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Abstract
In the random-order model for online learning, the
sequence of losses is chosen upfront by an adver-
sary and presented to the learner after a random
permutation. Any random-order input is asymp-
totically equivalent to a stochastic i.i.d. one, but,
for finite times, it may exhibit significant non-
stationarity, which can hinder the performance of
stochastic learning algorithms. While algorithms
for adversarial inputs naturally maintain their re-
gret guarantees in random order, simple no-regret
algorithms exist for the stochastic model that fail
against random-order instances.

In this paper, we propose a general template
to adapt stochastic learning algorithms to the
random-order model without substantially affect-
ing their regret guarantees. This allows us to re-
cover improved regret bounds for prediction with
delays, online learning with constraints, and ban-
dits with switching costs. Finally, we investigate
online classification and prove that, in random or-
der, learnability is characterized by the VC dimen-
sion rather than the Littlestone dimension, thus
providing a further separation from the general
adversarial model.

1. Introduction
Random order is a natural input model for online algo-
rithms: the input is generated upfront by an adversary but
is presented to the algorithm after a uniform random per-
mutation. The random-order model is extensively studied
across various areas of computer science and economics,
such as optimal stopping problems (Dynkin, 1963; Krengel
& Sucheston, 1977; Peng & Tang, 2022), online matching
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and matroid selection (Babaioff et al., 2018; Korula & Pál,
2009; Dimitrov & Plaxton, 2012; Ezra et al., 2022), and
online approximation algorithms (Gupta & Singla, 2020).
However, it has received little attention in online learning,
where the standard input regimes are either (i.i.d.) stochastic
or adversarial (see, e.g., Lattimore & Szepesvári, 2020).
The study of online learning in the random-order model is
part of a broader research agenda that explores meaningful
models beyond worst-case analysis (Roughgarden, 2020).
Examples of other “intermediate” input models for online
learning can be found in Ben-David et al. (1997); Slivkins
& Upfal (2008); Lykouris et al. (2018); Sachs et al. (2022);
Haghtalab et al. (2022); Mazzetto & Upfal (2023).

In random-order online learning, the T loss vectors are
generated arbitrarily by some adversary and then undergo a
uniform shuffling before being presented to the learner. This
input model is — to some extent — intermediate between
the stochastic model, where losses are drawn i.i.d. from
a fixed but unknown distribution, and the adversarial one,
where the adversary decides both the losses and the order
in which they are presented to the learner.

A classical probabilistic result by De Finetti (1929) (see
also De Finetti, 1937; Hewitt & Savage, 1955; Diaconis
& Freedman, 1980) on sequences of exchangeable random
variables implies that sampling without replacement (i.e.,
the distribution over random-order loss sequences) is asymp-
totically indistinguishable from i.i.d. sampling from some
fixed distribution over losses1. However, in the standard
finite-time online learning framework, the non-stationarity
of the random-order model can undermine learning algo-
rithms that perform well in the stochastic setting. This
observation raises several questions about the random-order
model and its relationship with other input models.

1.1. Our Results

In this paper, we initiate the systematic study of the random-
order input model in online learning. Since any realization
of random-order sequences of losses can be naturally cap-
tured by the standard adversarial model, it is immediate to
see that any algorithm for the adversarial model maintains
its guarantees in random order. Conversely, any i.i.d. se-

1For more details, we refer to Appendix A.
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quence can be simulated by a random-order one by first
sampling T losses and then applying a uniform permutation.
These two considerations show that the random-order model
lies between the i.i.d. and adversarial input model2:

i.i.d. ⪯ random-order ⪯ adversarial.

The hierarchy between the three models implies that inves-
tigating the random-order model is especially compelling
in problems that exhibit a performance gap between the
stochastic and adversarial models. In such problems, a
natural question is: What happens when we apply an algo-
rithm designed for the stochastic setting to the random-order
model? One might expect such algorithms to perform rea-
sonably well since the adversary can only select the support
of the distribution. However, we show an algorithm that be-
haves nicely against stochastic inputs, but fails in a carefully
designed random-order instance (Section 3). We comple-
ment this negative result with a positive one. While we
cannot directly apply an algorithm designed for the stochas-
tic setting to the random-order model, we propose a general
template, SIMULATION, to adapt learning algorithms from
the i.i.d. setting to the random-order model, without signif-
icantly affecting their regret guarantees (Section 4). This
implies that the minimax regret regimes in the random-order
model essentially collapse to stochastic i.i.d. ones. We
demonstrate the applicability of our template across mul-
tiple problems that exhibit a stark separation between the
adversarial and stochastic regimes.

Prediction with Delayed Feedback. The interplay be-
tween online learning and delayed feedback has been stud-
ied extensively. While many delay models exist, the general
finding is that the delay parameter d influences regret bounds
additively in the i.i.d. model and multiplicatively in the ad-
versarial one (Desautels et al., 2012; Joulani et al., 2013;
Masoudian et al., 2022). In Corollary 4.4, we show an al-
gorithm with Õ(

√
T + d) regret rate in the random-order

model, which qualitatively matches the stochastic result.

Online Learning with Constraints. In online learning
problems with time-varying constraints there is a strong sep-
aration between the adversarial case, where it is impossible
to attain sublinear regret and constraints violations (Mannor
et al., 2009), and the stochastic case, where Õ(

√
T ) regret is

achievable (Yu et al., 2017). We present an algorithm (Corol-
lary 4.8), based on SIMULATION, that guarantees regret of
order Õ(

√
T ) and zero constraints violation, matching the

results for stochastic environments.

Bandits with Switching Costs. In the bandits with switch-
ing costs problem, the learning algorithm incurs an addi-
tional unitary loss every time it changes action. The adver-

2For a formal proof, see Appendix B.

sarial minimax regret is Θ(T 2/3), while the stochastic one
is Θ(

√
T ) (Cesa-Bianchi et al., 2013; Dekel et al., 2014).

We explore a simplified version of SIMULATION based on
SUCCESSIVE-ELIMINATION, similar to the algorithm by
Agrawal et al. (1988), and show that this approach recovers
the
√
T rate in the random-order model.

Online Classification. For (binary) classification, there is
a well-known separation between statistical (offline) learn-
ing3 and online learning. While the learnability in the former
setting is characterized by the Vapnik–Chervonenkis (VC)
dimension, the latter is determined by the Littlestone dimen-
sion (Ben-David et al., 2009). In general, the Littlestone
dimension dominates the VC dimension, and there are sim-
ple examples (e.g., one-dimensional thresholds) of families
with constant VC dimension and infinite Littlestone dimen-
sion. In Appendix H, we prove that the VC dimension char-
acterizes learnability also in the random-order model, thus
providing a further separation between this model and the
general adversarial one. Notably, results similar in spirit to
ours have been recently obtained in Haghtalab et al. (2022);
Raman & Tewari (2024), where they prove that online bi-
nary classification is characterized by the VC dimension
even in a non-stationary setting, as long as the adversarial
input is smooth (Haghtalab et al., 2022) or the learner has
access to good predictions (Raman & Tewari, 2024).

Discussion. On a theoretical level, our results have two
main implications: (i) the minimax regret rates for random-
order and the stochastic model are typically the same, and
(ii) it is fairly easy to construct the desired random-order
algorithm starting from a stochastic one. These results also
have important practical implications: if the order in which
the input is presented can be controlled, the same regret
rate achievable in the stochastic setting can be obtained by
simply shuffling the dataset.

1.2. Our Techniques

The Birthday Paradox. We show that algorithms de-
signed for the stochastic setting may fail in the random-order
model, by leveraging the birthday paradox (from a pool of n
elements, a duplicate appears after about

√
n samples). In a

pool of T loss vectors, a random-order instance corresponds
to uniform sampling without replacement, whereas sam-
pling with replacement mimics an i.i.d. distribution. When
the support is finite, these processes are statistically distinct
(Diaconis & Freedman, 1980).

SIMULATION. In contrast to the previous negative result,
we develop a template, SIMULATION, to adapt stochastic
algorithms to the random-order model. It partitions the

3Note, here statistical (offline) learning is equivalent to stochas-
tic online learning, due to the standard online-to-offline reduction.
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time horizon into log T geometrically increasing windows.
At the start of each window, past data is used to simulate
an i.i.d. distribution matching the expected values of the
random-order instance, allowing the algorithm to train in
an i.i.d. setting without incurring real loss. The action fre-
quencies during training are then used on the actual instance
within the current block. The analysis leverages that sam-
pling without replacement, even if statistically distinct from
i.i.d. sampling, concentrates around the same mean.

1.3. Further Related Work

Random-order Online Convex Optimization. Random-
order inputs in online convex optimization has been studied
in Garber et al. (2020) and Sherman et al. (2021). Their
main result is that such random-order instances allow for
logarithmic regret even if the single losses are not strongly
convex, as long as the cumulative loss is strongly convex.

Online Combinatorial Problems in Random Order.
Random-order inputs have also been studied in the context
of online combinatorial optimization in Dong & Yoshida
(2023). They consider approximate follow-the-leader algo-
rithms and prove that when the offline optimization algo-
rithm has low average sensitivity (i.e., the average impact
of single points on the output is small, a notion introduced
in Varma & Yoshida (2023)), then the offline-to-online re-
duction carries over also in the random-order model.

Online Learning with Long-Term Constraints Online
learning under time-varying constraints was first studied by
Mannor et al. (2009), who showed that achieving both sub-
linear regret and constraint violations is impossible when
costs and rewards are linear but adversarially generated.
Therefore, a significant gap exists between the stochas-
tic setting, where Õ(

√
T ) regret and constraint violation

are achievable (Yu et al., 2017; Badanidiyuru et al., 2013;
Agrawal & Devanur, 2014), and the adversarial setting,
where guarantees typically take the form of no-α-regret
bounds, with α ∈ (0, 1) representing the competitive ratio
(Immorlica et al., 2022; Castiglioni et al., 2022a;b; Kessel-
heim & Singla, 2020; Bernasconi et al., 2024). Some studies
achieve improved results under adversarially generated con-
straints, but at the cost of using a weaker baseline, such
as static regret (Sun et al., 2017). Another line of work
(Balseiro et al., 2023; Fikioris & Tardos, 2023) bridges the
gap between stochastic and adversarial settings by making
assumptions about the environment’s evolution over time.

2. Model
A learner repeatedly chooses one of k actions over a time
horizon T . At each time step t, the loss associated to ac-
tion a is denoted by ℓt(a) ∈ [0, 1]. The loss vectors in the

random-order model are generated by an adversary and are
presented to the learner in random order. The adversary
generates a (multi-)set of T loss vectors ht ∈ [0, 1]k, then
they are presented to the learner uniformly at random, i.e., a
permutation π is drawn and the loss at time t is hπ(t) = ℓt.
We adopt the notation [n] to denote the set {1, 2, . . . , n},
and we denote by ∆n the n-dimensional probability sim-
plex. The model and results for the online classification are
deferred to the Supplementary Materials (Appendix H).

2.1. Prediction with Delayed Feedback

In Prediction with Delayed Feedback, the loss vectors are
revealed to the learner after a known and fixed delay d. More
precisely, for any t, the learner only observes the loss vector
ℓt after d time steps. We have the following definition of
(expected) regret of algorithmA choosing actions at against
the random-order input S of losses ℓ1, . . . , ℓT :

RT (A,S) = E

[
T∑

t=1

ℓt(at)− min
a∈[k]

T∑
t=1

ℓt(a)

]
. (1)

We denote with regret of the algorithm A its worst-case
regret, i.e., supS RT (A,S). Note, the benchmark — i.e.,
the performance of the best fixed action in hindsight — is
not influenced by the realization of the random permuta-
tion (in fact, we can equivalently write the benchmark as
mina

∑T
t=1 ht(a)). There is a plethora of delayed feedback

models studied in the literature; for the sake of simplicity,
here we adopt arguably the simplest one with a fixed and
known delay d, as in, e.g., Masoudian et al. (2022). With
minimal effort, our results also apply to other models, e.g.,
random delay or unknown delay.

2.2. Online Learning with Constraints

We consider a setting similar to Balseiro et al. (2023) in
which the learner has m resource-consumption constraints.
At each t, the learner plays xt ∈ ∆k and subsequently
observes a reward vector rt ∈ [0, 1]k and m cost vec-
tors (c1,t, . . . , cm,t) ∈ [0, 1]k×m, one for each available
resource.4 The objective of the learner is to maximize the
cumulative rewards

∑T
t=1 r

⊤
t xt while guaranteeing that, for

each j ∈ [m],
∑T

t=1 c
⊤
j,txt ≤ B, where B is the available

budget for each resource.5 The per-iteration budget is de-
fined as ρ = B/T . We assume that there is a known action ∅
such that cj,t(∅) = 0 for all j and t (this can be thought as a
“skipping turn” action, usually employed in the Bandits with
Knapsack literature, see e.g., Badanidiyuru et al. (2013);
Immorlica et al. (2022)).

4In the literature on Online Learning with Constraints and
Bandits with Knapsacks, it is customary to use rewards instead of
losses, and we follow the same notation here.

5Assuming that all budgets are the same comes without loss of
generality. See discussion in Immorlica et al. (2022).
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In the random-order input model, an instance S is repre-
sented by a multi-set of T tuples (r, c1, . . . , cm) presented
to the learner in uniform random order. We denote with
r̄ the average reward of the tuples in S, and, for each re-
source j, we let c̄j be its average consumption. The natural
benchmark for the problem is given by the solution to the
following LP (see, e.g., Immorlica et al. (2022)):

OPTLP(r̄, c̄1, . . . , c̄m) =

{
maxx∈∆k

⟨r̄, x⟩ s.t.

⟨c̄j , x⟩ ≤ ρ ∀j ∈ [m]
.

With OPTLP, we denote the solution to the above LP instan-
tiated with the average rewards and costs computed from S .
Then, we define the regret in this setting as

RT (A,S) = T ·OPTLP −
τ∑

t=1

r⊤t xt,

where τ ∈ [T ] is the stopping time of the algorithm (i.e., the
time in which the first of the m resources is fully depleted).
Once τ is reached, the algorithm plays ∅ for the remain-
der of the time horizon. Therefore, our algorithm enforces
resource consumption constraints strictly, similar to what
happens in bandits with knapsacks (Immorlica et al., 2022).
This is a stronger requirement than ensuring sublinear con-
straint violations, which is the typical approach in online
learning with long-term constraints (Mannor et al., 2009;
Yu et al., 2017; Castiglioni et al., 2022b).

2.3. Bandits with Switching Costs

In the bandit with switching costs problem, at the end of
each time t, the algorithm only observes its loss ℓt(at) and
suffers an additional unitary loss every time it changes ac-
tion. For instance, this is the same model studied in Cesa-
Bianchi et al. (2013); Dekel et al. (2014). The goal is to
devise a learning strategy that minimizes the suffered loss or,
equivalently, minimizes the regret with respect to the best-
fixed action in hindsight. We then have the following defi-
nition of (expected regret) of algorithm A choosing actions
at

6 against the random-order input S of losses ℓ1, . . . , ℓT :

RT (A,S)=E

[
T∑

t=1

ℓt(at)+I{at ̸=at+1}− min
a∈[k]

T∑
t=1

ℓt(a)

]
.

We denote with regret of the algorithm A its worst-case
regret, i.e., supS RT (A,S). Note, the benchmark is not
influenced by the switching cost or by the random permu-
tation (in fact, we can equivalently write the benchmark as
mina∈[k]

∑T
t=1 ht(a)).

3. The Birthday Paradox
In this section, we analyze a learning algorithm that exhibits
the no-regret property against any stochastic input but fails

6For simplicity, we define aT+1 = aT .

against a random-order one. We consider the basic Predic-
tion with Experts problem, where the learner immediately
observes the loss vector ℓt upon playing at. The regret in the
stochastic setting is defined with respect to the expected per-
formance of the best fixed arm, while in the random-order
model it is defined as in Equation (1) (see also Appendix B
for a comparison on the regret definitions).

Consider the following simple BIRTHDAY-TEST algorithm:
it repeatedly plays the first action until a certain stopping
time τ is realized, after which it starts to run some no-regret
algorithm such as FOLLOW-THE-LEADER (Hannan, 1957)
from scratch.7 The stopping time τ is defined as the first
time step when one of two things happens: either ℓt(1) /∈
{i/T , for i = 1, 2, . . . , T}, or ℓs(1) = ℓt(1) for some s ̸=
t. Intuitively, up to time τ , the algorithm’s behavior while
playing action 1 is essentially a test to determine whether
the losses for this action are drawn uniformly at random
from the set {i/T | i = 1, 2, . . . , T}.

If the underlying distribution is i.i.d., then τ realizes pretty
soon, while it never does under the random-order model.
This result is based on folklore calculations related to the
birthday paradox, but we report a self-contained proof for
completeness in Appendix D.

Lemma 3.1. For any i.i.d. input and T sufficiently large, it
holds that E [τ ] ≤ 2

√
T .

Consider now the performance of BIRTHDAY-TEST against
any i.i.d. input: it suffers at most constant instantaneous re-
gret up to the stopping time τ (for an overall expected regret
of 4
√
T , as proved in Lemma 3.1) and then run FOLLOW-

THE-LEADER, for an overall regret rate of O(
√
T log T ).

It turns out that there exists a random-order instance that
fools BIRTHDAY-TEST. The instance has only two actions:
action 1, whose losses are given by a permutation of the
set {i/T , for i = 1, 2, . . . , T}, and action 2, which always
yields 0 loss. BIRTHDAY-TEST on this instance always
plays the first action, accumulating regret at each time step
(as τ will never realize by definition), for a cumulative regret
of Ω(T ). All in all, we have proved the following result.

Theorem 3.2. Consider the Prediction with Experts prob-
lem. BIRTHDAY-TEST exhibits O(

√
T log T ) regret against

any stochastic i.i.d. instance, but there exists a random-order
instance against which it suffers Ω(T ) regret.

4. A General Template: SIMULATION

In this Section, we present a general reduction template:
SIMULATION. We then show how this general idea can
be applied to prediction with delayed feedback, in online
learning with constraints, and bandits with switching costs.

7We only need the algorithm to be no-regret on stochastic
i.i.d. inputs.
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Algorithm 1 *
Input: stochastic algorithm A
for i = 0, 1, 2, . . . , log T do

(i) iid-ify past data
Construct a distribution on past data Di

(ii) Train A on a simulated past
Run algorithm A over 2i i.i.d. samples of Di

(iii) Test over new data
Let ni(a) be the times that A plays action a on Di

for t = 2i + 1, 2i + 2, . . . , 2i+1 do
Play action at ∼ (ni(1)/2i, . . . , ni(k)/2i)

end for The SIMULATION Template

SIMULATION. The core idea of our approach (see the
pseudocode for details) is to divide the time horizon into
blocks of geometrically increasing length, performing three
key operations within each block. At the beginning of the
i-th block, which has a length of roughly 2i, we look at the
feedback received during the previous time steps and con-
struct a distribution Di (for instance, by uniform sampling
on the previous 2i samples). Next, we “train” our stochastic
algorithm A on Di (without incurring real losses). Finally,
we use A’s observed performance over Di to play against
the actual losses in the time block. We observe that SIMULA-
TION is not a black-box reduction but a general “recipe” for
adapting stochastic algorithms to the random-order setting.

To build a high-level intuition on the effectiveness of SIMU-
LATION, we can look at its performance when the underly-
ing stochastic algorithm is BIRTHDAY-TEST. By fictitiously
letting play SIMULATION against distribution Di we trigger
the stopping time τ so that BIRTHDAY-TEST starts playing
as FOLLOW-THE-LEADER on the testing part.

4.1. Predictions with Delayed Feedback

In the prediction with delayed feedback model, the learner
has access to the loss vector after d time steps. To specialize
the SIMULATION template to this model, we need to account
for the delayed feedback by adding a buffer of d time steps
between the blocks, allowing enough time to receive the
feedback corresponding to the previous block (we refer to
the pseudocode for further details).

At the beginning of the generic time block i, the distribution
Di that is used to simulate past data is simply the uniform
distribution over all the loss vectors observed in the blocks
before the ith which are contained in the multiset O (the
losses observed in i · d time steps corresponding to the
previous buffers are discarded). To simplify the notation,
we denote with Ti the time steps in the ith time block, i.e.,
Ti = {ti, . . . , ti + 2i − 1}, where ti = 2i + i · d.

Fix any sequence of losses and any block i. At the beginning
of Ti, the multiset O contains all the losses observed in the

Algorithm 2 *
Input: stochastic algorithm A
Environment: K actions, time horizon T
Model: full feedback model with delay d.
Play any action at time 1
Initialize multiset O = {ℓ1}
for i = 0, 1, 2, . . . , ⌈log T ⌉ do

Let Di be the uniform distribution on O {iid-ify past}
Run A over 2i i.i.d. samples of Di {Training}
Let ni(a) be the number of times that A plays a
ti ← i · d+ 2i {Beginning of ith block}
for t = ti, ti + 2, . . . , ti + 2i − 1 do

Play action at ∼ (ni(1)/2i, . . . , ni(k)/2i) {Test}
Add loss ℓt to O when revealed
if t = T , then terminate

end for
Play arbitrarily for the next d time steps

end for SIMULATION for delayed feedback

previous time blocks, which are 2i. Therefore, sampling
according to Di yields an unbiased estimator of the aver-
age loss in the previous blocks. This is formalized in the
following Lemma.
Lemma 4.1. Fix any sequence of losses and time block i.
Then we have:

Eℓ∼Di
[ℓ(a)] =

1

2i

∑
i′<i

∑
t∈Ti′

ℓt(a) ∀a ∈ [k].

In the analysis of SIMULATION for prediction with delayed
feedback, we employ a generic stochastic routine A which
is guaranteed an i.i.d. regret bound of Riid

T ′(A) against any
stochastic input of length T ′.
Theorem 4.2. Consider the problem of online prediction
with delayed feedback in the random-order model, and let
d be the delay parameter. Running SIMULATION for de-
layed feedback with stochastic routine A (SIM-A) yields
the following regret bound:

RT (SIM-A) ≤ 5
√
T log T + d log T +

∑log T
i=0 Riid

2i (A).

Proof. Fix any input sequence S = {h1, . . . , hT }, any real-
ization of the permutation {ℓ1, . . . , ℓT }, and denote with a⋆

the corresponding best action (a⋆ only depends on S, not
on the specific permutation). For any block i, the stochastic
algorithm A is trained over 2i i.i.d. samples from Di, and
the empirical frequencies ni(a)/2i are then used to play in
Ti. For any action i, denote with ∆i(a) the gap between the
loss of action a and that of action a⋆ according to Di:

∆i(a) = Eℓ∼Di [ℓ(a)− ℓ(a⋆)] .

From the guarantees on the regret bound of A, we get∑
a

E [ni(a)]∆i(a) ≤ Riid
2i (A), (2)
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where the expectation is with respect to the randomness in
the i.i.d. sampling from Di.

The gaps ∆i(a) induced by the distribution Di are related
to the empirical gaps ∆p

i (a) experienced in the previous
time blocks by Lemma 4.1. In particular, for any ∆p

i (a) (the
superscript stands for “past”) we have:

∆p
i (a) =

1

2i

∑
i′<i

∑
t∈Ti′

(ℓt(a)− ℓt(a
⋆)) (By definition)

= Eℓ∼Di
[ℓ(a)− ℓ(a⋆)] (By Lemma 4.1)

= ∆i(a). (By definition of ∆i(a))

Plugging in the above equality into the stochastic regret
guarantees as in Equation (2), we get:∑

a

E [ni(a)]∆
p
i (a) ≤ Riid

2i (A). (3)

While the above inequality characterizes the performance
of SIMULATION if run on “past” losses, we need to relate
it to the “future” or actual ones, i.e., the ones appearing in
time block i. We denote with ∆i(a) the gaps in the current
time block. Let’s now look at the actual regret suffered by
the algorithm during Ti:∑
t∈Ti

(E [ℓt(at)]− ℓt(a
⋆))

=
1

2i

∑
a

E [ni(a)]
∑
t∈Ti

(ℓt(a)− ℓt(a
⋆)) (By design)

=
∑
a

E [ni(a)]∆i(a) (By definition of ∆i(a))

=
∑
a

E [ni(a)]∆
p
i (a) +

∑
a

E [ni(a)] (∆i(a)−∆p
i (a))

≤ Riid
2i (A) + 2i ·max

a
|∆i(a)−∆p

i (a)|, (4)

where the last inequality follows because of Equation (3)
and the fact that

∑
a∈[k] ni(a) = 2i. So far, our argument

works for any input model, as the sequence of losses was
arbitrary; now it’s time to exploit the fact that random-order
sequences exhibit concentration. In particular, we want
to argue that, for any block i and action a, both the past
and future empirical gaps ∆p

i (a) and ∆i(a) are close to the
actual gap ∆(a), where

∆(a) =
1

T

∑
i∈[T ]

(hi(a)−hi(a
⋆)) =

1

T

∑
t∈[T ]

(ℓt(a)−ℓt(a⋆)).

We introduce the precision ϵi = 2
√

log T/2i and the corre-
sponding clean event Ei:

Ei = {max{|∆i(a)−∆(a)|, |∆p
i (a)−∆(a)| ≤ ϵi,∀a}.

We can show that such event is realized with high probability
(see Appendix E for omitted proofs).

Claim 4.3. For any block i, the corresponding clean event
is realized with probability at least 1− 1/T .

Then, conditioning on the clean event Ei, we can improve
the bound in Equation (4):∑

t∈Ti

(E [ℓt(at)]− ℓt(a
⋆))−Riid

2i (A)

≤ 2i ·max
a
|∆i(a)−∆p

i (a)|

≤ 2i+1 max
a
{|∆(a)−∆p

i (a)|, |∆(a)−∆i(a)|}

≤ 4
√

log T · 2i.

By removing the conditioning w.r.t. the clean event (and
using the probability bound as in Claim 4.3 and the fact that
the regret suffered under the bad event is at most 2i), we
get:∑

t∈Ti

(E [ℓt(at)− ℓt(a
⋆)]) ≤ Riid

2i (A) + 5
√
log T · 2i.

We are ready to bound the overall regret: for any time block,
we have the above inequality, while for the log T buffers,
we suffer an overall regret of at most d log T . All in all,
we have that the regret RT of SIMULATION for delayed
feedback with routine A is at most:

RT (SIM-A) ≤
log T∑
i=0

(
Riid

2i (A) + 5
√
log T · 2i + d

)

≤ 5
√

T log T + d log T +

log T∑
i=0

Riid
2i (A).

This concludes the proof.

In particular, if we instantiate algorithm A to be FOLLOW-
THE-LEADER, we get the following guarantees.

Corollary 4.4. There exists an algorithm for online predic-
tion with delayed feedback in the random-order model that
enjoys an O(

√
T log T + d log T ) regret bound.

4.2. Online Learning with Constraints

In the Online Learning with Constraints model, the learner
has to play against an environment in which each action
a ∈ [k] has an associated reward and a vector of costs. We
analyze the problem within the random-order model and
show that, in this setting, it is possible to achieve regret guar-
antees comparable to those in the stochastic case, despite
impossibility results for the adversarial setting (Mannor
et al., 2009).

Here, we show how we can adapt SIMULATION in the pres-
ence of long-term constraints. The main difficulty in adapt-
ing SIMULATION in this setting is the fact that the costs

6
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Algorithm 3 *
Input: stochastic algorithm A, budget B, parameter δ
Environment: K actions, time horizon T
Play any action at time 1
Initialize O = {r1, c11, . . . , cm1 }
for i = 0, 1, 2, . . . , log T do

LetDi be the uniform distribution over O{iid-ify past}
Run algorithm A over 2i i.i.d. samples of Di with
budget ρ− Õ(2−i/2) and δ′ = δ/3 log T {Training}
Let ni(a) be the number of times that A plays action
a. Compute xi(a) as ni(a)/2i for each action a
for t = 2i+1, 2i+2, . . . , 2i+1{Play against the actual
sequence} do

Play xi and subsequently add (rt, c
1
t , . . . , c

m
t ) to O

end for
end for SIMULATION for Online Learning with Con-
straints

impose constraints on the entire time horizon, while SIMU-
LATION naturally works on each block independently.

To run SIMULATION in this setting, we need access to an
algorithm A for stochastic online learning with constraints
(see, e.g., Castiglioni et al., 2022a; Bernasconi et al., 2024).
In particular, in a stochastic environment with mean reward
r̃ and mean costs (c̃1, . . . , c̃m), A guarantees a regret upper
bound, with probability at least 1− δ, of

T ·OPTLP(r̃, c̃1, . . . , c̃m)−
τ∑

t=1

r̃⊤xt ≤ Riid,δ
T (A, ρ),

where τ denotes the first time in which a resource j is fully
depleted, that is

∑τ
t=1 c

⊤
j,txt > ρT .8

In each block i we train A on i.i.d. samples
(riid,it , ciid,it,1 , . . . , ciid,it,m )t ∼ Di.9 Then, we take the
empirical frequency of play xi obtained in the training step
and use it against the actual environment in the time block
2i + 1, . . . , 2i+1.

Crucially, during each training phase, we instantiate A with
a slightly reduced per-iteration budget of ρ − Õ(

√
2−i).

This allows us to control concentration terms in the analysis.
Then, one of the main challenges is proving that this budget
rescaling does not significantly affect the guarantees of the
algorithm A during the simulation phase.

Theorem 4.5. Consider the problem of online learning with
long-term constraints in the random-order model. Running
SIMULATION with stochastic routine A (SIM-A) yields the

8We assume that A guarantees that ρ 7→ Riid,δ
T (A, ρ) is mono-

tone decreasing. Note that regret itself respects this property (a
lower budget implies weaker performance). We assume that the
upper bound follows the same behavior, which is true for all known
algorithms for the problem.

9To simplify the notation we drop the block index i when clear.

following regret bound with probability at least 1− δ,

RT (SIM-A) ≤O

 log(mkT
δ )

ρ2
+

√
T log

(
mk
δ

)
ρ


+

log T∑
i=1

Riid,δ′

2i (A, ρ/2).

where δ′ ∈ Õ(δ),

Proof. Fix any sequence S ∈ [0, 1]T×k×m+1 and any per-
mutation {(rt, ct,1, . . . , ct,m)}t∈[T ]. Let x⋆ be the solution
to OPTLP. For each time block i we are going to define the
following quantities: ri = 1

2i

∑2i+1

t=2i+1 rt is the empirical

mean of the rewards on the “next” block, rpi = 1
2i

∑2i

t=1 rt
is the empirical mean of rewards in the “past” block, and
r̄i = EDi [r] is the expected reward w.r.t. Di. Similarly we
define ci,j , c

p
i,j and c̄i,j for each resource j ∈ [m]. Clearly,

r̄i = rpi and c̄i,j = cpi,j .

We can define the benchmark OPTi
LP on the past block as

max
x∈∆k

x⊤rpi s.t. max
j∈[m]

x⊤cpi,j ≤ ρ− 2 · ϵi = ρi,

where ϵi =
√
6 · 2−i log(mk log(T )/δ) ∈ Õ(

√
2−i). We

define the event Ei = {∥r̄i − r̄∥∞ ≤ ϵi, ∥ri − r̄∥∞ ≤
ϵi, ∥c̄i,j − c̄j∥∞ ≤ ϵi, ∥ci,j − c̄j∥∞ ≤ ϵi ∀j ∈ [m]}. From
now on, we condition on the event Ei, which we show to
hold with high probability with respect to the permutation.

The regret of SIMULATION can be written as

RT (SIM-A,S) =
log T∑
i=1

2i · r̄⊤x⋆ −
2i+1∑

t=2i+1

r⊤t xt


=

log T∑
i=1

2i ·
(
r̄⊤x⋆ − r⊤i xi

)
, (5)

where the second equality holds thanks to the fact that we
are playing the fixed learned distribution xi in the i-th block,
which is the one learned while playing against Di.

We only consider blocks with index i > i⋆ where we set
i⋆ = Ω(log(log(mk log(T )/δ)/ρ2)), otherwise we would
have ρi < 0 which is the first block for which ρi = ρ−2ϵi ≥
ρ/2. For each block i < i⋆ we suffer linear regret (since we
are forced to play the null action ∅), and this contributes to
a
∑i⋆

i=1 2
i ∈ Õ(1/ρ2) additional regret term.

The no-regret properties of A guarantee that, with probabil-
ity at least 1− δ′:

2i ·OPTi
LP −

2i∑
t=1

x⊤
t r̄i = 2i ·

(
x⋆,⊤
i rpi − x⊤

i r̄i

)
≤ Riid,δ′

2i (A, ρ− 2 · ϵi),

7
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where x⋆
i is the solution to OPTi

LP and

∑t
s=1 x

⊤
s c

iid
s,j ≤ (ρ− ϵi) · 2i (6)

which holds for all t ∈ [2i] and for all j ∈ [m].

Consider one term of the regret decomposition of Equa-
tion (5):

r̄⊤x⋆ − r⊤i xi = (r̄⊤x⋆ − rp,⊤i x⋆
i ) + (rp,⊤i x⋆

i − r⊤i xi)

≤ (r̄⊤x⋆ − rp,⊤i x⋆
i ) +

Riid,δ′

2i (A, ρi)
2i

+ (r̄i − ri)
⊤xi (7)

where the last inequality holds by the regret properties of
A. Now, we have to analyze the first and last terms of the
inequality above. The last term is easy to bound. Indeed,
conditioning on Ei it holds that

(r̄i − ri)
⊤xi ≤ ∥r̄i − r̄∥∞ + ∥r̄ − ri∥∞ ≤ 2ϵi.

Bounding the first term is trickier as it is equivalent to bound-
ing the difference between the values of two LPs. Indeed,
it can be rewritten as OPTLP − OPTi

LP. The following
claim (whose proof can be found in Appendix F) shows that
this difference is not too large.

Claim 4.6. For all i > i⋆, under the event Ei, we have that

OPTLP −OPTi
LP ≤ ϵi

(
1 +

3

ρ

)
.

Plugging everything back into Equation (7) we get that,
conditioning on the events Ei,

RT ≤
i⋆∑
i=1

2i +

log T∑
i=i⋆+1

(
ϵi

(
1 +

3

ρ

)
+ 2ϵi +Riid,δ′

2i (A, ρi)
)

≤ O

(
log(mkT

δ )

ρ2

)
+

6

ρ

log T∑
i=1

ϵi +

log T∑
i=i⋆

Riid,δ′

2i (A, ρi)

≤ O

 log(mkT
δ )

ρ2
+

√
T log

(
mk
δ

)
ρ

+log T∑
i=1

Riid,δ′

2i

(
A, ρ

2

)
,

where we used that ρ 7→ Riid,δ
t (A, ρ) has to be monotone

decreasing and positive. Moreover, note that the probability
measure is the one induced by the random permutation and
does not depend on the algorithm.

Next, we analyze the violations, which for each t and each

resource j ∈ [m] are given by:

t∑
s=1

x⊤
s cs,j ≤

⌈log t⌉∑
i=1

2i+1∑
s=2i+1

x⊤
i cs,j =

⌈log t⌉∑
i=1

2i · c⊤i,jxi

=

⌈log t⌉∑
i=1

2i · c̄⊤i,jxi +

⌈log t⌉∑
i=1

2i · (ci,j − c̄i,j)
⊤xi

≤
⌈log t⌉∑
i=1

2i · c̄⊤i,jxi +

⌈log t⌉∑
i=1

2iϵi, (8)

where the last inequality holds by conditioning on all Ei.
To analyze the first term, we can consider the following se-
quence of random variables Zi,j

t =
∑t

s=1(c
iid
s,j − c̄i,j)

⊤xs.

This is a martingale sequence (since EDi
[ciids,j ] = c̄i,j and

has differences bounded by 1) with Zi,j
0 = 0 and thus, by

Azuma-Hoeffding, we have that with probability at least
1− δ

3m log T with respect to the randomness of Di:

|Zi,j
2i | =

∣∣∣∣∣∣
2i∑
s=1

(ciids,j − c̄i,j)
⊤xs

∣∣∣∣∣∣ ≤ 2iϵi,

and thus for all i ∈ [log T ] and j ∈ [m]:

2i · c̄⊤i,jxi ≤ 2iϵi +

2i∑
s=1

ciid,⊤s,j xs ≤ 2iϵi + 2i(ρ− 2 · ϵi)

with probability at least 1 − δ/3 (by union bound on all
i ∈ [log T ] and j ∈ [m]), and the second inequality holds
thanks to the properties of A (Equation (6)). Plugged back
into Equation (8) we get that

t∑
s=1

x⊤
s cs,j ≤

⌈log t⌉∑
i=1

(2iϵi + 2iϵi + 2i(ρ− 2 · ϵi)) ≤ ρt.

Finally, we prove that all of the previous results hold with
probability at least 1− δ. We have three sources of random-
ness; the first is due to the permutation, which is encoded
by the events Ei. The following claim proves that these hold
with high probability.10

Claim 4.7. The event ∩log T
i=1 Ei holds with probability at

least 1− δ/3.

Second, we have the randomness of the i.i.d. sampling. By
Azuma-Hoeffding inequality, we proved that this holds with
probability at least 1 − δ/3. Finally, the algorithm A has
guarantees with probability δ′ = 1− δ/3 log(T ) each time
it is run on a block i. By a further union bound, we have
that these events hold jointly with probability 1 − δ. This
concludes the proof.

10The proof is similar to the proof of Claim 4.3 by relying on
Theorem C.1 with additional union bounds on the constraints.
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In particular, we can instantiate A to be the algorithm of
Castiglioni et al. (2022a) that guarantees that Riid,δ

T (A, ρ) ∈
O(1/ρ

√
T log(kmT/δ)), and we can prove the following:11

Corollary 4.8. There exists an algorithm for online learning
with long-term constraints for the random-order model with
regret Õ(1/ρ2 +

√
T/ρ) with high probability.

Our reduction maintains the same regret guarantees as A,
but for an extra 1/ρ2 instead of 1/ρ. However, this term does
not depend on T , excluding poly-logarithmic factors.

4.3. Bandits With Switching Costs

We present an algorithm for the Bandits with Switching
Costs problem that suffers O(

√
T ) regret in the random-

order model, as opposed to the adversarial setting, where
the minimax regret rate is Θ(T 2/3) (Dekel et al., 2014).

Our algorithm SIMULATION-SUCCESSIVE-ELIMINATION
maintains a set of active actions and proceeds in geomet-
rically increasing time blocks. In each time block, it
simply plays in a low-switching round-robin way the ac-
tions that are still active; then it updates the confidence
bounds on the actions played and discards the ones that are
proved to be, with high probability, suboptimal. We refer
to the pseudocode for more details. Note, SIMULATION-
SUCCESSIVE-ELIMINATION is an application of the SIM-
ULATION paradigm to this problem, using as stochastic
subroutine SUCCESSIVE-ELIMINATION (e.g., Chapter 1 of
Slivkins, 2019): running SUCCESSIVE-ELIMINATION on
the i.i.d. version of past data quickly converges to playing
round-robin on the active actions. For simplicity, we analyze
this simpler version of the algorithm, already specialized
for the routine SUCCESSIVE-ELIMINATION. We note that
this algorithm is similar to a low-switching algorithm in the
literature (Agrawal et al., 1988) that achieves

√
T regret in

the stochastic case. It shares the geometrically increasing
blocks and the idea of playing each active arm in contigu-
ous intervals in each block; the main difference is that they
use UCB as a routine to choose the next action, while our
algorithm uses SUCCESSIVE-ELIMINATION to simplify the
analysis for the random-order input model.

We state here the main result concerning SIMULATION-
SUCCESSIVE-ELIMINATION. We defer the complete proof
to the Supplementary Materials (Appendix G).
Theorem 4.9. There exists an algorithm for bandits with
switching costs in the random-order model with regret
O(
√
kT log3 T ).

Proof Sketch. SIMULATION-SUCCESSIVE-ELIMINATION
switches actions at most O(k) times during each one of

11The algorithm of Castiglioni et al. (2022a) is, in its turn, instan-
tiated with ONLINE-MIRROR-DESCENT with negative entropy as
both the primal and dual algorithm.

Algorithm 4 *
Environment: k actions and time horizon T
Model: bandit feedback with switching costs
ℓ̂(a)← 0, n(a)← 0, for all actions a
A← [k] set of active actions
i0 ← ⌈log k⌉
for t = 1, . . . 2i0 do

Play at= t−1 modulo k {Play each action once}
n(at)← n(at) + 1

ℓ̂(at)← 1
n(at)

∑t
s=1 I{as=at}ℓs(as)

end for
for i = i0, . . . , log T do

Let ϵi ←
√

10k log3 T · 2−i {Precision for block i}
for a ∈ A do

Play action a action for 2i/|A| rounds
Let ℓ̂(a)← 1

n(a)

∑t
s=1 I{as=a}ℓs(a)

end for
Play last active action a up to time min{2i+1 − 1, T}
Update accordingly n(a) and ℓ̂(a)
Remove from A all actions a such that

ℓ̂(a)− ϵi > min
a′∈A

(ℓ̂(a′) + ϵi)

end for SIMULATION-SUCCESSIVE-ELIMINATION

the O(log T ) phases. Therefore, the overall switching
cost is always O(k log T ). We move our attention to the
regret incurred by playing suboptimal actions. We can
argue by concentration for random-order sequences (see
Appendix C) that in the generic phase i only actions with
overall suboptimality gap O(ϵi−1) are still active, with high
probability. Moreover, once again by concentration, we can
argue that these actions’ actual (permuted) losses during the
generic block i are “close” to their actual suboptimality gap.
Summing up for all blocks and plugging in our choice of the
precision parameters ϵi yields the desired regret bound.

5. Conclusion and Further Directions
We study online learning in the random-order model, which
lies between the adversarial and i.i.d. settings, contributing
to the analysis of problems beyond worst-case instances. We
show that stochastic algorithms may fail in the random-order
model and, to address this, we propose SIMULATION, a
general template for designing effective random-order algo-
rithms. We study various relevant online learning problems
and prove that random-order and stochastic inputs share the
same minimax regret, improving on the adversarial case.
While SIMULATION successfully provides black-box reduc-
tions for full feedback, the bandit model still requires a more
specialized approach. Providing black-box constructions
for broader feedback settings, including bandit feedback, is
an interesting avenue for future research.
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A. The De Finetti Theorem
The De Finetti Theorem states that any (infinite) sequence of exchangeable12 random variables behaves (in distribution)
as a mixture of i.i.d. distribution. This result has been initially proven for binary random variables in De Finetti (1929)
(a translated version is available on the arXiv Alvarez-Melis & Broderick (2015)), and then generalized to real random
variables in De Finetti (1937); Hewitt & Savage (1955). However, this representation theorem does not hold (de Finetti, 1969;
Diaconis & Freedman, 1980) for finite sequences. In particular, Diaconis & Freedman (1980) provides tight quantitative
bounds on the difference between exchangeable sequences and their “closest” mixture of i.i.d. distributions. We report here
a lower bound on such distance.

Let U2n be an urn containing n red and n black balls. Let H2n,2k, respectively M2n,2k, represent the distribution of the
number of red balls out of 2k draws made at random without, respectively with, replacement from U2n. Furthermore, for
any random variable P in [0, 1], consider the random experiment that consists of first sampling p according to P and then
sampling k i.i.d. Bernoulli with parameter p; denote with PP,k the distribution of the number of successes according to this
experiment. We have the following Theorem (Proposition 31 and Theorem 40 of Diaconis & Freedman (1980)):

Theorem A.1. Let n tend to∞, and k ∈ o(n). Then, for any random variable P in [0, 1], the following inequality holds:

||H2n,2k − PP,k||TV ≥ ||H2n,2k −M2n,2k||TV =

√
2

πe

k

n
+O

(
k

n

)
.

Stated differently, sampling with replacement and without replacement induce different distributions whose total variation
distance roughly scales linearly in the sampled fraction of the urn.

B. The Hierarchy between the Three Models
The random-order model is intermediate between the i.i.d. and adversarial input model. We provide here a formal proof of
this fact for the standard online learning setting with k actions and loss minimization.

Stochastic i.i.d. Input Model. The input S is defined by a distribution D over loss vectors, from which T i.i.d. samples
are drawn. The regret suffered by algorithm A on input S is defined as follows:

Ri.i.d.
T (A,S) = max

a∈[k]
E

[
T∑

t=1

ℓt(at)− ℓt(a)

]
.

The stochastic regret Ri.i.d.
T (A) of an algorithm A is its worst-case regret against all stochastic inputs.

Random-Order Model. The input S is defined by a set {h1, . . . , hT } of T loss vectors, that are presented in random
order to the learner, so that the generic ℓt is hπ(t) for a random permutation π. The regret suffered by algorithm A on input
S is defined as follows:

RRO
T (A,S) = max

a∈[k]
E

[
T∑

t=1

ℓt(at)− ℓt(a)

]
= E

[
T∑

t=1

ℓt(at)

]
− min

a∈[k]

T∑
t=1

ht(a).

The random-order regret RRO
T (A) of an algorithm A is its worst-case regret against all random-order inputs.

(Oblivious) Adversarial Model. The input S is defined by a sequence of T loss vectors. The regret suffered by algorithm
A on input S is defined as follows:

RADV
T (A,S) = max

a∈[k]
E

[
T∑

t=1

ℓt(at)− ℓt(a)

]
= E

[
T∑

t=1

ℓt(at)

]
− min

a∈[k]

T∑
t=1

ℓt(a).

The adversarial regret RADV
T (A) of an algorithm A is its worst-case regret against all adversarial inputs.

12A sequence X1, X2, . . . , Xn of random variables is exchangeable if for any finite set of indices I = (i1, . . . , iℓ), and any permutation
π over I it holds that (Xi1 , . . . , Xiℓ) is distributed as (Xπ(i1), . . . , Xπ(iℓ)).
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No-regret. An algorithm is said to enjoy the no-regret property in a certain input model if it exhibits sublinear regret (in
the time horizon T ) uniformly over all possible inputs in that model.

The informal statement contained in the main body that i.i.d. ⪯ random-order ⪯ adversarial is formalized in the following
theorem.
Theorem B.1. For any learning algorithm A, the following regret hierarchy holds:

Ri.i.d.
T (A) ≤ RRO

T (A) ≤ RADV
T (A).

Proof. We start with the first inequality of the statement. Consider any random instance S, and let X ⊆ [0, 1]k be the
support of the random variable underlying S,13 and denote with ΣX the multiset of all the subsets of T elements in X
(possibly with repetitions). Finally, for any σ ∈ ΣX , denote with Eσ the event that the set of the realized losses is σ. We
have the following:

max
a∈[k]

E

[
T∑

t=1

ℓt(at)− ℓt(a)

]
= max

a∈[k]

∑
σ∈ΣX

P [Eσ]E

[
T∑

t=1

ℓt(at)− ℓt(a)|Eσ

]

≤ max
a∈[k]

E

[
T∑

t=1

ℓt(at)− ℓt(a)|Eσ̂

]

= E

[
max
a∈[k]

T∑
t=1

ℓt(at)− ℓt(a)|Eσ̂

]
= RRO

T (A,Sπ),

where the first inequality follows by an averaging argument (i.e., there exists a σ̂ ∈ ΣX that dominates the average stochastic
regret), and the last equality holds because once the multiset of realized values σ̂ is fixed (we need multisets because there
may be repeated elements), then all possible permutations are equally likely and thus we are back at the random-order model.
Moreover, note that the maxi∈[k] only depends on the multiset σ̂ and not on the specific realizations (so that we can safely
move it into the expectation). Taking the sup with respect to the stochastic inputs yields the first inequality.

The argument for the second inequality is similar. Fix any random-order instance S, characterized by a set of T losses
{h1, . . . , hT } that are randomly permuted according to π, and denote with Sπ the corresponding adversarial input. Denote
with Π the set of all permutations over the T rounds. We have the following:

max
a∈[k]

E

[
T∑

t=1

ℓt(at)− ℓt(a)

]
= max

a∈[k]

1

T !

∑
π∈Π

E

[
T∑

t=1

hπ(t)(at)− hπ(t)(a)

]
≤ max

π∈Π
RADV

T (A,Sπ)

= RADV
T (A,Sπ∗),

where π⋆ is the permutation that maximizes the regret. Taking the sup with respect to the random-order inputs yields the
second inequality.

The above results tell that the minimax regret for the i.i.d. setting is at most that for the random-order one, which, in turn, is
upper bounded by that of the adversarial input model.

C. Concentration for Sampling without Replacement
In the original paper by Hoeffding (Hoeffding, 1963), a concentration bound for sampling without replacement is provided.
Theorem C.1. Let y1, y2, . . . , yT be a sequence of numbers in [0, 1], and consider an uniform random subset S ⊆
{y1, . . . , yT }, where s = |S|. Then, the following inequality holds for any λ > 0:

P

∣∣∣∣∣1s ∑
yi∈S

yi − µ

∣∣∣∣∣ ≥ λ

 ≤ 2 exp(−sλ2),

13Out of simplicity, we assume such support finite. The general statement can be proved with minimal arrangement.
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where µ = 1
T

∑
t∈[T ] yt is the average over the whole sequence.

Stated differently, if we have access to s samples in the random-order model, we have that, with probability at least (1− δ),
the following concentration holds: ∣∣∣1

s

∑
yi∈S

yi − µ
∣∣∣ ≤√ log(2/δ)

s
. (9)

For completeness, we note that random-order sequences typically concentrate faster than i.i.d. ones. There is, in fact, a
refined analysis of Hoeffding inequalities that holds in the random-order model, due to Serfling (1974), that provides the
following tighter concentration bound:

∣∣∣1
s

∑
yi∈S

yi − µ
∣∣∣ ≤√(1− s− 1

T

)
log(2/δ)

2s
. (10)

D. Missing Proof from Section 3
Lemma 3.1. For any i.i.d. input and T sufficiently large, it holds that E [τ ] ≤ 2

√
T .

Proof. It is immediate to observe that E [τ ] is maximized when the distribution of the losses on arm 1 is the uniform
distribution on the support {i/T , for i = 1, 2, . . . , T}, so we analyze that case. As a first step in the analysis, we find an
integral formula for the expected value of τ (when ℓt(1) is drawn i.i.d. from {i/T , for i = 1, 2, . . . , T}), and then we study
its asymptotic behaviour. We have the following chain of inequalities:

E [τ ] =

∞∑
t=0

P [τ > t]

=

T∑
t=0

T · · · (T − t)

T · · ·T
(Avoid collision up to time t)

=

T∑
t=0

(
T

t

)
t!

T t

=

∫ +∞

0

T−1∑
t=0

(
T

t

)( x
T

)t
e−xdx (

∫
xje−xdx = j!)

=

∫ +∞

0

(
1 +

x

T

)T
e−xdx

=
√
T

∫ +∞

0

(
1 +

y√
T

)T

e−y
√
T dy (11)

We then focus on the integral term, at the right-most side of Equation (11), and study the convergence of E[τ ]√
T

. Denote the
integrand with fT (y), and consider its limit for large T :

lim
T→+∞

fT (y) = lim
T→+∞

exp
[
T log

(
1 + y√

T

)
− y
√
T
]
= e−

1
2y

2

.

Moreover, fT (y) is monotonically decreasing in T and f1(y) is integrable; therefore, we can apply the dominated conver-
gence theorem and argue that

lim
T→+∞

E [τ ]√
T

=

∫ +∞

0

lim
T→+∞

fT (y)dy =

∫ +∞

0

e−
1
2y

2

dy = 1
2

√
2π,

which concludes the proof.
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E. Missing Proof from Section 4.1
Claim 4.3. For any block i, the corresponding clean event is realized with probability at least 1− 1/T .

Proof of Claim 4.3. ∆i(a) and ∆p
i (a) have the same distribution, so we focus only on the former. By Hoedffding inequality

for sampling without replacement (Theorem C.1), we have that, for each a ∈ [k]:

|∆i(a)−∆(a)| ≤
√

log(2T )

2i−1
≤ ϵi

with probability at least 1− 1
2T 2 . The statement follows by union bounding over all 2k events (and k ≤ T ).

F. Missing Proof from Section 4.2
Claim 4.6. For all i > i⋆, under the event Ei, we have that

OPTLP −OPTi
LP ≤ ϵi

(
1 +

3

ρ

)
.

Proof of Claim 4.6. First, we consider the following inequalities:

OPTLP −OPTi
LP = r̄⊤x⋆ − rp,⊤i x⋆

i

= (r̄ − rpi )
⊤x⋆ + rp,⊤i (x⋆ − x⋆

i )

≤ ϵi + rp,⊤i (x⋆ − x⋆
i ) (Under Ei)

Now, we consider the second term. We will show that x⋆ is approximately feasible for the LP for which x⋆
i is optimal and,

thanks to the strict feasibility of action ∅, we obtain that x⋆ cannot be too much better than x⋆
i . Under the event Ei we have

that

c̄p,⊤j x⋆ ≤ c̄⊤j x
⋆ + ϵi ≤ ρ+ ϵi,

which shows that x⋆ is 3ϵi-feasible for the constraints of OPTi
LP. Then consider x̃ = βx⋆ + (1− β)∅ with β = ρ−2·ϵi

ρ+ϵi
,

clearly c̄p,⊤j x̃ ≤ ρ− ϵi and thus it is feasible for OPTi
LP and rp,⊤i x̃ = β · rp,⊤i x⋆. Then

rp,⊤i (x⋆ − x⋆
i ) = rp,⊤i (x̃− x⋆

i ) + rp,⊤i (x⋆ − x̃)

≤ 0 + rp,⊤i (x⋆ − x̃) (x̃ is feas. OPTi
LP)

≤ (1− β)rp,⊤i x⋆ ≤ 3ϵi
ρ

(∥rpi ∥∞ ≤ 1)

which concludes the proof.

G. Missing Proofs from Section 4.3
We start analyzing the algorithm by counting the number of switches. Regardless of the instance and the randomness of the
algorithm, it switches action at most k + 1 times in each of the O(log T ) time blocks. This is summarized in the following
Lemma.

Lemma G.1 (Low-Switching). For any realization of SIMULATION-SUCCESSIVE-ELIMINATION, the total switching cost is
at most 2k log T.

We now restate and prove the regret guarantees of SIMULATION-SUCCESSIVE-ELIMINATION.

Theorem 4.9. There exists an algorithm for bandits with switching costs in the random-order model with regret
O(
√
kT log3 T ).
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Proof. Fix any random-order instance S, on a set of T vectors {h1, . . . , hT }, and denote with ℓ(a) the average loss
associated with each action a: ℓ(a) =

∑
t∈[T ]

ℓt(a)/T . Denote with a⋆ any action with maximum ℓ, and introduce the gap

∆(a) = ℓ(a)− ℓ(a⋆). For any time block i, let ℓ̂i(a) denote the value of the estimator of ℓ̂(a) at the end of that time block,
and denote with Ni(a) the number of blocks (included the ith) in which action a has been active. Note that once an action is
deactivated, it stays like this for the rest of the algorithm.

For each time block Ti, there are at most k ways in which it can be partitioned into the sub-blocks used by the round-robin
phase of the algorithm, depending on the cardinality of the active set A. We make here simplifying assumptions for the
calculations: we assume that the time blocks are perfectly divisible into sub-blocks. This is to avoid considering the suffix of
the time block corresponding to the remainder of the division in sub-blocks. Note, this assumption is to simplify calculations:
having more samples regarding the last active action only improves concentration.

For each action a and block i, we define the following clean event that requires that ℓ(a) is well estimated across all possible
sub-blocks. In block i we denote with Bj

i (g) the gth sub-block of 2i/j time steps, i.e., Bj
i (g) = {2i(1+ g/j)+ 1, . . . , 2i(1+

(g+1)/j)}:

Eai =


∣∣∣∣∣ ∑
t∈Bj

i (g)

ℓt(a)
2i/j

− ℓ(a)

∣∣∣∣∣ ≤
√
10

log T
2i/j

∀j ∈ [k] and g ∈ [j]



Claim G.2. For any block i and action a, the clean even Eai has probability at least 1− 1/T 3.

Proof. Fix any Bj
i (g), by applying Hoeffding for sampling with replacement (Theorem C.1), we get that the following

inequality holds with probability at least 1− T−5 :∣∣∣∣∣ ∑
t∈Bj

i (g)

ℓt(a)
2i/j

− ℓ(a)

∣∣∣∣∣ ≤
√
10

log T
2i/j

Union bounding over all k choices of j and (at most) k choices of g yields the desired statement.

It is now natural to look at the overall clean event E by intersecting the Eai over all log T time blocks and k actions. By
union bounding, we hence get that the clean event holds with high probability.

Claim G.3 (Clean event). The clean event has probability at least 1− 1/T .

Before proceeding, we underline that the clean event does not depend in any way on the algorithm, but is only a probabilistic
statement over the random permutation, which considers fixed intervals. The crucial observation is that, under the clean
event, we are sure that SIMULATION-SUCCESSIVE-ELIMINATION maintains precise estimates throughout. More precisely,
denote with ℓ̂i(a) the estimate of ℓ(a) maintained at the end of block i, we have the following claim:

Claim G.4. For all block i and active action a, conditioning on the clean event, we have that

|ℓ̂i(a)− ℓ(a)| ≤

√
5k

log3 T

2i

Proof. If the action a is active at the beginning of block i, then it has been explored in all previous blocks. Denote with
T (a) the number of times action a has been played up to block i included, and with Tj(a) the times in the generic block Tj

when action a has been played; clearly |Tj | is at least 2j/k and T (a) =
∑

j≤i Ti(a).
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We have the following result:

∣∣∣ℓ̂i(a)− ℓ(a)
∣∣∣ =

∣∣∣∣∣∣ 1

T (a)

∑
j≤i

∑
t∈Tj(a)

ℓt(a)− ℓ(a)

∣∣∣∣∣∣
≤ 1

T (a)

∑
j≤i

Tj(a)

∣∣∣∣∣∣
∑

t∈Tj(a)

ℓt(a)

Tj(a)
− ℓ(a)

∣∣∣∣∣∣
≤ 1

T (a)

∑
j≤i

Tj(a)

√
10

log T

Tj(a)
(By definition of clean event)

=
1

T (a)

∑
j≤i

√
10 · Tj(a) log T

≤

√
10

log3 T

T (a)
(By Jensen Inequality)

≤

√
5k

log3 T

2i
,

where in the last inequality we used that an active action is played with frequency at least 1/k.

The fact that all active actions are well estimated (and that there always exists at least one active action) implies that the best
action a⋆ is always active, under the clean event. In fact, for any block i and active action a it holds that

ℓ̂i(a
⋆)− ϵi ≤ ℓ(a⋆) ≤ ℓ(a) ≤ ℓ̂(a) + ϵi,

which contradicts the deactivation rule. We have then proved that the instantaneous regret in the generic block i, under the
clean event, is at most 2ϵi. We know that the clean event is realized with high probability (Claim G.3), and that the number
of switches is O(k log T ) (Lemma G.1). All in all, we have the following bound on the regret:

RT (SSE) ≤ 2k log T + 4

log T∑
i=1

2iϵi ∈ O(

√
kT log3 T ),

thus concluding the proof.

H. Classification in the Random-Order Input Model
We study the classical model in binary classification: we have a family H of hypotheses h defined on a set X for which
a bounded loss function ℓ is defined. Formally, for any hypothesis h and pair (x, y) with x ∈ X and y ∈ {0, 1},
ℓ(h(x), y) ∈ [0, 1] denotes the cost incurred by predicting label h(x) on (x, y) (see , e.g., Bousquet et al., 2003). Note, to
be uniform with the literature, in this section we use ℓ to denote the loss function (as opposed to the loss vectors as in the
rest of the paper) and h for classifiers (as opposed to the non-shuffled input loss vectors as in the rest of the paper).

PAC Model. In the PAC learning model, the learner has access to i.i.d. samples from a joint distribution D from which
pairs (X,Y ) are drawn, and its goal is to quickly estimate or approximate the best classifier, i.e., the classifier that minimizes
E [ℓ(h(X), Y )]. It is a standard result in learning theory that a class H is learnable, i.e., the best classifier is arbitrarily
approximable if and only if the dVC dimension ofH is bounded, and that the convergence rate also depends on dVC (see,
e.g., Vapnik & Chervonenkis, 1971).

(Adversarial) Online Model. In the online model (Littlestone, 1987), the input-label pairs are generated adversarially,
and the performance of a learning algorithm is measured with respect to the best hypothesis inH. Surprisingly, the online
learnability of a familyH is governed by a stricter notion of dimension, the Littlestone dimension.
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Random-Order Model. In this paper, we study the random-order model: the input is provided by a multiset S of (x, y)
pairs, which are presented by the learner in uniform random order. The performance measure of a learning algorithm is
its regret with respect to the best classifier on S. As the input arrives according to some random permutation π, we let
ℓπt (h) = ℓ(h(xπ(t)), yπ(t)) be the loss of hypothesis h ∈ H at time π(t). Similarly, we let ℓ̂πt (h) =

1
t ·
∑

τ :π(τ)≤π(t) ℓ
π
τ (h)

be the empirical loss accrued by time π(t), and ℓ̂πt:T (h) =
1

T−t+1 ·
∑

τ :π(τ)>π(t) ℓ
π
τ (h). Moreover, we denote by ℓ̄(h) =

1
T ·
∑T

τ=1 ℓ(h(xτ ), yτ ) the average loss of hypothesis h on the whole dataset composed of T input-label pairs.

H.1. Sample Complexity with Random-Order Input

Lemma H.1. Consider the problem of online binary classification in the random-order model. For a hypothesis classH
with VC-dimension dVC, given the first t− 1 out of T samples from a uniform permutation π, it holds that, for all h ∈ H,

|ℓ̄(h)− ℓ̂πt−1(h)| ≤
1

2
·

(√
8dVC

t− 1
log

(
2e(t− 1)

dVC

)
+

√
8

t− 1
log

(
2

δ

))
,

with probability at least 1− δ.

The proof of Lemma H.1 implements a version of the classical “symmetrization” argument for uniform convergence in
the i.i.d. setting (Bousquet et al., 2003). We consider a “ghost sample” made of t− 1 out of T samples, that is the set of
input-label pairs (xπ′(τ), yπ′(τ))τ :π(τ)<π(t) extracted according to an independent uniform permutation π′.
Claim H.2. Fix any time t > 1 and precision ϵt > 0 such that (t− 1)ϵ2t ≥ 8, then the following inequality holds:

Pπ

[
sup
h∈H
|ℓ̄(h)− ℓ̂πt−1(h)| ≥ ϵt

]
≤ 2Pπ,π′

[
sup
h∈H
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| ≥
ϵt
2

]
. (12)

Proof. For any realization of π and π′, and any classifier h ∈ H, we have that

I{|ℓ̄(h)−ℓ̂πt−1(h)|>ϵt}I{|ℓ̄(h)−ℓ̂π
′

t−1(h)|<
ϵt
2 } ≤ I{|ℓ̂πt−1(h)−ℓ̂π

′
t−1(h)|>

ϵt
2 },

since for any three reals a, b, c and ϵ > 0, if |a− b| > ϵ and |a− c| < ϵ
2 , then

|a− b| ≤ |a− c|+ |b− c| =⇒ |b− c| > ϵ

2
.

We take expectations with respect to the second sample extracted according to π′ and get

I{|ℓ̄(h)−ℓ̂πt−1(h)|>ϵt}Pπ′

[
|ℓ̄(h)− ℓ̂π

′

t−1(h)| <
ϵt
2

]
≤ Pπ′

[
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| >
ϵt
2

]
.

Since ℓ̄(h) = Eπ′

[
ℓ̂π

′

t−1(h)
]

for all h ∈ H and t > 1, we can apply Chebyšev’s inequality and obtain

Pπ′

[
|ℓ̄(h)− ℓ̂π

′

t−1(h)| ≥
ϵt
2

]
≤

4Eπ′ [(ℓ̂π
′

t−1(h))
2]

ϵ2t
≤ 4(t− 1)

(t− 1)2ϵ2t
=

4

(t− 1)ϵ2t
.

The second inequality follows because the second moment is bounded in [0, 1], as losses are bounded in [0, 1]. Therefore,

I{|ℓ̄(h)−ℓ̂πt−1(h)|>ϵt}

(
1− 4

(t− 1)ϵ2t

)
≤ Pπ′

[
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| >
ϵt
2

]
≤ Pπ′

[
sup
h∈H
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| >
ϵt
2

]
.

We can now apply the sup over all h ∈ H on the left-hand side of the above inequality and then take the expectation also
with respect to the randomness of π. This implies the statement, as (t− 1)ϵ2t ≥ 8.

Proof of Lemma H.1. Claim H.2 allows us to replace ℓ̄(h) by an empirical average over the ghost sample. As a re-
sult, the right-hand side only depends on the projection of the class H on the double sample drawn from π, π′,
H
(
(xπ(τ), yπ(τ))τ∈[t], (xπ′(τ), yπ′(τ))τ∈[t]

)
, denoted succinctly asHπ,π′

t , which gives

Pπ,π′

[
sup
h∈H
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| ≥
ϵt
2

]
= Pπ,π′

 sup
h∈Hπ,π′

t

|ℓ̂πt−1(h)− ℓ̂π
′

t−1(h)| ≥
ϵt
2

 .
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We now apply Hoeffding’s inequality (as in Theorem C.1) on ℓ̂πt−1(h)− ℓ̂π
′

t−1(h), for a fixed h ∈ H. To see why it is possible,
we construct an equivalent process to extracting a sample and a “ghost sample” according to π and π′ respectively. Consider
losses presented in an arbitrary ordering ℓ1(h), . . . , ℓT (h) and an ordering induced by the uniform random permutation π′,
ℓπ

′

1 (h), . . . , ℓπ
′

T (h). Let wτ (h) = (ℓτ (h), ℓ
π′

τ (h)) be the pair of variables matched by index, f(wτ (h)) = ℓτ (h)− ℓπ
′

τ (h),
and F(h) = {f(wτ (h)) | τ ∈ [T ]}. Note that, for every π′,∑

τ∈[T ]

f(wτ (h)) =
∑
τ∈[T ]

ℓτ (h)−
∑
τ∈[T ]

ℓπ
′

τ (h) = 0.

We extract a uniform random subset F composed of t− 1 functions f(wτ (h)) from F(h), and get

PF∼F(h)

[∣∣∣∣∣ 1

t− 1

∑
τ∈F

f(wτ (h))

∣∣∣∣∣ ≥ ϵt

]
≤ 2 exp

(
−(t− 1)ϵ2t

)
.

by Hoeffding’s inequality (as in Theorem C.1). Therefore, we have

Pπ,π′

[
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| ≥
ϵt
2

]
≤ 2 exp

(
− (t− 1)ϵ2t

4

)
. (13)

Combining everything, we obtain

Pπ

[
sup
h∈H
|ℓ̄(h)− ℓ̂πt−1(h)| ≥ ϵt

]
≤ 2Pπ,π′

[
sup
h∈H
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| ≥
ϵt
2

]

= 2Pπ,π′

 sup
h∈Hπ,π′

t

|ℓ̂πt−1(h)− ℓ̂π
′

t−1(h)| ≥
ϵt
2


≤ 2 ·

(
e(t− 1)

dVC

)dVC

· Pπ,π′

[
|ℓ̂πt−1(h)− ℓ̂π

′

t−1(h)| ≥
ϵt
2

]
≤ 4 ·

(
e(t− 1)

dVC

)dVC

· exp
(
− (t− 1)ϵ2t

4

)
.

The second inequality is an application of the Sauer-Shelah lemma (Vapnik & Chervonenkis, 1971; Sauer, 1972; Shelah,
1972), and the last by the expression in (13). The proof concludes by setting

ϵt =
1

2
·

(√
8dVC

t− 1
log

(
2e(t− 1)

dVC

)
+

√
8

t− 1
log

(
2

δ

))
.

H.2. Regret of an Empirical Risk Minimizer with Random-Order Input

Theorem H.3. Consider the problem of online binary classification in the random-order model. Fo a hypothesis class
H with VC-dimension dVC, given the first t− 1 out of T samples from a uniform permutation π, the algorithm ARO that
returns the minimizer

ht ∈ argmin
h∈H

∑
τ :π(τ)<π(t)

ℓπτ (h),

achieves a regret of at most

RT (ARO,S) ≤8

√
dVCT log

(
T

dVC

)
.

Proof. Define, for any t ∈ [T ], the clean event in the past as Epast
t = {π | |ℓ̄(h)− ℓ̂πt−1(h)| ≤ ϵt ∀h ∈ H} and in the future

as E future
t = {π | |ℓ̄(h)− ℓ̂πt:T (h)| ≤ ϵT−t+1 ∀h ∈ H}. The clean event at time t is Et = Epast

t ∩ E future
t .
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The instantaneous regret at time π(t) under the clean event is

ℓπt (ht)− ℓπt (h
∗) ≤ ℓπt (ht)− ℓ̂πt−1(ht) + ℓ̂πt−1(h

∗)− ℓπt (h
∗)

= (ℓπt (ht)− ℓ̄(ht)) + (ℓ̄(ht)− ℓ̂πt−1(ht)) + (ℓ̂πt−1(h
∗)− ℓ̄(h∗)) + (ℓ̄(h∗)− ℓπt (h

∗))

≤ (ℓπt (ht)− ℓ̄(ht)) + (ℓπt (h
∗)− ℓ̄(h∗)) + 2ϵt.

The first inequality above follows by definition of ht, the empirical loss minimizer, which gives ℓ̂πt−1(h
∗)− ℓ̂πt−1(ht) ≥ 0.

Note that the clean event on the order in which the elements arrive but only on the following two multisets: Spast,S future, i.e.,
the multisets that represent the past (from time π(1) until π(t− 1)) and future (from time π(t) until π(T )). We now take the
expectation conditioning on the clean event and the two multisets Spast,S future. Therefore,

E
[
ℓπt (ht)− ℓπt (h

∗) | Et,Spast,S future] ≤ 2ϵt + E
[
(ℓπt (ht)− ℓ̄(ht)) + (ℓπt (h

∗)− ℓ̄(h∗)) | Et,Spast,S future]
= 2ϵt +

∑
(x,y)∈S future

1

T − t+ 1
· E
[
(ℓ(ht(x), y)− ℓ̄(ht)) + (ℓ(h∗(x), y)− ℓ̄(h∗)) | Et,Spast,S future]

≤ 2ϵt + 2 · E
[
sup
h∈H
|ℓ̄(h)− ℓ̂πt:T (h)| | Et,Spast,S future

]
≤ 2(ϵt + ϵT−t+1).

The equality above holds because once Spast,S future are fixed, the loss at time π(t) is uniformly sampled from the future. By
the tower property of conditional expectation (on all the possible values of Spast,S future), we have proven that the expected
instantaneous regret conditioned on the clean event Et is at most:

E [ℓπt (ht)− ℓπt (h
∗) | Et] ≤ 2(ϵt + ϵT−t+1) ≤

√
32dVC log

(
2eT

dVC

)
·

(√
1

t− 1
+

√
1

T − t+ 1

)
,

where the last inequality holds by taking δ = 1/T in Lemma H.1. By definition of regret and under this choice of δ, we have

RT (ARO,S) =
∑
t∈[T ]

E [ℓπt (ht)− ℓπt (h
∗) | Et] · P [Et] + E

[
ℓπt (ht)− ℓπt (h

∗) | Ēt
]
· P
[
Ēt
]

≤

√
32dVC log

(
2eT

dVC

)
·
∑
t>1

(√
1

t− 1
+

√
1

T − t+ 1

)
+ T · 1

T

≤ 8

√
dVCT log

(
T

dVC

)
,

which concludes the proof.
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