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ABSTRACT

The brain’s faculty to assimilate and retain information, continually updating its
memory while limiting the loss of valuable past information, remains largely a
mystery. We address this challenge related to continuous learning in the context
of associative memory networks, where the iterative storage of correlated patterns
traditionally requires non-local learning rules or external memory systems. Our
work demonstrates how incorporating biologically-inspired inhibitory plasticity
enables networks to autonomously explore their attractor landscape through local
dynamics alone. The autonomous recovery of stored patterns enables continuous
addition of new memories by allowing them to be incorporated with previously
stored information while limiting its degradation, drawing parallels with memory
consolidation during sleep-like states in biological systems. The resulting frame-
work provides insights into how neural circuits might maintain memories through
purely local interactions, while suggesting new approaches for building more bi-
ologically plausible approaches to continuous learning.

1 INTRODUCTION

Here, we address the issue of autonomous memory rehearsal and its application for Continuous
Learning (CL) in associative-memory networks. For the sake of bio-plausibility and potential im-
plementation in neuromorphic substrates, we shall demand that our system exhibits the following
features: 1) It incorporates memory states that can be correlated; 2) The network is able to converge
into the stored states while limiting the visit of spurious patterns, i.e., strange attractors correspond-
ing to none of the stored memories; 3) Plasticity rules have to be local, meaning that the modification
of synaptic efficacy depends solely on states that can be computed and shared by both postsynaptic
and presynaptic neurons; 4) It should be autonomous, namely, it cannot recall an external list of
previously recorded states or even rely on external cues to experience specific memory replay.

For requirements (1) and (3), we shall adopt a perceptron-like algorithm, inspired by Diederich
& Opper (1987). Requirement (2) has motivated the use of continuous Hopfield networks (CHNs)
(Hopfield, 1984). As long as we remain under a certain load, CHNs allow us to converge exclusively
toward stored patterns, even for small networks and without using partial cues to help the conver-
gence. This behavior is in contrast to the presence of spurious states in discrete Hopfield networks
(DHNs) and avoids the difficulties induced by stochastic Hopfield networks (SHNs) for which the
temperature parameter has to be carefully chosen (Amit et al., 1985).

Finally, our main contribution is to introduce an algorithm to address requirement (4). We shall show
how a mechanism inspired by spontaneous neural activity during sleep allows one to autonomously
recall and maintain the set of previously recorded memory states (Robins, 1995; Louie & Wilson,
2001; Peyrache et al., 2009; Fauth & Van Rossum, 2019; Tononi & Cirelli, 2014). A crucial fea-
ture of our approach is the use of inhibitory recurrent plastic synapses that allow for a sequential

1



New Frontiers in Associative Memory workshop at ICLR 2025

and thorough search of all previously stored correlated memory states. The presence of inhibitory
synapses that undergo Hebbian plasticity to shrink the attraction basin of previously visited attractor
states is strongly inspired by computational neuroscience works based on actual neurophysiological
data (Vogels et al., 2011).

2 MODEL

2.1 CONTINUOUS HOPFIELD NETWORK (CHN)

In contrast to the conventional HN model (Hopfield, 1982), where neural states are defined by dis-
crete (binary) vectors, in a CHN each neuron of the network has its activity encoded by a continuous
variable. The dynamic of the network is therefore described by a set of differential equations with
each unit operating a leaky integration:

c
dui

dt
=

∑
j

Wijvj −
ui

r
(1)

where ui is the membrane potential of neuron i, c is the membrane capacitance, r is the leak resis-
tance of each neuron, Wij is the synaptic efficacy between neurons j and i, and vi is the activity (or
firing rate) of neuron i that depends solely on the potential as

vi = σ(ui)

where σ is a monotonically increasing function of u with saturation to prevent runaway dynamics.
In our case, σ(x) = 1

1+exp(−x) . As σ(0) = 0.5, each unit has a positive output at its resting state,
allowing the network to have activity without external current input.

The convergence on stable states for symmetric synaptic weights Wij has been demonstrated (Hop-
field, 1984). Throughout this work, whenever we integrate these equations using Euler method, we
do so until the network reaches convergence, defined as |dudt |∞ < ϵ, where ϵ = 10−6.

2.2 PATTERN STORAGE

CHNs evolve on [0, 1]n through continuous dynamics with n the number of neurons, allowing any
state in this space to represent a stored pattern. For simplicity, we restrict ourselves to store binary
patterns as stable states for which active neurons have a large firing rate, vi ≈ 1, and inactive
neurons are nearly inactive, vi ≈ 0. We therefore use a threshold to interpret the network’s output
when needed (A.1). It is important to note that we do not take advantage of the continuous nature
of our model to store patterns through a greater variety of states. The interest of CHNs is the lack of
spurious states encountered under a critical load.

For a binary pattern xµ, we define target potentials ũ as:

ũi =

{
+utarget if xµ

i = 1

−utarget if xµ
i = 0

where utarget is chosen such that σ−1(−utarget) < σ−1(vthr) < σ−1(utarget), ensuring proper pattern
reading after the thresholding procedure.

We introduce a perceptron-inspired learning algorithm for efficient pattern storage in the CHN
(Diederich & Opper, 1987). Alg. 1 minimizes the error between desired target states and the net-
work’s equilibrium states, ensuring each memory becomes a stable attractor that can be retrieved via
partial cues or rehearsal. Derivation of the weight update rule can be found in the Appendix (A.4).

Although a rigorous proof of convergence for Alg. 1 is beyond the scope of the present work, it is
reasonable to expect that the arguments used to demonstrate the convergence of the gradient descent
algorithm (GDA) in discrete HNs (DHN) could be adapted for this purpose (Diederich & Opper,
1987). Here we shall be content with numerical evidence demonstrating the network’s ability to
successfully query and revisit stored patterns. The querying procedure is indicated in the Appendix
(A.2).
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Algorithm 1 Gradient descent for the storage of correlated patterns

1: Initialize Wij = 0 for all i, j
2: repeat
3: for each pattern µ do
4: Set target potentials: ũµ

i = +utarget if xµ
i = 1, else −utarget

5: Compute current potentials: ûµ
i = r

∑
j Wijσ(û

µ
j )

6: Update weights: Wij ←Wij − α(ũµ
i − ûµ

i )rσ(û
µ
j )

7: end for
8: until ∥∆W ∥∞ < ϵ

2.3 CONTINUOUS INCORPORATION OF CORRELATED MEMORIES

While the GDA effectively enables the storage of correlated memories, its implementation in Alg. 1
reveals a significant limitation: it requires multiple iterations over the entire pattern corpus to achieve
convergence. By repeatedly processing all patterns, the algorithm can find a weight matrix that
properly separates correlated patterns (Diederich & Opper, 1987).

Since finding appropriate weights requires processing all patterns concurrently, adding a new pattern
would require access to all previously stored patterns from an external source. This requirement for
external access to the complete training dataset stands in contrast to biological learning systems,
which must incorporate new information while maintaining past memories without maintaining an
explicit external copy of the original data. To overcome this external dependency and move towards
more biologically plausible learning, we need to develop a mechanism that allows the network to
internally recover its stored patterns. The development of such an autonomous pattern retrieval
mechanism would allow us to harness the GDA’s properties for continuous incorporation of corre-
lated memories, as stored patterns can be internally recovered and combined with new inputs during
the learning process (Alg. 2). Without such a mechanism to retrieve and reprocess all patterns,
the network would suffer from catastrophic forgetting (also called catastrophic interference), where
learning a new pattern in isolation rapidly erodes previously stored memories (McCloskey & Cohen,
1989; Robins, 1995; Kirkpatrick et al., 2017).

Algorithm 2 Continuous incorporation of correlated patterns through autonomous retrieval

1: Input: CHN trained on p patterns using the GDA
2: Given: New pattern xp+1 to be stored
3: Retrieve set {x} of stored patterns through autonomous rehearsal
4: Update pattern set: {x} ← {x} ∪ {xp+1}
5: Apply GDA to store updated pattern set

This approach illustrates a more general principle: when a network has access to both a new memory
trace xp+1 and previously stored traces x1, . . . ,xp, it can perform operations analogous to the GDA,
finding optimal synaptic configurations that leverage their shared characteristics, such as ensuring
their separation.

2.4 AUTONOMOUS REHEARSAL

Given a trained network, we introduce a mechanism for autonomous pattern retrieval. When ini-
tialized to the neutral state (ui(t = 0) = 0), the network dynamics described by Eq. 1 converges
deterministically to a stored attractor. Although adding noise to these dynamics was explored as a
potential solution for visiting multiple attractors, it proved ineffective for systematic pattern retrieval.
Instead, we introduce a second set of plastic inhibitory synapses W ′

ij :

c
dui

dt
=

∑
j

Wijvj −
∑
j

W ′
ijvj −

ui

r
(2)

Each visited attractor is made shallower by the Hebbian-like plasticity of the inhibitory synapses,
following the procedure detailed in Alg. 3. Fig. 2a provides a visualization using binary-digit pat-
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terns from the MNIST dataset (Deng, 2012). As shown in Fig. 1, modifying inhibitory synaptic
weights reshapes the attraction basins of the network, allowing sequential exploration of stored pat-
terns. During quiescent states such as sleep or rest, the mammalian central nervous system exhibits
a similar memory rehearsal dynamic. This process is believed to function as a consolidation mecha-
nism that mitigates or modulates memory forgetting (Robins, 1995; Louie & Wilson, 2001; Peyrache
et al., 2009; Fauth & Van Rossum, 2019; Tononi & Cirelli, 2014).

Say that this state where the network autonomously revisit stored patterns in an offline mode
to then consolidate memories is inspired by sleep, then put ref

Algorithm 3 Autonomous Rehearsal

1: Input: Trained network weights Wij , iterations k, plasticity rate β
2: Initialize: W ′

ij = 0, {x} = ∅
3: while j < k do
4: Set neutral initial conditions: ui(t = 0) = 0
5: Biased phase: Integrate Eq. 2 until convergence to bias dynamics away from visited patterns
6: Free phase: Integrate Eq. 1 until convergence to complete pattern retrieval
7: Read pattern xµ from final state via thresholding as introduced Sec. 2.2
8: Update pattern set: {x} ← {x} ∪ {xµ}
9: Update inhibitory weights: ∆W ′

ij = βvi(tf )vj(tf ) with vi(tf ) the rate of neuron i at the
end of the free phase.

10: j ← j + 1
11: end while
12: Return: {x}

(a) Pre-training field (b) Post-training field (c) Post-inhibition field, β = 0.2

Figure 1: Stream plots of derivative for a CHN in a 2D subspace spanned by two pattern
states. We consider two stable states u1 and u2 corresponding to two patterns; these define a two-
dimensional subspace parametrized by u(λ1, λ2) = λ1 u

1 + λ2 u
2. At each point u(λ1, λ2)

in this subspace, we compute the full N -dimensional time derivative via Eq. 2 and project it back
onto the {u1,u2}-plane to obtain the plotted flow. (a) Before training. (b) After storing the two
patterns using the GDA, each pattern state (small red dots) becomes a stable attractor; the neutral
state uN = 0 (large red dot) is on an unstable manifold. (c) Inhibitory potentiation of the second
pattern ”shrinks” its basin of attraction and shifts the separatrix. This observed geometry explains
why even a small change in the inhibitory weights can drastically alter the trajectory from the neutral
initial condition, driving the network toward a different attractor. We can observe that the network
doesn’t converge precisely toward the stored state anymore, but slightly aside. As this distortion
is minimal for small β, it is largely compensated by the thresholding mechanism used to read the
network output (A.1). The free phase described in 3 further reduces the effect of this distortion by
allowing the network to converge to the ’true’ stable state after a biased phase that leverages the shift
in the separatrix. Nevertheless, this distortion accumulates with each visited pattern, which can still
cause the emergence of spurious patterns when attempting to retrieve too many patterns from the
network (Fig. 2b).
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3 PRELIMINARY RESULTS

As demonstrated in Fig. 2b, our autonomous rehearsal (AR) mechanism successfully achieves the
key objective outlined in the introduction: enabling networks to systematically recover stored pat-
terns without external cues or memory lists. This autonomous exploration of the attractor landscape
scales with network size - larger networks can reliably recover more stored patterns. This allows the
implementation of continuous pattern incorporation as described in Alg. 2. The values of β must be
relatively small compared to the target potential utarget, in our case smaller than 0.005. This allows
for gentle nudging of the network during recovery while limiting the appearance of spurious patterns
induced by an important deformation of the energy landscape.

(a) (b)

Figure 2: (a) Recovery of three correlated patterns in a network of 20 × 16 units. Left panels
(in red): the evolution of the inhibitory drive to each neuron, defined as iinhj =

∑
i W

′
ij . Right

panels (blue and yellow): evolution of the rates vi in time for each unit of the network. Each row
corresponds to the start of a new simulation of the CHN. The black dashed line bar corresponds
to the removal of inhibitory weights, allowing the convergence to a stored pattern after the biased
recollection as described in Alg. 3. An exaggerated inhibitory potentiation β = 0.25 is used to
illustrate the stable states deformation at the end of the biased phase for which the free phase is
necessary. (b) Recovery capacity of AR for various β. Correlated patterns are generated with a ρ of
0.5 using Alg. 5 (A.3). For networks of various sizes and for various number of stored patterns, we
use Alg. 3 until all patterns are recovered or until we find a spurious state. Data are averaged over 20
simulations for various pattern corpora. (Top row) The percentage of simulations where at least one
spurious pattern occurs before recovering all patterns. (Bottom row) Number of iterations before
recovering all patterns. Lower values of β require more iterations to recover the whole corpus of
patterns. The higher the value of β, the higher the chances to find spurious patterns as the number
of stored patterns increase. Larger values of β dramatically impair the recovery dynamics.

4 CONCLUSION

In this work, we demonstrate how inhibitory synaptic plasticity enables autonomous exploration of
attractor landscapes in continuous Hopfield networks. Our key finding reveals that inhibitory plas-
ticity allows networks to systematically visit different stored patterns guided solely by their activity
history, even for strongly correlated memories. The capacity for self-directed pattern exploration,
emerging from the use of a gradient descent algorithm and inhibitory modulation, offers insights for
both biological memory consolidation and neuromorphic computing. Moreover, this autonomous
rehearsal mechanism and the gradient descent algorithm together allow the incorporation of new
memories while helping to preserve existing ones, contributing to the ongoing challenge of mitigat-
ing catastrophic forgetting in neural networks.
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A APPENDIX

A.1 READING NETWORK’S OUTPUT

A pattern xµ is defined as a binary vector such that xµ = (xµ
1 , x

µ
2 , . . . , x

µ
N ) where xµ

i ∈ {0, 1} for
each unit i. A pattern is read from the state of the network at time t using a threshold:

xµ
i =

{
1 if v(t)i > vthr
0 otherwise

with vthr = 0.5 in our case.

A.2 QUERYING

The network’s ability to retrieve stored patterns can be tested through partial cues. Given a subset
of informed units, we initialize their potentials according to the partial pattern while leaving other
units at rest:

ui(t = 0) =


+utarget if unit i is informed and xi = 1

−utarget if unit i is informed and xi = 0

0 otherwise

Algorithm 4 Querying with convergence of the network using Euler method

1: set ui(t = 0) =


uup if xµ

i = 1

udown if xµ
i = 0

0 if xµ
i not informed

2: repeat
3: for each unit i do
4: ui(t += 1) = δ(

∑
j Wijvj − ui(t)

r )
5: end for
6: until ∥u̇∥∞ < ϵ

The network then evolves according to Eq. 1 until reaching a stable state (∥dudt ∥∞ < ϵ). When
operating below capacity, the dynamics typically converge to the stored pattern most similar to the
initial cue. The final state is interpreted as a binary pattern using the thresholding procedure. As
with traditional DHNs, the retrieval success depends on both the network load and the number of
informed units in the initial cue. While a theoretical analysis of the storage capacity under Alg. 1
would be of interest, our focus here is on the autonomous rehearsal mechanism, which operates in a
regime well below this limit where pattern retrieval is highly reliable.

A.3 CONSTRUCTION OF CORRELATED PATTERNS

Algorithm 5 Generation of p correlated random patterns

1: Generate a random binary pattern xparent ∈ {−1, 1}N
2: Set k = ⌊(1− ρ)N⌋, where ρ is the ratio of bits not randomized
3: for i = 1 to p do
4: xi ← xparent

5: Randomly select k distinct indices {j1, . . . , jk} from {1, . . . , N}
6: for m = 1 to k do
7: xi

jm
← random choice from {−1, 1} with uniform distribution

8: end for
9: end for
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A.4 GRADIENT DESCENT FOR PATTERN STORAGE

At steady state, when dui

dt = 0, from Eq. 1 we have:

ûi = r
∑
j

Wijvj

where vj = σ(ûj).

We can then define the error function E as the sum of squared differences between steady-state
potentials ûi and target potentials ũi:

E =
1

2

∑
i

(ûi − ũi)
2

Taking the derivative with respect to the steady-state potential:

∂E

∂ûi
= (ûi − ũi)

To compute how the error changes with respect to the weights Wij , we use the chain rule:

∂E

∂Wij
=

∂E

∂ûi

∂ûi

∂Wij

The partial derivative with respect to Wij is:

∂ûi

∂Wij
= rvj

This is an approximation that captures the immediate direct effect of Wij on ûi, assuming vj remains
constant and ignoring feedback effects in the recurrent network. This approximation is valid when
optimization steps are small relative to the nonlinearities in the sigmoid function.

Therefore, the error gradient with respect to Wij becomes:

∂E

∂Wij
= (ûi − ũi)rvj

Finally, we update the weights using gradient descent:

∆Wij = −α
∂E

∂Wij
= −αr(ûi − ũi)vj

where α is the learning rate, typically set to 0.001 to ensure convergence.

A.5 PARAMETERS

Table 1: CHN parameters

Name Value Description
ϵsim 10−6 Convergence constant
r 1 Leak time constant
c 1 Integration time constant
δ 0.001 Euler step size
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Table 2: Gradient descent

Name Value Description
α 0.0001 Learning rate

ϵlearn 10−6 Convergence constant
utarget 6 Target potential winning units
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