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Figure 1: The backbone network pre-trained by LiftedCL can be transferred to various human-centric
downstream tasks including human pose estimation, human shape recovery and human parsing. The
first column shows two examples from the Human3.6M (Ionescu et al., 2013) dataset. The second
and third columns present the estimated 2D and 3D pose. The last two columns demonstrate the
reconstructed human mesh and the estimated human semantic parts.

ABSTRACT

Human-centric perception targets for understanding human body pose, shape and
segmentation. Pre-training the model on large-scale datasets and fine-tuning it on
specific tasks has become a well-established paradigm in human-centric perception.
Recently, self-supervised learning methods have re-investigated contrastive learning
to achieve superior performance on various downstream tasks. When handling
human-centric perception, there still remains untapped potential since 3D human
structure information is neglected during the task-agnostic pre-training. In this
paper, we propose the Lifting Contrastive Learning (LiftedCL) to obtain 3D-aware
human-centric representations which absorb 3D human structure information. In
particular, to induce the learning process, a set of 3D skeletons is randomly sampled
by resorting to 3D human kinematic prior. With this set of generic 3D samples, 3D
human structure information can be learned into 3D-aware representations through
adversarial learning. Empirical results demonstrate that LiftedCL outperforms
state-of-the-art self-supervised methods on four human-centric downstream tasks,
including 2D and 3D human pose estimation (0.4% mAP and 1.8 mm MPJPE
improvement on COCO 2D pose estimation and Human3.6M 3D pose estimation),
human shape recovery and human parsing.

1 INTRODUCTION

Human-centric perception, such as human pose estimation (Xiao et al., 2018; Sun et al., 2019; Pavllo
et al., 2019; Gong et al., 2021), human shape recovery (Kanazawa et al., 2018; Choi et al., 2020; Xu
et al., 2021) and human parsing (Yang et al., 2019; Li et al., 2020; Gong et al., 2018), has received
significant attention in computer vision. Similar to other computer vision tasks, pre-training the
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model has become a widely-used paradigm in human-centric perception. Generally, models are first
pre-trained on large-scale datasets (e.g., ImageNet (Deng et al., 2009)) and then fine-tuned on specific
human-centric downstream task.

For human-centric perception, leveraging 3D human structure information on fine-tuning stage
has been demonstrated effective to improve the performance. For instance, in the task of 3D pose
estimation. RepNet (Wandt & Rosenhahn, 2019) adds a KCS (Wandt et al., 2018) layer into an
adversary to better represent bone lengths and joint angles of a pose, which achieves more accurate
3D pose reconstruction results. HMR (Kanazawa et al., 2018) employs a prior human body model
parameterized by shape and 3D joint angles and shows competitive results on 3d pose estimation
and part segmentation. In (Qiu et al., 2019), a penalty is be added when the estimated 3D pose has
unreasonable limb lengths according to the human body structure prior. Such methods show that
leveraging 3D human kinematic prior on fine-tuning stage contributes to the performance. We argue
that models can also benefit from 3D human kinematic prior on pre-training stage.

Concurrently, powered by contrastive representation learning, recent self-supervised pre-training
methods (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Caron et al., 2018) have broken
the dominance of supervised ImageNet pre-training on various downstream tasks, including image
classification, object detection, semantic segmentation, etc. These self-supervised learning methods
mainly adapt the image-level instance discrimination formulation as a pretext task to learn transferable
representations. Besides, some methods (Wang et al., 2021a; Xie et al., 2021; Xiao et al., 2021; Wang
et al., 2021b) extend the image-level contrastive learning framework to a dense paradigm, achieving
superior performance on dense prediction tasks.

However, existing contrastive representation learning methods are mainly designed for image classi-
fication, object detection and semantic segmentation, rather than human-centric perception. Better
results in these tasks may not guarantee superior performance in human-centric perception (see
Table 4). Moreover, most of these works do not link 3D prior to 2D representation learning. In
human-centric perception, there exist some challenging cases, for example, invisible joints, self-
occluded keypoints, in which 3D human kinematic prior can be utilized to help better understand
the relationship between body parts. Thus, it is still desirable to have a pre-training approach for
human-centric tasks. Our goal is to improve contrastive learning by leveraging 3D human structure
information for human-centric pre-training in a simple yet effective way.

To this end, we propose a novel contrastive learning framework termed LiftedCL to exploit 3D
human structure information for human-centric pre-training. Firstly, we generalize the conventional
InfoNCE loss (Oord et al., 2018) to an equivariant paradigm. Based on this, image-level invariant
and pixel-level equivariant contrastive learning are applied to the projected feature vectors and maps
respectively. Meanwhile, the representations are transformed into 3D human skeleton to better reveal
the hidden human structure information. In particular, a set of 3D skeletons is randomly sampled by
resorting to 3D human kinematic prior. With this set of real 3D samples, an adversary is adopted to
induce the learning of 3D-aware human-centric representations.

We demonstrate the effectiveness of our proposed LiftedCL by pre-training using MS COCO (Lin
et al., 2014) human images and fine-tuning on specific target dataset. Compared to the state-of-the-art
method PixPro (Xie et al., 2021), LiftedCL achieves significant improvements on various human-
centric downstream tasks, including COCO 2D human pose estimation (+0.4% mAP), MPII 2D
human pose estimation (+0.3% PCKh@0.5), Human3.6M 2D human pose estimation (+0.9% JDR),
Human3.6M 3D human pose estimation (1.8mm MPJPE), 3DPW human shape recovery (1.7mm
reconst. error) and LIP human parsing (+0.5% mIoU).

Our main contributions are summarized as follows:

• We propose the Lifting Contrastive Learning (LiftedCL) for human-centric pre-training in a
simple yet effective way.

• We demonstrate a feasible approach to learn 3D-aware representations via lifting and
adversarial learning only using single-view images.

• LiftedCL significantly outperforms state-of-the-art self-supervised learning methods on four
human-centric downstream tasks, including 2D and 3D human pose estimation (0.4% mAP
and 1.8 mm MPJPE improvement on COCO 2D pose estimation and Human3.6M 3D pose
estimation), human shape recovery and human parsing.
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Figure 2: Overall architecture of the proposed LiftedCL. The LiftedCL consists of an encoder
and a discriminator. The encoder takes an input view to generate invariant feature vector Linv,
equivariant feature maps Lequ and 3D human skeleton X . Generated 3D human skeleton is fed into
the discriminator to tell whether it is real. Finally, the encoder is optimized by a combination of
contrastive loss and adversarial loss.

2 RELATED WORKS

Human-Centric Perception. With the development of deep learning, human-centric perception has
achieved great progress in recent years. Pose estimation, a fundamental yet challenging problem in
computer vision, is to localize human anatomical keypoints (e.g., head, shoulder, wrist, etc.) or parts
in a given image or 3D space. Lots of work have achieved accurate and robust performance in 2D
pose estimation (Xiao et al., 2018; Sun et al., 2019; Yang et al., 2021). For 3D pose estimation (Pavllo
et al., 2019; Gong et al., 2021; Wandt & Rosenhahn, 2019), approaches can be roughly grouped into
two categories: one-stage approaches which directly learn the 3D poses from images and two-stage
approaches which first estimate 2D poses and then lift them to 3D poses. In this work, we focus on the
first setting because existing self-supervised learning approaches learn representations from images
rather than 2D poses. For 3D human shape recovery (Xu et al., 2021; Choi et al., 2020; Kanazawa
et al., 2018), 3D human body is usually represented by a statistical model (e.g. SMPL (Loper et al.,
2015)) and the task is to estimate the parameters of the statistical model. Human parsing (Yang et al.,
2019; Li et al., 2020; Gong et al., 2018) is to assign each image pixel from the human body to a
semantic category. Region analysis and spatial correlation are usually considered to segment body
parts. Our goal is to learn human-centric representations for downstream tasks transfer.

Self-supervised representation learning. Self-supervised representation learning, a kind of unsu-
pervised learning, has driven significant progress in recent deep learning research. It aims to learn
informative and transferable representations for various downstream tasks. Early self-supervised
learning approaches explore a wide range of pretext tasks to learn a good representation, including
spatial jigsaw puzzles (Noroozi & Favaro, 2016), rotation prediction (Gidaris et al., 2018; Chen
et al., 2019), colorization (Zhang et al., 2016) and so on (Doersch et al., 2015; Pathak et al., 2016).
However, these approaches achieve very limited success in computer vision and the best-performance
approach on a specific task would be sub-optimal on another downstream task.

Recently, contrastive learning has been demonstrated to show incredible promise in computer vision.
SimCLR (Chen et al., 2020a) is one breakthrough approach, which adopts the instance discrimination
formulation as its pretext task. By applying a diverse set of data augmentations to training images,
generated views from the same input are considered as positive pairs while views from different
input images as dissimilar pairs. It maximize the similarity in latent space between positive pairs and
repelling dissimilar pairs. Besides, MoCo views the contrastive learning as dictionary look-up and
introduces momentum update mechanism to ensure the consistency of negative samples. Moreover,
some methods (Caron et al., 2018; 2020; 2019) extend instance-level discrimination to predict the
cluster assignment. Nonetheless, these approaches are mainly designed for image classification and
can be sub-optimal for dense prediction tasks.

To fill the gap between image-level and pixel-level prediction, several approaches (Wang et al.,
2021a; Xie et al., 2021; Wang et al., 2021b; O Pinheiro et al., 2020) are proposed to explore dense
contrastive representation learning. DenseCL (Wang et al., 2021a) extends and generalizes the
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Figure 3: Contrastive representation learning in our LiftedCL. We perform invariant and equivari-
ant contrastive learning on 3D-aware representations generated by backbone network.

existing MoCo framework to a dense paradigm. VADeR (O Pinheiro et al., 2020) and PixPro (Xie
et al., 2021) map corresponding pixel-wise features in each view to their associated features according
to the parameters of the affine transformation. SetSim (Wang et al., 2021b) explore set similarity
across views for more robust representation learning. Prior3D (Hou et al., 2021) leverages multi-view
geometry information to augment contrastive learning. While these methods achieve promising results
on image classification, object detection and semantic segmentation, there still remains untapped
potential since 3D human body structure information is neglected during pre-training. HCMoCo
(Hong et al., 2022) propose a versatile pre-train model to leverage sparse human body structure priors
for human-centric tasks, however, multi-modal data is required during training which is expensive
and difficult to collect. In this work, we introduce LiftedCL, a simple yet effective approach for
human-centric pre-training which only requires single-view data such as COCO human images.

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of our proposed LiftedCL is shown in figure 2, it is composed of an encoder
and a discriminator. The encoder consists of a backbone, two projectors and a lifting network. Firstly,
given an input view, the representations are extracted by the backbone network, e.g., ResNet (He et al.,
2016), and are fed into two projection heads to generate invariant feature vectors zinv and equivariant
feature maps Fequiv Cheng et al. (2021); Feige (2019). Upon them, an invariant contrastive loss
function Linv (He et al., 2020) and an equivariant contrastive loss function Lequiv are adopted for
representation learning.

Parallel to the projectors, we attach a lifting network to transform the representations into 3D human
skeleton. To incorporate 3D human structure information into the representations, improving them to
become 3D-aware, a discriminator is trained alternatively to distinguish between lifted 3D skeletons
and real 3D skeletons. Note that real 3D skeletons can be randomly sampled using human kinematic
priors without any annotated data (see appendix B). In all, the whole encoder can be trained by
optimizing a combination of contrastive similarity loss and adversarial loss as below.

L = λ1(Linv + Lequiv) + λ2Ladv, (1)

where λ1 and λ2 controls the relative importance of each loss function. We set λ1 and λ2 to 0.5.

3.2 CONTRASTIVE REPRESENTATIONS

As illustrated in Figure 3, we perform contrastive learning on 3D-aware representations generated by
backbone network to obtain good generic representations. The contrastive learning framework can be
divided into two parts, invariant contrastive learning and equivariant contrastive learning.

For image-level invariant contrastive learning, we follow (He et al., 2020) to build the learning
framework. As shown in Figure 3, given an image I , two augmented views {Iq, Ik} can be generated
by applying various augmentations t, where Iq = tq(I), Ik = tk(I), tq, tk ∈ T . Each view is first fed
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Figure 4: (a) The architecture of lifting network. 3D-aware representations are first vectorized by
convolutional and pooling layers and then lifted to 3D by residual blocks and fully connected layers.
(b) Network architecture of the discriminator, consisting of a KCS layer and several residual blocks.

into a backbone network f to extract representations and then fed into the invariant projection head
to generate a feature vector z. Here, {Iq, Ik} can be encoded as {zq, zk} ∈ Rd by an encoder and its
momentum-updated one. Feature vectors generated from two views of the same input are considered
as positive pairs, while negatives are encoded from different images. A standard contrastive loss
function is employed to pull zq close to its positive key zk+

while pushing it away from negative
keys,

Linv = −log
exp(zq · zk+

/τ)

exp(zq · zk+
/τ) +

∑
zk−

exp(zq · zk−/τ)
, (2)

where τ is the temperature hyper-parameter and zk− comes from a queue.

For equivariant contrastive learning, feature map Fq ∈ RC×Sh×Sw and its positive pair Fk are
generated from two views Iq, Ik of the same input image by a convolutional projection head, then
inverse geometric augmentation (tq)

−1
g , (tk)

−1
g is applied separately. Here (tq)g is the geometric

transformation of tq and the other is the appearance transformation (tq)a. Let us define inverse
geometric augmented feature maps F̃q = (tq)

−1
g (Fq), F̃k = (tk)

−1
g (Fk) and they can be seen as

Sh × Sw feature vectors. Let r̃s, t̃s denotes the sth out of Sh × Sw encoded vectors from F̃q and F̃k,
and here we use Sh = Sw for simpler illustration. If inverse geometric augmentation is not applied
before calculating the loss function, the model needs to be invariant to all geometric transformations
in T . However, human-centric perception requires equivariance with respect to transformations as
these change human poses in augmented views. Moreover, positive pairs can be easily found when
applying inverse geometric augmentation as they share the same spatial location. Thus, we define the
equivariant loss function as

Lequiv =
1

S2

∑
s

−log
exp(r̃s · t̃s+/τ)

exp(r̃s · t̃s+/τ) +
∑

ts−
exp(r̃s · t̃s−/τ)

, (3)

where t̃s− is the pooled feature vector of F̃k of a view from a different image.

3.3 LIFTING WITH ADVERSARIAL LEARNING

Our LiftedCL leverages 3D human body structure information. As shown in Figure 4, a lifting
network is employed to transfer representations into 3D human skeleton. The lifting network is
mainly composed of several residual blocks consisting of fully connected layers. For a given image
I , the lifting network extracts a 3D skeleton X ∈ R3×J where J stands for the number of joints.
Adversarial training is used to guide the lifting network outputting correct 3D skeleton, thus encoding
the 3D human structure information into the representations, making it 3D-aware.

The architecture of the discriminator is similar to the lifting network, consisting of fully connected
layers, shown in Figure 4. Moreover, to better detect properties of human skeletons such as kinematic
chains, bone lengths and joint angle limits, kinematic chain space (KCS) Wandt & Rosenhahn (2019);
Wandt et al. (2018) layer is added into our discriminator. KCS can represent joint angles and bone
lengths of a human skeleton. We define a bone bk as the vector between the r-th and t-th joint.

bk = pr − pt = Xc, (4)
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where
c = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T , (5)

with 1 at position r and -1 at position t. Then a matrix B ∈ R3×b can be calculated by extending c to
all bones.

B = (b1, b2, . . . , bb) = XC, (6)

here C ∈ RJ×b, b is the number of bones. By calculating BTB, KCS matrix can be obtained

Ψ = BTB =

l21 · ·
· · ·
· · l2b

 . (7)

Each element on its diagonal represents the bone length and other elements represent the relation
between two joint vectors. KCS layer helps the discriminator detect 3D human structure information
in a more effective way. The complete network is trained alternatively with the discriminator. Let E
represent the encoder including the backbone network, projection heads and the lifting network, and
D represent the discriminator, then the loss function is

Ladv = Ey∼pdata(y)
[D(y)2] + EI∼pdata(I)

[(D(E(I))− 1)2]. (8)

By limiting bone length and joint angle, we randomly sample several rational skeletons y. So the
whole network can be trained in an unsupervised way under the adversarial learning paradigm.

4 EXPERIMENTS

4.1 PRE-TRAINING SETUP

Our pre-training experiments are conducted on MS COCO (Lin et al., 2014) and only the training set
is used for pre-training. In human-centric perception, human bounding boxes are usually provided,
so we crop human regions to better learn representations, resulting ∼ 150K images for pre-training.
We adopt SGD as the optimizer with initial learning rate of 0.03 and we set its weight decay and
momentum to 0.0001 and 0.9. Each pre-training model is optimized on 4 GPUs with a cosine learning
rate decay schedule and a mini-batch size of 128 for 200 epochs (details in appendix C).

However, most existing state-of-the-art self-supervised learning methods are pre-trained on ImageNet
(Deng et al., 2009), so we conduct two-stage pre-training for fair comparison: Stage I: The encoder
is pre-trained on ImageNet. Stage II: The encoder is then pre-trained using COCO human images.
For efficiency, we download their official 200-epoch ImageNet pre-trained weights to initialize the
encoder as stage I pre-training. For our LiftedCL, we adopt the MoCo-v2 ImageNet 200-epoch
pre-trained weights for encoder initialization. Note that MoCo-v2 ImageNet 200-epoch pre-trained
weights show inferior performance compared to other SoTA methods, while our LiftedCL still
surpasses other methods using it as initialization.

4.2 MAIN RESULTS AND DISCUSSION

We compare our LiftedCL with other state-of-the-art self-supervised learning methods on four human-
centric tasks, including 2D pose estimation, 3D pose estimation, 3D human shape recovery and
human parsing. See more details in appendix D.

2D Human Pose Estimation. We fine-tune SimplePose (Xiao et al., 2018) detector with ResNet50-
C4 backbone on MS COCO (Lin et al., 2014), MPII (Andriluka et al., 2014) and Human3.6M
(Ionescu et al., 2013). As illustrated in Table 1, our LiftedCL outperforms the state-of-the-art method
PixPro by 0.4% mAP on COCO human pose estimation. Table 2 shows that our LiftedCL surpasses
PixPro by 0.4% PCKh@0.5. Fine-tuning results on Human3.6M 2D pose estimation is shown in
Table 3, our LiftedCL obtains significant improvement by 0.9% JDR than PixPro.

3D Human Pose Estimation. The 3D human pose estimation results on Human3.6M are reported in
Table 4. We follow the settings in (Li et al., 2021) to fine-tune a ResNet50 based model. Our LiftedCL
outperforms PixPro by significant improvements, 1.8mm and 0.8mm at MPJPE and PA-MPJPE.

6



Published as a conference paper at ICLR 2023

Table 1: 2D Pose Estimation fine-tuned on MS COCO. A ResNet-50 based model Xiao et al.
(2018) is adopt for all methods. ’IN’ indicates the model pre-trained on ImageNet. ’IN+CC’ indicates
two-stage pre-training on ImageNet and COCO. ’*’ indicates using PixPro ImageNet pre-trained
weights as stage I pre-training. Each model is pre-trained for 200 epochs.

pre-train mAP ↑ AP50 AP 75 APM APL AR

Random init. 69.1 90.5 77.1 66.7 73.5 72.4
Super. IN 70.4 88.6 78.3 67.1 77.2 76.3

MoCo-v2 IN Chen et al. (2020b) 70.3 (-0.1) 88.6 77.9 67.0 77.1 76.2
DenseCL IN Wang et al. (2021a) 70.6 (+0.2) 88.7 78.2 67.4 77.3 76.4
ReSim-C4 IN Xiao et al. (2021) 70.4 (+0.0) 88.5 77.9 67.1 77.2 76.3
PixPro IN Xie et al. (2021) 70.7 (+0.3) 88.7 78.2 67.2 77.7 76.6

MoCo-v2 IN+CC 70.5 (+0.1) 88.8 78.2 67.1 77.5 76.5
PixPro IN+CC 70.7 (+0.3) 89.2 78.2 67.4 77.5 76.5
Ours IN+CC 70.9 (+0.5) 88.9 78.1 67.5 77.7 76.8
Ours* IN+CC 71.1 (+0.7) 89.0 78.3 67.6 77.8 76.8

Table 2: 2D Pose Estimation fine-tuned on MPII. (PCKh@0.5)
pre-train Hea Sho Elb Wri Hip Kne Ank Total ↑
Random init. 96.3 94.4 87.0 80.5 86.8 81.2 76.4 86.7
Super. IN 96.5 95.4 88.9 83.5 88.1 89.7 79.1 88.5

MoCo-v2 IN 96.4 95.2 89.0 83.3 87.5 83.3 79.1 88.3 (-0.2)
DenseCL IN 96.8 95.4 89.0 83.7 88.1 83.9 79.6 88.6 (+0.1)
ReSim-C4 IN 96.7 95.4 89.1 83.7 87.9 84.1 79.0 88.6 (+0.1)
PixPro IN 96.7 95.6 89.4 83.8 88.3 84.6 80.4 88.9 (+0.4)

MoCo-v2 IN+CC 96.6 95.4 88.9 84.1 88.0 83.8 79.3 88.6 (+0.2)
PixPro IN+CC 96.6 95.6 89.3 83.8 88.5 84.7 81.0 89.0 (+0.5)
Ours IN+CC 96.8 95.6 89.4 83.9 88.5 84.2 79.6 88.9 (+0.4)
Ours* IN+CC 96.7 95.5 89.3 83.9 88.4 84.4 79.9 89.3 (+0.8)

3D Human Shape Recovery. We follow the settings in (Xu et al., 2021) to fine-tune a ResNet50 based
model on a mixed dataset. The 3D human shape recovery results evaluated on 3DPW (von Marcard
et al., 2018) are reported in Table 5. MoCo-v2 baseline has no advantage over supervised ImageNet
pre-training. Our LiftedCL outperforms state-of-the-art method PixPro by 1.7mm reconstruction
error.

Human Parsing. The human parsing results on LIP (Liang et al., 2018) are reported in Table 6. A
ResNet50 based model with self-correction purification strategy (Li et al., 2020) is fine-tuned. Our
LiftedCL outperforms PixPro by 0.1% mACC and 0.5%mIoU.

Discussion. LiftedCL achieves significant improvements, especially on Human3.6M 3D pose
estimation. When pre-trained on ImageNet, existing self-supervised learning methods do not show
superior performance than supervised pre-training except PixPro. Concurrently, when adapting two-
stage pre-training, our LiftedCL surpasses PixPro by a large margin, which strongly demonstrates
that combining contrastive learning with 3D human prior is beneficial to human-centric tasks.

Besides, self-supervised learning methods bring different performance improvements on downstream
tasks, which can be related to the diversity and quantity of fine-tuning data. COCO and MPII consists
of a large number of images taken from a wide-range of real-world activities, fine-tuning a pre-trained
model on them only achieves limited improvements. For other datasets like Human3.6M or 3DPW,
which is collected in a controlled scene or contains a limited number of human subjects, fine-tuning
results benefit a lot from pre-training, especially our LiftedCL.

4.3 ABLATION STUDY AND VISUALIZATION

We conduct ablation experiments on Human3.6M 2D and 3D pose estimation to show how LiftedCL
works. SimplePose (Xiao et al., 2018) and Joint Detection Rate (JDR) is used for 2D human pose
estimation, RLEPose (Li et al., 2021) and PA-MPJPE is used for 3D human pose estimation.
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Table 3: 2D Pose Estimation fine-tuned on
Human3.6M. (JDR)

pre-train root rhip Total ↑
Random init. 97.1 86.4 78.7
Super. IN 94.3 89.7 85.0

MoCo-v2 IN 95.8 89.6 85.6 (+0.6)
DenseCL IN 93.5 86.0 85.7 (+0.7)
ReSim-C4 IN 96.1 90.9 86.0 (+1.0)
PixPro IN 96.0 91.3 86.4 (+1.4)

MoCo-v2 IN+CC 96.2 91.8 86.2 (+1.2)
PixPro IN+CC 95.9 92.0 87.1 (+2.1)
Ours IN+CC 95.5 91.9 88.0 (+3.0)

Table 4: 3D Pose Estimation fine-tuned on
Human3.6M. (MPJPE and PA-MPJPE in mm)

pre-train MPJPE ↓ PA-MPJPE ↓
Random init. 70.8 52.8
Super. IN 60.0 44.7

MoCo-v2 IN 61.0 (+1.0) 46.3 (+1.6)
DenseCL IN 65.1 (+5.1) 46.7 (+2.0)
ReSim-C4 IN 63.1 (+3.1) 47.0 (+2.3)
PixPro IN 58.9 (-1.1) 43.7 (-1.0)

MoCo-v2 IN+CC 61.2 (+1.2) 45.4 (+0.7)
PixPro IN+CC 58.7 (-1.3) 43.3 (-1.4)
Ours IN+CC 56.9 (-3.1) 42.5 (-2.2)

Table 5: Human shape recovery fine-tuned on
3DPW.

pre-train Reconst. error ↓
Random init. 116.3
Super. IN 106.1

MoCo-v2 IN+CC 111.5 (+5.4)
PixPro IN+CC 104.5 (-1.6)
Ours IN+CC 102.8 (-3.3)

Table 6: Human parsing fine-tuned on LIP.
Each model is pre-trained for 200 epochs.

pre-train mACC ↑ mIoU ↑
Random init. 63.5 50.3
Super. IN 63.7 51.8

MoCo-v2 IN+CC 64.9 (+1.2) 53.0 (+1.2)
PixPro IN+CC 67.5 (+3.8) 54.6 (+2.8)
Ours IN+CC 67.6 (+3.9) 55.1 (+3.3)

Pre-train dataset. In Table 7, we show the results of different pre-training datasets. When only using
Human3.6M, LiftedCL improves the performance by 2.7% JDR and 4.9 mm PA-MPJPE compared to
random initialization. Using COCO brings 6.9% JDR and 8.4 mm PA-MPJPE improvements, which
is superior than supervised ImageNet pre-training. Note that COCO pre-training only uses ∼ 1/7
images and less iterations. As for the results of two-stage pre-training, it surpasses the ImageNet
supervised pre-training method by 3.0% JDR and 2.2 mm PA-MPJPE.

Loss function. Our loss function is composed of three parts: Linv, Lequiv and Ladv. To show how
each component contributes to LiftedCL, we pre-train the backbone using different loss combinations.
We report the results in Table 8. We refer to the ImageNet pre-training method as our baseline. It
shows that invariant contrastive loss improves the baseline by 1.2% JDR and -0.7 mm PA-MPJPE.
Adding the equivariant loss brings another 0.9% JDR and 1.1 mm PA-MPJPE gains. When all three
losses are used, the pose estimation performance improves for 3.0% JDR and 2.2 mm PA-MPJPE
compared to the baseline. Meanwhile, directly applying the lifting network does not bring notable
improvements. It may be because lifting network would collapse without good representations
learned by contrastive learning.

Table 7: Ablation study of pre-training dataset.
Pre-train method Pre-train dataset epoch JDR ↑ PA-MPJPE ↓
Random init. - - 78.7 52.8
Supervise ImageNet 100 85.0 44.7

MoCo-v2 H36M 200 79.8 (-5.2) 49.6 (+4.9)
MoCo-v2 COCO 200 83.6 (-1.4) 45.9 (+1.2)
MoCo-v2 ImageNet 200 85.6 (+0.6) 46.3 (+1.6)
MoCo-v2 ImageNet + COCO 200 86.2 (+1.2) 45.4 (+0.7)

Ours H36M 200 81.4 (-3.6) 47.9 (+3.2)
Ours COCO 200 85.6 (+0.6) 44.4 (-0.3)
Ours ImageNet + COCO 200 88.0 (+3.0) 42.5 (-2.2)
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Table 8: Ablation study of different loss func-
tions.

Method JDR ↑ PA-MPJPE ↓
Supervise IN 85.0 44.7

Inv. 86.2 45.4
Inv. + Equiv. 86.9 44.3
Lifting 85.2 44.8
Inv. + Equiv. + Lifting 88.0 42.5

Table 9: Ablation study of fine-tuning w/o 3D
prior.

Method JDR ↑ PA-MPJPE ↓
Supervise IN 85.0 44.7
+ prior 86.1 44.2

Ours 88.0 42.5
+ prior 88.7 42.3

Input image Input imageInput imageLifted rep. Lifted rep.Lifted rep.

Figure 5: visualization of 3D skeletons generated by lifting network.
3D prior. We further investigate the effect of 3D prior. When fine-tuning with 3D human kinematic
prior, we additionally train a lifting network to estimate 3D pose. Based on the estimated 3D pose,
the bone length and joint ankles can be calculated and if they are not within the reasonable range,
an extra loss will be added to penalize the incorrect estimation. As shown in Table 9, fine-tuning
with 3D human kinetic prior improves the JDR by 1.1% and PA-MPJPE by 0.5 mm, demonstrating
the effectiveness of 3D human kinetic prior. However, even when fine-tuning without 3D prior, our
LiftedCL surpassed that by 1.9% JDR and 1.8 mm PA-MPJPE, which shows that our LiftedCL can
leverage 3D human kinetic prior more effectively. Moreover, our LiftedCL can also benefit from
3D prior when fine-tuning, which is in accordance with our intention that LiftedCL is designed for
pre-training and 3D prior can help on both pre-training and fine-tuning stage.

3D skeleton visualization. We visualize the 3D skeletons generated by lifting network in Figure
5. Given an input view, generated 3D skeletons can roughly reveal the human skeleton. It is in
accordance with our intention that human body structure information is learned during pre-training.
Meanwhile, the generated 3D skeletons is not very accurate as no annotated data is used and only an
adversarial loss is applied for 3D-aware human-centric representation learning.

5 CONCLUSION

In this work, we proposed a simple yet effective self-supervised representation learning framework
LiftedCL for 3D-aware human-centric pre-training. By lifting 2D contrastive representations to 3D
human skeleton and adapt adversarial learning, LiftedCL encodes 3D human structure information
into the learned representations. Besides, with 3D human kinematic prior, real 3D skeletons can
be generated by randomly sampling reasonable 3D human skeletons, which alleviates the problem
of expensive and time-consuming data collection. Our method shows promising improvements in
a serious of human-centric tasks, and more importantly, shows the great potential of improving
contrastive learning with 3D prior through adversarial learning. Our limitation is that cropped human
images are required during pre-training. In the future, we will further investigate how to embed 3D
prior into representations with single-view input on object detection.
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A GENERATION OF COCO HUMAN IMAGES

Our pre-training experiments on COCO only use human images, which are generated by cropping
human regions according to the annotations. For each human bounding box, the box is first extended
to a fixed aspect ratio, i.e., height : width = 4 : 3, and then we crop from images without distorting
human bounding boxes’ aspect ratio. Finally, we resize the cropped image to a fixed size, 256× 192.
Figure 6 shows some examples of our cropped human images.

Figure 6: Cropped human images from MS COCO.

B SAMPLING OF REAL 3D SKELETONS

We generate a set of real 3D samples for adversarial learning by randomly sampling reasonable 3D
human skeletons satisfying 3D human kinematic prior without any annotated data. We define a 3D
human skeleton

P = (jroot, jright_pelvis, jright_knee, . . . , jleft_elbow, jleft_wrist) ∈ R3×J , (9)

where J stands for the number of joints and we use a 17 joint human skeleton. We first set root joint
jroot = (0, 0, 0)T and then any other joint can be generated using its parent joint and a bone vector.

jchild = jparent +R · α · bparent_child. (10)

jchild and jparent represent the child joint and its parent joint separately. bpc ∈ R3 is the default
bone vector related to these two joints. We first define a template 3D skeleton. In this way, each
default bone vector bpc can be obtained according to that. α is the random length ratio and R is the
random rotation matrix to change the bone length and direction. We set α ∈ [0.9, 1.1] for all bones
and set different rotation ranges for different bones according to the human kinematic prior. For
example, for the knee joint, bpelvis_knee = (0, 45, 0)T , α ∈ [0.9, 1.1] and R = euler(a, b, c), a ∈
[−90◦, 90◦], b ∈ [−180◦, 180◦], c ∈ [−90◦, 90◦].

The 3D human skeleton can be generated by uniformly sampling α and R in their ranges. For the
generated 3D skeleton, it is scaled by dividing it by its Frobenius norm. To simulate different camera
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Figure 7: Randomly sampled 3D human skeletons.

views, generated 3D skeletons are randomly rotated around Z axis.We generate a set of ∼ 10K 3D
human skeletons as real 3D samples for adversarial learning in our LiftedCL. Figure 7 shows some
examples of our randomly sampled 3D skeletons.

C IMPLEMENTATION DETAILS OF LIFTEDCL

We adopt ResNet50 (He et al., 2016) as our default backbone, it is worth noting that our approach
can be employed to other networks, e.g. HRNet (Sun et al., 2019). Following (Chen et al., 2020a;
He et al., 2020), invariant projection head consists of a global average pooling layer and a two layer
MLP, which takes the feature maps as input and generates a global feature vector for each view. For
equivariant projection head, it outputs features maps having the same size of the input consisting
of two 1 × 1 convolution layers with a ReLU layer between them. The first convolution layer’s
dimension is 2048, and the final output dimension is 128. For both the invariant and equivariant
contrastive learning, the dictionary size is set to 16384. The momentum is set to 0.999. Shuffling BN
(He et al., 2020) is used during training. The temperature τ in contrastive loss is set to 0.2.

The data augmentation pipeline consists of 256× 256-pixel random resized cropping, random color
jittering, random gray-scale conversion, gaussian blurring and random horizontal flip following (Chen
et al., 2020b). Rotation is not used for fair comparison with previous self-supervised methods. Inverse
geometry transformations are applied in equivariant contrastive loss, the output feature maps will
be flipped horizontally if the input view was flipped before. For random resized cropping, shared
area in two views’ feature maps Fq, Fk will be cropped and resized to 16× 16 resolution as inverse
geometric augmented feature maps, then equivariant contrastive loss can be calculated. The training
code of our framework is modified from the official PyTorch implementation of MoCo1.

1https://github.com/facebookresearch/moco
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D FINE-TUNING DETAILS

2D Human Pose Estimation. We fine-tune SimplePose (Xiao et al., 2018) detector with ResNet50-
C4 backbone on MS COCO (Lin et al., 2014), MPII (Andriluka et al., 2014) and Human3.6M
(Ionescu et al., 2013). The learning schedule follows the setting (Xiao et al., 2018).

For 2D human pose estimation on COCO, we adapt the official codes of SimplePose2. The fine-
tuning is conducted on COCO train2017 dataset for 140 epochs with a mini-batch size of 128,
including 57K images and 150K person instances. The evaluation is conducted on the val2017 set,
containing 5000 images. The standard evaluation metric is based on Object Keypoint Similarity
(OKS). We follow the evaluation metric in (Sun et al., 2019) and report standard average precision
and recall scores: AP 50 (AP at OKS = 0.50), AP 75, AP (the mean of AP scores at 10 positions,
OKS = 0.50, 0.55, . . . , 0.90, 0.95), APM for medium objects, APL for large objects, and AR at
OKS = 0.50, 0.55, . . . , 0.90, 0.95.

When fine-tuning SimplePose on MPII Human Pose dataset, we also use its official codes. MPII
consists of ∼ 28K subjects for training and ∼ 12K subjects for testing. The standard metric
PCKh@0.5 (α = 0.5) score (head-normalized probability of correct keypoint) score is used.

For Human3.6M 2D pose estimation, we refer to the official codes in (Qiu et al., 2019)3 and follow its
default training schedule. Human3.6M dataset contains ∼ 63K images for training and ∼ 9K images
for testing. The pose estimation accuracy is measured by Joint Detection Rate (JDR), which means
the percentage of the successfully detected joints. The estimated joint is regarded as successfully
detected if the distance between it and the groundtruth location is smaller than a half of the head size.

3D Human Pose Estimation. For 3D human pose estimation in Human3.6M, we fine-tune a model
with the ResNet50 backbone (Li et al., 2021) using its default training schedule4 on subjects S1, 5, 6,
7, 8 and evaluate on subjects S9 and S11. We use two evaluation metrics: Mean Per Joint Position
Error (MPJPE) in millimeters and MPJPE over aligned predictions with GT 3D poses by a rigid
transformation (PA-MPJPE).

3D Human Shape Recovery. We follow the training schedule and settings in (Xu et al., 2021)5

to fine-tune a ResNet50 based model on a mixed dataset. The 3D human shape recovery results
are evaluated on 3DPW (von Marcard et al., 2018) and reconstruction error is used to evaluate the
performance.

Human Parsing. A ResNet50 based model with self-correction purification strategy (Li et al.,
2020)6 is fine-tuned on LIP dataset. LIP dataset contains 50462 images with pixel-wise annotations
with 19 semantic human part labels. We fine-tune pre-trained models on train set and evaluate the
performance on validation set, consisting 30462 images and 10000 images respectively.

E ADDITIONAL VISUALIZATION OF LIFTED 3D SKELETONS

Additional visualization of lifted 3D skeletons by lifting network is shown in Figure 8.

2https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
3https://github.com/microsoft/multiview-human-pose-estimation-pytorch
4https://github.com/Jeff-sjtu/res-loglikelihood-regression
5https://github.com/xuxy09/RSC-Net
6https://github.com/GoGoDuck912/Self-Correction-Human-Parsing
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Figure 8: Additional visualization of lifted 3D skeletons.
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