
Under review as a conference paper at ICLR 2023

TRAJGRU-ATTENTION-ODE:
NOVEL SPATIOTEMPORAL PREDICTIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

To perform the long-term spatiotemporal sequence prediction (SSP) task with ir-
regular time sampling assumptions, we build the sequence-to-sequence models
based on the Trajectory Gated Recurrent Unit (TrajGRU) network and our pro-
posed deep learning modules. First, we design a novel attention mechanism,
namely Motion-based Attention (MA), and insert it into the TrajGRU network to
create the TrajGRU-Attention model. In particular, the TrajGRU-Attention model
can alleviate the impact of the vanishing gradient, which leads to the blurry ef-
fect in the long-term predictions and handle both regularly sampled and irregu-
larly sampled time series. Second, leveraging the advances in Neural Ordinary
Differential Equation (NODE) technique, we proposed the TrajGRU-Attention-
ODE model, which can be applied in continuous-time applications. To evaluate
the performance of the proposed models, we select three available spatiotemporal
datasets based on the complexity level, including the MovingMNIST, MovingM-
NIST++, and KTH Action. Our models outperform the state-of-the-art NODE
model and generate better results than the standard TrajGRU model for SSP tasks
with different circumstances of time sampling.

1 INTRODUCTION

Spatiotemporal Sequence Predictive (SSP) learning has been an essential research topic and plays a
critical role in many real-world applications, attracting widespread attention in recent years. In real
life, spatiotemporal data often occur around us whenever data are collected across space and time
(Wang et al., 2020). Overall, SSP learning refers to the approaches used for studying and processing
these data for practical tasks ranging from many daily practical applications (e.g., motion prediction
(Wu et al., 2017), traffic flow prediction (Luo et al., 2019)) to many global-scale applications (e.g.,
precipitation and weather hazard nowcasting (Shi et al., 2015; 2017)).

With SSP learning tasks, researchers have studied and proposed various machine learning algorithms
and advanced deep learning models to capture the spatial and temporal properties (Fang et al., 2021).
Typically, there are two types of time sampling in temporal analysis: regular time sampling (i.e., the
time interval is assumed to be constant) and irregular time sampling (i.e., the time interval is con-
sidered arbitrary). Although some sequence models usually apply a standard time sampling variable
and use the concept of frame rate to sample the data, there are numerous scenarios in which this
assumption is not practical. First, not all spatiotemporal datasets follow this sampling type; some
research areas are interested in data recorded at arbitrary time steps, such as medical, economics,
and climate modelling (Foley, 2010; Kanakidou et al., 2005). Besides discrete series, some spa-
tiotemporal data in continuous space are applied for continuous-time physical models (Zhong et al.,
2019), biology applications (Pinckaers & Litjens, 2019) and telecommunications (Huai et al., 2022).
Second, an observed time series can lose data points at some time because of hardware errors, noise,
and outside effects on machines. Furthermore, handling time series at arbitrary time steps can help
systems be flexibly used for numerous applications and save time and resources.

Recent studies proposed approaches to solve complicated SSP tasks with fixed frame rates, and these
models are designed to address the vanishing gradient issue (Shi et al., 2015; 2017; Wang et al.,
2017; Su et al., 2020). Other works used the concept of irregular time sampling in continuous-time
video generation and prediction (Chen et al., 2018; Yildiz et al., 2019; De Brouwer et al., 2019).

1

Under review as a conference paper at ICLR 2023

However, those continuous-time models, as described in Section 2, experimented with relatively
simple datasets; thus, they are not practical for real-world applications with complicated datasets.

Based on those observations, we propose two novel sequence-to-sequence predictive models which
can work effectively with the overall SSP task with different time sampling assumptions: TrajGRU-
Attention and TrajGRU-Attention-ODE. In the two models, we presented a novel attention module,
namely Motion-based Attention (MA), which can be flexibly dropped into a Recurrent Neural Net-
work (RNN) to boost memory ability and help the model handle irregularly sampled time series.
In the TrajGRU-Attention-ODE, besides the MA modules, we design a novel RNN, namely Trajec-
tory Gated Recurrent Unit integrating Ordinary Differential Equation techniques (TrajGRU-ODE),
which can perform continuous-time spatiotemporal prediction tasks. According to extensive exper-
iments on various video datasets, the proposed models can generate predictions properly with high
accuracy. Furthermore, the proposed models outperform state-of-the-art ODE-based approaches for
SSP tasks with different circumstances of time sampling.

2 RELATED WORK

Convolutional Recurrent Neural Networks (ConvRNNs). ConvRNNs are proposed based on
Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). Convolutional
Long-short Term Memory (ConvLSTM) (Shi et al., 2015), and Convolutional Gated Recurrent Unit
(ConvGRU) (Ballas et al., 2015; Siam et al., 2017) are two prior variants in this group. Based on
the fundamental idea of the learnable spatial transformer module, Shi et al. (2017) proposed the
Trajectory Gated Recurrent Unit (TrajGRU) model that can learn the location-variant structure for
the recurrent connection and capture the spatiotemporal corrections effectively. Wang et al. (2017;
2018; 2022) proposed PredRNN models with novel ConvRNN layers for the SSP task. Essentially,
the PredRNN cell is the extended version of the ConvLSTM unit containing dual memories: the
temporal and spatial memory states. As a result, the recurrent layer can store more knowledge of the
observed series, and the system can alleviate the vanishing gradient problem. In addition, the Con-
vLSTM and ConvGRU models are considered first-order Markovian models because their memory
cell takes only one previous hidden state at a time to generate the spatiotemporal representation state
(Soltani & Jiang, 2016). This causes an intrinsic difficulty in learning spatiotemporal correlations
in the long-term forecasting task. Therefore, Su et al. (2020) extended the ConvLSTM to a higher-
order network that can combine several previous states and feed them into the memory mechanism
at a time step, namely Convolutional Tensor-Train Long Short-Term Memory (Conv-TT-LSTM).

Neural Ordinary Differential Equations (NODEs). For the SSP task, most of the recent sequence
models follow the regular time sampling assumption. Therefore, the learning ability of these models
is limited to specific datasets with a constant time gap between adjacent data frames. As a result,
these models cannot perform irregularly sampled or continuous-time prediction tasks. A temporary
solution to this problem is to preprocess the sequences by removing some intermediate data points
of irregularly sampled sequences. However, this will significantly impact the training and testing
processes of the whole system because some data are ignored, especially with sparse datasets. Con-
sequently, the preprocessing step is not optimal for the given task. In that situation, NODEs have
been proposed as promising methods for irregularly sampled and continuous-time prediction prob-
lems. The group of ODE-based models is a new family of deep neural network models (Chen et al.,
2018; 2020). In the SSP field, the evolution of a phenomenon can be represented by differential
equations, and these equations can be solved by mathematical methods. Based on this observation,
ODE-based models have been designed, and specific neural networks have been proposed to im-
plement the differential equations describing the changing processes of representation states in the
latent field. For instance, Rubanova et al. (2019) proposed a generative latent function continuous-
time model (Latent-ODE), considered one of the first NODEs implemented for time series predic-
tion tasks. Yildiz et al. (2019) proposed Deep generative second-order ODEs with Bayesian neural
networks (ODE2VAE) for autoencoding irregularly sampled time series. Although the ODE-based
models above can handle irregularly sampled data and learn the continuous-time state dynamics,
their performances were investigated with relatively simple datasets, such as image rotation and
bouncing ball (Rubanova et al., 2019; Yildiz et al., 2019; De Brouwer et al., 2019). Park et al. (2021)
proposed a continuous-time video generation model using the ODE technique, namely Vid-ODE,
which shows some promising performances with real-world videos. Vid-ODE essentially combined
the standard ConvGRU network, NODE techniques, and the pixel-level composition technique.

2

Under review as a conference paper at ICLR 2023

3 MODELS

3.1 PROBLEM STATEMENT

With the given spatiotemporal sequence input, the main objective of the SSP task is to forecast
the output sequence at future time steps. To do that, sequence-to-sequence models are typically
implemented with an encoding-decoding structure. Simply put, the encoder receives, processes the
input sequence, and sends practical information to the decoder, generating output predictions. In
this work, the main SSP problem formulation can be expressed as

X = (Xinput,Xtarget) = (X(t1), ...,X(tN);X(tN+1), ...,X(tN+K)),

Xprediction = fdecoder(fencoder(Xinput)),

min(floss(Xprediction,Xtarget)),

(1)

where X ∈ RS×C×H×W indicates the examined sequence, consisting of S data frames at time
steps {t1, t2, ..., tS}; Xinput ∈ RN×C×H×W , Xtarget ∈ RK×C×H×W are the input and target
subsequences, respectively (i.e., S = N + K); Xprediction ∈ RK×C×H×W presents the output
prediction of the model; fencoder, fdecoder represent the encoder and the decoder of the model,
respectively; floss indicates the main loss function, as illustrated in Appendix A.2.

3.2 ENCODING-DECODING STRUCTURE

In this work, a model architecture is developed from the stacked style. In the stacked ConvLSTM
architecture (Shi et al., 2015), multiple recurrent layers are stacked: the lowest-level layer is the
bottom layer, and the highest-level one is the top layer. During the recurrent computation of a
specific layer, each recurrent neural unit’s output hidden state is sent to the higher-level layer’s
neural unit. Therefore, the neural unit of the top layer at a specific time step might forget some
practical information coming from the neural unit of the bottom layer at the previous time step
when the system uses a high number of stacked layers (Wang et al., 2017). Consequently, the final
representation state of each recurrent layer in the encoder cannot contain sufficient knowledge of a
long-range series; thus, the decoder cannot learn the spatiotemporal features effectively.

Based on the above observations, we design a novel architecture combining the stacked style, zigzag
connection, and reverse layers at the decoder (see Figure 1). To alleviate the vanishing gradient ef-
fect, we take the idea of the spatiotemporal memory flow of Wang et al. (2017) to design a zigzag
connection, which creates a shortcut to communicate between the top and bottom recurrent layers.
This zigzag shortcut can boost the model’s memory ability by increasing the network’s depth (i.e.,
the connection between units of top and bottom layers allows the model to generate more repre-
sentations between two timestamps). Furthermore, this architecture enables the model to use more
stacked intermediate layers. Consequently, it improves the system’s overall performance. At the
encoder, the operations of neural units when applying the zigzag connection can be formulated as

Hzz(ti) = leakyRELU (Wupsampling ∗ Htop(ti)) ,

Zzz(ti) = σ (Wh ∗ Htop(ti) + Wzz ∗ Hzz(ti)) ,

Hnew
bottom(ti) = Hbottom(ti) + Zzz(ti) ◦ Hzz(ti),

(2)

and vice versa at the decoder, the information flows are reversed so that we have the following
equations for the zigzag connection

Hzz(ti) = leakyRELU (Wdownsampling ∗ Hbottom(ti)) ,

Zzz(ti) = σ (Wh ∗ Htop(ti) + Wzz ∗ Hzz(ti)) ,

Hnew
top (ti) = Htop(ti) + Zzz(ti) ◦ Hzz(ti).

(3)

Here, Zzz(ti) indicates the update gate at the time step ti, which decides how much information of
the zigzag state Hzz(ti) will be obtained; Wupsampling and Wdownsampling refer to the learnable pa-
rameters of the up-sampling and down-sampling layers, respectively; Wh, Wzz refer to the learnable
parameters of the convolutional layers applied to extract the features of the hidden states. Conse-
quently, the new state Hnew

bottom(ti) at the encoder and Hnew
top (ti) at the decoder can be obtained. This

work divides the model building blocks into two groups: the central and connection building blocks.

3

Under review as a conference paper at ICLR 2023

Figure 1: (Left) Illustration of TrajGRU-Attention model. (Right) Illustration of TrajGRU-
Attention-ODE model. In the figure, the encoder and decoder use three layers to predict two future
frames X̃(t3), X̃(t4) given two input frames X(t1), X(t2).

In the group of connection blocks, besides up-sampling and down-sampling blocks, we present MA
modules: Motion-based Encoding Attention (MEA) and Motion-based Decoding Attention (MDA)
modules used in the TrajGRU-Attention model. In the TrajGRU-Attention-ODE, the MDA modules
are not used, and TrajGRU blocks are replaced with the TrajGRU-ODE blocks.

3.3 TRAJGRU-ATTENTION

Typically, the current representation state can be computed using the current data input and the
previous hidden state at each timestamp when using the traditional recurrent computation. Since
the updating computation at each neural cell takes into account the short-term dependencies of two
adjacent data frames, the long-term dependencies between the current input and all previous series
are not effectively captured (Vaswani et al., 2017). This issue leads to the vanishing gradient problem
reducing the reconstruction quality, especially with long-range examined sequences.

In the time domain, the evolution and changing processes over time of the spatiotemporal phenom-
ena intrinsically involve the motion characteristics, which are mathematically described in terms of
position, velocity, acceleration, and time variables. Therefore, we leverage the characteristic motion
analysis as the key idea to build the MA module. The main objective of this mechanism is to help
the system look back on prior knowledge and pay more attention to valuable parts based on the
motion characteristics of the observed hidden states and input frames. Moreover, by learning the
representation states of the motions over time, the system is capable of handling data points sampled
at arbitrary given timestamps. In this work, the MA module is built as a connection building block
which can be flexibly inserted into different RNNs. According to the encoding-decoding model
structure, there are also two attention mechanisms: the MEA and MDE. These mechanisms create
the parallelization computation inside the recurrent operation of central blocks (e.g., TrajGRU).

Motion-based Encoding Attention (MEA) mechanism. From the side of the encoder, the MEA
mechanism is proposed for performing the parallelization computations on the input sequence. The
entire step-by-step of applying the MEA is described as follows.

First, at the time step tQ of the input sequence, we derive the formulas used to compute additional
states representing the motion characteristics. By assuming the set of input frames {X(ti)}i≤Q,i∈N
(i.e., the set length is Q) as the position information, we can define the set of velocity and accelera-
tion states as follows

{V(ti),A(ti)}i≤Q,i∈N :


V(ti) = fV

(
X(ti)−X(ti−1)

ti−ti−1

)
,

A(ti) = fA

(
V(ti)−V(ti−1)

ti−ti−1

)
,

A(t1) = V(t1) = X(t1).

(4)

4

Under review as a conference paper at ICLR 2023

In Equation 4, fV , fA indicate distinct networks: each includes a convolutional layer with a kernel
size of (1× 1) and an average pooling layer. Thus, the sets {V(ti),A(ti)}i≤Q,i∈N can be represented
by tensors VtQ and AtQ , respectively, with the same shape of (Q×B × C × 1) (where Q denotes
the set length, B denotes the batch size, C denotes the number of channels of the state). The set of
time steps TtQ is reshaped from (Q×B × 1) to (Q×B × C × 1) by replicating the values.

Second, based on the computations of Luong et al. (2015), the formulation computing the correlation
between the current input data X (tQ) with its previous frames {X(ti)}i≤Q,i∈N, is written as

CtQ = Avg (tanh (Wa1 ∗ X(tQ) + Wa2 ∗ {X(ti)}i≤Q,i∈N)) , (5)

where Wa1, Wa2 represent the learnable weights of convolutional layers; Avg denotes the average
pooling layer. In Equation 5; the term Wa1 ∗ X(tQ) is added to each element in the set of tensors
Wa2 ∗ {X(ti)}i≤Q,i∈N; then they are stacked together. Consequently, four tensors VtQ , AtQ , TtQ ,
CtQ are obtained with the same shape of (Q×B × C × 1), presenting four keys of the attention.
In particular, those keys are expected to help the model make a decision about how much attention
to pay to each input data frame. Furthermore, since those keys contain information on the changing
rates (i.e., the evolution) regardless of regular or irregular sampling assumptions, the model can
learn and recognize spatiotemporal representations at specified time steps. In the next step, based
on those keys, we compute the alignment scores, which indicate the collection of weights to assign
to each element in the set of input frames {X(ti)}i≤Q,i∈N

StQ = softmax
(
fcombine

(
VtQ ,AtQ ,TtQ ,CtQ

))
, (6)

where fcombine represents the linear layer with the number of input channels being (4×C) and the
number of output channels being (C). Finally, we assign this score StQ to the set of input frames
{X(ti)}i≤Q,i∈N to generate the attention state and the new input at time step tQ

Ha(tQ) = StQ ◦ {X(ti)}i≤Q,i∈N,

Xnew(tQ) = W1×1 ∗ {X(tQ),Ha(tQ)},
(7)

where ”◦” denotes the Hadamard product, ”∗” denotes the convolutional operator; W1×1 represents
the learnable weights of the convolutional layers with a kernel size of (1×1). Consequently, the new
input intrinsically obtains the knowledge of data frames stretching from the beginning timestamp t1
to the current instant tQ. Therefore, the MEA helps the encoder possesses a long-term memory and
an ability to learn the irregularly sampled time series.

Motion-based Decoding Attention (MDA) mechanism. From the perspective of the decoder,
MDA is proposed for making parallel computations on the collection of hidden state sequences
instead of the input sequences in the case of the MEA. As described previously, the encoder’s recur-
rent layers take the attention states generated by implementing the MEA on the input series to create
the output hidden form for each timestamp. Since the decoder uses the representation states from
the encoder to make predictions, the same attention mechanism is applied to the set of hidden states
in the decoder. Therefore, the entire attention operations are straightforward, and the information
flows are distributed following a common recurrent computation.

Overall, a MA block has a set of learnable parameters coming from five convolutional layers (i.e.,
fV , fA, Wa1, Wa2, W1×1) and one linear layer (i.e., fcombine). The details of MA module set-
tings for the entire model are illustrated in Appendix A.3. Finally, the TrajGRU-Attention model is
constructed by combining the TrajGRU networks and the MA module setting (see Figure 1).

3.4 TRAJGRU-ATTENTION-ODE

In the TrajGRU-Attention-ODE structure, the TrajGRU and MDA blocks are replaced by the
TrajGRU-ODE network. This neural network implements an internal loop to perform the recur-
rent computation like many conventional RNNs. However, instead of just using the pair of the input
X(ti) at the time step ti and the previous hidden state H(ti−1), a new intermediate state D(ti) is
defined, namely the difference representation; then, it is inserted into the recurrent computation
alongside this pair. In particular, this state is computed using the couple of latent continuous-time
states {Hode(ti−1),Hode(ti)} which is generated by the ODE solver component. Hence, this state
can emphasize the distinctness and the evolution of data from time step ti−1 to ti. Eventually, the

5

Under review as a conference paper at ICLR 2023

formulation to compute D(ti) can be rewritten as follows

{Hode(ti)}i=1,...,T } = ODEsolver(fode(Hode,Wθ, t),Hode(t0), {t0, ..., tT },methodODE),

Dti = Wode
combine ∗ {Hode(ti−1),Hode(ti)},

(8)

where Wode
combine denotes the convolutional layer with a kernel size of 1 × 1. More specifically, we

will examine a simple task to generate T unseen data frames at T random timestamps using the
given initial knowledge. First, the integrated ODE solver module is defined by a neural network that
played a role in the ODE function and a numerical integration method (Chen et al., 2018). In this
work, an ODE function is represented by a sequence of convolutional and tanh activation layers.
Then, this ODE solver will take the initial state to generate the set of continuous-time hidden states
{Hode(t0), ...,Hode(tT)} in the latent space at the expected timestamps from t0 to tT .

Although those states obtain the continuous-time dynamics, the ODE function (i.e., the ODE neural
network) of the ODE solver module is insufficient to capture important spatial features and recon-
struct the resulting outcomes with high sharpness simultaneously, especially when the sequence
data contain different complicated spatiotemporal properties. Therefore, these latent continuous-
time states are incorporated with the hidden states generated by the extended TrajGRU layer to
represent learnable features more effectively. According to Equation 8, the state D(ti) at time step
ti, allows the system to foresee how the examined state can evolve at this time step. After that,
the extended TrajGRU will combine this state with other knowledge processed by the gated mech-
anism to reconstruct the resulting output. Therefore, the TrajGRU-ODE block (see Figure 2) can
simultaneously learn the sequence’s continuous-time and spatiotemporal dynamics. As a result, this
technique can be applied to handle the irregularly sampled time series and perform continuous-time
prediction tasks. The detailed operation formulations of the TrajGRU-ODE unit can be written as
follows

U(ti),V(ti) = γ (X(ti),H(ti−1)) ,

Z(ti) = σ

(
Wxz ∗ X(ti) +

L∑
l=1

Whz,l ∗ warp(H(ti−1),U(ti, l),V(ti, l)) + Bz

)
,

R(ti) = σ

(
Wxr ∗ X(ti) +

L∑
l=1

Whr,l ∗ warp(H(ti−1),U(ti, l),V(ti, l)) + Br

)
,

H̃(ti) = tanh

(
Wxh ∗ X(ti) + R(ti) ◦

L∑
l=1

Whh,l ∗ warp(H(ti−1),U(ti, l),V(ti, l)) + Bh

)
,

HTrajGRU (ti) = Z(ti) ◦ H(ti−1) + (1− Z(ti)) ◦ H̃(ti),

Zode(ti) = σ (Whzode ∗ HTrajGRU (ti) + Wdzode ∗ D(ti) + Bzode) ,

Rode(ti) = σ (Whrode ∗ HTrajGRU (ti) + Wdrode ∗ D(ti) + Brode) ,

H̃ode(ti) = tanh (Whhode ∗ HTrajGRU (ti) + Rode(ti) ◦ (Wdhode ∗ D(ti)) + Bhode) ,

H(ti) = Zode(ti) ◦ HTrajGRU (ti) + (1− Zode(ti)) ◦ H̃ode(ti).

(9)

From the perspective of the TrajGRU operation, X(ti) ∈ RCin×Hin×Win , H(ti−1) ∈ RCh×Hh×Wh

indicate the input data at the time step ti and the previous hidden state, respectively; γ represents
the neural network generating the continuous flow fields U(ti), V(ti) with L different connection
links in the transition; warp represents a function used to combine the sets of flow fields and the
hidden state to generate an intermediate state with approximated location information; Z(ti), R(ti)

indicate the update, reset gates, respectively. H̃(ti) represents the memory state, which is modi-
fied according to the reset gate and information flows at each time step; HTrajGRU (ti) represents
the output hidden state of the standard TrajGRU unit. In terms of the extended gates, the states
HTrajGRU (ti) and D(ti) will be the input data and the hidden state, respectively; Zode(ti), Rode(ti)

denote the additional update and reset gates; H̃ode(ti) represents the new memory state; eventually,
the final output state H(ti) contains both continuous-time and spatiotemporal features. The system
has collections of learnable and trainable parameters for the optimizing process: Wk, Bk. Finally,
“∗”, as previously, denotes the convolution operator; “◦” denotes the Hadamard product; σ refers to
the sigmoid function; tanh refers to the tanh function.

6

Under review as a conference paper at ICLR 2023

Figure 2: TrajGRU-ODE unit.

Overall, a TrajGRU-ODE network includes a TrajGRU network (described in Appendix A.1), three
extended gates represented by six convolutional layers, an ODE network represented by two pairs of
convolutional and tanh layers, and other activation layers. From the model structure and architecture
perspective, the TrajGRU-Attention-ODE is designed in the same way as the TrajGRU-Attention
(see Figure 1). The main difference between these two models is that the TrajGRU-ODE blocks
replace the combination of TrajGRU blocks and MDA modules as the central blocks (i.e., central
layers) in the decoder. Since the TrajGRU-ODE blocks themselves can generate continuous hidden
states and reconstruct the outcomes at the expected time steps, the MEA modules are implemented
at the encoder to generate the initial representation states.

4 EXPERIMENTS

4.1 IMPLEMENTATION

This section implements the TrajGRU-Attention and TrajGRU-Attention-ODE models with three
video datasets: the MovingMNIST, MovingMNIST++, and KTH Action. The detailed configura-
tion of the proposed models is presented in Appendix A.5. For the training process, we use the
combination of Mean Square Error (MSE), Mean Absolute Error (MAE), and Structural Similarity
Index Measure (SSIM), as the loss function, as presented in Appendix A.2. To compare the perfor-
mance of the proposed model, we implement the ConvGRU, TrajGRU, and Vid-ODE as the baseline
models whose configurations are described in Appendix A.1.

4.2 DATASETS

For data preprocessing, each examined sequence is divided into two subsequences (i.e., the input
and the target), and then the sampling methods (i.e., regular and irregular sampling) are applied to
each subsequence. The detailed information on sampling assumptions is presented in Appendix A.4.

MovingMNIST. Essentially, the MovingMNIST illustrates the movements of the handwriting
MNIST digits in 64 × 64 frames. For data configuration, all data frames consist of two random
MNIST digits; the input is ten frames long, the target is ten frames long, and the time interval
between adjacent frames depends on the sampling assumption. The training set contains 10000
sequences, the validation set contains 2000 sequences, and the testing set contains 5000 sequences.

MovingMNIST++. Compared to the MovingMNIST dataset, each frame contains three MNIST
digits, and more complicated motion patterns for the MNIST digits are added to all frames, such as
random rotations, scale changes, and illumination changes (Shi et al., 2017). However, similar to
the previous dataset, the same preprocessing and sampling methods are used to generate the input
and target sequences for the training, validation, and testing sets.

KTH Action. KTH Action is a video database describing six types of human actions: walking,
jogging, running, boxing, hand waving, and clapping (Schuldt et al., 2004). For data preprocessing,
we use 255 videos for training and 144 videos for validating and testing. Similar to the case of the
MovingMNIST, the input and target lengths are ten, and the two time-sampling methods are also
applied for the SSP task.

7

Under review as a conference paper at ICLR 2023

Figure 3: Results using the MovingMNIST with regular-sampled input and target sequences.

Figure 4: Results using the MovingMNIST with irregular-sampled input and target sequences.

4.3 RESULTS AND COMMENTS

To test the models’ performance, we use four evaluation metrics: MSE, MAE, SSIM, and Peak-
Signal-to-Noise Ratio (PSNR) (Hore & Ziou, 2010), as described in Table 1. In addition, some
prediction results using the MovingMNIST are shown in Figures 3, 4, and prediction results using
the KTH Action are shown in Figures 5, 6.

Based on the experiments, the results show that the two proposed models achieve better performance
than the baseline models. In particular, the TrajGRU-Attention and TrajGRU-Attention outperform
the Vid-ODE for the irregularly sampled time series assumptions. Moreover, regularly sampled
sequence prediction results demonstrate that the MA modules can alleviate the blurry effect caused
by the vanishing gradient issue. Overall, the TrajGRU-Attention yields the best performance in the
regular sampling assumption, and the TrajGRU-Attention-ODE achieves the best results when the
data is collected at arbitrary timestamps. Additional comparisons are provided in Appendix A.6.

Figure 5: Results using the KTH Action with regular-sampled input and target sequences.

8

Under review as a conference paper at ICLR 2023

Figure 6: Results using the KTH Action with irregular-sampled input and target sequences.

Datasets Model MSE (↓) MAE(↓) SSIM (↑) PSNR(↑)
×104 ×104 ×102

MovingMNIST

ConvGRU 80.72 178.21 92.38 21.35

(regular sampling)

TrajGRU 58.41 141.57 94.32 22.94

Vid-ODE 319.31 507.19 70.78 15.01

TrajGRU-Attention 39.62 110.03 96.06 24.97
TrajGRU-Attention-ODE 41.55 115.33 95.78 24.62

MovingMNIST
Vid-ODE 356.27 503.87 69.67 14.53

(irregular sampling) TrajGRU-Attention 77.29 181.88 91.89 21.54
TrajGRU-Attention-ODE 91.01 203.01 90.59 20.75

MovingMNIST++

ConvGRU 107.88 298.11 75.44 19.83

(regular sampling)

TrajGRU 92.409 262.75 78.25 20.13

Vid-ODE 369.32 494.41 72.12 14.36

TrajGRU-Attention 78.35 226.17 82.35 21.15
TrajGRU-Attention-ODE 90.73 260.53 78.51 20.53

MovingMNIST++
Vid-ODE 378.31 500.56 61.93 14.26

(irregular sampling) TrajGRU-Attention 112.15 307.61 75.72 19.73

TrajGRU-Attention-ODE 111.33 305.14 76.02 19.95

KTH Action

TrajGRU 22.737 183.33 87.98 27.29

(regular sampling)
Vid-ODE 35.61 224.27 84.67 25.23

TrajGRU-Attention 20.84 175.74 89.43 27.59
TrajGRU-Attention-ODE 21.05 174.49 89.759 27.67

KTH Action
Vid-ODE 44.91 263.63 83.72 24.39

(irregular sampling) TrajGRU-Attention 29.59 210.27 87.06 26.05

TrajGRU-Attention-ODE 28.64 209.35 87.27 26.16

Table 1: Values of evaluation metrics for the models.

5 CONCLUSION

This paper proposes two sequence-to-sequence models named TrajGRU-Attention and TrajGRU-
Attention-ODE that can handle irregularly sampled spatiotemporal data. Overall, the proposed
models can perform the overall SSP task with different datasets and outperform the baseline mod-
els. Despite some promising results of our models, there is still room for further improvement in our
system. Furthermore, the combination of attention mechanisms and NODE is very promising since
the TrajGRU-Attention-ODE can perform the SSP task effectively in some instances.

9

Under review as a conference paper at ICLR 2023

6 ETHICS STATEMENT

We acknowledge that all co-authors of this work have read and committed to adhering to the ICLR
Code of Ethics

7 REPRODUCIBILITY STATEMENT

We strive to ensure the reproducibility of the experiment results. The entire implementation details
are described in Appendix A.1, Appendix A.2, Appendix A.3, Appendix A.5 and Appendix A.6.
Finally, the source code will be made publicly available.

REFERENCES

Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into convolutional networks
for learning video representations. arXiv preprint arXiv:1511.06432, 2015.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. Neural spatio-temporal point processes.
arXiv preprint arXiv:2011.04583, 2020.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. Advances in neural information processing sys-
tems, 32, 2019.

Wei Fang, Yupeng Chen, and Qiongying Xue. Survey on research of rnn-based spatio-temporal
sequence prediction algorithms. Journal on Big Data, 3(3):97, 2021.

AM Foley. Uncertainty in regional climate modelling: A review. Progress in Physical Geography,
34(5):647–670, 2010.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366–2369. IEEE, 2010.

Jianzhu Huai, Yuan Zhuang, Yukai Lin, Grzegorz Jozkow, Qicheng Yuan, and Dong Chen.
Continuous-time spatiotemporal calibration of a rolling shutter camera-imu system. IEEE Sensors
Journal, 22(8):7920–7930, 2022.

Maria Kanakidou, JH Seinfeld, SN Pandis, Ian Barnes, Franciscus Johannes Dentener,
Maria Cristina Facchini, Rita Van Dingenen, Barbara Ervens, ANCJSE Nenes, CJ Nielsen, et al.
Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5
(4):1053–1123, 2005.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Xianglong Luo, Danyang Li, Yu Yang, and Shengrui Zhang. Spatiotemporal traffic flow prediction
with knn and lstm. Journal of Advanced Transportation, 2019, 2019.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookyung Kim, and Ed-
ward Choi. Vid-ode: Continuous-time video generation with neural ordinary differential equa-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 2412–2422,
2021.

Hans Pinckaers and Geert Litjens. Neural ordinary differential equations for semantic segmentation
of individual colon glands. arXiv preprint arXiv:1910.10470, 2019.

10

Under review as a conference paper at ICLR 2023

Lutz Prechelt. Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.
Springer, 1998.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local svm
approach. In Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004., volume 3, pp. 32–36. IEEE, 2004.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. Ad-
vances in neural information processing systems, 28, 2015.

Xingjian Shi, Zhihan Gao, Leonard Lausen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-
chun Woo. Deep learning for precipitation nowcasting: A benchmark and a new model. Advances
in neural information processing systems, 30, 2017.

Mennatullah Siam, Sepehr Valipour, Martin Jagersand, and Nilanjan Ray. Convolutional gated
recurrent networks for video segmentation. In 2017 IEEE international conference on image
processing (ICIP), pp. 3090–3094. IEEE, 2017.

Rohollah Soltani and Hui Jiang. Higher order recurrent neural networks. arXiv preprint
arXiv:1605.00064, 2016.

Jiahao Su, Wonmin Byeon, Jean Kossaifi, Furong Huang, Jan Kautz, and Anima Anandkumar.
Convolutional tensor-train lstm for spatio-temporal learning. Advances in Neural Information
Processing Systems, 33:13714–13726, 2020.

Quang-Khai Tran and Sa-kwang Song. Computer vision in precipitation nowcasting: Applying
image quality assessment metrics for training deep neural networks. Atmosphere, 10(5):244,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Senzhang Wang, Jiannong Cao, and Philip Yu. Deep learning for spatio-temporal data mining: A
survey. IEEE transactions on knowledge and data engineering, 2020.

Yunbo Wang, Mingsheng Long, Jianmin Wang, Zhifeng Gao, and Philip S Yu. Predrnn: Recurrent
neural networks for predictive learning using spatiotemporal lstms. Advances in neural informa-
tion processing systems, 30, 2017.

Yunbo Wang, Zhifeng Gao, Mingsheng Long, Jianmin Wang, and S Yu Philip. Predrnn++: Towards
a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In International
Conference on Machine Learning, pp. 5123–5132. PMLR, 2018.

Yunbo Wang, Haixu Wu, Jianjin Zhang, Zhifeng Gao, Jianmin Wang, Philip Yu, and Mingsheng
Long. Predrnn: A recurrent neural network for spatiotemporal predictive learning. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2022.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics
via visual de-animation. Advances in Neural Information Processing Systems, 30, 2017.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second order
odes with bayesian neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. Symplectic ode-net: Learning
hamiltonian dynamics with control. arXiv preprint arXiv:1909.12077, 2019.

11

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 BASELINE MODEL CONFIGURATION

In this work, three models are implemented as the baseline models: the ConvGRU, TrajGRU (Shi
et al., 2017), and Vid-ODE (Park et al., 2021). As mentioned earlier, both regular and irregular
time-sampling assumptions will be examined for the datasets; thus, ConvGRU and TrajGRU models
cannot be used in some cases. For a fair comparison, we use some common hyperparameters of
the ConvGRU, TrajGRU and the proposed models. With the Vid-ODE, we use the model struc-
ture, optimizer, and loss function, described in the Vid-ODE paper ((Park et al., 2021)). We also
implemented this model based on their original code. For the training, validation, and testing pro-
cesses, we use some hyperparameters like the number of epochs, the number of iterations, and the
initial learning rate, similar to the proposed models’ hyperparameters. Our simulation results and the
learning curves in Appendix A.6 show that the number of epochs used is sufficient. In addition, the
configurations of the ConvGRU and TrajGRU models are illustrated in Table 2, and the Vid-ODE
model parameters are described in Table 3.

ConvGRU. The main formulas of the ConvGRU network can be expressed as

Z(ti) = σ (Wxz ∗ X(ti) + Whz ∗ H(ti−1) + Bz) ,

R(ti) = σ (Wxr ∗ X(ti) + Whr ∗ H(ti−1) + Br) ,

H̃(ti) = tanh (Wxh ∗ X(ti) + R(ti) ◦ Whh ∗ H(ti−1) + Bh) ,

H(ti) = Z(ti) ◦ H(ti−1) + (1− Z(ti)) ◦ H̃(ti),

(10)

where X(ti) and H(ti−1) represent the input at timestamp ti and previous hidden state, respectively;
Z(ti) and R(ti) represent the update gate and reset gate, respectively, regulating the information
flows; H̃(ti) represents the memory state storing new information of the recent input data; ”∗”
indicates convolution operator and ”◦” denotes Hadamard product; ”σ” ” refers to the Sigmoid ac-
tivation function, ”tanh” refers the tanh activation function. For learnable parameters, a ConvGRU
cell contains six convolutional layers (Wxz,Whz,Wxr,Whr,Wxh,Whh).

TrajGRU. The main formulas of the TrajGRU network can be expressed as

U(ti),V(ti) = γ (X(ti),H(ti−1)) ,

Z(ti) = σ

(
Wxz ∗ X(ti) +

L∑
l=1

Whz,l ∗ warp(H(ti−1),U(ti, l),V(ti, l))) + Bz

)
,

R(ti) = σ

(
Wxr ∗ X(ti) +

L∑
l=1

Whr,l ∗ warp(H(ti−1),U(ti, l),V(ti, l)) + Br

)
,

H̃(ti) = tanh

(
Wxh ∗ X(ti) + R(ti) ◦

L∑
l=1

Whh,l ∗ warp(H(ti−1),U(ti),V(ti)) + Bh

)
,

H(ti) = Z(ti) ◦ H(ti−1) + (1− Z(ti)) ◦ H̃(ti),

(11)

where γ represents the neural network generating the continuous flow fields U(ti), V(ti) with L dif-
ferent connection links in the transition; warp represents a function used to combine the sets of flow
fields and the hidden state to generate an intermediate state with approximated location information;
Z(ti), R(ti) represent the update gate and reset gate, respectively, regulating the information flows;
H̃(ti) represents the memory state storing new information of the recent input data; ”∗” indicates
convolution operator and ”◦” denotes Hadamard product; ”σ” ” refers to the Sigmoid activation func-
tion, ”tanh” refers the tanh activation function. For learnable parameters, a TrajGRU cell consists
of six convolutional layers (Wxz,Whz,Wxr,Whr,Wxh,Whh) and a spatial transformer module γ
containing three convolutional layers. Figure 7 illustrates the overall operations of the ConvGRU
and TrajGRU networks, and Figure 8 presents the common structure for the two models.

Vid-ODE. Vid-ODE essentially combined the standard ConvGRU network, NODE techniques, and
the pixel-level composition technique (Park et al., 2021). From the structure perspective, this model
used an encoding-decoding structure for the video generation task. The encoder is constructed by

12

Under review as a conference paper at ICLR 2023

Figure 7: (Left) ConvGRU unit. (Right) TrajGRU unit.

Figure 8: Encoding-decoding structure for the ConvGRU and TrajGRU models.

the ConvGRU layer and a specified ODE neural network which helps capture the irregular sampling
intervals; the decoder is constructed by an ODE solver and the pixel-level composition technique.

A.2 TRAINING PROCESS

Loss function. Generally, the Mean Absolute Error (MAE) and Mean Square Error (MSE) are the
commonly used loss functions for sequence prediction tasks. However, many prior studies have
mentioned the drawbacks when using these error functions for the training process. Since they com-
pute the global errors between the output and ground truth during the process, the system might
ignore some local errors. Consequently, the sharpness of the resulting images decreased signifi-
cantly, especially with long-term sequence prediction problems. Therefore, some related research
proposed other loss functions instead of using only a simple MAE or MSE (Tran & Song, 2019).
Therefore, we propose the combination of the MAE, MSE, and the Structural Similarity Index Mea-
sure (SSIM) as the loss function to guide the training process (Hore & Ziou, 2010). With the SSIM
metric, we can somewhat alleviate the blurry effect by modelling the distortions in the loss function.
The main formula of the proposed loss function can be derived as

LMSE =
∑K

i=1(Xtarget(ti)−Xprediction(ti))
2

K ,

LMAE =
∑K

i=1 |Xtarget(ti)−Xprediction(ti)|
K ,

LSSIM = 1− SSIM(Xtarget,Xprediction),

floss = aLMSE + bLMAE + cLSSIM .

(12)

13

Under review as a conference paper at ICLR 2023

TrajGRU ConvGRU
Common hyperparameters

3 down-sampling blocks (encoder):
(Conv(Cdataset × 64× 3× 3) ,leakyRELU)

(Conv(64× 96× 3× 3) ,leakyRELU)
(Conv(96× 128× 3× 3) ,leakyRELU)

4 up-sampling blocks (decoder):
(Deconv(128× 96× 4× 4) ,leakyRELU)
(Deconv(96× 64× 4× 4) ,leakyRELU)
(Deconv(64× 32× 3× 3) ,leakyRELU)

Conv(32× 1× 1× Cdataset)
Central building blocks

Encoder: Encoder:

TrajGRU(C = (64, 64),K = 3,Kγ = 1, L = 9) ConvGRU(C = (64, 64),K = 3)

TrajGRU(C = (96, 96),K = 3,Kγ = 1, L = 9) ConvGRU(C = (96, 96),K = 3)

TrajGRU(C = (128, 128),K = 3,Kγ = 1, L = 9) ConvGRU(C = (128, 128),K = 3)

Decoder: Decoder:

TrajGRU(C = (64, 64),K = 3,Kγ = 1, L = 9) ConvGRU(C = (64, 64),K = 3)

TrajGRU(C = (96, 96),K = 3,Kγ = 1, L = 9) ConvGRU(C = (96, 96),K = 3)

TrajGRU(C = (128, 128),K = 3,Kγ = 1, L = 9) ConvGRU(C = (128, 128),K = 3)

Total number of parameters
4859181 (MovingMNIST), 3695553 (MovingMNIST),

4860367 (KTH Action). 3696739 (KTH Action).

Table 2: Model configuration of ConvGRU and TrajGRU.

Here, Xtarget, Xprediction represent the target and output prediction sequences, respectively; a =
1, b = 1, c = 0.05 denote the weights of the three elements of the loss function. The weights
of the MSE and MAE are equal and more significant than the SSIM because MSE and MAE are
supported to be the main elements manipulating the global errors, and the SSIM is the supportive
factor impacting the local errors. The comparison between different loss functions is shown in Table
4

Based on Table 4, our proposed loss function helps the model generate the results with the best
evaluation metrics, so we choose this loss function as the standard function to train the models
(i.e., ConvGRU, TrajGRU, ConvGRU-Attention, ConvGRU-Attention-ODE, TrajGRU-Attention,
and TrajGRU-Attention-ODE).

Optimizer. This work uses the Adam optimizer to train all the models because of its stability and
adaptive features (Kingma & Ba, 2014). In addition, the training processes of all models used the
early stopping mechanism to obtain the final results. The initial learning rate is 10−4, which is
decayed by 0.99 after every epoch. For all models, we set the maximum number of epochs to 25. In
addition, the early stopping mechanism is applied to obtain the final results and the corresponding
set of trainable parameters (Prechelt, 1998).

A.3 MOTION-BASED ATTENTION SETTING

In the TrajGRU-Attention model, the MEA blocks are used at the encoder, and the MDE blocks
are used at the decoder to handle the irregularly sampled time series. Moreover, the model can
deal with long-range sequence prediction with these attention mechanisms. However, if the MEA
and MDE modules are integrated into all central blocks of the model, there will be considerable
computational complexity with a massive set of trainable parameters. Therefore, we just insert
those attention modules on specific layers to balance the overall performance and the complexity.

14

Under review as a conference paper at ICLR 2023

Encoder:
4 down-sampling blocks: (Conv(64× 64× 3× 3), BatchNorm, RELU),
(Conv(64× 128× 4× 4), BatchNorm, RELU),
(Conv(128× 256× 4× 4), BatchNorm, RELU),
(Conv(256× 512× 4× 4), BatchNorm, RELU),
ConvGRU(C = (512, 512),K = 3).
ODE network: (Conv(512× 128× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh).
ODE method: Euler.
Decoder:
ODE network: (Conv(512× 128× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh), (Conv(256× 256× 3× 3), Tanh),
(Conv(256× 256× 3× 3), Tanh).
4 up-sampling blocks: (Bilinear(scale=2), Conv(512× 256× 3× 3),BatchNorm,RELU),
(Bilinear(scale=2), Conv(256× 128× 3× 3),BatchNorm,RELU),
(Bilinear(scale=2), Conv(128× 64× 3× 3),BatchNorm,RELU),
(Bilinear(scale=2), Conv(64× 32× 3× 3),BatchNorm,RELU), Conv(32× Cdataset × 3× 3),
ODE method: Euler.
GAN network:
Generator: Encoder and Decoder.
Discriminator: (Conv(1× 64× 4× 4), InstanceNorm, leakyRELU),
(Conv(64× 128× 4× 4), InstanceNorm, leakyRELU),
(Conv(128× 256× 4× 4), InstanceNorm, leakyRELU),
(Conv(256× 512× 4× 4), InstanceNorm, leakyRELU),
Conv(512× 64× 4× 4).
Total number of parameters: 60060164 (MovingMNIST), 60067078 (KTH Action).

Table 3: Vid-ODE model configuration.

Datasets/Model Loss function MSE (↓) MAE(↓) SSIM (↑) PSNR(↑)

MovingMNIST LMSE 61.21 176.23 92.01 22.35

TrajGRU LMSE + LMAE 69.22 167.43 92.03 22.06

floss (Equation 12) 61.93 153.34 93.89 22.73

Table 4: Comparison between different loss functions of the TrajGRU model when using the Mov-
ingMNIST.

To choose the optimal attention mechanism settings, the TrajGRU-Attention model is tuned using
the MovingMNIST data in the scenario where the numbers of attention modules vary and the other
hyperparameters are constant. In addition, the training process is described in Appendix A.2.

Table 5 illustrates the resulting evaluation metrics of the TrajGRU-Attention model with different
attention settings when training and evaluating with the MovingMNIST dataset. For instance, when
the encoder uses the attention module at its central layer 3 and the decoder uses the attention module
at its central layer 3, we abbreviate this setting as “en-a3-de-a3”. Based on Table 5, the setting
“en-a23-de-a21” shows the best results in all four metrics, so we chose this setting to design the
TrajGRU-Attention and TrajGRU-Attention-ODE models, as presented in Appendix A.5.

A.4 TIME SAMPLING METHODS.

For the overall SSP task, each series is divided into two subsequences (i.e., the input and the target)
and then the sampling methods are applied to each subsequence. We define two collections of
timestamps representing the regular and irregular sampling assumptions, as shown in Table 6.

15

Under review as a conference paper at ICLR 2023

Setting MSE (↓) MAE(↓) SSIM (↑) PSNR(↑)
en-a3-de-a3 61.81 151.23 93.78 22.59

en-a2-de-a2 62.11 156.12 93.71 22.55

en-a1-de-a1 58.42 150.23 93.96 22.85

en-a23-de-a32 53.71 136.34 94.66 23.33

en-a23-de-a21 49.63 131.32 94.94 23.73
en-a123-de-a321 60.83 145.23 93.92 22.92

Table 5: Comparison between different settings of the TrajGRU-Attention model when using the
MovingMNIST.

Sampling method Regular Irregular
Set size 1 100

Input interval [1, 10] [1, 15]
Target interval [11, 20] [16, 30]

Table 6: configuration of the two sampling methods

In Table 6, the set size represents the number of distinct collections of time steps, and the input and
target time intervals denote the minimum and maximum time steps for each sampling method. In
the experiments shown in Section 4, the input and target sequences have the same length of 10.

A.5 PROPOSED MODEL CONFIGURATION

Table 7 describes the two proposed models’ overall configurations and important hyperparameters.

Generally, we use the TrajGRU network containing the convolutional layers that extract the image
features of each data frame, as illustrated in Figures 2 and 7. In addition, for the hierarchical feature
extraction, we insert a resampling block (i.e., an upsampling or a downsampling block) between two
adjacent central blocks (i.e., central neural layers) for the SSP task to help the system capture spatial
features with different levels. We build the up-sampling block using convolutional and LeakyRELU
activation layers in the proposed models. In contrast, the down-sampling block is constructed by a
pair of deconvolutional and LeakyRELU activation layers. As such, the shape of the output states
can be easily adjusted by defining the hyper-parameters of the convolutional and deconvolutional
layers (e.g., the kernel size, number of input and output channels, padding, stride, dilation).

16

Under review as a conference paper at ICLR 2023

TrajGRU-Attention TrajGRU-Attention-ODE
Common hyperparameters

3 down-sampling blocks (encoder):
(Conv(Cdataset × 64× 3× 3) ,leakyRELU)

(Conv(64× 96× 3× 3) ,leakyRELU)
(Conv(96× 128× 3× 3) ,leakyRELU)

Zigzag connection (encoder): (Deconv(128× 64× 4× 4), Conv(64× 64× 3× 3) ,
Conv(64× 64× 3× 3))

4 up-sampling blocks (decoder):
(Deconv(128× 96× 4× 4) ,leakyRELU)
(Deconv(96× 64× 4× 4) ,leakyRELU)
(Deconv(64× 32× 3× 3) ,leakyRELU)

Conv(32× 1× 1× Cdataset)
Zigzag connection (decoder): (Conv(64× 128× 4× 4), Conv(128× 128× 3× 3) ,

Conv(128× 128× 3× 3))
Central building blocks

Encoder:

TrajGRU(C = (64, 64),K = 3,Kγ = 1, L = 9) TrajGRU(C = (64, 64),K = 3,Kγ = 1, L = 9)

TrajGRU(C = (96, 96),K = 3,Kγ = 1, L = 9) TrajGRU(C = (96, 96),K = 3,Kγ = 1, L = 9)

TrajGRU(C = (128, 128),K = 3,Kγ = 1, L = 9) TrajGRU(C = (128, 128),K = 3,Kγ = 1, L = 9)

Decoder:

TrajGRU(C = (64, 64),K = 3,Kγ = 1, L = 9) TrajGRU-ODE(C = (64, 64),K = 3,Kγ = 1,

L = 9, node = 2,Kode = 3,methodode = Euler)

TrajGRU(C = (96, 96),K = 3,Kγ = 1, L = 9) TrajGRU-ODE(C = (96, 96),K = 3,Kγ = 1

L = 9, node = 2,Kode = 3,methodode=Euler)

TrajGRU(C = (128, 128),K = 3,Kγ = 1, L = 9) TrajGRU-ODE(C = (128, 128),K = 3,Kγ = 1

L = 9, node = 2,Kode = 3,methodode = Euler)

Attention blocks
Encoder:

MEA(4 conv(C = (96, 96),K = 1); MEA(4 conv(C = (96, 96),K = 1);

1 linear(C = (384, 96)) 1 linear(C = (384, 96))

MEA(4 conv(C = (128, 128),K = 1); MEA(4 conv(C = (128, 128),K = 1);

1 linear(C = (512, 128)) 1 linear(C = (512, 128))

Decoder:

MDA(4 conv(C = (96, 96),K = 1);

1 linear(C = (384, 96))

MDA(4 conv(C = (64, 64),K = 1);

1 linear(C = (256, 64))

Total number of parameters
7258509 (MovingMNIST) 8844685 (MovingMNIST)

7259695 (KTH Action) 8845871 (KTH Action)

Table 7: Proposed Model Configuration.

17

Under review as a conference paper at ICLR 2023

A.6 ADDITIONAL COMPARISON BETWEEN MODELS

As shown in Table 1, the Vid-ODE can not perform the SSP task properly in some scenarios, es-
pecially with the MovingMNIST and MovingMNIST++. The reasons leading to the limitations of
Vid-ODE’s performance are the time sampling assumptions and the properties of the datasets (i.e.,
the MovingMNIST and MovingMNIST++). In the Vid-ODE paper, the authors used the concept
of frame rate that can be fixed in the encoding and decoding parts (e.g., the encoder’s frame rate is
1, and the decoder’s frame rate is 0.5). Regarding the model structure, the composition mask and
image difference techniques are ineffective when the time gap between adjacent frames is large and
variable. Furthermore, the Vid-ODE decoder uses only an ODE solver component as the central
layer to generate hidden states; thus, these states may not contain enough spatial features to recon-
struct the output. On the other hand, the proposed models use multiple TrajGRU-ODE networks (the
combination of TrajGRU networks and ODE solvers) at the TrajGRU-Attention-ODE model, and
groups of TrajGRU networks and Motion-based Attention blocks at the TrajGRU-Attention model.

For a fair comparison, the Vid-ODE and proposed models are implemented with the KTH Action
dataset for the SSP task where the input sequence has 5 frames, and the target sequence has 5 frames
which is the setting used in Vid-ODE paper (Park et al. (2021)). Finally, the evaluation metrics are
displayed in Table 8, and the prediction results are shown in Figure 9.

Figure 9: Results using the KTH Action with irregular-sampled input and target sequences. The
input sequence contains 5 frames, and the target sequence contains 5 frames.

As shown in Table 8, the Vid-ODE model performs more effectively with short-range prediction;
however, the proposed models generate better prediction results, especially with the irregular time
sampling assumption.

To clarify the improvement of the proposed modules (i.e., the MA and TrajGRU-ODE network),
we compare the proposed models (i.e., TrajGRU-Attention and TrajGRU-Attention-ODE) with the
ConvGRU-Attention and ConvGRU-Attention-ODE models. Basically, the ConvGRU-Attention
and ConvGRU-Attention-ODE use the ConvGRU networks illustrated in Table 2 as the central build-
ing blocks instead of the TrajGRU networks. These models are trained, validated, and tested with
the MovingMNIST and MovingMNIST++ datasets. Finally, the evaluation metrics are displayed in
Table 9, and the prediction results are shown in Figure 10.

As shown in Tables 9 and 1, the MA modules can improve the performance of the ConvRNNs (e.g.,
ConvGRU and TrajGRU) and the combinations of the ConvRNNs and ODE modules can allow the
models to perform the SSP task with data frames at arbitrary time steps. Compared to the ConvGRU-
Attention and ConvGRU-Attention-ODE, the proposed models can achieve better prediction results.

18

Under review as a conference paper at ICLR 2023

Datasets Model MSE (↓) MAE(↓) SSIM (↑) PSNR(↑)
×104 ×104 ×102

KTH Action
Vid-ODE 16.41 156.02 87.58 29.28

(regular sampling) TrajGRU-Attention 10.44 138.15 89.35 30.85
TrajGRU-Attention-ODE 10.71 138.17 89.32 30.78

KTH Action
Vid-ODE 33.28 217.46 85.29 25.59

(irregular sampling) TrajGRU-Attention 28.33 199.29 87.49 26.46

TrajGRU-Attention-ODE 26.65 198.59 87.57 26.61

Table 8: Values of evaluation metrics for the models: Vid-ODE, TrajGRU-Attention, TrajGRU-
Attention-ODE.

Datasets Model MSE (↓) MAE(↓) SSIM (↑) PSNR(↑)
×104 ×104 ×102

MovingMNIST

ConvGRU-Attention 73.63 168.64 92.99 21.81

(regular sampling)

ConvGRU-Attention-ODE 64.85 154.51 93.71 22.39

TrajGRU-Attention 39.62 110.03 96.06 24.97
TrajGRU-Attention-ODE 41.55 115.33 95.78 24.62

MovingMNIST

ConvGRU-Attention 111.11 232.21 88.92 19.81

(irregular sampling)

ConvGRU-Attention-ODE 101.65 222.29 89.53 20.21

TrajGRU-Attention 77.29 181.88 91.89 21.54
TrajGRU-Attention-ODE 91.01 203.01 90.59 20.75

MovingMNIST++

ConvGRU-Attention 103.57 282.53 76.88 20.01

(regular sampling)

ConvGRU-Attention-ODE 110.41 301.22 75.04 19.74

TrajGRU-Attention 78.35 226.17 82.35 21.15
TrajGRU-Attention-ODE 90.73 260.53 78.51 20.53

MovingMNIST++

ConvGRU-Attention 134.24 340.69 72.37 18.92

(irregular sampling)

ConvGRU-Attention-ODE 139.59 351.55 71.26 18.74

TrajGRU-Attention 112.15 307.61 75.72 19.73

TrajGRU-Attention-ODE 111.33 305.14 76.02 19.95

Table 9: Values of evaluation metrics for the models: ConvGRU-Attention, ConvGRU-Attention-
ODE, TrajGRU-Attention, TrajGRU-Attention-ODE.

Figure 10: Results using the MovingMNIST++ with irregular-sampled input and target sequences.

19

Under review as a conference paper at ICLR 2023

In addition, the learning curves of the models used in Section 4, are shown in Figures 11, 12, 13,
14. They can evaluate models’ learning ability. Overall, the TrajGRU-Attention and TrajGRU-
Attention-ODE models achieve better performance during the training and validation processes.

Figure 11: Learning curves of models using the MovingMNIST with regular sampling assumption
at both the encoder and decoder: (Left) Training learning curve. (Right) Validation learning curve.

Figure 12: Learning curves of models using the MovingMNIST with irregular sampling assumption
at both the encoder and decoder: (Left) Training learning curve. (Right) Validation learning curve.

20

Under review as a conference paper at ICLR 2023

Figure 13: Learning curves of models using the KTH Action with regular sampling assumption at
both the encoder and decoder: (Left) Training learning curve. (Right) Validation learning curve.

Figure 14: Learning curves of models using the KTH Action with irregular sampling assumption at
both the encoder and decoder: (Left) Training learning curve. (Right) Validation learning curve.

21

	Introduction
	Related Work
	Models
	Problem Statement
	Encoding-decoding Structure
	TrajGRU-Attention
	TrajGRU-Attention-ODE

	Experiments
	Implementation
	Datasets
	Results and Comments

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Baseline Model Configuration
	Training Process
	Motion-based Attention Setting
	Time Sampling Methods.
	Proposed Model Configuration
	Additional Comparison Between Models

