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Abstract

Learning to imitate expert behavior is a challenging problem, especially in envi-
ronments with high-dimensional, continuous observations and unknown dynamics.
It includes imitation learning from demonstrations (ILfD) and imitation learning
from observations (ILfO). The simplest methods in imitation learning are behavior
cloning (BC) and behavior cloning from observations (BCO), for ILfD and ILfO
respectively. But BC suffers from the problem of distribution shift, while in ILfO,
the inverse dynamic model heavily depends on the current policy, without sufficient
generalization to the expert state distribution. Since there is no easily-specified
reward function available, exploration is more important for imitation learning
than regular RL. In this paper, and we propose population-based exploration tech-
niques for imitation learning, which are simple to implement and improve sample
efficiency significantly. And we find that population-based exploration can have
much more performance improvement than that in regular RL problems. In ILfD,
to enlarge the overall search region, we propose to use Stein Variational Gradient
Descent (SVGD) to generate the multiple policies, and attenuate distribution shift
by RL with intrinsic rewards. In ILfO, additionally, in order to produce more
diverse state-action pairs to make the inverse dynamic model generalize better, we
introduce neuro-evolution (NE) to further augment the exploration capability of
learning policies. We find these population-based exploration techniques can have
more performance improvement in imitation learning, than regular RL problems.
Here the intrinsic rewards are simply generated by random network distillation
(RND), trained over expert states. The proposed frameworks provide the imitation
agent both the intrinsic intention of the demonstrator and better exploration ability,
which is critical for the agent to outperform the demonstrator. With experiments of
ILfD and ILfO over various difficult Atari games and MuJoCo environments, the
proposed exploration-augmented methods show significant performance improve-
ment, especially achieving 5X better sampling efficiency, compared with previous
popular imitation learning methods.

1 Introduction

Imitation Learning (IL) [17] is a framework of reinforcement learning [29], where the agent has access
to an optimal, reward-maximizing expert for the underlying environment. This access is usually
provided via a dataset of trajectories where each observed state is annotated with the action produced
by the expert policy. This is a powerful learning framework in contrast to standard reinforcement
learning since not all tasks of interest admit easily-specified reward functions. This IL with expert
actions available is often termed as imitation learning from demonstrations (ILfD). However, most of
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state-of-the-art imitation learning methods do not have satisfactory performance in many difficult
environments, e.g., Atari games, especially suffering from sampling efficiency.

The provision of expert action labels can often be laborious or incur significant cost due to the
instrumentation used when recording expert actions. Actually a vast number of rich observation-only
data sources are available in practice for imitation learning. Lots of recent work have explored the
more natural problem formulation, where an agent must recover an imitation policy from a dataset
containing only expert observation sequences [5, 15, 28, 30, 31]. While this Imitation Learning from
Observations (ILfO) setting has tremendous potential in practice, such as enabling an agent to learn
to play games from watching video clips by expert players, its performance is still not satisfactory in
applications with continuous high-dimensional observations. In this paper, we investigate how to use
population-based exploration techniques to advance the state-of-the-art performance of both ILfD
and ILfO.

Among IL methods, behavior cloning (BC) is an elegant approach whereby agents are trained to
directly mimic the behaviors of an expert rather than optimizing a reward function [10, 22, 23, 30]. It
basically consists of training a policy to predict the expert’s actions from states in the demonstration
data using supervised learning, which has the simplest model and implementation complexity among
IL methods. While appealingly simple, BC suffers from the problems of error accumulation and
covariate shift, where the distribution over states observed at execution time can differ from the
distribution observed during training. Minor errors initially produced can be accumulated and become
amplified as the policy encounters states further and further [2, 10, 23].

The equivalence of BC in ILfO is behavior cloning from observation (BCO) introduced in [30], which
leverages state-action trajectories collected under a random policy to train an inverse dynamics model
for inferring the action responsible for a transition between two consecutive states in trajectories. With
this inverse dynamic model at hand, the observation-only demonstration data can be converted into
the more traditional dataset of state-action pairs over which standard BC can be applied. However,
in addition to covariate shift, the inverse dynamic model is trained by collecting rollouts in the
environment with the current policy, where the actions corresponding to state transitions of expert
dataset are infeasible to obtain [5, 34].

In this work, we propose novel and simple population-based exploration techniques to augment
the imitation learning, specifically, achieving better-than-demonstrator performance and improved
sampling efficiency. In stead of conducting behavior cloning as supervised learning, the expert
demonstrations are incorporated into agent’s policies in a soft manner via Stein variational gradient
descent (SVGD) [14], transforming a population of policies to match the target distribution in expert
demonstrations. Here a form of (functional) gradient descent is performed to minimize the KL
divergence and drive the weights of policies to fit the true posterior distribution. It mimics a gradient
dynamics at the particle level, driving policies towards the high probability areas defined by expert
demonstrations. It also has a repulsive force to every policy, preventing all the policies to collapse
together at the same time and keeping enough diversity. In order to address the covariate shift, we
introduce an RL process, where the agent is interacting with the environment and maximizing the
intrinsic rewards received along the trajectory. Here the intrinsic reward is obtained via random
network distillation (RND)[4]. Specifically, before the imitation agent starts learning, a random neural
network (with fixed weights) is distilled into another neural network, by minimizing the prediction
errors over states in the expert dataset, and the reciprocal of its predication error of visited states is
used as the intrinsic reward in the RL process. In ILfO, in order to train the inverse dynamic model
to generalize better, we further adopt the neuro-evolution [27, 11] technique to produce state-action
pairs with bigger diversity.

Compared with previous work, our method has multiple merits. First, without building a specific
generative model for expert state distribution in many previous works [1, 25, 35], we use the simple
RND technique to address covariate shift. Second the expert demonstrations are fused into policies
of imitation agents via SVGD, learning expert demonstrations and gaining diversity at the same
time. Third, the neuro-evolution provides the agent a better exploration ability, in a novel and simple
approach, advancing the state-of-the-art performance in terms of both performance and sampling
efficiency. Finally, we find that, the population-based exploration techniques adopted here can have
much more performance gain in imitation learning, compared with regular RL problems.
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2 Related Work

2.1 Imitation Learning from Demonstrations

In general the approaches in ILfD fall into two categories: behavior cloning (BC) [10, 22, 23, 21],
which optimizes the current policy over the action prediction errors in expert demonstrations, and
inverse reinforcement learning (IRL) [1, 16], which infers the reward used by expert to guide the
agent policy learning procedure. Recently methods based on adversarial learning have been proposed
to tackle the covariate shift of BC [7, 8, 9, 10]. These methods train an RL agent not only to imitate
demonstrated actions, but also to visit demonstrated states. Since the true rewards are unknown,
a reward function is constructed from the demonstrations and visited trajectories via adversarial
learning. However, the alternative training of policy and discriminator can make the learning process
unstable, significantly increasing the sampling complexity [3]. Some work solve the imitation
learning problem in the frameworks of Q-learning [19, 24]. However, since these methods set the
reward based on the appearance of transitions in the expert demonstrations, resulting the problem
of sparse reward when few demonstrations are available. Another stream of work [2, 4, 33] uses an
extra model, such as random network distillation and disagreement, to estimate the support of the
expert’s distribution in state-action space, and minimizes an RL cost designed to guide the agent
towards the states within the expert’s support. But these estimation models increases the model
and implementation complexity. And they may not give a good distance between states in replay
buffer and those covered by expert demonstrations, especially in high-dimensional cases, which may
mislead the agent to wrong states far from expert’s support.

2.2 Imitation Learning from Observations

The recent papers in ILfO can be primarily classified into categories, e.g., ILfO with inverse dynamic
model [5, 30], and ILfO with GAIL [31, 32]. In the first category, the exact actions for state transition
pairs in expert demonstrations are inferred with a learned inverse dynamic model. And the policy
is trained to predict the inferred actions given corresponding states from expert demonstrations. In
addition to covariate shift, these methods suffer from the insufficient generalization of the inverse
dynamic model, producing inaccurate predicted actions for expert state transitions. In the second
category, the authors generally follow the idea of GAIL [9] but replace the state-action pairs with
state transition pairs. However, methods in this category suffer from the instability of adversarial
learning and large amount of samples needed from the environment.

3 Methodology

The primary motivation of this work is to propose population-based exploration techniques to help
imitating agents achieve better-than-demonstrator performance with less sample complexity. Our
algorithm has three components: i) the RL process with intrinsic reward from RND drives imitating
agents towards the expert’s state distribution, and ii) the policies of imitating agents learn the expert
demonstrations by SVGD, introducing some diversity via the repulsive force in the kernel space, and
iii) in ILfO, neuro-evolution (NE) technique is adopted to generate more diverse state-action pairs,
increasing generalizability of inverse dynamic model significantly.

3.1 Intrinsic Reward

For the simplicity of implementation and model complexity, we adopt random network distillation
(RND) [4] to generate intrinsic rewards during the RL process. RND assess state novelty by distilling
a random neural network (with fixed weights) into another neural network with the same architecture.
For every state, the random network produces random features which are continuous. The second
network is trained to reproduce the output of the random network for states in expert demonstrations,
before the learning of imitating agents starts. The reciprocal of the l2 norm of prediction error is the
intrinsic reward received by the imitating agents. The errors will be high for states out of the expert’s
state distribution, since the second network never visited them during the training. So the intrinsic
reward can drive the policies of imitating agents towards the expert’s state distribution.
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3.2 Behavior Cloning via Stein Variational Gradient Descent

The expert demonstrations are fused into policies of imitating agents via SVGD [14], balancing
between the behavior imitation and diversity among imitating policies. SVGD is a form of functional
gradient descent minimize the KL divergence between the distributions of imitating policies and
expert demonstrations, and drive the imitating policies to fit the true posterior distribution given
the expert state-action pairs. Theoretically, it is to derive a closed form solution for the optimal
smooth perturbation direction that gives the steepest descent on the KL divergence within the unit
ball of a reproducing kernel Hilbert space (RKHS). Assume there are M imitating policies {πθi}
with weights θ1, . . . , θM . And the expert demonstrations form a dataset with state-action pairs, i.e.,
DE := {(si, ai)}. Given the minibatch B from the expert dataset DE , the i-th policy is updated as
below,

θi ← θi + εφ̂(θi) (1)

where

φ̂(θi) =
1

M

M∑
j=1

[
k(θi, θj)∇θi

( ∑
(s,a)∈B

log πθi(a|s)
)
+∇θik(θi, θj)

]
(2)

and the kernel k(x, y) is chosen to be the radial base function (RBF), i.e., exp(− 1
h‖x − y‖

2
2). By

updating the policy weights with (1), the policies of imitating agents learn the expert behavior with
diversity incorporated at the same time.

3.3 Neuro Evolutionary Reinforcement Learning

In order to generate more diverse learning experience for better exploration and generalization, we in-
corporate Neuro Evolutionary (NE) reinforcement learning [12], a hybrid algorithm that incorporates
evolutionary algorithm’s (EA) population-based approach to train an RL agent, and transfers the RL
agent into the EA population periodically to inject gradient information into the EA. The key insight
of NE is that an EA can be used to address the core challenges within DRL without losing out on the
ability to leverage gradients for higher sample efficiency.

Specifically, before learning starts, a population of actor networks is initialized with random weights.
In addition, a learning actor and critic network are initialized randomly. The population of actors
are then evaluated in an episode of interaction with the environment. The fitness for each actor is
computed as the cumulative sum of the reward that they receive over the timesteps in that episode. A
selection operator then selects a portion of the population for survival with probability commensurate
on their relative fitness scores. The actors in the population are then probabilistically perturbed
through mutation and crossover operations to create the next generation of actors. A select portion of
actors with the highest relative fitness are preserved as elites and are shielded from the mutation step.

3.4 Imitation Learning from Demonstrations

In ILfD, we primarily focus on Atari games, which are most difficult in the field and don’t have
satisfactory performance until now. Here, we investigate how the proposed population-guided
exploration techniques can improve the performance, especially the convergence speed. Since Atari
games have discrete actions and states, our algorithm is built on top of PPO [26]. The idea is to apply
SVGD [14] in behavior cloning and produce a population of actors mimicking expert behavior with
enough diversity. With experience collected by itself and the population of actors, the learning actor
gets updated via gradients of PPO objective. The value function of the learning agent is also updated
with trajectories of experience from both itself and population of actors, where V-trace target [6] is
used to correct the difference between the learning actor and population of actors. In implementation,
the learning rate and number of steps of SVGD is carefully tuned to make sure that the population
of actors are not too different from the learning actor. The pseudocode of the proposed algorithm is
shown in Algorithm 1.

3.5 Imitation Learning from Observations

In ILfO, we use population of actors to augment BCO [30], primarily focusing on high-dimensional
MuJoCo environments. Different from behavior cloning in ILfD, in addition to distribution shift,
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Algorithm 1: Population-guided ILfD
Input :Expert demonstration dataset DE = {(si, ai)}; learning actor πθ and critic vφ;

population of actors {πθi}Mi=1; neural networks in RND fϕ1(·), fϕ2(·)
1 Initialize fϕ1(·), fϕ2(·) with random weights
2 Train fϕ2(·) to match the output of fϕ1(·) over expert states s ∈ DE
3 Pre-training πθ by behavior cloning on DE
4 for e = 1, . . . , do
5 Initialize actors {πθi}Mi=1 with weights of learning actor θ perturbed by random noise
6 Update {πθi}Mi=1 via SVGD (1) with minibatch from DE
7 Collect trajectories of experience τ0 with learning actor πθ
8 Collect trajectories of experience {τi}Mi=1 with actors {πθi}Mi=1

9 Update learning actor πθ with trajectories of experience {τi}Mi=0 via PPO objective,
where the reward is given by r(s) = 1/‖fϕ1(s)− fϕ2(s)‖2

10 Update learning critic vφ with trajectories τ0, and {τi}Mi=1 transformed into V-trace
targets

11 end

BCO suffers from the problem that the inverse dynamic model is only trained by collecting state-
actions pairs with current policies, which can be stuck at local areas of state space without enough
generalization on the support of expert’s state distribution. Here we find that population-based
exploration technique is the right tool to tackle this problem. Specifically, we introduce neuro-
evolution (NE) reinforcement learning technique [12], where crossover and mutation can transform
actors to generate more diverse experience. It is built on DDPG [13] and reward used here is
also obtained from RND. Different from conventional NE, we also use SVGD to inject expert
demonstrations into selected actors in a Bayesian manner, so as to make evolved actors not far away
from the learning actor. By storing generated state-action pairs into replay buffer, the inverse dynamic
model can be trained to have more generalizability, giving state-only observations in the expert
dataset more accurate action labels. The detailed algorithm is shown in Algorithm 2.

Algorithm 2: Population-guided ILfO
Input :Expert state-only dataset DE = {(si, si+1)}; learning actor πθ and critic vφ;

population of actors {πθi}Mi=1, with number of elites K; neural networks in RND
fϕ1(·), fϕ2(·); inverse dynamic model dξ(·, ·); replay buffer B

1 Initialize fϕ1(·), fϕ2(·) and actors {πθi}Mi=1 with random weights
2 Train fϕ2(·) to match the output of fϕ1(·) over expert states s ∈ DE
3 for e = 1, . . . , do
4 Collect a trajectory of experience τ0 with learning actor πθ, and store it into B
5 Collect trajectories of experience {τi}Mi=1 with actors {πθi}Mi=1, and store them into B
6 Calculate fitness (reward) for the population {πθi}Mi=1, and select the top-K actors to

form the elite set e
7 Select (M −K) actors from the population randomly with replacement to form a set S
8 Conduct crossover and mutation over sets e, S, and update the population of actors
9 Update actors in set S via SVGD (1) with minibatch from DE

10 Update learning actor πθ with minibatches from B via PPO objective, where the reward is
given by r(s) = 1/‖fϕ1(s)− fϕ2(s)‖2

11 Update learning critic vφ with minibatches from B
12 Replace the worst actor in {πθi}Mi=1 with learning actor πθ
13 end
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4 Experiments

4.1 Imitation Learning from Demonstrations

We evaluated the proposed IL method on many Atari environments. The expert policy is trained by
PPO [26] and generate a butch of expert trajectories stored in DE . In order to stabilize the training
process, the reward is clipped into −1 or 1 based on the threshold, set by the β−quantile of rewards
over all the states in expert’s demonstrations [2].

The baselines for comparison are standard behavior cloning (BC) [20] and generative adversarial
imitation learning (GAIL) [9]. We find that the propose method can outperform both BC and GAIL in
all of the evaluated environments. It is already known that GAIL cannot perform well on image-based
environments [19], and our method has significant improvement over that.

Figure 1: Experiments on Atari games. Average reward vs number of expert trajectories.

4.2 Imitation Learning from Observations

For ILfO, we carry out comparative evaluations over several baselines, including DeepMimic [18],
BCO [30], and GAIfO [31]. All experiments are evaluated within fixed steps, where Pendulum and
DoublePendulum stop at 5e3, HalfCheetah stops at 1e7, and Ant stops at 1e7. On each task, we run
each algorithm over five times with different random seeds. The eventual results are summarized in
Table 1, which is averaged over 50 trials of the learned policies.

Table 1: Summary of quantitative results. All results correspond to the original exact reward defined
in OpenAI Gym

Pendulum DoublePendulum Hopper HalfCheetah Ant

DeepMimic 731.0±19.0 454.4±154.0 2292.6±1068.9 202.6±4.4 −985.3± 13.6
BCO 24.9± 0.8 80.3± 13.1 1266.2± 1062.8 4557.2± 90.0 562.5± 384.1

GAIfO 980.2± 3.0 4240.6± 4525.6 1021.4± 0.6 3955.1± 22.1 −1415.0± 161.1
Ours 1000.0± 0.0 8259.1± 0.8 3508.9± 85.9 5495.1± 91.1 5120.1± 64.7
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