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ABSTRACT

Recent advances in federated learning have integrated an aggregation control pol-
icy trained with reinforcement learning. A research gap exists evaluating the per-
formance impact of federated network elements as the reinforcement learning en-
vironment. This is particularly relevant for applications of machine learning in
global health, which make use of federated learning to overcome cross-institution
data-sharing constraints. In this work, we introduce a modular architecture of
federated learning as a reinforcement learning environment. We conduct an ex-
perimental evaluation of policies trained in architecture configurations using a
federated non-IID dataset and two deep reinforcement learning algorithms. Re-
sults of experiments show that choices of federated network elements only have
a small effect on absolute classification accuracy (highest is 72.01%) for non-1ID
data, apart from the action aggregation strategy which is much lower. Findings are
consistent with recent experiments, and this work provides a sandbox for robustly
evaluating reinforcement learning methods in federated learning.

1 INTRODUCTION

Federated learning (FL) facilitates privacy-preserving, cross-institution data integration (McMahan
et al., 2017). This enables regulatory-compliant machine learning at the scale of global health chal-
lenges. Applications in healthcare informatics include disease prediction, hospitalisation prediction,
and adverse drug reaction prediction (Xu et al., 2021). Applied FL projects include the Federated
Tumour Segmentation (FeTS) initiative (Baid et al., 2021) where thirty international healthcare in-
stitutions are jointly improving tumour boundary detection. Notable FL research includes detecting
COVID-19 in chest CT scans using data from seven multinational hospitals (Dou et al., 2021).

A key challenge in FL is performance degradation in scenarios where data are not independent and
identically distributed (non-1ID) (Zhu et al., 2021). This challenge is common in health applications
where data are often heterogeneous.

A trained reinforcement learning (RL) policy for FL aggregation has recently been demonstrated to
improve FL performance amongst non-IID data (Nguyen et al., 2022). Authors configure the RL
environment using the following FL elements: State = FL client loss, Reward = FL global model
loss, Action = indirect, and Algorithm = DDPG (Lillicrap et al., 2015). Here we focus on under-
standing how the choice of FL elements as the RL environment affects performance. Identifying the
comparative expressive power of FL elements can help researchers design optimal FL algorithms
across global health contexts.

Our contributions are as follows:
1. We introduce a modular architecture for FL as an RL environment, with variable element
designs influenced by federated optimisation literature.

2. We compare the performance of policies trained within modular architecture configura-
tions, including against a baseline federated optimisation algorithm. In experiments, we
discover limited performance impact under non-IID scenarios.

3. We release a public [Python Notebook as a sandbox for configurable training, deployment,
and evaluation of our modular architecture.
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2 RELATED WORK

Reinforcement Learning within Federated Learning. RL has been applied within federated net-
works to improve classification accuracy in a non-IID data setting (Nguyen et al., 2022), improve
computation costs across a federated network (Zhan & Zhang, 2020), and improve federated net-
work convergence speed (Wang et al., 2020). There is a remaining gap in knowledge related to the
choice of architecture of FL as an RL environment.

Federated Optimisation Methods. Existing approaches to the non-IID data challenge include
aggregating with consideration of model parameter divergence (Li et al., 2020), client variance (Li
et al., 2019), batch normalisation (Li et al., 2021), or client personalisation (Fallah et al., 2020).

3 PRELIMINARIES

Federated Learning - A federated optimisation algorithm aims to find the minimum average sum
of local loss functions across all training client models in the federated network: min,, f(w) =

1 SN, Fr(w), where the loss function of the k™" client is Fj,(w) = By, ~p, [f(w; z1)], N is the
number of clients, and Dy, is the k'™ client’s data distribution.

Reinforcement Learning - An agent aims to learn an optimal control strategy for a dynamic en-
vironment. Through a repeated cycle of environment state observations S, taken actions A and

received rewards R, following a finite Markov decision process, the agent’s learning algorithm op-
timises a policy 7 to maximise the expected cumulative received reward.

4 METHODS

We present a modular architecture of FL as an RL environment (Figure 1). A RL agent will optimise

its policy 7 by selecting an output across an action space of FL client aggregation factors Agi“").
The agent’s goal is to maximise total episode reward R, 1, which is received at each federated train-
ing round ¢ as a mean environment indicator capturing the overall performance of network clients.

Agent Goal: max E, [Zz:tﬂ yh-t=t (% SN E (w)t) IJ

where the RL reward R; = + Ziv F;(w) is discounted by factor v*~!~ to form a discounted sum
of future rewards up to the terminal episode 7.

We also introduce the architecture (Figure 2) for a configuration-consistent trained policy 7 to act
as an aggregator within a FL network.

Within the modular architectures are the following configurable parameters:

State:

1. Local client loss captures the error between each federated network client model’s classifi-
cation labels and true labels, amongst local training data instances.

2. Local client accuracy captures the percentage of data instances, from a local validation
dataset, which are correctly classified by the local model.

3. Local client parameter divergence captures the magnitude between the local model’s pa-
rameters and the global federated model, motivated by FedProx (Li et al., 2020).

4. Include local client dataset size (|D;|) is configurable parameter for inclusion alongside
any of the above options, motivated by FedAvg (McMahan et al., 2017).

Action Aggregation Strategy:

1. Direct aggregation strategy where client parameters wt(i"n) are vector-wise multiplied by

the RL agent’s selected actions AS"”) to produce the federated network’s shared global
model w?.
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2. Indirect aggregation strategy where each client’s parameters w! are multiplied by the factor
of the RL agent’s produced influence actions ﬁ, and w” is the sum of these products.
i t
Reward:

1. Negative mean client loss amongst all clients selected for training in the federated network.

2. Mean client accuracy amongst all clients selected for training in the federated network.

RL Agent

Policy JT
Q

Reward Ry

State Si41

( \
RL Environment
4 Action A, y

1)

@/ .. T

1) Fuo™” wl AL X w)

) 13X R

Figure 1: Schematic: FL as an RL environment.
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Figure 2: Schematic: Trained RL policy as a federated network aggregator.

5 EXPERIMENTS & RESULTS

We run experiments on Federated EMNIST, a FL dataset within the LEAF Benchmark for Federated
Learning (Caldas et al., 2018). The image dataset has 3,550 unique clients, each with a data distri-
bution across 62 label classes. Our implemented federated model is a convolutional neural network
(CNN) for image classification that mirrors the implementation in ‘Adaptive Federated Optimiza-
tion” (Reddi et al., 2020). We evaluate the architectures on two deep RL algorithms, one On-Policy,
PPO-Clip (Schulman et al., 2017), and one Off-Policy, Twin Delayed DDPG (TD3) (Fujimoto et al.,
2018).

Our experiment design is a process of iterative variation to efficiently discover element expressive
power (Table 1). The best-performing combination (72.01% accuracy) was made up of State =
divergence, Reward = loss, |D;| = no, Action = indirect, and Algorithm = TD3. Configuration
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variations had a limited impact on classification accuracy, other than action aggregation strategy
(6.25% accuracy) (Figure 3). FedAvg benchmark performance across the 5 experimental stages had
a mean classification accuracy of 71.51%.

Table 1: Experiment results: Absolute classification accuracy over configuration variations.

Stage Experiment State Reward |D;| Action Algorithm Accuracy

El Acc No Ind TD3 71.67
S1 E2 Acc Acc No Ind TD3 71.05

E3 Loss Acc No Ind TD3 71.44
S2 E4 Div No Ind TD3 72.01
S3 E5 Div Loss Yes Ind TD3 70.68
S4 E6 Div Loss No Dir TD3 6.25
S5 E7 Div Loss No Ind PPO 71.05
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Figure 3: Stage Four evaluation results. E6 shows RL agent received reward across training. S4
shows E6, E4, and a FedAVG benchmark classification accuracy.

6 DISCUSSION

Our results demonstrate that a trained RL policy is a robust aggregator in a federated network. The
exception to this conclusion is the choice of direct aggregation strategy which fails to reasonably
train a policy (Figure 3). The agent objective increases in complexity, from understanding how
clients comparatively inform the reward to individually inform the reward. This result is consistent
with the motivation for Multi-agent RL (MARL) in a federated network (Zhang et al., 2022).

While combinations of natural machine learning performance indicators yield similar evaluation
results, the variation across element choice indicates further room for optimisation. A recommended
research pathway for disease agnostic FL is to evaluate blended combinations of the performance
elements explored in this study. To support this research, we have made an IPython Notebook which
we make available for use by the community: link redacted for anonymity.

A limitation of this work is the evaluation across only one federated dataset. It is plausible that
different FL elements as an RL environment will have distinctly varied expressive power across
increasingly heterogeneous data. To evaluate this hypothesis, we recommend modular architecture
experimentation on a synthetic dataset with engineered heterogeneity.

7 CONCLUSION

FL should be useful for global health problems where machine learning is used but data privacy
needs to be preserved. RL can be used to support FL where data are non-1ID, and experiments
presented for one standard dataset show that a configuration using State = divergence, Reward = loss,
|D;| = no, Action = indirect, and Algorithm = TD3 produces the highest performance. We present
an implementation of a modular architecture for testing RL methods in FL and release the code and
environment. Further experiments are needed to understand the impact of data heterogeneity across
FL clients.



Under review for the Machine Learning & Global Health Workshop at ICLR 2023

REFERENCES

Ujjwal Baid, Sarthak Pati, Siddhesh Thakur, Brandon Edwards, Micah Sheller, Jason Martin, and
Spyridon Bakas. The federated tumor segmentation (fets) initiative. In Neuro-Oncology, vol-
ume 23, pp. 135-135. Oxford University Press Inc Journals Dept, 2021.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Qi Dou, Tiffany Y So, Meirui Jiang, Quande Liu, Varut Vardhanabhuti, Georgios Kaissis, Zeju Li,
Weixin Si, Heather HC Lee, Kevin Yu, et al. Federated deep learning for detecting covid-19 lung
abnormalities in ct: a privacy-preserving multinational validation study. NPJ digital medicine, 4
(1):60, 2021.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning: A meta-
learning approach. arXiv preprint arXiv:2002.07948, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated
learning. arXiv preprint arXiv:1905.10497, 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Sys-
tems, 2:429-450, 2020.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623, 2021.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Nang Hung Nguyen, Phi Le Nguyen, Duc Long Nguyen, Trung Thanh Nguyen, Thuy Dung Nguyen,
Huy Hieu Pham, and Truong Thao Nguyen. Feddrl: Deep reinforcement learning-based adaptive
aggregation for non-iid data in federated learning. arXiv preprint arXiv:2208.02442, 2022.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konecny,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning on non-iid data
with reinforcement learning. In IEEE INFOCOM 2020-1EEE Conference on Computer Commu-
nications, pp. 1698-1707. IEEE, 2020.

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
learning for healthcare informatics. Journal of Healthcare Informatics Research, 5(1):1-19, 2021.

Yufeng Zhan and Jiang Zhang. An incentive mechanism design for efficient edge learning by deep
reinforcement learning approach. In IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, pp. 2489-2498, 2020. doi: 10.1109/INFOCOM41043.2020.9155268.

Sai Qian Zhang, Jieyu Lin, and Qi Zhang. A multi-agent reinforcement learning approach for
efficient client selection in federated learning. arXiv preprint arXiv:2201.02932, 2022.

Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-iid data: A survey.
Neurocomputing, 465:371-390, 2021.



	Introduction
	Related Work
	Preliminaries
	Methods
	Experiments & Results
	Discussion
	Conclusion

