et al.,
2024), scaling these models up to modern LLM sizes re-
mains challenging. Despite these architectures’ exciting
potential for linear time and constant-memory decoding,
evaluating their quality traditionally requires training new
models from scratch. To perform comparably to Trans-
former LLMs, such pretraining often entails scaling up to
at least 7 billion (7B) parameters and training on 300B to 2
trillion (2T) tokens (Peng et al., 2024; Gu et al., 2021; De
et al., 2024). These prohibitive training costs limit efficient
model development, with few non-Transformer 7B LLMs,
let alone mixture-of-experts (MoE) or 70B models.

We thus study an alternative path to obtaining efficient linear-
time LLMs. Instead of pretraining new architectures from
scratch, can we linearize existing LLMs? By swapping
the attention layers of available LLMs with fast attention
analogs—e.g., linear attentions or recurrent layers—and
keeping all other pretrained weights fixed, we can quickly
scale up attention analogs at modern LLM sizes.

However, to evaluate effective LLM linearization and moti-
vate linearization over pretraining from scratch, we consider
three desiderata. Methods should be: (1) training-efficient,
requiring only a fraction of the model parameter updates and
training tokens typically used to train LLMs from scratch;
(2) quality-preserving, recovering the zero-shot capabilities
of modern Transformer LLMs and at least performing com-
parably to prior state-of-the-art subquadratic LLMs; and (3)
inference-efficient, translating the improved time and space
complexity of linear models to real-world higher throughput
and reduced memory generation in existing LLMs.

Unfortunately, existing linearizing works fall short of all
three criteria. Many require full finetuning after attention
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Figure 1. The two stages of LOLCAT. We linearize LLMs into linear versions by (1) training attention analogs to approximate LLM
attention layers via attention transfer, and (2) swapping attentions and making minimal additional adjustments via low-rank adaptation.

swapping to recover performance (Kasai et al., 2021; Mao,
2022; Zhang et al., 2024; Mercat et al., 2024). They fur-
ther often only linearize smaller Transformers (e.g., 110M
BERT (Devlin et al., 2018) or 125M GPT-2 (Radford et al.,
2019)) for specific tasks (e.g., per-task GLUE classifica-
tion (Wang et al., 2018)). It thus remains unclear if we can
scale linearization effectively to a variety of LLMs.

We thus propose Low-rank Linear Conversion with
Attention Transfer (LOLCAT), a simple parameter-efficient
approach for improved LLM linearization. Like prior work,
we first swap each self-attention layer of an existing Trans-
former with a fast attention analog (e.g., linear attention),
before finetuning over some given data to allow the LLM to
adjust to the modified layers. However, our key hypothesis
is that we can avoid extensive training, yet still recover LLM
quality, by explicitly training attention analogs to approxi-
mate the softmax attentions they replace. While intuitive—if
we could replace the softmax attentions with perfect linear
replicas, then we would not require any additional tuning—
prior works suggest that linear attentions either struggle
to match softmax expressivity (Keles et al., 2023; Zhang
et al., 2024), or are unstable to train when trying to approx-
imate softmax in LLMs (Mercat et al., 2024). We instead
show that (1) we can train linear attentions to match softmax
attentions in various LLMs, (2) doing so allows low-rank
adaptation (LoRA) (Hu et al., 2021) to suffice for adjust-
ing LLMs, and (3) together (1) and (2) enable high-quality
linearization with <0.2% of prior methods’ training tokens.

In experiments, LOLCAT efficiently enables high quality
linearized LLMs. Despite only updating <0.5% of the
model parameters with 0.003% of the token budget used
in standard pretraining, linearized Mistral-7B and Llama
3 8B outperform strong subquadratic 7B LLMs based on
StripedHyena (Poli et al., 2023a), RWKV-v6 (Peng et al.,

2024), and Mamba (Gu & Dao, 2023) architectures by 1.8
to 4.7 points (averaged over popular LM Evaluation Har-
ness tasks (Gao et al., 2023)). Mistral-7B-LOLCAT and
Llama3-8B-LOLCAT further achieve 2.5 to 4× the through-
put (tokens per second) of FlashAttention-2 (Dao, 2023)
versions with sublinear memory scaling (incurring 1.1×
the GPU memory when generating 512× the tokens, from
512 to 131k token outputs). Finally, LOLCAT significantly
improves upon prior linearization methods. We reduce the
performance drop incurred with prior approaches by 95.8%
(from -37.3 points to -1.6 points) (Kasai et al., 2021), and
outperforms concurrent methods by 2.9 to 5.0 LM Eval
points with only 0.04% to 0.2% of their training tokens (Mer-
cat et al., 2024).

2. Background: Linear Transformers
Transformers and Attention. Popular LLMs such as
Llama 3 (AI@Meta, 2024) and Mistral-7B (Jiang et al.,
2023) are built on Transformers. These architectures con-
sist of repeated blocks of self-attention layers followed by
MLPs, where the attention layers are responsible for se-
quence modeling (Vaswani et al., 2017). For causal lan-
guage modeling, attention layers model inputs {xi}li=1 ∈
Rl×d (where l is number of tokens, d is head dimension)
with query, key, and value weights Wq,Wk,Wv ∈ Rd×d,
and computes attention weights and outputs via

qn = xnWq,ki = xiWk,vi = xiWv (1)

an,i =
exp(q⊤

n ki/
√
d)∑n

i=1 exp(q
⊤
n ki/

√
d)

, yn =

n∑
i=1

an,ivi (2)

for all n ∈ [l]. While expressive, the softmax in Eq. 2 results
in requiring all prior {ki,vi}i≤n to compute attention out-
put yn. As n grows or we wish to generate many samples
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in parallel (e.g. in long context or large-batch settings), this
growing “KV cache” can incur prohibitive memory costs.

Linear Attention. To get around this, prior work notes
that we can perform a similar attention operation, but with
only a constant-sized “KV state”. This unlocks constant-
memory generation that scales independently of sequence
length. To see how, note that attention’s exp can be viewed
as a kernel function k(q,k) (Katharopoulos et al., 2020),
where in general we can express kernels as the dot product
of feature maps ϕ : Rd 7→ Rd′

. Replacing exp(q⊤k/
√
d)

with ϕ(q)⊤ϕ(k) in Eq. 2, we now get linear attentions

ân,i =
ϕ(qn)

⊤ϕ(ki)∑n
i=1 ϕ(qn)

⊤ϕ(ki)
, ŷn =

n∑
i=1

âi,nvi (3)

where without the softmax, Eq. 3 can be re-expressed as

ŷn =
ϕ(qn)

⊤
(∑n

i=1 ϕ(ki)v
⊤
i

)
ϕ(qn)⊤

∑n
i=1 ϕ(ki)

=
ϕ(qn)

⊤sn
ϕ(qn)⊤zn

(4)

for “KV state” sn ∈ Rd×d′
and “K state” zn ∈ Rd:

sn = sn−1 + ϕ(kn)v
⊤
n , sn−1 =

n−1∑
i=1

ϕ(ki)v
⊤
i

zn = zn−1 + ϕ(kn), zn−1 =

n−1∑
i=1

ϕ(ki)

(5)

Starting with s0 = 0, z0 = 0, Eq. 4 and 5 allow computing
attention recurrently in O(nd′2) time and O(d′2) memory
for new outputs ŷn. Thus if d′ < sequence length l, linear
attentions improve Transformer time and space complexity.

Various works propose different functions for ϕ, ranging
from those that enforce “valid” attention weights (positive
and summing to 1) via 1+ELU (Katharopoulos et al., 2020)
or ReLU (Qin et al., 2022), to those that approximate exp
via randomized (Choromanski et al., 2020; Peng et al., 2021;
Zheng et al., 2022) or polynomial (Alman & Song, 2023; Ke-
les et al., 2023) features. However, they consistently report
underperforming softmax attention in modeling quality.

Rather than design ϕ explicitly, to linearize LLMs we build
on prior work that learns how to approximate softmax at-
tention, i.e., by parameterizing ϕ as MLPs trained such that
ân,i ≈ an,i over real data (Zhang et al., 2024). We next
describe this featurization and our overall method in greater
detail. We further later show that this attention transfer
enables high-quality linearization in Sec. 4.1.

3. Method: Linearizing LLMs with LOLCATs
We now present LOLCAT, a simple approach to efficiently
linearize LLMs. Like prior work (Kasai et al., 2021; Mao,

2022; Zhang et al., 2024), we adopt a two-step procedure,
where we swap fast attention analogs into an existing Trans-
former LLM, before finetuning the parameters to adjust for
the modified layers. However, we improve the training effi-
ciency and end-quality of linearized LLMs with three core
components: (1) using LoRA instead of full finetuning, (2)
training the swapped attention analogs to explicitly approxi-
mate softmax attentions, and (3) supporting new learnable
attention analogs that improve softmax attention fidelity.

Linearizing with LoRA. As a first step, we simply swap
the full-finetuning in existing approaches with low-rank
adaptation (LoRA). For every attention layer, we replace the
Eq. 2 computation with Eq. 3. For post-swap finetuning, we
freeze all layers except for the attention query, key, value,
and output projections (the latter acting as a final linear
layer to combine outputs in multi-head attention (Vaswani
et al., 2017)). To train these layers with LoRA, rather than
apply a full-parameter update, e.g, W ′

q ←Wq +∆Wq , we
decompose ∆Wq into the product of two low-rank matrices
BA, where B ∈ Rd×r, A ∈ Rr×d. With r ≪ d, (e.g.
8 versus 128 for Llama-3 and Mistral 7B), LoRA makes
linearizing LLMs much more accessible (only updating
<0.09% of model parameters).

Learning Linear Attentions via Attention Transfer.
While prior works show that we can linearize Transformers
by simply swapping attention layers before fully finetuning
the model on some downstream task, we make linearizing
with LoRA sufficient by first explicitly training the atten-
tion analogs to approximate their softmax counterparts. We
study if the training setup in Zhang et al. (2024) suffices for
learning feature maps ϕ that can approximate LLM softmax
attentions. In particular, we first parameterize ϕ as an MLP

ϕ(x) = f(xW + x) (6)

where W ∈ Rd×d is a learnable weight matrix, f is a
nonlinear activation such as ReLU applied dimension-wise,
and +x represents a skip connection. We then learn feature
maps ϕ for each head and layer in the LLM. Like Zhang
et al. (2024), we note that each ân and an represents a valid
probability distribution, such that we can simply train ϕ by
matching attention weights via a cross-entropy loss Lxent

n =

−
n∑

i=1

exp(q⊤
n ki/

√
d)∑i

m=1 exp(q
⊤
n km/

√
d)

log
ϕ(qn)

⊤ϕ(ki)∑i
m=1 ϕ(qn)

⊤ϕ(km)
(7)

In Sec 4.1, we verify that attention transfer enables suc-
cessful low-rank linearization for various f , where simply
swapping then finetuning can fail to produce viable LLMs.

Expanding Learnable ϕ Parameterizations. We evaluate
two specific ϕ parameterizations for the LLM regime. First,
we consider a pure linear attention setup as in Eq. 6. In
Sec. 4.1, we explore how various activations f used in prior
linearizing works transfer to the LLM setting.
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However, to further improve linearization quality, we also
propose a hybrid linear attention + sliding window param-
eterization. Motivated by prior works that show quality
improvements when combining attentions layers with more
efficient convolutions (Fu et al., 2022), recurrences (De
et al., 2024), or linear attentions (Arora et al., 2024;
Munkhdalai et al., 2024), we combine short sliding win-
dows of softmax attention (Beltagy et al., 2020; Zhu et al.,
2021) with linear attention in a single learnable feature
map. For token n in a sequence, we compute attentions
[ân,1 . . . ân−w, an,n−w+1, . . . , an,n] and output ỹn via

ỹn = σ

n∑
i=n−w+1

an,ivi + (1− σ)

n−w∑
i=1

ân,ivi (8)

where an,i are softmax attention weights defined over short
sliding window of size w, ân,i are linear attention weights,
and σ is a learnable interpolating factor.

4. Experiments
4.1. Low-rank Linearization via Attention Transfer

We first show that we can learn softmax-approximating
linear attentions in LLMs via attention transfer. Further-
more, doing so often enables successful low-rank lineariza-
tion where simply swapping linear attentions before LoRA-
finetuning fails. In Table 1, we evaluate how various prior ϕ
perform when used to linearize base Llama 3 8B LLMs with
the Alpaca dataset (Taori et al., 2023). We use Alpaca due to
its ability to showcase general instruction-following in 7B
LLMs despite its relatively small size (50k samples, or 10M
tokens). For ϕ, we compare the 1 + ELU (Katharopoulos
et al., 2020), ReLU (Kasai et al., 2021), and exp (Zhang
et al., 2024) feature map activations in prior work, and evalu-
ate the effect of first training the ϕ to match original softmax
attention layers (Transfer? ✓).

In all cases, training linear attentions to match softmax as
in (Zhang et al., 2024) improves linearized LLM perplexity
on validation responses. Softmax approximation quality
of the linear attentions further emerges as a key quality
indicator for low-rank linearization. We further show in
Fig. 3 through Fig. 6 how attention transfer enables recovery
of softmax attention weights in various linear attentions
feature maps, while no attention transfer results in poor
attention weight fidelity.

4.2. LOLCATs for State-of-the-Art Subquadratic Quality

To further test whether LOLCAT enables effective LLM lin-
earization, we next test the zero-shot language modeling
quality of LLMs linearized with LOLCAT. To see if we can
use a small amount of unrelated data to recover zero-shot
capabilities, we linearize Mistral-7B-v0.1 and Llama 3 8B

Table 1. Perplexity and attention approximation quality strongly
correspond for low-rank linearization. PPL@0,@2 reported after
swapping, 2 finetuning epochs. MSE* multiplied by 1e3.

Attention Llama 3 8B

Feature Map Transfer? PPL@0 PPL@2 MSE* KLD

1 + ELU(xW + x) ✗ 6.58e4 555.99 17.13 3.20
ReLU(xW + x) ✗ 6.20e4 1420.72 17.25 3.31
exp(xW + x) ✗ 1.02e4 6.78 11.88 1.76

1 + ELU(xW + x) ✓ 386.92 3.38 1.89 0.28
ReLU(xW + x) ✓ 414.18 3.52 1.76 0.21
exp(xW + x) ✓ 10.42 3.11 0.98 0.12

Softmax 20.51 2.15 0.00 0.00

Table 2. LM Evaluation Harness, zero-shot default setting.
Tokens (B) PIQA ARC-e ARC-c HellaSwag WinoGrande

Linearized (acc.) (acc.) (acc. norm) (acc. norm) (acc.)

Mistral 7B T2R +0.04 53.5 27.4 26.8 26.6 51.2
Mistral 7B SUPRA +20 80.1 74.6 42.3 74.8 67.4
Mistral 7B SUPRA +100 80.4 75.9 45.8 77.1 70.3
Llama 3 8B LOLCAT-l +0.04 78.4 74.8 42.7 67.8 53.9
Llama 3 8B LOLCAT-w +0.04 80.3 80.1 51.1 76.7 73.2
Mistral 7B LOLCAT-l +0.04 79.4 77.5 45.6 73.5 53.1
Mistral 7B LOLCAT-w +0.04 81.1 81.4 53.6 77.4 70.6

Subquadratic

StripedHyena − 78.8 77.2 40.0 76.4 −
RWKV-v5 (EagleX) 2250 77.6 74.5 41.6 − 73.3
Mamba-7B 1200 81.0 77.5 46.7 77.9 71.8
RWKV-v6 (Finch) 1420 78.7 76.8 46.3 75.1 70.0

Transformer

Llama 2 7B 2000 78.0 76.2 46.3 75.6 69.1
Mistral 7B 8000 (?) 82.1 80.9 53.8 81.0 74.1
Llama 3 8B 15000 79.5 80.0 53.4 79.1 70.0

models with the Alpaca dataset, and test on five popular
zero-shot LM Evaluation Harness tasks (Gao et al., 2023).

From the best results in Sec. 4.1, we use the exp feature map
for LOLCAT, and test both vanilla linear attention (LOLCAT-
l) and hybrid short window analogs (LOLCAT-w; size 16
windows). We train the analog MLPs for two epochs with
learning rate 1e-2 before swapping, and LoRA-finetuning
the LLMs for two epochs with learning rate 1e-4. For all
stages we use AdamW optimizer and batch size 8 with
gradient accumulation.

In Table 2, we find LOLCAT can achieve state-of-the-art sub-
quadratic LLM quality with minimal training resources (e.g.,
40M tokens, 0.003% of the 1.5T tokens used to pretrain
prior models (Peng et al., 2023)). In particular, LOLCAT
produces linear LLMs that outperform strong 7B LLMs
such as RWKV-v6 Finch World v2.1 (Peng et al., 2024),
StripedHyena-Nous-7B (Poli et al., 2023b), and Mamba
7B (Gu & Dao, 2023; Mercat et al., 2024). Furthermore,
to shed light on LOLCAT’s attention transfer, we compare
against two available linearization methods for Mistral-7B
that swap attention analogs but do not train these layers to
match softmax attention: Transformer-to-RNN (T2R) (Ka-
sai et al., 2021) and SUPRA (Mercat et al., 2024) ap-
proaches. LOLCAT improves performance by 35.7 points
over T2R, while also outperforming the SUPRA approaches
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Figure 2. Inference scaling performance of LOLCAT. (Hedgehog fmap) denotes the trainable exp feature map used in Zhang et al. (2024).

by 2.9 and 5.0 points, despite only using 0.04% to 0.2% of
their training token budgets and finetuning with LoRA.

4.3. Linearizing for Subquadratic Efficiency

Finally, we evaluate LOLCAT inference and generation effi-
ciency. Via linear attention, we find we can scale dramati-
cally better than existing Transformers with FlashAttention-
2 (Dao, 2023) over longer generations and larger batch size.
We benchmark LOLCAT-l and FlashAttention-2 versions of
Mistral-7B in full bfloat16 precision on one 40GB A100.

In Fig. 2(a) we report the effect of scaling batch size on
throughput, with a fixed 2048 token prompt and 128 token
generation. We find that for small batches, FlashAttention-2
slightly outperforms linear attention. However, as batch size
scales, LOLCAT becomes significantly faster than attention.
Furthermore, the memory consumption of FlashAttention
vastly outpaces linear attention; as a result, it cannot run in
batches beyond 16 due to memory limits.

In Fig. 2(b, c), we show how LOLCAT scales with generation
length. We consider the setting of single-batch inference
with a short prompt (128 tokens) and varying generation (up
to 131k tokens). Below 16k tokens, FlashAttention-2 runs
more quickly, but as sequence length increases, linear atten-
tion provides up to twice the throughput. Beyond sequences
of 64k, FlashAttention-2 runs out of memory. However,
we observe that, due to the constant memory and the recur-
rent nature of linearized LLMs, LOLCAT maintains nearly
constant throughput and memory usage as we increase the
number of tokens generated from 512 to 131K tokens.

5. Conclusion
In this work, we propose LOLCAT, an efficient LLM lin-
earization approach that (1) trains attention analogs to ap-
proximate an LLM’s self-attentions, before (2) swapping
the attentions and only finetuning the replacing attentions
with LoRA. On popular zero-shot evaluation benchmarks,

we find this enables producing high-quality high-inference
efficiency LLMs that outperform prior Transformer alterna-
tives, while only updating 0.1% of model parameters and
requiring 0.003% of the training tokens to achieve similar
quality with LLM pretraining. Our findings also contribute
to improving linearization methods; we evaluate existing
and concurrent approaches and find LOLCAT leads to 5.0
point improvements over concurrent linearizing methods
with only 0.04% of their linearizing tokens.
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Figure 3. Linear attention (PRED) and softmax attention (TRUE) weights for exp learned feature map, with attention transfer.
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Figure 4. Linear attention (PRED) and softmax attention (TRUE) weights for exp learned feature map, without attention transfer.
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Figure 5. Linear attention (PRED) and softmax attention (TRUE) weights for ReLU learned feature map, with attention transfer.
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Figure 6. Linear attention (PRED) and softmax attention (TRUE) weights for ReLU learned feature map, without attention transfer.
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