

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EVALUATING TEXT CREATIVITY ACROSS DIVERSE DOMAINS: A DATASET AND LARGE LANGUAGE MODEL EVALUATOR

Anonymous authors

Paper under double-blind review

ABSTRACT

Creativity evaluation remains a challenging frontier for large language models (LLMs). Current evaluations heavily rely on inefficient and costly human judgments, hindering progress in enhancing machine creativity. While automated methods exist, ranging from psychological testing to heuristic- or prompting-based approaches, they often lack generalizability or alignment with human judgment. To address these issues, in this paper, we propose a novel pairwise-comparison framework for assessing textual creativity, leveraging shared contextual instructions to improve evaluation consistency. We introduce CreataSet, a large-scale dataset with 100K+ human-level and 1M+ synthetic creative instruction-response pairs spanning diverse open-domain tasks. Through training on CreataSet, we develop an LLM-based evaluator named CrEval. CrEval demonstrates remarkable superiority over existing methods in alignment with human judgments. Experimental results underscore the indispensable significance of integrating both human and synthetic data in training highly robust evaluators, and showcase the practical utility of CrEval in boosting the creativity of LLMs. We will release all data, code, and models publicly to support further research.

1 INTRODUCTION

Creativity, defined as “ideas or artifacts that are new, surprising and valuable” Boden (2003), has long been a defining trait of human intelligence and fueled the progress of modern civilization Guilford (1967). As current large language models (LLMs) exhibit increasingly remarkable capabilities across diverse domains and downstream tasks, they have also shown the ability to perform tasks requiring creativity Summers-Stay et al. (2023); Zhao et al. (2025); Zhong et al. (2024); Wu et al. (2025b). Evaluating the creativity of LLMs not only sheds light on their applicability to critical creative domains such as creative writing Chakrabarty et al. (2025); Marco et al. (2024), literature Bena & Kalita (2019); He et al. (2023) and other creative domains Naeini et al. (2023); Summers-Stay et al. (2023); Tian et al. (2024), but also has the potential to reveal gaps between LLM and human capabilities, offering valuable insights for future improvements.

Although evaluating LLM creativity is increasingly important, current methods face limitations that restrict their broader applicability. First (**cross-domain applicability**), most current creativity evaluation methods target a single domain or constrained task format, such as problem-solving Naeini et al. (2023); Tian et al. (2024), humor Zhong et al. (2024), or simile generation He et al. (2023), where creativity is only one among several assessed aspects. Different from open-domain tasks, they are often entangled with other concepts like problem-solving, making it hard to isolate and **generalize creativity itself to other domains, such as literature**. Second (**granularity**), most methods evaluate creativity at the model or subject level rather than at the level of individual responses Mednick & Halpern (1968); Torrance (1966). While useful for comparing models, they struggle to distinguish which of two responses to the same prompt is more creative Chakrabarty et al. (2024); Zhao et al. (2025). We refer to the latter as text-level creativity (or simply *text creativity*). It is especially valuable as it highlights specific responses for improvement, providing more actionable insights than coarse model- or subject-level evaluations. Third, (**effective automation**) automating cross-domain creativity evaluation reduces human effort and supports iterative improvement. LLMs have shown effectiveness as automatic evaluators, in areas such as helpfulness and coherence Hu et al. (2024b);

Figure 1: An example of how to formulate the problem of text creativity evaluation to better evaluate.

Kim et al. (2024); Li et al. (2024), known as LLM-as-a-judge Gu et al. (2024); Li et al. (2025a); Zheng et al. (2023). However, creativity evaluation remains underexplored. While early attempts prompt LLMs to assess creativity Summers-Stay et al. (2023); Zhao et al. (2025), leveraging the cross-domain strengths of advanced models like GPT-4o Hurst et al. (2024), their judgments often suffer from unreliability Chakrabarty et al. (2024), inconsistency Wang et al. (2024a), and high cost Chen et al. (2023).

This paper aims to address these issues by proposing a novel evaluation methodology for automated, cross-domain creativity assessment, including a cross-domain benchmark dataset labeled by 30 human judges and an effective LLM-based creativity evaluator. Developing this framework presents two key challenges. The first is how to facilitate consistent human labeling. We observe that without clear contextual guidance, human annotators may struggle to reach consistent judgments, since creativity may be understood differently in different contexts. For example, as shown in Figure 1 (a), when three annotators independently rated 400 decontextualized text pairs, the agreement among them was only moderate (with an Intraclass Correlation Coefficient, *i.e.*, ICC, of 0.59). The second challenge is how to train a reliable LLM evaluator given the scarcity of creative data. Data scarcity limits the ability of evaluators to generalize across diverse domains and their effectiveness. To address this, it is thus crucial to collect large-scale training data in a weakly supervised manner.

Our work resolves these two challenges by introducing a framework that generates multiple creative responses conditioned on the same context. On the one hand, this setup ensures high-quality human annotations of text creativity pairs. As shown in Figure 1 (b), when a shared instruction was provided as a context, the agreement improved significantly (ICC increases to a good level of 0.75). On the other hand, by controlling the response generation process for the same context, we automatically generate large-scale pseudo labels for their creativity levels in a weakly supervised manner, which solves the data scarcity issue. Specifically, our contributions are as follows:

- We propose a **context-aware, pairwise comparison-based** evaluation protocol for assessing text creativity. Using this protocol, we manually annotate a test set of **over 3,000** samples to benchmark text creativity evaluators. Notably, even state-of-the-art LLMs perform poorly on it compared to humans, underscoring a key performance bottleneck in current evaluators. To support training, we further construct **CreataSet**, a large-scale dataset incorporating creative tasks in **87 domains**, including over **1M instruction-response pairs** with varying weakly supervised creativity levels.
- Building on CreataSet, we introduce **CrEval**, an LLM-based creativity evaluator. To the best of our knowledge, our work is among the first to evaluate creativity across multiple domains using pairwise assessments. CrEval outperforms strong **frontier** models, *e.g.*, GPT-4o by **18.7%** in agreement with human judges, and demonstrates strong domain generalization capabilities. We further show that CrEval can enhance LLM creativity, offering a practical approach to improve generative AI.

2 RELATED WORK

Creativity Evaluation Evaluating creativity has been a long-standing challenge Kim (2006); Acar & Runco (2019). Many proposed methods Gray et al. (2019); Zhao et al. (2025); Beketayev & Runco (2016); Sun et al. (2025) adopt frameworks targeting particular tasks, such as the Remote Associates Test (RAT) Mednick & Halpern (1968) or the Torrance Test of Creative Thinking (TTCT) Torrance (1966), which measures human divergent thinking through scoring ideas on fluency, originality, flexibility, and elaboration (*e.g.*, listing diverse uses for a paperclip). Subsequent adaptations have applied TTCT principles to creative writing (TTCW) Chakrabarty et al. (2024); Li et al. (2025c)

Figure 2: The construction process of CreataSet and training process of CrEval.

or to evaluate LLMs on such tasks Zhao et al. (2025), while other work uses problem-solving as a creativity proxy Naeini et al. (2023); Tian et al. (2024). However, these approaches are often narrow in scope, focusing on a limited set of tasks and primarily assessing a model’s creative ability rather than the creativity of the generated text itself.

Existing methods for evaluating textual creativity face significant limitations. Heuristic scoring He et al. (2023), matching for unique n-grams on a reference corpus (Creativity Index) Lu et al. (2025b), and calculating divergent semantic integration using BERT Devlin et al. (2019) (DSI) Johnson et al. (2023) are often constrained by their specific designs, reliance on static corpora, and limited generalizability. While prompting general-purpose LLMs (e.g., GPT-4) has become common Summers-Stay et al. (2023); Zhao et al. (2025); Chakrabarty et al. (2024; 2025), results are often unsatisfactory Olson et al. (2024); Chakrabarty et al. (2024; 2025); Lu et al. (2025a). Another work, LitBench Fein et al. (2025), has trained reward models on specialized preference data Fein et al. (2025), but their applicability remains confined to creative writing, lacking broader generalization to other domains. Consequently, reliable evaluation of textual creativity still depends heavily on costly and inefficient human judgment, such as the Consensual Assessment Technique (CAT) Baer & McKool (2009); Marco et al. (2024), which cannot provide automated feedback for improving models. To overcome these challenges, we propose a novel approach that leverages the LLM-as-a-judge paradigm for more efficient and accurate creativity assessment.

LLM-as-a-Judge In the area of automatic evaluation for text generation, recent advent of large language models (LLMs) has enabled the evaluation paradigms to incorporate LLMs to be more accurate and flexible Gao et al. (2025), known as LLM-as-a-judge Zheng et al. (2023); Gu et al. (2024); Li et al. (2025a), capable of assessing more diverse dimensions of text quality. Prior works focus more on the evaluation of text attributes like relevance Liu et al. (2023); Abbasiantaeb et al. (2024); Liu et al. (2024), helpfulness Kim et al. (2024); Li et al. (2024), or overall excellence Dongfu et al. (2024); Hu et al. (2024b), etc. Other works also explore how to adapt LLMs to evaluate specific domains such as code generation Tong & Zhang (2024); Wu et al. (2025a) and dialogue generation Lin & Chen (2023); Zhang et al. (2024). However, few of these works investigate how to evaluate text creativity, making it hard to assess and improve the creative aspects of text generation. In our work, we propose to assess it in a pairwise-comparison manner, and provide a comprehensive study on leveraging LLMs to evaluate text creativity.

3 METHODOLOGY

In this section, we employ a three-step process to construct our large-scale weakly supervised dataset CreataSet to support our evaluation protocol and train CrEval. First, in **Across-Domain Creativity Dataset Initialization**, we gather initial data in 87 diverse domains with varying lengths, generating corresponding instructions to create initial instruction-response pairs (I, R) . Second, **Context-**

Type A: Existing Creative Data <i>(Data Source: Oogiri-GO, Ruozhiba)</i> Instruction: What will be humanity's final question? Response: What does this button do? Synthetic Responses: ① Can't answer. ② Humanity's ultimate question: <u>the meaning of life</u> . ③ What is the meaning of life? ④ Have we ever truly understood love? MiniCPM-2B <i>Prompt_o</i> Qwen2.5-14B <i>Prompt_c</i> GPT-4o	Type B: Creativity-Dense Texts <i>(Data Source: Short Texts, Lyrics, Ancient Poetry, Modern Poetry, Prose)</i> Response: Sunflowers don't cry; even when down, they face the sun. Constructed Instruction: Please share your thoughts on maintaining a positive attitude. Synthetic Responses: ① Maintaining a positive mindset and an optimistic attitude helps us live more proactively. ② <u>A positive attitude makes you stronger, and persistence leads to success.</u> ③ A positive attitude brings energy and helps overcome challenges. ④ <u>A positive attitude is a light that illuminates the path ahead; persistence keeps it shining.</u>	Type C: Ordinary Instruction-Response Pairs <i>(Data Source: Infinity-Instruct)</i> Instruction: Create a catchy title for the following topic: saving money for the future. Original Response: The Secret to Future Wealth: How to Save to Achieve Your Dreams. Enhanced Response: Time Investment: Weaving the Blueprint for Future Wealth. Synthetic Responses: ① Savings for the Future: Your Smart Investment Choice. ② <u>Invest in the Future. Save for Wealth.</u> ③ Smart Budgeting, Saving for a Golden Future. ④ <u>Time Bank: Saving for the Future with Wise Investment.</u>
---	--	---

Figure 3: The examples of three different types of data. The original data are above the dashed line, while our constructed components are below.

Aware Response Augmentation expands these pairs by generating responses of varying creative levels for the same instruction I . Finally, in **Label Construction with Mixed Strategy**, we pair the responses and assign a label y , yielding training samples of the form (I, R_1, R_2, y) for the creativity evaluator CrEval. For meta-evaluation, we manually annotate a test set to benchmark CrEval against other evaluators. The overall data construction pipeline is illustrated in Figure 2.

3.1 ACROSS-DOMAIN CREATIVITY DATASET INITIALIZATION

To build a creativity dataset across diverse domains, we gather initial data with varying creativity levels from eight sources. We unified them into a consistent (I, R) format.

Multi-Domain Multi-Source Data Collection We aim to collect data from diverse sources and domains to construct a broad distribution in both domain coverage and response length, thereby enabling the model to generalize across a wide range of scenarios. Specifically, we begin by collecting data from existing creativity datasets, such as Oogiri-GO Zhong et al. (2024) and Ruozhiba Bai et al. (2025), which naturally contain creative (I, R) pairs in the humor domain (Type A in Figure 3). We further incorporate creativity-dense texts (R) from corpora of human creative works, such as poetry, lyrics, and prose, sourced from well-known websites¹. To enhance length diversity, we curate a sub-dataset called *Short Texts*, comprising inspiring and thought-provoking sentences collected from online sources². Most of these entries consist of standalone texts (R) without explicit input prompts (Type B in Figure 3). In addition, aiming to capture data with diverse creativity levels and expand domain coverage, we leverage an existing instruction-tuning dataset Infinity-Instruct Li et al. (2025b), given its high-quality (I, R) pairs spanning a wide range of domains (Type C in Figure 3).

Unified Instruction-Response Standardization To standardize the multi-source data into a unified (I, R) format, we first enrich standalone texts by generating missing instructions. We train an instruction generator by reversing an instruction-tuning dataset (Infinity-Instruct). The generator learns to produce an instruction I given a response R . We generate an instruction for each standalone text, thus forming (I, R) pairs. To prevent non-creative data from obscuring creative data, we followed previous work Ritchie (2007) and applied some filters. All data are ultimately formatted as (I, R) pairs (as shown in Figure 3, forming **Creataset-Base**, with over 113k creative samples. **Due to the deeply contextual nature of creativity, which is highly subject to cultural and**

¹<https://github.com/chinese-poetry/chinese-poetry>, <https://github.com/VMIJUNV/chinese-poetry-and-prose>, <https://github.com/yuxqiu/modern-poetry>, <https://music.163.com>, <https://m.sbk8.com>

²<https://www.juzikong.com/>

216	Dataset	Cross-domain	Granularity	Auto-Evaluator	Total Words	# Samples	Train/Test
217	Oorigi-GO Zhong et al. (2024)	X (humor)	Subject Level	X	894,712	15,797	train & test
218	MacGyver Tian et al. (2024)	X (problem-solving)	Subject Level	X	249,385	1,683	test
219	DPT Jr. et al. (2025)	X (problem-solving)	Subject Level	X	12,576	803	test
220	TTCW Chakrabarty et al. (2024)	X (creative writing)	Subject Level	X	58,426	48	test
221	Creative Writing v3 Paech (2023)	X (creative writing)	Subject Level	X	10,176	32	test
222	TTCT+ Zhao et al. (2025)	✓ (7 domains)	Subject Level	X	-	700	test
223	LitBench Fein et al. (2025)	X (creative writing)	Individual Text Level	✓	16,309,661	43,827	train & test
224	WritingBench Wu et al. (2025b)	✓ (100 domains)	Individual Text Level	✓	1,875,146	1,000	test
225	Creataset-Base (ours)	✓ (87 domains)	Individual Text Level	✓	20,720,179	112,965	train & test

Table 1: The statistics of different creative datasets. Auto-Evaluator denotes whether an automatic evaluator is proposed based on this dataset. TTCT+ and training data for the evaluator in WritingBench are not publicly available. We calculate the total word count of the responses of each dataset.

linguistic context, the dataset is predominantly in Simplified Chinese. However, our framework is language-agnostic and can be easily extended to other languages.

Table 1 compares Creataset-Base with other creativity-related datasets, highlighting its larger scale. To assess domain diversity (*i.e.*, thematic category), we followed prior works Tian et al. (2024); Wang et al. (2023); Jin et al. (2024) and started from a manually curated seed taxonomy. We then adopted GPT-4o-mini to classify each data sample into a fine-grained category, yielding 87 distinct subdomains. They were then aggregated by the model into broader, semantically coherent ones, resulting in 17 core domains. The distribution of these domains is shown in Figure 4. Additional details on response length and semantic distributions are provided in Appendix A.3.

3.2 CONTEXT-AWARE RESPONSE AUGMENTATION

Before constructing pairwise data (I, R_1, R_2) for training the evaluator, we first augment the set of responses for each instruction, *i.e.*, (I, R_1, \dots, R_k) . This aims to enrich the creative diversity, enabling the construction of pairs with creative differences. To efficiently construct such data at scale, we employ open-sourced models with different levels of capability, *e.g.*, Qwen2.5-14B-Instruct Yang et al. (2024) and MiniCPM-2B-SFT Hu et al. (2024a), to generate responses for instructions in Creataset-Base, as illustrated in Figure 2. For each model, we use two prompting modes to induce varying creativity levels: (1) Prompt_o , a general prompt that elicits ordinary responses; and (2) Prompt_c , a creativity-oriented prompt that encourages more imaginative outputs. By adopting different models/prompts, we generate multiple synthetic responses. The original responses in Type C data are direct answers to instructions with weak creativity. To enrich those, we further prompt GPT-4o to generate more creative ones to the same instructions. Finally, we name this dataset in the form (I, R_1, \dots, R_k) as **Creataset-Ext**. The diversity analysis of augmented responses and the prompts used are in Appendix A.3.5 and Appendix A.6, respectively.

3.3 LABEL CONSTRUCTION WITH MIXED STRATEGIES

We combine responses into pairs (I, R_1, R_2) and use a mixed strategy to assign labels for training and testing separately, since the label requirements differ between them. Reliable human-annotated labels are essential for meta-evaluation to accurately assess model performance, while constructing labels in a large scale is more important for training. We detail them in the following.

High-Quality Human Labeling for Test Benchmark Construction To ensure diversity in the test set, we sample 50 instances from each data source in Creataset, yielding 400 initial samples. These are further augmented using GPT-4o-mini with both prompts to enhance the distribution difference for evaluation. Following prior work Weinstein et al. (2022); Johnson et al. (2023), we

Figure 4: Domain distribution of Creataset-Base. Secondary domains for the top 5 primary ones are shown in gray.

270 recruited 30 qualified annotators from 18 different majors to rate response creativity on a 4-point
 271 Likert scale, with responses presented in randomized order (more details are in Appendix A.8).
 272 Each response’s creativity score is computed as the average of all ratings. The annotations exhibit
 273 high inter-rater reliability (Intraclass Correlation Coefficient, ICC(2k)=0.92). Finally, we construct
 274 a 3K test set in the format (I, R_1, R_2, y) , where pairs with score differences > 0.3 are labeled as
 275 *distinguishable*, and those with differences < 0.1 as *comparable* (tie).

276 **Weakly-Supervised Pseudo Labels for Training Set Construction** For the training set, we as-
 277 sign weakly supervised pseudo-labels to response pairs in CreataSet-Base, enabling large-scale label
 278 construction. Our approach is based on two key assumptions: (1) *stronger models tend to produce*
 279 *more creative responses than weaker ones*, and (2) *creativity-focused prompts elicit more creative*
 280 *outputs than ordinary prompts*.

281 To validate these assumptions, we sampled 150 data groups $((I, R_1, \dots, R_k))$ with 1,050 response
 282 pairs for each model/prompt combination and recruited 3 annotators to compare their creativity.
 283 The results show that creativity distinctions based on assumption (1) achieve 86.6% accuracy, and
 284 assumption (2) achieves 81.4%, confirming the reliability of both heuristics. For creatively com-
 285 parable samples (the tie cases), we randomly pair responses produced by the same models using
 286 Prompt_o . Using these assumptions, we assign labels y to response pairs in CreataSet-Ext, resulting
 287 in training data of the form (I, R_1, R_2, y) .

289 3.4 CREVAL TRAINING

290 The constructed large-scale CreataSet-Ext can enable us to train CrEval. It provides triplets
 291 $(I, R_1, R_2) \in \mathcal{D}$ as input, and trained to minimize the classification loss:

$$293 \quad \mathcal{L} = - \sum_{(I, R_1, R_2) \in \mathcal{D}} \log P(y|I, R_1, R_2), \quad (1)$$

296 where $P(y|I, R_1, R_2)$ represents the probability of the label y given the triplet (I, R_1, R_2) ³. To
 297 mitigate the positional bias, we follow previous works Wang et al. (2024a;b); Li et al. (2024) by
 298 augmenting the data by swapping R_1 and R_2 in the input and adjusting the corresponding label.
 299 Additionally, we apply negative sampling by randomly selecting a response to serve as the least
 300 creative response, further enhancing the model’s awareness of the instruction context I .

301 During inference, the model predicts whether R_1 is more creative than R_2 , vice versa, or if they are
 302 creatively comparable. Moreover, a reference response R^r , generated by either a human or a model,
 303 can be a baseline for comparing the creativity of another response R in such a comparison manner.

305 4 EXPERIMENTS

308 4.1 EXPERIMENTAL SETUP

309 **In our experiments, we set $k = 5$ in response augmentation. This is shared across all data sources.**
 310 Based on our human-labeled test set of CreataSet, we adopt *F1 score*, *Kappa score*, and *Agreement*
 311 *rate* to evaluate the performance of different methods, following previous work Wang et al. (2024b);
 312 Li et al. (2024). All metrics are calculated twice by swapping the order of the two responses, and
 313 then the average scores are reported. Following Hu et al. (2024b), to eliminate the influence of
 314 sampling randomness, we set the temperature T to 0 for deterministic results, while other methods
 315 retain their original settings. We conduct pairwise comparison experiments on CreataSet where
 316 CrEval is compared with the following baselines:

317 **Traditional Metrics:** (1) **Perplexity (PPL)**: A simple baseline where we use Qwen2.5-7B-Instruct
 318 to calculate the perplexity of a response. Higher perplexity indicates higher novelty and creativity.
 319 (2) **Divergent semantic integration (DSI)** Johnson et al. (2023): It adopts BERT Devlin et al.
 320 (2019) to calculate the average semantic distance between all words in the response. A higher DSI
 321 indicates higher creativity. (3) **Creativity Index** Lu et al. (2025b): A corpus-based metric calculates
 322 creativity inversely to n-gram similarity with a reference corpus.

323 ³Since we use LLM backbones, the classification label is treated as a text output conditioned on the prompt.

324	325	Method	S.T.	Lyr.	A.P.	M.P.	Pro.	Oog.	Ruo.	Inf.	Average		
											F1	Kappa	Agree.
<i>Traditional Metrics</i>													
PPL		0.464	0.245	0.245	0.316	0.349	0.515	0.329	0.374	0.357	-0.042	0.430	
DSI		0.440	0.430	<u>0.354</u>	0.527	<u>0.377</u>	<u>0.578</u>	<u>0.561</u>	<u>0.528</u>	<u>0.480</u>	0.175	0.457	
Creativity Index		0.695	<u>0.368</u>	<u>0.338</u>	0.417	0.592	0.585	0.566	0.640	0.531	0.231	0.568	
<i>Frontier LLMs</i>													
o3		0.802	0.589	0.596	0.667	0.663	0.774	0.832	0.769	0.721	0.578	0.725	
o1		0.807	0.573	0.629	0.670	0.672	0.738	0.790	<u>0.798</u>	0.720	0.563	0.664	
GPT-4o		0.800	0.605	<u>0.641</u>	0.699	0.667	0.749	0.633	0.789	0.703	0.519	0.642	
GPT-3.5		0.686	0.486	0.425	0.548	0.489	0.667	0.567	0.743	0.585	0.350	0.522	
DeepSeek-R1		0.743	0.479	0.494	0.578	0.612	0.751	0.745	0.733	0.653	0.457	0.547	
DeepSeek-V3		0.780	0.584	0.584	<u>0.681</u>	0.684	<u>0.765</u>	0.774	0.784	0.714	0.558	0.668	
Claude-3.5-Sonnet		0.775	0.603	0.634	0.671	0.702	0.762	0.850	0.810	<u>0.727</u>	0.609	0.740	
Claude-3.5-Haiku		0.748	0.573	0.509	0.633	0.652	0.724	0.695	0.779	0.669	0.496	0.641	
Gemini-2.5-Pro		0.764	0.569	0.585	0.639	0.656	0.760	0.866	0.752	0.708	0.557	0.702	
Gemini-2.5-Flash		0.785	0.588	0.642	0.670	0.692	0.761	<u>0.858</u>	0.797	0.731	<u>0.582</u>	0.682	
G-Eval (GPT-4o)		0.772	0.583	0.568	0.665	<u>0.694</u>	0.759	0.803	0.793	0.712	0.558	0.677	
G-Eval (GPT-3.5)		0.636	0.494	0.460	0.561	0.493	0.608	0.575	0.774	0.582	0.339	0.500	
<i>7B Scale LLMs</i>													
Gemma-2-9B-it		0.795	0.562	<u>0.619</u>	<u>0.654</u>	<u>0.646</u>	<u>0.751</u>	<u>0.779</u>	<u>0.788</u>	<u>0.704</u>	<u>0.544</u>	<u>0.654</u>	
LLaMA3.1-8B-Instruct		0.713	0.548	0.440	0.618	0.615	0.649	0.573	0.782	0.621	0.418	0.565	
PandaLM-7B		0.390	0.435	0.454	0.469	0.346	0.398	0.540	0.506	0.453	0.129	0.326	
Prometheus-7B		0.330	0.365	0.326	0.315	0.342	0.369	0.449	0.498	0.377	0.097	0.352	
AUTO-J		0.659	0.526	0.377	0.561	0.541	0.553	0.565	0.720	0.567	0.323	0.512	
WritingBench-Critic		0.715	0.528	0.500	0.626	0.548	0.600	0.641	0.712	0.612	0.362	0.576	
Qwen2.5-7B-Instruct		0.710	0.494	0.426	0.578	0.487	0.647	0.704	0.771	0.614	0.403	0.574	
CrEval-7B (ours)		0.779	<u>0.556</u>	0.649	0.681	0.665	0.778	0.873	0.820	0.732	0.601	0.745	
Δ (v.s. base model)		+9.7%	+12.6%	+52.3%	+17.8%	+36.6%	+20.2%	+24.0%	+6.4%	+19.2%	+49.1%	+29.8%	
<i>13B Scale and Larger LLMs</i>													
Qwen2.5-72B-Instruct		0.751	0.558	0.520	<u>0.655</u>	0.594	0.734	<u>0.833</u>	<u>0.806</u>	0.692	0.535	0.673	
LLaMA3.1-70B-Instruct		0.736	0.564	0.559	0.642	0.624	0.732	0.764	0.810	0.684	0.535	0.675	
Gemma-3-27B-it		0.792	0.572	<u>0.608</u>	0.650	0.666	<u>0.753</u>	0.789	0.783	<u>0.706</u>	<u>0.564</u>	<u>0.702</u>	
Gemma-3-12B-it		0.761	0.542	0.575	0.615	0.674	0.729	0.667	0.772	0.672	0.498	0.633	
Prometheus-13B		0.445	0.377	0.329	0.372	0.410	0.386	0.367	0.641	0.416	0.095	0.400	
Qwen2.5-14B-Instruct		0.742	<u>0.568</u>	0.523	0.649	0.629	0.717	0.783	0.797	0.683	0.523	0.661	
CrEval-14B (ours)		0.786	0.556	0.650	0.680	<u>0.672</u>	0.797	0.882	0.810	0.735	0.613	0.762	
Δ (v.s. base model)		+5.9%	-2.1%	+24.3%	+4.8%	+6.8%	+11.2%	+12.6%	+1.6%	+7.6%	+17.2%	+15.3%	

Table 2: Results of different methods on our CreataSet test set. Best results in the same group are highlighted in bold, and the second-best are underlined. S.T., Lyr., A.P., M.P., Pro., Oog., Ruo., and Inf. represent Short Texts, Lyrics, Ancient Poetry, Modern Poetry, Prose, Oogiri-Go, Ruozhiba, and Infinity-Instruct, respectively. We gray out the results of frontier LLMs due to their larger sizes.

Evaluation-Centric Models: Several evaluation-centric models including prompting-based **G-Eval** Liu et al. (2023) and fine-tuned LLMs **PandaLM** Wang et al. (2024b), **Prometheus** Kim et al. (2024), **AUTO-J** Li et al. (2024) and **WritingBench-Critic** Wu et al. (2025b).

General-purpose LLMs as Evaluators: We compare CrEval against several general-purpose LLMs, including **LLaMA3.1-8,70B-Instruct** Dubey et al. (2024), **Gemma-2-9B,3-12B,3-27B-it** Rivière et al. (2024); Kamath et al. (2025), **Qwen2.5-7,14,72B-Instruct** Yang et al. (2024), **GPT-3.5-Turbo-1106** OpenAI (2022), **GPT-4o** Hurst et al. (2024), **OpenAI o1/o3** Jaech et al. (2024); OpenAI (2025), **DeepSeek-{V3,R1}** DeepSeek-AI et al. (2024; 2025), **Claude-3.5-{Haiku, Sonnet}** Anthropic (2024a;b), and **Gemini-2.5-{Flash, Pro}** Comanici et al. (2025). We evaluate all models using the same prompt as for CrEval.

4.2 HOW WELL CAN CREVAL SIMULATE HUMAN EVALUATION?

As shown in Table 2, CrEval demonstrates consistent and significant improvements over all baselines across the evaluated metrics. Notably, the 14B variant even surpasses most frontier baselines, improving F1 by 2.9%, Kappa by 9.7%, and agreement rate by 12.6% compared to strong competitors like DeepSeek-V3. These results validate the effectiveness of our approach for simulating human creativity assessment. Second, traditional metrics such as PPL and DSI perform poorly; e.g., PPL yields a Kappa score near zero, indicating their weak correlation with human judgment. The Creativity Index metric improves on them but remains limited by its reliance on n-gram matching and fails to capture the semantic creativity conveyed through conventional lexical choices. Third, while Gemma models achieve the highest F1 scores of the according groups on Short Texts and

Figure 5: Consistency rate of different methods when swapping the order of responses. We include an ablation version CrEval-7B (w/o Swap) without explicitly swapping response positions.

Method	F1	Kappa	Agreement
CrEval-7B	0.732	0.601	0.745
w/o Neg.	0.723	0.586	0.745
w/o Syn.	0.665	0.464	0.634
w/ Only Syn.	0.585	0.356	0.589

Figure 6: Evaluation results of ablation study on different data components.

Figure 7: Performance variation with data scales.

Lyrics, they struggle to generalize across other creative domains like humor (*e.g.*, Oogiri-Go and Ruozhiba) and ancient genres. Claude-3.5-Sonnet excels in evaluating Prose, indicating a stronger capacity for assessing creativity in longer texts. In contrast, CrEval exhibits more balanced and robust performance across all creative domains.

LLMs may favor certain positions of the response, known as positional bias Wang et al. (2024a), which may lead to inconsistent evaluation results when swapping the order of responses. We have conducted a consistency analysis to evaluate the stability of different methods, including comparing with an ablation version CrEval (w/o Swap) where CrEval was trained without explicitly balancing the positions. As shown in 5, CrEval achieves the highest consistency rate of 94.4, indicating that it is more consistent and reliable in evaluating creativity compared to other methods. Also, omitting position swapping during training introduces a position bias and leads to decreased performance.

4.3 HOW DO DATA INFLUENCE CREVAL?

Data Composition. In training CrEval, we use (I, R_1, R_2, y) of different pseudo-creativity levels. To investigate their influence, we conduct an ablation study by training multiple CrEval variants with different data compositions as follows: (1) **CrEval-w/o Neg.**: Training CrEval without sampling negative responses. (2) **CrEval-w/o Syn.**: Training CrEval with only the original responses (highest creativity) in Creataset without synthetic ones. (3) **CrEval-w/ Only Syn.**: Training CrEval with only synthetic responses (lower creativity) in Creataset without original ones. Table 6 presents the ablation study results. The results indicate that each type of data makes a positive contribution. The original human-created responses contribute the most, as they provide diverse, high-quality information that better aligns CrEval with human preferences. Synthetic data plays a crucial role in helping the model grasp the characteristics of creative responses, particularly those that LLMs can generate. Meanwhile, negative responses offer additional information to improve the model’s ability to measure the relevance between responses and instructions.

Data Scale. To assess the impact of data volume, we train CrEval on datasets of varying scales, shown in Figure 7. F1, Kappa, and agreement rates improve with data size but plateau after 100K samples. This suggests that while more data benefits CrEval, the gains diminish at higher scales.

Figure 8: Agreement and F1 scores on three O.O.D. datasets.

Figure 9: Win rate of different methods over GPT-4o-mini responses. DPO-Negative denotes DPO with negative sampled responses as reject samples. DPO-100E and DPO-70E30H use all easy and 70% easy+30% hard responses as reject samples, respectively.

4.4 DOES CREVAL DEMONSTRATE OUT-OF-DISTRIBUTION GENERALIZATION?

Due to the scarcity of human-annotated creative pairs, finding suitable out-of-distribution (O.O.D.) datasets for meta-evaluation remains challenging. To address this, we conduct three O.O.D. experiments on two *creative writing* datasets and one classical creativity benchmark, the *Alternative Uses Task (AUT)*. For creative writing, we adopt data from Chakrabarty et al. (2024), which contains long responses produced by both humans and models. Following their findings, we treat human responses as more creative and construct 36 evaluation pairs. Besides, we curate 213 pairs from another *WritingPrompts* dataset, selecting samples with a like-count difference greater than 10 as a proxy for creativity. For the AUT task, we use the dataset from Sun et al. (2023), focusing on the annotated alternative uses for “bowl”. We form pairs from responses whose human-assigned creativity scores differ by more than two points, resulting in 541 test pairs.

As shown in Figure 8, CrEval achieves the best performance among models of similar scale ($\sim 7B$) and even outperforms much larger frontier models like GPT-4o and DeepSeek-V3. This strong generalization ability can be attributed to its robust training on diverse and creative text sources, enabling it better to capture subtle qualitative differences in open-ended generation tasks. The consistent advantage across both datasets underscores its effectiveness in text creativity evaluation.

4.5 CAN CREVAL ENHANCE MODEL CREATIVITY?

As a creativity evaluator, CrEval can differentiate response creativity, allowing us to leverage it for enhancing model creativity. We randomly sample 10K data from CreatasSet to train Qwen2.5-7B-Instruct, using the original response as the ground truth, serving as the standard (the **SFT** baseline). By utilizing synthetic candidate responses (randomly sampled), we apply DPO Rafailov et al. (2023)

486 to take low-creativity responses as reject samples (the **DPO** baseline). We also randomly sample
 487 negative responses from other instructions as reject samples, denoted as **DPO-Negative**.
 488

489 Given an instruction and multiple candidate responses, CrEval performs pairwise creativity comparisons,
 490 scoring wins as 3 points, ties as 1, and losses as 0. This scoring yields a creativity ranking,
 491 with the top-ranked responses as *hard* and the lowest as *easy* samples. We control creativity difficulty
 492 by adjusting the hard/easy ratio in DPO rejections, evaluating methods on the CreataSet test set,
 493 with win rates against GPT-4o-mini measured by CrEval, GPT-4o, and human annotators.
 494

495 Results in Figure 9 demonstrate that DPO yields significant gains over SFT in all evaluation settings
 496 (CrEval, GPT-4o, human). The inferior performance of DPO-Negative relative to DPO demon-
 497 strates that contextual conditioning is crucial for accurate creativity assessment. Leveraging CrEval
 498 for creativity-aware data selection leads to further improvements, with DPO-70E30H achieving the
 499 highest win rate. DPO-100E, which treats all easy samples as rejections, shows marginal improve-
 500 ment, indicating that a clearer distinction between chosen and rejected examples is crucial for learn-
 501 ing creativity. DPO-70E30H achieves the highest win rate by using 30% hard samples as rejections,
 502 underscoring the benefit of a balanced mixture of creativity difficulty levels.
 503

502 5 CONCLUSION

503 In this paper, we propose a novel pairwise-comparison framework for evaluating textual creativity
 504 and present CreataSet, a large-scale dataset across diverse domains. Based on it, we develop CrEval,
 505 an LLM-based evaluator that significantly outperforms existing methods in alignment with human
 506 judgments. Our experiments highlight the essential role of combining both human and synthetic
 507 data in training robust creativity evaluators, and demonstrate that CrEval exhibits out-of-distribution
 508 generalization. We further find the practical value of integrating CrEval into generation pipelines to
 509 boost LLM creativity. We believe that CreataSet and CrEval will be valuable assets for the research
 510 community, driving progress toward more accurate and scalable creativity evaluation.
 511

513 ETHICS STATEMENT

514 This work adheres to the ICLR Code of Ethics. The study involved human participants who were
 515 recruited as data annotators, and the annotation tasks were designed to be of minimal risk. The
 516 study did not involve any animal experimentation. All datasets used were sourced in compliance
 517 with relevant usage guidelines, with appropriate measures taken to protect privacy and prevent any
 518 unauthorized use of data. We have strived to mitigate potential biases and avoid discriminatory
 519 outcomes throughout the research process. No personally identifiable information was utilized, and
 520 no experiments were conducted that would raise ethical, privacy, or security concerns. We are
 521 committed to upholding principles of transparency and integrity in all aspects of this research.
 522

524 REPRODUCIBILITY STATEMENT

525 We have taken comprehensive steps to ensure the reproducibility of the results presented in this
 526 paper. We have made our code and datasets available as supplementary materials and will release
 527 them publicly upon acceptance. The experimental setup, including training procedures and model
 528 configurations, is described in detail. We believe these steps will enable the community to validate
 529 and build upon our work effectively.
 530

532 REFERENCES

533 Zahra Abbasiantaeb, Chuan Meng, Leif Azzopardi, and Mohammad Aliannejadi. Can we use large
 534 language models to fill relevance judgment holes? *arXiv preprint:2405.05600*, 2024.

535 Selcuk Acar and Mark A Runco. Divergent thinking: New methods, recent research, and extended
 536 theory. *Psychology of Aesthetics, Creativity, and the Arts*, 13(2):153, 2019.

537 Anthropic. Claude 3.5 haiku, 2024a. URL <https://www.anthropic.com/claudie/haiku>.

540 Anthropic. Claude 3.5 sonnet, 2024b. URL <https://www.anthropic.com/news/claude-3-5-sonnet>.

541

542

543 John Baer and Sharon S McKool. Assessing creativity using the consensual assessment technique.

544 In *Handbook of research on assessment technologies, methods, and applications in higher education*, pp. 65–77. IGI Global, 2009.

545

546 Yuelin Bai, Xeron Du, Yiming Liang, Leo Jin, Junting Zhou, Ziqiang Liu, Feiteng Fang, Mingshan

547 Chang, Tianyu Zheng, Xincheng Zhang, et al. Coig-ccqia: Quality is all you need for chinese

548 instruction fine-tuning. In *Findings of the Association for Computational Linguistics: NAACL*

549 2025, pp. 8190–8205, 2025.

550

551 Baptiste Barbot, Richard W Hass, and Roni Reiter-Palmon. Creativity assessment in psychological

552 research:(re) setting the standards. *Psychology of Aesthetics, Creativity, and the Arts*, 13(2):233,

553 2019.

554 Kenes Beketayev and Mark A Runc. Scoring divergent thinking tests by computer with a

555 semantics-based algorithm. *Europe's journal of psychology*, 12(2):210, 2016.

556

557 Brendan Bena and Jugal Kalita. Introducing aspects of creativity in automatic poetry generation. In

558 *Proceedings of the 16th International Conference on Natural Language Processing*, pp. 26–35,

559 2019.

560 Margaret A. Boden. *The Creative Mind - Myths and Mechanisms* (2. ed.). Routledge, 2003.

561

562 Tuhin Chakrabarty, Philippe Laban, Divyansh Agarwal, Smaranda Muresan, and Chien-Sheng Wu.

563 Art or artifice? large language models and the false promise of creativity. In Florian 'Floyd'

564 Mueller, Penny Kyburz, Julie R. Williamson, Corina Sas, Max L. Wilson, Phoebe O. Toups

565 Dugas, and Irina Shklovski (eds.), *Proceedings of the CHI Conference on Human Factors in*

566 *Computing Systems, CHI 2024, Honolulu, HI, USA, May 11-16, 2024*, pp. 30:1–30:34. ACM,

567 2024. doi: 10.1145/3613904.3642731. URL <https://doi.org/10.1145/3613904.3642731>.

568

569 Tuhin Chakrabarty, Philippe Laban, and Chien-Sheng Wu. Ai-slop to ai-polish? aligning lan-

570 guage models through edit-based writing rewards and test-time computation. *arXiv preprint*

571 *arXiv:2504.07532*, 2025.

572

573 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while

574 reducing cost and improving performance. *CoRR*, abs/2305.05176, 2023. doi: 10.48550/ARXIV.

575 2305.05176. URL <https://doi.org/10.48550/arXiv.2305.05176>.

576

577 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared

578 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,

579 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,

580 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavari-

581 an, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-

582 pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Heben Guss, Alex Nichol,

583 Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William

584 Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan

585 Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-

586 ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech

587 Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021.

588 URL <https://arxiv.org/abs/2107.03374>.

589

590 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inder-

591 jit S. Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marrs, Sam Petulla,

592 Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpekk-

593 tor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav

594 Mishra, Eric Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kaw-

595 intiranon, Tania Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilai Deut-

596 tel, Nam Nguyen, Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Wagh-

597 mare, Helen Miller, Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Paweł

594 Janus, Tero Rissa, Dan Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond,
 595 Klemen Kloboves, Cindy Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang,
 596 Mantas Pajarskas, Joe Heyward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett,
 597 Sushant Kafle, Sercan Arik, Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mah-
 598 moudieh, Koray Kavukcuoglu, Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dim-
 599 itris Paparas, Hadar Shemtov, Bo-Juen Chen, Robin Strudel, David Reitter, Aurko Roy, An-
 600 drey Vlasov, Changwan Ryu, Chas Leichner, Haichuan Yang, Zelda Mariet, Denis Vnukov,
 601 Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa Rawlani, Christy Koh, JD Co-
 602 Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru Mei, and Mu Cai. Gemini
 603 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next genera-
 604 tion agentic capabilities. *CoRR*, abs/2507.06261, 2025. doi: 10.48550/ARXIV.2507.06261. URL
 605 <https://doi.org/10.48550/arXiv.2507.06261>.

606 DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
 607 gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
 608 Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
 609 Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
 610 Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni,
 611 Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao
 612 Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong
 613 Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
 614 Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang,
 615 Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen,
 616 R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
 617 Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shaoqing Wu, Shengfeng Ye,
 618 Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting
 619 Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, and Wangding Zeng. Deepseek-
 620 v3 technical report. *CoRR*, abs/2412.19437, 2024. doi: 10.48550/ARXIV.2412.19437. URL
 621 <https://doi.org/10.48550/arXiv.2412.19437>.

622 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 623 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 624 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 625 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 626 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 627 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 628 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 629 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 630 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 631 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 632 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 633 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 634 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye,
 635 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
 636 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
 637 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.

638 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
 639 bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
 640 Thamar Solorio (eds.), *Proceedings of the Conference of the North American Chapter of the
 641 Association for Computational Linguistics (NAACL)*, 2019.

642 Jiang Dongfu, Li Yishan, Ge Zhang, Huang Wenhao, Lin Bill Yuchen, and Chen Wenhua. Tiger-
 643 score: Towards building explainable metric for all text generation tasks. *Computing Research
 644 Repository*, 2024.

645 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 646 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
 647 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,

648 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
 649 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
 650 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
 651 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
 652 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
 653 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
 654 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-
 655 revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
 656 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 657 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
 658 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
 659 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Al-
 660 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
 661 llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL
 662 <https://doi.org/10.48550/arXiv.2407.21783>.

663 Daniel Fein, Sebastian Russo, Violet Xiang, Kabir Jolly, Rafael Rafailov, and Nick Haber. Litbench:
 664 A benchmark and dataset for reliable evaluation of creative writing. *CoRR*, abs/2507.00769, 2025.
 665 doi: 10.48550/ARXIV.2507.00769. URL <https://doi.org/10.48550/arXiv.2507.00769>.

666 Mingqi Gao, Xinyu Hu, Xunjian Yin, Jie Ruan, Xiao Pu, and Xiaojun Wan. Llm-based NLG
 667 evaluation: Current status and challenges. *Computational Linguistics*, pp. 1–28, 2025.

668 Kurt Gray, Stephen Anderson, Eric Evan Chen, John Michael Kelly, Michael S Christian, John
 669 Patrick, Laura Huang, Yoed N Kenett, and Kevin Lewis. “forward flow”: A new measure to
 670 quantify free thought and predict creativity. *American Psychologist*, 74(5):539, 2019.

671 Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure. *arXiv*
 672 preprint [arXiv:2203.05794](https://arxiv.org/abs/2203.05794), 2022.

673 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
 674 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint*
 675 [arXiv:2411.15594](https://arxiv.org/abs/2411.15594), 2024.

676 Joy Paul Guilford. The nature of human intelligence. 1967.

677 Qianyu He, Yikai Zhang, Jiaqing Liang, Yuncheng Huang, Yanghua Xiao, and Yunwen Chen.
 678 HAUSER: towards holistic and automatic evaluation of simile generation. In Anna Rogers,
 679 Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the Annual Meeting of the*
 680 *Association for Computational Linguistics (ACL)*, 2023.

681 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
 682 Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
 683 the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), *Proceedings*
 684 *of the Neural Information Processing Systems Track on Datasets and Benchmarks*
 685 *1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual*, 2021. URL
 686 [https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
 687 hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html).

688 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
 689 Yuxiang Huang, Weilin Zhao, Xinrong Zhang, Zhen Leng Thai, Kai Zhang, Chongyi Wang, Yuan
 690 Yao, Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai, Ning Ding, Chao Jia, Guoyang Zeng,
 691 Dahai Li, Zhiyuan Liu, and Maosong Sun. Minicpm: Unveiling the potential of small language
 692 models with scalable training strategies. *CoRR*, abs/2404.06395, 2024a. doi: 10.48550/ARXIV.
 693 2404.06395. URL <https://doi.org/10.48550/arXiv.2404.06395>.

694 Xinyu Hu, Li Lin, Mingqi Gao, Xunjian Yin, and Xiaojun Wan. Themis: A reference-free nlg eval-
 695 uation language model with flexibility and interpretability. In *Proceedings of the 2024 Conference*
 696 *on Empirical Methods in Natural Language Processing*, pp. 15924–15951, 2024b.

702 Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 703 trow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 704 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 705 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Ka-
 706 malai, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
 707 Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codis-
 708 poti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, An-
 709 gela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano,
 710 Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben
 711 Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby
 712 Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian
 713 Guerraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll L. Wainwright,
 714 Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Con-
 715 ger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong Zhang, Chris Beaumont,
 716 Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey,
 717 Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei,
 718 Constantin Koumouzelis, and Dane Sherburn. Gpt-4o system card. *CoRR*, abs/2410.21276, 2024.
 719 doi: 10.48550/ARXIV.2410.21276. URL <https://doi.org/10.48550/arXiv.2410.21276>.

720 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 721 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
 722 Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally Bennett,
 723 Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich, Andrei
 724 Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 725 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
 726 Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lu-
 727 garesi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen,
 728 Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan
 729 Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely,
 730 David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund
 731 Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan
 732 Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas,
 733 Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo,
 734 Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao,
 735 Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won
 736 Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, and Ilge Akkaya.
 737 Openai o1 system card. *CoRR*, abs/2412.16720, 2024. doi: 10.48550/ARXIV.2412.16720. URL
<https://doi.org/10.48550/arXiv.2412.16720>.

738 Chuhao Jin, Kening Ren, Lingzhen Kong, Xiting Wang, Ruihua Song, and Huan Chen. Persuading
 739 across diverse domains: a dataset and persuasion large language model. In Lun-Wei Ku, Andre
 740 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
 741 for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August
 742 11-16, 2024, pp. 1678–1706. Association for Computational Linguistics, 2024. doi: 10.18653/
 743 V1/2024.ACL-LONG.92. URL <https://doi.org/10.18653/v1/2024.acl-long.92>.

745 Dan R Johnson, James C Kaufman, Brendan S Baker, John D Patterson, Baptiste Barbot, Adam E
 746 Green, Janet van Hell, Evan Kennedy, Grace F Sullivan, Christa L Taylor, et al. Divergent semantic
 747 integration (dsi): Extracting creativity from narratives with distributional semantic modeling.
 748 *Behavior Research Methods*, 55(7):3726–3759, 2023.

749 Antonio Laverghetta Jr., Tuhin Chakrabarty, Tom Hope, Jimmy Pronchick, Krupa Bhawsar, and
 750 Roger E. Beaty. How do humans and language models reason about creativity? A comparative
 751 analysis. *CoRR*, abs/2502.03253, 2025. doi: 10.48550/ARXIV.2502.03253. URL <https://doi.org/10.48550/arXiv.2502.03253>.

754 Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana
 755 Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron,
 Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot,

756 Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton
 757 Tsitsulin, Róbert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil
 758 Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter,
 759 Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
 760 Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
 761 Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexan-
 762 der Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano
 763 Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy,
 764 Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le
 765 Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisen-
 766 bud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug
 767 Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick
 768 Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucinska, Harman
 769 Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szektor, and
 770 Ivan Nardini. Gemma 3 technical report. *CoRR*, abs/2503.19786, 2025. doi: 10.48550/ARXIV.
 2503.19786. URL <https://doi.org/10.48550/arXiv.2503.19786>.

771 Kyung Hee Kim. Can we trust creativity tests? a review of the torrance tests of creative thinking
 772 (ttct). *Creativity research journal*, 18(1):3–14, 2006.

773

774 Seungone Kim, Jamin Shin, Yejin Choi, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 775 Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo. Prometheus: Inducing fine-
 776 grained evaluation capability in language models. In *The International Conference on Learning
 777 Representations (ICLR)*, 2024.

778 Dawei Li, Bohan Jiang, Liangjie Huang, Alimohammad Beigi, Chengshuai Zhao, Zhen Tan, Amrita
 779 Bhattacharjee, Yuxuan Jiang, Canyu Chen, Tianhao Wu, et al. From generation to judgment: Op-
 780 portunities and challenges of llm-as-a-judge. In *Proceedings of the 2025 Conference on Empirical
 781 Methods in Natural Language Processing*, pp. 2757–2791, 2025a.

782

783 Jijie Li, Li Du, Hanyu Zhao, Bowen Zhang, Liangdong Wang, Boyan Gao, Guang Liu, and
 784 Yonghua Lin. Infinity instruct: Scaling instruction selection and synthesis to enhance lan-
 785 guage models. *CoRR*, abs/2506.11116, 2025b. doi: 10.48550/ARXIV.2506.11116. URL
 786 <https://doi.org/10.48550/arXiv.2506.11116>.

787 Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
 788 for evaluating alignment. In *The International Conference on Learning Representations, (ICLR)*,
 789 2024.

790 Ruizhe Li, Chiwei Zhu, Benfeng Xu, Xiaorui Wang, and Zhendong Mao. Automated creativity eval-
 791 uation for large language models: A reference-based approach. *arXiv preprint arXiv:2504.15784*,
 792 2025c.

793

794 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic hu-
 795 man falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Pro-
 796 ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
 797 ume 1: Long Papers)*, ACL 2022, Dublin, Ireland, May 22–27, 2022, pp. 3214–3252. Associa-
 798 tion for Computational Linguistics, 2022. doi: 10.18653/V1/2022.ACL-LONG.229. URL
 799 <https://doi.org/10.18653/v1/2022.acl-long.229>.

800 Yen-Ting Lin and Yun-Nung Chen. LLM-eval: Unified multi-dimensional automatic evaluation for
 801 open-domain conversations with large language models. In Yun-Nung Chen and Abhinav Rastogi
 802 (eds.), *Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023)*, pp.
 803 47–58, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/
 804 v1/2023.nlp4convai-1.5. URL [https://aclanthology.org/2023.nlp4convai-1.
 805 5/](https://aclanthology.org/2023.nlp4convai-1.5/).

806 Minqian Liu, Ying Shen, Zhiyang Xu, Yixin Cao, Eunah Cho, Vaibhav Kumar, Reza Ghanadan, and
 807 Lifu Huang. X-eval: Generalizable multi-aspect text evaluation via augmented instruction tuning
 808 with auxiliary evaluation aspects. In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard
 809 (eds.), *Proceedings of the Conference of the North American Chapter of the Association for Com-
 putational Linguistics (NAACL)*, 2024.

810 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
 811 evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and Kalika
 812 Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 813 Processing, (EMNLP)*, 2023.

814 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *The International
 815 Conference on Learning Representations (ICLR)*, 2019.

816 Li-Chun Lu, Miri Liu, Pin-Chun Lu, Yufei Tian, Shao-Hua Sun, and Nanyun Peng. Rethinking
 817 creativity evaluation: A critical analysis of existing creativity evaluations. *CorR*, abs/2508.05470,
 818 2025a. doi: 10.48550/ARXIV.2508.05470. URL [https://doi.org/10.48550/arXiv.
 819 2508.05470](https://doi.org/10.48550/arXiv.2508.05470).

820 Ximing Lu, Melanie Sclar, Skyler Hallinan, Niloofar Mireshghallah, Jiacheng Liu, Seungju Han,
 821 Allyson Ettinger, Liwei Jiang, Khyathi Raghavi Chandu, Nouha Dziri, and Yejin Choi. AI as
 822 humanity’s salieri: Quantifying linguistic creativity of language models via systematic attribu-
 823 tion of machine text against web text. In *The Thirteenth International Conference on Learn-
 824 ing Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025b. URL
 825 <https://openreview.net/forum?id=ilOE0IqolQ>.

826 Guillermo Marco, Julio Gonzalo, María Teresa Mateo Girona, and Ramón Santos. Pron vs prompt:
 827 Can large language models already challenge a world-class fiction author at creative text writing?
 828 In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Con-
 829 ference on Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA,
 830 November 12-16, 2024*, pp. 19654–19670. Association for Computational Linguistics, 2024. URL
 831 <https://aclanthology.org/2024.emnlp-main.1096>.

832 John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon. A proposal for the
 833 dartmouth summer research project on artificial intelligence, august 31, 1955. *AI magazine*, 27
 834 (4):12–12, 2006.

835 Martha T Mednick and Sharon Halpern. Remote associates test. *Psychological Review*, 1968.

836 Saeid Alavi Naeini, Raeid Saqur, Mozhgan Saeidi, John M. Giorgi, and Babak Taati. Large lan-
 837 guage models are fixated by red herrings: Exploring creative problem solving and einstellung
 838 effect using the only connect wall dataset. In Alice Oh, Tristan Naumann, Amir Globerson, Kate
 839 Saenko, Moritz Hardt, and Sergey Levine (eds.), *Advances in Neural Information Processing
 840 Systems (NeurIPS)*, 2023.

841 Matthew Lyle Olson, Neale Ratzlaff, Musashi Hinck, Shao-yen Tseng, and Vasudev Lal. Steering
 842 large language models to evaluate and amplify creativity. *arXiv preprint arXiv:2412.06060*, 2024.

843 OpenAI. Introducing chatgpt, 2022. URL <https://openai.com/index/chatgpt/>.

844 OpenAI. O3 and o4 mini system card. 2025. URL [https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
 846 o3-and-o4-mini-system-card.pdf](https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/

 845 o3-and-o4-mini-system-card.pdf).

847 Samuel J Paech. Eq-bench: An emotional intelligence benchmark for large language models. *arXiv
 848 preprint arXiv:2312.06281*, 2023.

849 Howard B Parkhurst. Confusion, lack of consensus, and the definition of creativity as a construct.
 850 *The Journal of Creative Behavior*, 33(1):1–21, 1999.

851 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 852 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
 853 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 854 (eds.), *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

855 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimiza-
 856 tions toward training trillion parameter models. In Christine Cuicchi, Irene Qualters, and William T.
 857 Kramer (eds.), *Proceedings of the International Conference for High Performance Computing,
 858 Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
 859 9-19, 2020*, pp. 20. IEEE/ACM, 2020. doi: 10.1109/SC41405.2020.00024. URL <https://doi.org/10.1109/SC41405.2020.00024>.

864 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System op-
 865 timizations enable training deep learning models with over 100 billion parameters. In Ra-
 866 jesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (eds.), *KDD '20: The 26th ACM*
 867 *SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, Au-*
 868 *gust 23-27, 2020*, pp. 3505–3506. ACM, 2020. doi: 10.1145/3394486.3406703. URL <https://doi.org/10.1145/3394486.3406703>.

870 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 871 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 872 *Processing*. Association for Computational Linguistics, 11 2019. URL <http://arxiv.org/abs/1908.10084>.

873

874 Graeme Ritchie. Some empirical criteria for attributing creativity to a computer program. *Minds*
 875 *Mach.*, 17(1):67–99, 2007. doi: 10.1007/S11023-007-9066-2. URL <https://doi.org/10.1007/s11023-007-9066-2>.

876

877 Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
 878 Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
 879 Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
 880 Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt
 881 Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna
 882 Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic,
 883 Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben
 884 Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris
 885 Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vi-
 886 jaykumar, Dominika Rogozinska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Er-
 887 ica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn
 888 Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra, Harsh Dhand,
 889 Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng
 890 Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort,
 891 Josh Gordon, Josh Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kartikeya Badola,
 892 Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene,
 893 Lars Lowe Sjösund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, and Lilly Mc-
 894 Nealus. Gemma 2: Improving open language models at a practical size. *CorR*, abs/2408.00118,
 895 2024. doi: 10.48550/ARXIV.2408.00118. URL <https://doi.org/10.48550/arXiv.2408.00118>.

896

897 Mark A Runco and Garrett J Jaeger. The standard definition of creativity. *Creativity research*
 898 *journal*, 24(1):92–96, 2012.

899

900 Claire E. Stevenson, Iris Smal, Matthijs Baas, Raoul P. P. P. Grasman, and Han L. J. van der
 901 Maas. Putting gpt-3’s creativity to the (alternative uses) test. In Maria M. Hedblom,
 902 Anna Aurora Kantosalo, Roberto Confalonieri, Oliver Kutz, and Tony Veale (eds.), *Proceed-
 903 ings of the 13th International Conference on Computational Creativity, ICCC 2022, Bozen-
 904 Bolzano, Italy, June 27 - July 1, 2022*, pp. 164–168. Association for Computational Creativity
 905 (ACC), 2022. URL https://computationalcreativity.net/iccc22/papers/ICCC-2022_paper_140.pdf.

906

907 Douglas Summers-Stay, Clare R Voss, and Stephanie M Lukin. Brainstorm, then select: a generative
 908 language model improves its creativity score. In *The AAAI Workshop on Creative AI Across*
 909 *Modalities*, 2023.

910

911 Luning Sun, Hongyi Gu, Rebecca Myers, and Zheng Yuan. A new dataset and method for creativity
 912 assessment using the alternate uses task. In *BenchCouncil International Symposium on Intelligent*
 913 *Computers, Algorithms, and Applications*, pp. 125–138. Springer, 2023.

914

915 Luning Sun, Yuzhuo Yuan, Yuan Yao, Yanyan Li, Hao Zhang, Xing Xie, Xiting Wang, Fang Luo,
 916 and David Stillwell. Large language models show both individual and collective creativity com-
 917 parable to humans. *Thinking Skills and Creativity*, pp. 101870, 2025.

918

919 Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin
 920 Choi, Thomas L. Griffiths, and Faeze Brahman. Macgyver: Are large language models creative

918 problem solvers? In Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings*
 919 *of the Conference of the North American Chapter of the Association for Computational Linguistics* (NAACL), 2024.
 920

921 Weixi Tong and Tianyi Zhang. Codejudge: Evaluating code generation with large language models.
 922 In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the Conference*
 923 *on Empirical Methods in Natural Language Processing (EMNLP)*, 2024.
 924

925 E Paul Torrance. Torrance tests of creative thinking. *Educational and psychological measurement*,
 926 1966.
 927

928 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 929 *learning research*, 9(11), 2008.
 930

931 Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
 932 Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. In Lun-
 933 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the Annual Meeting of the*
 934 *Association for Computational Linguistics (ACL)*, 2024a.
 935

936 Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao Chen,
 937 Chaoya Jiang, Rui Xie, Jindong Wang, Xing Xie, Wei Ye, Shikun Zhang, and Yue Zhang. Pandalm:
 938 An automatic evaluation benchmark for LLM instruction tuning optimization. In *The*
 939 *International Conference on Learning Representations (ICLR)*, 2024b.
 940

941 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 942 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
 943 *Proceedings of the 61st annual meeting of the association for computational linguistics (volume*
 944 *1: long papers)*, pp. 13484–13508, 2023.
 945

946 Theresa J Weinstein, Simon Majed Ceh, Christoph Meinel, and Mathias Benedek. What’s creative
 947 about sentences? a computational approach to assessing creativity in a sentence generation task.
 948 *Creativity Research Journal*, 34(4):419–430, 2022.
 949

950 Yang Wu, Yao Wan, Zhaoyang Chu, Wenting Zhao, Ye Liu, Hongyu Zhang, Xuanhua Shi, Hai Jin,
 951 and Philip S Yu. Can large language models serve as evaluators for code summarization? *IEEE*
 952 *Transactions on Software Engineering*, 2025a.
 953

954 Yuning Wu, Jiahao Mei, Ming Yan, Chenliang Li, Shaopeng Lai, Yuran Ren, Zijia Wang, Ji Zhang,
 955 Mengyue Wu, Qin Jin, et al. Writingbench: A comprehensive benchmark for generative writing.
 956 *arXiv preprint arXiv:2503.05244*, 2025b.
 957

958 Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhengsu Chen, Xi-
 959 aopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
 960 models. In *The International Conference on Learning Representations (ICLR)*, 2024.
 961

962 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
 963 Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Gu-
 964 osheng Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian
 965 Xie, Juntao Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang
 966 Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tian-
 967 peng Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi
 968 Chen, Xin Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang,
 969 Yuchen Gao, Yupeng Zhang, Zenan Zhou, and Zhiying Wu. Baichuan 2: Open large-scale
 970 language models. *CoRR*, abs/2309.10305, 2023. doi: 10.48550/ARXIV.2309.10305. URL
 971 <https://doi.org/10.48550/arXiv.2309.10305>.
 972

973 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 974 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 975 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 976 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 977 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 978 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115,
 979 2024. doi: 10.48550/ARXIV.2412.15115. URL <https://doi.org/10.48550/arXiv.2412.15115>.
 980

972 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 973 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
 974 Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
 975 Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
 976 Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
 977 Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
 978 Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
 979 Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
 980 Qwen3 technical report. *CoRR*, abs/2505.09388, 2025. doi: 10.48550/ARXIV.2505.09388. URL
 981 <https://doi.org/10.48550/arXiv.2505.09388>.

982 Chen Zhang, Luis Fernando D’Haro, Yiming Chen, Malu Zhang, and Haizhou Li. A comprehensive
 983 analysis of the effectiveness of large language models as automatic dialogue evaluators.
 984 In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.), *Thirty-Eighth AAAI
 985 Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Appli-
 986 cations of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in
 987 Artificial Intelligence, EAAI 2024, February 20-27, 2024, Vancouver, Canada*, pp. 19515–19524.
 988 AAAI Press, 2024. doi: 10.1609/AAAI.V38I17.29923. URL <https://doi.org/10.1609/aaai.v38i17.29923>.

990 Yunpu Zhao, Rui Zhang, Wenyi Li, and Ling Li. Assessing and understanding creativity in large
 991 language models. *Machine Intelligence Research*, 22(3):417–436, 2025.

992 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 993 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 994 chatbot arena. *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

995 Shanshan Zhong, Zhongzhan Huang, Shanghua Gao, Wushao Wen, Liang Lin, Marinka Zitnik, and
 996 Pan Zhou. Let’s think outside the box: Exploring leap-of-thought in large language models with
 997 creative humor generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recog-
 998 nition (CVPR)*, 2024.

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026 **A APPENDIX**
10271028 **A.1 SUBJECTIVITY AND IMPORTANCE OF CREATIVITY**
10291030 While creativity is inherently subjective, we wish to highlight that:
10311032 **(1) Creativity is a core AI objective, both historically and practically, whose complexity should**
1033 **be embraced rather than avoided.** “Randomness and creativity” was identified as one of the seven
1034 key problems at the Dartmouth Summer Research Project on Artificial Intelligence and recognized
1035 as essential to human-level intelligence and central to the very definition of machine intelligence Mc-
1036 McCarthy et al. (2006). With the rise of LLMs in domains such as storytelling, ideation, and design,
1037 evaluating creative ability has become both timely and necessary. Without creativity, AI models
1038 cannot generate truly novel, out-of-domain ideas — a crucial aspect of human-level intelligence that
1039 has shaped modern civilization.
10401041 **(2) The subjectivity of creativity is inevitable but controllable through our rigorous evaluation**
1042 **design.** Although creativity involves personal and cultural variation, psychological studies Barbot
1043 et al. (2019); Parkhurst (1999) show that people often converge in recognizing creative content. For
1044 instance, more creative ideas, such as the novel *Harry Potter*, typically receive higher engagement
1045 (e.g., more likes). Rather than eliminating subjectivity, our goal is to model shared human judgment
1046 in a reproducible manner using pairwise comparisons and consensus-driven aggregation. To this
1047 end, we collaborate with annotators from diverse backgrounds to ensure that the resulting evaluation
1048 framework captures a robust, collective understanding of creativity.
10491050 **(3) Our goal is not to equate creativity with conformity, but rather to approximate shared hu-**
1051 **man judgments in a reproducible and scalable way.** Psychological studies have shown humans
1052 can reliably recognize creativity across cultures and domains, especially when it combines novelty
1053 with usefulness Runco & Jaeger (2012); Barbot et al. (2019). Our use of consensus aims to reflect
1054 this shared intuition, not to suppress unconventionally. Importantly, our evaluation framework sup-
1055 ports multiple forms of creativity, including surprising, offbeat, or even subversive responses, as
1056 long as they are meaningful and novel to the prompt. In this sense, we aim to capture a broad and
1057 inclusive view of creativity, grounded in human judgment but not reduced to majority taste.
10581059 **A.2 COMPARISON WITH THE ABSOLUTE SCALE OF CREATIVITY**
10601061 Although absolute score-based evaluation has some value, we emphasize that the pairwise compar-
1062 ison approach offers several distinct advantages.
10631064 **Absolute creativity scales are difficult to define and apply.** In practice, defining a universal abso-
1065 lute scale for creativity is difficult: annotators find it hard to define what 1 to 5 means across samples
1066 and keep consistent standards/thresholds across people. Depending on the context of the instruction,
1067 a response scoring 3 could be deemed creative, whereas another instruction might require a 5 score
1068 for its response to constitute a creative answer, making “high score = high creativity” an unreli-
1069 able standard. In our pilot experiments, the ratings of 3 annotators on 50 data groups (each with 5
1070 responses) demonstrate that they produced similar relative rankings across responses but diverged
1071 substantially in absolute scores, with differences up to 1.02 points. This level of inconsistency fur-
1072 ther reduces the usefulness of absolute scoring for large-scale alignment.
10731074 **Pairwise comparison aligns directly with how LLMs are trained.** We frame CrEval as a pair-
1075 wise task due to its direct applicability to various model training algorithms, including DPO, re-
1076 ward model training, etc. These methods require a reliable, scalable, and implicit understanding
1077 of preference. Given the above challenges, absolute scale methods like prompt-based LLM scor-
1078 ing Summers-Stay et al. (2023); Zhao et al. (2025), often struggle to provide fine-grained, relative
1079 assessments needed for model alignment. This is partly because the definition of an absolute score
can be ambiguous and prone to individual interpretation, leading to inconsistency. As a result, pairs
derived from absolute scores tend to be less reliable than those constructed directly through pairwise
comparison, which provides clearer and more consistent training signals. If we want to quickly rank
model responses using pairwise comparisons, we can leverage the response from any model as a
reference. Ranking can then be efficiently achieved based on win rate, incurring minimal computa-
tional overhead. These advantages above motivate our design choice for CrEval.
1080

1080 A.3 ADDITIONAL INFORMATION OF CREATASET
10811082 A.3.1 DETAILS OF CREATASET-BASE CONSTRUCTION
10831084 **Across-Domain Creativity Dataset Initialization** We use the Oogiri-GO dataset from
1085 CLoT Zhong et al. (2024) contains over 15K Chinese humorous responses to given questions. The
1086 Ruozhiba dataset Bai et al. (2025), derived from an interest-based online community, which demon-
1087 strates linguistic creativity through various linguistic features, including puns, wordplay, and humor.
1088 Since most of the creativity in this dataset of 1K entries is concentrated in the instructions, we re-
1089 formulate the task by generating instructions from responses. The evaluator is to judge whether the
1090 generated instruction is creative.
10911092 The instruction generator is trained based on the Baichuan2 Yang et al. (2023) model. We sam-
1093 pled 600k reversed data pairs from the large-scale instruction tuning dataset Infinity-Instruct. To
1094 further enhance instruction diversity, we also employ GPT-4o-mini to generate additional instruc-
1095 tions. Each creativity-dense text is paired with a generated instruction after filtering, forming a set
1096 of creative instruction-response pairs. We sample 100k ordinary instruction-response pairs from
1097 Infinity-Instruct. Then, these instructions are used to prompt GPT-4o to generate creative responses.
10981099 **Unified Instruction-Response Standardization** To verify the quality of generated instructions,
1100 we conduct several steps for quality control. First, generated instructions are carefully refined
1101 through length filtering, eliminating repeated phrases, and removing those containing the response
1102 as a substring. Then, we annotate 200 data samples across all sources to assess whether each in-
1103 struction aligns with its corresponding response. We finally obtained an accuracy of 96.5%, which
1104 indicates that our instructions are of high quality.
11051106 After collecting (I, R) pairs, we employ GPT-4o-mini to score the creativity of each (I, R) pair
1107 on a scale from 1 to 6. This creativity score serves as a quality indicator, enabling us to filter out
1108 low-quality data. At last, only pairs with a score exceeding 4 are retained. The prompt used in this
1109 step will be presented in the following.
11101111 A.3.2 STATISTICS
11121113 We present the details of our CreataSet in
1114 original and paired samples, as shown in Ta-
1115 ble 3. The dataset consists of multi-source
1116 data, including short texts, lyrics, ancient
1117 poetry, modern poetry, prose, Oogiri-GO,
1118 Ruozhiba, and Infinity-Instruct. It is worth
1119 noting that the infinity-instruct source can
1120 provide a large number of data with general
1121 instructions, which is beneficial for training
1122 creativity evaluators. Besides, prose offers
1123 long texts with rich content, enabling CrEval
1124 to handle a longer context. We will release
1125 the dataset along with the CrEval to facilitate
1126 future research on creativity evaluation.
11271128 A.3.3 LENGTH DISTRIBUTIONS
11291130 We present the length distributions of CreataSet-Base and other creative-related datasets in Fig-
1131 ure 11. As shown, CreataSet-Base has a broader response length distribution.
11321133 Additionally, we randomly sample 800 samples from each source in the dataset and present the
1134 distribution of the response lengths in Figure 10. For better visualization of their KDE curves, we
1135 applied a log transformation to the length as the x-axis.
11361137 From the figure, we observe that: (1) The Short Texts, Ruozhiba, and Ancient Poetry sources primar-
1138 ily consist of shorter responses. (2) The Lyrics, Modern Poetry, and Infinity-Instruct mostly contain
1139 medium-length responses. (3) The Prose source exhibits longer responses than other sources, while
1140 CLoT shows a more uniform distribution, covering both short and medium-length responses.
1141

Scenario	# Samples		# Paired Samples	
	Train	Test	Train	Test
Short Texts	36,205	50	361,090	410
Lyrics	9,186	50	81,566	364
Ancient Poetry	11,222	50	111,590	369
Modern Poetry	17,359	50	159,973	368
Prose	806	50	5,786	380
Oorigi-Go	10,008	50	99,409	430
Ruozhiba	1,135	50	11,315	451
Infinity-Instruct	27,044	50	225,876	424
Total	112,965	400	1,056,605	3,196

1142 Table 3: The statistics of the CreataSet dataset.
1143

Figure 10: Length Distribution of Different Sources.

Figure 11: The length distributions of MacGyver, Oorigi-GO, DPT, WritingBench and CreaSet-Base. For better visualization, we have omitted TTCW and Creative Writing v3 due to their small dataset sizes.

Figure 12: The t-SNE visualization of semantic distributions of DPT, TTCW, MacGyver, Oorigi-GO, and CreaSet-Base.

Overall, our dataset encompasses a diverse range of response lengths from short to long. This diversity ensures that the evaluators trained by this can capture a broad spectrum of linguistic patterns and structural characteristics.

A.3.4 SEMANTIC DISTRIBUTION OF DIFFERENT DATASETS

To verify the diversity of our data semantics, we use Sentence-BERT Reimers & Gurevych (2019) and BERTopic Grootendorst (2022) to extract the semantic embeddings of each sample in CreaSet-Base, and adopt t-SNE Van der Maaten & Hinton (2008) to visualize the semantic distribution of these samples, as shown in Figure 12. Our dataset covers a wide range of domains, which can effectively support the generalization of the model’s evaluation ability across diverse contexts.

A.3.5 DIVERSITY ANALYSIS OF AUGMENTED RESPONSES

To validate whether the k responses in section 3.2 exhibit meaningful diversity, we use the Qwen3-Embedding-8B Yang et al. (2025) model to compute semantic distances (cosine similarities) for the training pairs. The distances span 0.19–0.94, with a median of 0.64, showing that the responses vary across both fine-grained and coarse semantic differences. We also conducted a human diversity assessment: 100 randomly sampled groups ($k = 5$ responses each) of responses were rated by 3 annotators on a 1–5 scale. The diversity scores fall within 1–5, with an average score of 3.84. This confirms the responses are not clustered around a narrow semantic band. These results indicate our data exhibit substantial and meaningful diversity, which supports learning both subtle distinctions (when responses are semantically close) and broader conceptual differences (when they diverge).

1188
1189

A.4 ADDITIONAL INFORMATION OF CREVAL

1190
1191

A.4.1 IMPLEMENTATION DETAILS

1192
1193

The backbone of CrEval is Qwen2.5-7B-Instruct Yang et al. (2024) and Low-Rank Adaptation (LoRA) Xu et al. (2024) with $\alpha=16$ and $r=8$ is applied to enhance efficiency. It is trained with DeepSpeed Rasley et al. (2020) Zero Redundancy Optimizer (ZeRO) Rajbhandari et al. (2020) Stage 2 and bfloat16 (BF16) mix computation precision, using the AdamW optimizer Loshchilov & Hutter (2019) with $\beta_1 = 0.9$, $\beta_2 = 0.999$. The learning rate is $1e-5$ with a 0.1 warmup ratio, followed by a cosine decay schedule. CrEval is trained for 2 epochs with a batch size of 2 and gradient accumulation steps of 8 on 8 NVIDIA H100 GPUs, while the max sequence length is set to 3072.

1194
1195

A.4.2 COMPARING TO THE STANDARD BRADLEY TERRY LOSS

1196
1197

We chose the loss formula in 1 because it is simple, efficient, and naturally compatible with the training paradigm of LLMs, where labels are treated as text outputs conditioned on prompts. Moreover, this formulation can be easily extended to multi-class preference settings. Fundamentally, we view both our loss and the Bradley-Terry (BT) loss as approaches to the same underlying goal: modeling the probability of preference between responses. Both can be adopted for pairwise preference learning by maximizing the likelihood of the preferred sample.

1198
1199

A.4.2 COMPARING TO THE STANDARD BRADLEY TERRY LOSS

1200

We chose the loss formula in 1 because it is simple, efficient, and naturally compatible with the training paradigm of LLMs, where labels are treated as text outputs conditioned on prompts. Moreover, this formulation can be easily extended to multi-class preference settings. Fundamentally, we view both our loss and the Bradley-Terry (BT) loss as approaches to the same underlying goal: modeling the probability of preference between responses. Both can be adopted for pairwise preference learning by maximizing the likelihood of the preferred sample.

1201
1202

To compare the results of different loss functions, we compare our method with a BT loss. The results in Table 4 show that the two approaches perform comparably, with our method achieving better consistency. We consider that the specific form of preference modeling may not be the primary bottleneck for creativity evaluation performance at this stage.

1203
1204

A.4.3 RESULTS ON DIFFERENT BASE MODELS

1205
1206

To identify the most effective base model, we evaluate several candidates, with the results presented in Table 5. Among them, Qwen2.5-Instruct-14B consistently delivers superior performance across all evaluation metrics. Its advantage may stem from its larger model capacity and instruction tuning, which allow it to better capture the nuances of creativity in texts. Accordingly, we adopt the Qwen2.5 series as the base model for all experiments.

1207
1208

A.4.4 AN ANALYSIS OF CREVAL’S DECISION

1209

Our dataset provides further value for deeply analyzing the latent factors and what specific features and semantic patterns CrEval learn to recognize as creative. For every pairwise comparison in the test set (3K+ pairs), we use an LLM (*i.e.*, DeepSeek-V3.2) to identify which creative attributes were associated with the response CrEval judged as more creative. We then aggregated these attributes and showed the most frequent attributes in Table 6. The distribution reveals that CrEval is not relying on superficial artifacts but consistently attends to semantic, stylistic, and structural patterns that align with widely accepted dimensions of creativity.

Method	F1	Kappa	Agree.	Consis.
BT Loss	0.722	0.593	0.703	0.846
CrEval-7B	0.732	0.601	0.745	0.920

Table 4: The results of different loss functions.

Method	F1	Kappa	Agree.	Consis.
Baichuan2-7B-Chat	0.721	0.588	0.741	0.927
Llama3.1-8B-Chat	0.729	0.590	0.738	0.922
Qwen2.5-Instruct-7B	0.732	0.601	0.745	0.920
Qwen2.5-Instruct-14B	0.735	0.613	0.762	0.944

Table 5: The results of performance on different base models. Agree. and Consis. represents Agreement and Consistency, respectively.

Category	Ratio	Category	Ratio
Unique Imagery	~21%	Concrete Details	~5%
Vivid Metaphor	~19%	Rich Visuals	~5%
Unconventional Expression	~12%	Imaginative elaboration	~4%
Sincere Emotion	~10%	Distinctive Layers	~3%
Profound Symbolism	~6%	Precise word choice	~2%

Table 6: The top 10 most frequent attributes that CrEval judged as more creative.

1238
1239

Table 6: The top 10 most frequent attributes that CrEval judged as more creative. The distribution reveals that CrEval is not relying on superficial artifacts but consistently attends to semantic, stylistic, and structural patterns that align with widely accepted dimensions of creativity.

1242 A.4.5 FURTHER ANALYSIS OF CREVAL-ENHANCED MODELS
12431244 (1) *How CrEval Enhance Model Creativity by Selecting Data Difficulty?*
1245

1246 We further examine how the win rate varies with different ratios of hard reject samples in DPO
1247 training. As shown in Figure 13, the win rate increases slightly until the ratio reaches 30%, where it
1248 peaks. Beyond this point, it declines rapidly, with the worst performance observed when all reject
1249 samples are hard responses. These findings indicate that incorporating an optimal proportion of hard
1250 samples can enhance learning creativity; however, careful balance is crucial for effective training.
1251

1264 Figure 13: Win rate curves of incorporating different ratios of hard reject samples in DPO training,
1265 evaluated by CrEval and GPT-4o.
1266

1267 (2) *Are CrEval-Enhanced Models Compromised in Reasoning or Prone to More Hallucination?*
1268

1269 While Section 4.5 demonstrates a promising direction for enhancing creativity, we further investigate
1270 whether CrEval-enhanced models are compromised in core capabilities by evaluating their reasoning
1271 ability and tendency to hallucinate.

1272 **a. Creativity and reasoning are not contradictory and can be multi-dimensionally optimized.**
1273

1274 We evaluated the reasoning ability of the DPO-
1275 70E30H model (introduced in Section 4.5) on the
1276 MATH Hendrycks et al. (2021) and HumanEval Chen
1277 et al. (2021) benchmarks, comparing it with the original
1278 base model under identical settings. As shown in Table
1279 7, enhancing creativity did not compromise reasoning
1280 or factual accuracy. Instead, the CrEval-enhanced model
1281 exhibited a slight improvement (though not statistically
1282 significant), possibly due to increased exploration during
1283 training, which may have led to more robust solution patterns.

Model	MATH	HumanEval
Qwen2.5-7B-Instruct	59.76	72.97
DPO-70E30H	60.28	73.98

1284 Table 7: The results of reasoning abilities on MATH and HumanEval.
1285

1286 **b. Enhancing model creativity did not increase hallucination.**
1287

1288 We evaluated DPO-70E30H and its base
1289 model Qwen2.5-7B-Instruct on the TruthfulQA
1290 benchmark Lin et al. (2022) to assess potential
1291 hallucination tendencies. Results in Table 8
1292 show comparable performance between the two
1293 models, indicating that the creativity enhancement
1294 in DPO-70E30H maintains factual integrity
1295 without introducing hallucinations.

Model	ROUGE-L	BLEU	MC1	MC2
Qwen2.5-7B-Instruct	48.84	50.06	47.61	64.76
DPO-70E30H	48.96	51.41	47.12	64.83

1296 Table 8: The results of hallucination analysis.
1297

1298 A.5 QUALITATIVE RESULTS
1299

1300 To provide valuable intuition about what CrEval has learned and how it makes judgments, we include
1301 some test pairs along with CrEval’s predictions and human preferences in Table 9. [Both success and](#)

1296 failure cases are included to offer a more balanced and in-depth examination of the discrepancies
 1297 between CrEval and human judgments.
 1298

1299 Success examples highlight that CrEval can favor responses that are not only novel but also relevant—hallmarks of meaningful creativity. Other failure cases suggest that when the creativity levels
 1300 between two responses are very close, CrEval may encounter challenges in accurately identifying
 1301 subtle semantic preferences. We will further investigate these failure patterns in future work to better
 1302 understand the nuances in creative evaluation.
 1303

1304 *Success cases*

1305 Instruction: Even though three generations in our family haven't understood music or played any
 1306 instruments, can a child still learn one well?

1307 Response 1: I'm the only programmer in my entire ancestral line — going back 300 generations.

1308 Response 2: As long as the child has an interest and puts in the effort, they can definitely learn
 1309 an instrument well.

1310 **Ground Truth: Response 1**

1311 CrEval: After careful consideration, I think Response 1 is more creative.

1312 Instruction: Express the reason for giving up in one sentence.

1313 Response 1: I'm tired — not physically, but because all my hard work hasn't paid off.

1314 Response 2: If I gave up, it's not because I lost — it's because I understood.

1315 **Ground Truth: Response 2**

1316 CrEval: After careful consideration, I think Response 2 is more creative.

1317 *Failure cases*

1318 Instruction: Please describe the distance between people in one sentence.

1319 Response 1: A wall; a bridge; an embrace.

1320 Response 2: Amid the bustling warmth of human life, only a gentle word lies between heart and
 1321 heart.

1322 **Ground Truth: Response 1**

1323 CrEval: After careful consideration, I think Response 2 is more creative.

1324 Instruction: Why do people always seem to lose one sock?

1325 Response 1: In the sock world's ballroom, solo dancers always lose their way.

1326 Response 2: If both went missing, you wouldn't even notice.

1327 **Ground Truth: Response 2**

1328 CrEval: After careful consideration, I think Response 1 is more creative.

1330 Table 9: Qualitative examples from the test data.

1331

1332 **A.6 PROMPTS**

1333 We present the prompts we used in this section. Table 10 and 11 are ordinary and creative prompts,
 1334 which we adopt to synthesize responses with different creative levels (Section 3.3). Table 12 shows
 1335 the prompt used in Section A.3.1, where we employ it to score the creativity of instruction-response
 1336 pairs and filter out those with low creativity scores. We adopt the prompt in Table 13 to generate
 1337 creative responses for Ordinary Instruction-response pairs (*i.e.*, Infinity-Instruct) using GPT-4o.
 1338

1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350

1351

1352

1353

1354

1355

1356

1357

Ordinary Prompt (Prompt_o)

1358

Please reply to the following instruction. The length of the answer should be about $\{\{\text{len}(\text{original_response})\}\}$ words. Only give a reply, do not output anything else.

1360

Instruction: $\{\{\text{Instruction}\}\}$

1361

Your reply:

1362

请回复以下指令，回答长度在 $\{\{\text{len}(\text{original_response})\}\}$ 字左右。你只需要给出回复，不要输出任何其他内容。

1363

指令： $\{\{\text{Instruction}\}\}$

1364

你的回复：

1365

1366

1367

Table 10: The ordinary prompt (Prompt_o) used to synthesize ordinary responses.

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

Creative Prompt (Prompt_c)

1384

You are a talented creative expert. Use your imagination to respond to the instructions as creatively as possible. Creativity standard: novel, clever, and meaningful. Only give a reply, do not output anything else. Please respond creatively to the following instructions, and the length of the answer should be about $\{\{\text{len}(\text{original_response})\}\}$ words.

1385

Instruction: $\{\{\text{Instruction}\}\}$

1386

Your reply:

1387

你是一个才华横溢的创意专家，发挥你的想象力，用尽可能有创意的方式回复给出的指令。创意标准：新奇巧妙并且有意义的。你只需要给出回复，不要输出任何其他内容。请有创意地回复以下指令，回答长度在 $\{\{\text{len}(\text{original_response})\}\}$ 字左右。

1388

指令： $\{\{\text{Instruction}\}\}$

1389

你的回复：

1390

1391

1392

1393

1394

1395

1396

1397

Table 11: The creative prompt (Prompt_c) used to synthesize creative responses.

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

Creative Data Filtering Prompt

Task Description:

You are a keen and rigorous literary critic responsible for evaluating the quality and creativity of {{category}}.

Specific Requirements:

1. Assess whether the core creative elements are novel and meaningful by considering aspects such as word choice, word order, syntax, symbolism, rhetorical devices, and overall imagery.

2. If a text contains many creative elements, such as novel syntactic structures and expressions, it should receive a high score. Conversely, if it is merely a simple statement or lacks creative potential, it should receive a low score.

3. Provide a concise critical analysis of the text, followed by a creativity score ranging from 1 to 6.

4. Your response must be in JSON format, containing only two fields: “analysis” and “score”, with no additional output.

5. Novel expressions and original meanings should be awarded high scores, while excessive repetition and commonplace expressions should be assigned low scores. If the creativity level is deemed moderate, the score should not exceed 3.

Adhere strictly to all requirements; otherwise, the overseeing critic will impose severe penalties.

Given Text: {{Text}}**### Your reply:****### 任务描述：**

你是一个敏锐严厉的文艺评论家，你需要对{{category}}的质量和创意程度进行判断。

具体要求：

1. 创意的核心内涵是否新颖且有意义，判定的时候可以从用词、词序、句法、象征意义、修辞手法、整体意象等方面综合判定。

2. 如果一段文本包含了较多的创意要素，例如新奇的句法和表达，应该得到高分；如果是简单的陈述，或是不适合作为创意回答，具有低创意潜力，则应该得到低分。

3. 请先给出对文本的简要分析鉴赏，然后从1到6分给出你的创意打分。

4. 你的回复需要为json格式，包含“analysis”和“score”两个字段，不需要输出任何其他内容。

5. 新颖的表意会被赋予高分，过度的重复和平常的表达直接赋予低分。如果分析中认为创意程度一般，得分不应该超过3分。

尽全力达到所有要求，否则监视你的批判学者将会严厉惩罚你。

给定文本：{{Text}}**### 你的回复：**

Table 12: The prompt used to score and filter creative responses.

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

Prompt for Creative Response Generation

You are an exceptionally talented expert in creativity. Utilize your imagination to respond to the given instructions in the most inventive manner possible.

Creativity Criteria: Your responses should be novel, ingenious, and meaningful.

Reference Features of Creativity:

1. Uncommon or novel word choices and combinations;
2. Unique syntactic structures, including unconventional word order and sentence arrangements;
3. Rhythmic or phonetic elements, such as rhyme or alliteration;
4. Clever rhetorical devices, literary allusions, quotations, or humor-based wordplay.

Specific Requirements:

1. The creative response must align with the given instructions.
2. There is no restriction on response length—both longer responses (fluid, intricately structured, etc.) and shorter ones (concise, witty, etc.) can exhibit creativity.

Provide only the response to the instructions without any additional commentary.

Instruction: {{Instruction}}

Your reply:

你是一个才华横溢的创意专家，发挥你的想象力，用尽可能有创意的方式回复给出的指令。

创意标准：新奇巧妙并且有意义的。

可参考的创意特征：

1. 不常见的新奇词语或词语组合；
2. 独特的句法和句子结构，包括新奇的词序和语序关系；
3. 文本韵律性或语音相似性，例如押韵或相似声音的存在；
4. 一些巧妙的修辞手法、典故、引用或者幽默的用梗；

具体要求：

1. 创意的回复要符合指令要求；
2. 回复的长短没有限制，较长（行文流畅、结构精巧等等）或者较短（一语中的、幽默用梗等等）都可以是富含创意的；

不要回复我其他内容，只给出问题的回答。

指令：{{Instruction}}

你的回复：

Table 13: The prompt used to generate creative response for Ordinary Instruction-response Pairs.

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512 A.7 DATASET EXAMPLES
1513

1514 For each source from our dataset, we present an example from Figure 14-21. Each example contains
1515 the original form of the data from its source and our synthetic contents for training creativity evalua-
1516 tor CrEval (divided by the dashed line). We have omitted some texts for a clearer presentation. It
1517 is worth noting that what we provide is a synthesis method. If necessary, one can use our method to
1518 synthesize more similar data for training.

1519

1520 Type: Existing Creative Data
15211522 **Source:** Oogiri-GO1523 **Instruction:**

1524 What will be humanity's final question?

1525 人类文明最后的一个问题将会是什么？

1526 **Response:**

1527 What does this button do?

1528 这个按钮是干嘛用的？

1529 **Synthetic Responses:**1530 ① Can't answer. (By MiniCPM-2B-Prompt_o)

1531 无法回答。

1532 ② Humanity's ultimate question: the meaning of life. (By MiniCPM-2B-Prompt_c)

1533 人类文明的终极问题：生命的意义。

1534 ③ What is the meaning of life? (By Qwen2.5-14B-Prompt_o)

1535 生命的意义是什么？

1536 ④ Have we ever truly understood love? (By Qwen2.5-14B-Prompt_c)

1537 我们是否曾真正理解过爱？

1538 ...

1539

1540 Figure 14: An example from type *Existing Creative Data* and source *Oogiri-GO*. We present texts
1541 in English and Chinese for better understanding. The original data are listed in the upper part of the
1542 dashed line, and our constructed components are in the lower part.

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

Type: Existing Creative Data

Source: Ruozhiba

Instruction:

Can a person survive with only one heart left?

只剩一个心脏了还能活吗?

Response:

Yes, humans naturally have only one heart.

能, 人本来就只有一个心脏。

Constructed Instruction:

Based on the answer below, guess the possible question. Provide only the question, no extra content.

\n Answer: Yes, humans naturally have only one heart. \n Possible question:
请基于下文的回答, 猜测可能的提问, 仅提供问题, 不要有额外内容。 \n 回答内

容: 能, 人本来就只有一个心脏。 \n 可能的问题:

Synthetic Responses:

① Do humans have only one heart? (By MiniCPM-2B-Prompt_o)
人类有且仅有一颗心脏吗?

② Why do humans have only one heart? (By MiniCPM-2B-Prompt_c)
为什么人只有一个心脏?

③ How many hearts do humans have? (By Qwen2.5-14B-Prompt_o)
人有几个心脏?

④ How many hearts do humans have? (By Qwen2.5-14B-Prompt_c)
人类有几个心脏?

...

Figure 15: An example from type *Existing Creative Data* and source *Ruozhiba*. We present texts in English and Chinese for better understanding. The original data are listed in the upper part of the dashed line, and our constructed components are in the lower part.

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

1634 **Type: Creativity-Dense Texts**

1635
1636
1637
1638
1639

Source: Short Texts

Response:

Sunflowers don't cry; even when down, they face the sun.
向日葵没有眼泪即使沮丧也朝着阳光。

1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657

Constructed Instruction:

Please share your thoughts on maintaining a positive attitude.
请分享你对坚持积极态度的看法。

Synthetic Responses:

① Maintaining a positive mindset and an optimistic attitude helps us live more proactively.
(By MiniCPM-2B-Prompt_o)

坚持积极的思维和乐观的态度，能够让我们更加积极向前的生活。

② A positive attitude makes you stronger, and persistence leads to success. (By MiniCPM-2B-Prompt_c)

积极态度使人更强大，坚持才能更成功。

③ A positive attitude brings energy and helps overcome challenges. (By Qwen2.5-14B-Prompt_o)

积极态度能带来正能量，助人克服困难。

④ A positive attitude is a light that illuminates the path ahead; persistence keeps it shining.
(By Qwen2.5-14B-Prompt_c)

积极态度如灯，照亮前行路，坚持则让光芒永不熄。

...

1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 16: An example from type *Creativity-Dense Texts* and source *Short Texts*. We present texts in English and Chinese for better understanding. The original data are listed in the upper part of the dashed line, and our constructed components are in the lower part.

1674
1675
1676
1677
1678
1679

Type: Creativity-Dense Texts

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Source: Lyrics

Response:

Millions of eyes are focused on one miracle as I begin to awaken. Millions of sweat droplets are for purification, the courage before the eruption. I don't mind the thorns ahead because giving up is not an option. I will overcome because I dare to fly, unafraid of tears. I won't stop, I will surpass because I dare to chase, even if it means bleeding, I won't retreat. 千万双眼睛只注目一个奇迹, 当我开始苏醒, 千万颗汗滴只为了再洗涤, 爆发前的勇气, 不介意前方会布满荆棘, 因为我没可能放弃, 我超越因为敢飞, 就不怕再有泪水, 绝不停歇, 我会超越因为敢追, 宁愿流血不能后退。

Constructed Instruction:

Write lyrics for an inspiring song that conveys determination and courage in the face of challenges, encouraging perseverance and the spirit of never giving up.

请你写一首鼓励人心、传递奋斗精神的歌词, 表达面对困难时不放弃的决心和勇气。

Synthetic Responses:

① Move forward fearlessly, undaunted by storms or rainbows. No matter the challenges, we never give up. We must seize life, constantly striving and pursuing our dreams. Regardless of the hardships ahead, we face them with confidence and dignity. With more courage and stronger faith, we chase our dreams, making life more vibrant. Because life is worth fighting for. (By MiniCPM-2B-Prompt₀)

勇往直前, 风雨彩虹皆不惧, 无论困难多少, 我们永不放弃。我们要把握人生, 不停地追寻和奋斗, 无论何时, 不管前方有哪些艰难和挑战, 我们都要迎头向前, 不卑不亢。我们会拥有更多的勇气, 更强的信心, 去追逐心中的梦想, 让生命变得更加绚烂。因为生命, 值得奋斗。

② Through storms and struggles, we keep moving forward. \n Despite the hardships, we never back down. \n Setbacks and pain can't break us, \n because we have dreams in our hearts. \n Let's fight together, \n and chase our dreams. \n Only with persistence can we achieve our own victory. (By MiniCPM-2B-Prompt₀)

风雨中我们一路前行, \n 困难重重我们不曾退缩。 \n 挫折和痛苦无法击垮我们, \n 因为我们心中有梦想。 让我们一起奋斗, \n 一起追逐自己的梦想。 \n 因为只有坚持不解, \n 才能收获属于自己的胜利。

③ The lyrics are as follows: \n \n Chorus: \n We have dreams, undeterred by hardships. The wind against us only makes us soar higher. \n Let's charge forward together, bravely, chasing the light even through the darkest night. \n Let dreams light our way, and courage guide us. We fear no difficulty, and we will never give up. \n Let's move forward together, chasing the light even in the dark. (By MiniCPM-2B-Prompt₀)

歌词如下: \n \n 副歌: \n 我们有梦想, 不畏艰难, 逆风的方向, 更适合飞翔 \n 让我们一起, 勇敢地闯, 即使黑夜, 也要追逐光芒 \n 让梦想照亮前方, 让勇气引领方向, 不畏任何困难, 我们永不言败 \n 让我们一起, 勇敢地闯, 即使黑夜, 也要追逐光芒

... (continued on the next page)

Figure 17: An example from type *Creativity-Dense Texts* and source *Lyrics*. We present texts in English and Chinese for better understanding. The original data are listed in the upper part of the dashed line, and our constructed components are in the lower part. Owing to length constraints, the middle part of each response is omitted.

1728
1729

Type: Creativity-Dense Texts

1730

Synthetic Responses (continued):

1731

① [Song of the Wind Against Us] \n \n (Prelude) \n In the dark of night, we see the first light of dawn. \n In adversity, we hear the song of our dreams. \n With every step, we walk in unwavering faith, \n Letting the flame in our hearts guide our way. (Epilogue) \n As the dawn breaks, the world will shine brighter, \n For we have each other, writing something extraordinary together. \n Let's join hands, moving toward the dream's shore, \n And in the headwind, shine our brightest light.

1732

【逆风之歌】\n\n(前奏)\n在黑夜中，我们看见黎明的曙光，\n在逆境中，我们听见梦想的歌唱，\n每一步都踏着坚定的信仰，\n让心灵的火焰，照亮前行的方向。.....(尾声)\n当黎明破晓，世界将更加灿烂，\n因为有你，有我，共同书写不凡，\n让我们携手，向着梦想的彼岸，\n在逆风中，绽放最耀眼的光芒。

1733

...

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

Figure 17: An example from type *Creativity-Dense Texts* and source *Lyrics* (continued).

1744

1745

1746

Type: Creativity-Dense Texts

1747

Source: Ancient Poetry

Response:

Lament on Youzhou Tower

No sages remain to guide the past, no voices echo from the future. \n Alone beneath the boundless sky, I mourn—lost in time, lost in tears.

登幽州台歌

前不见古人，后不见来者。 \n 念天地之悠悠，独怆然而涕下。

1750

1751

1752

1753

1754

1755

Constructed Instruction:

Please write a four-line ancient poem about the passage of time and loneliness, with a heavy and emotional tone.

请写一首表达对时间流逝和孤独感的古诗，要求四句，风格要沉重且富有情感。

Synthetic Responses:

① Rivers never cease, time flows on. Tears of solitude through the years, unknown in the endless night. (By MiniCPM-2B-Prompt_o)

江河流不尽，时间不断流。岁月孤独泪，长夜里无人知。

② Time flies, nights grow long, lost in thought alone. (By MiniCPM-2B-Prompt_c)

岁月如梭，时光荏苒，独坐长夜，思量万千。

③ A lone shadow with the setting sun, as time flows like water. \n In the silent night, listening to wind and rain, letting worries drift away. (By Qwen2.5-14B-Prompt_o)

孤影伴残阳，岁月逐水流。 \n 静夜听风雨，心事付东流。

④ Time flies, shadows linger. Laughter fades—where has it gone? \n Midnight bells chime in solitude, leaving only tears to drench my robe. (By Qwen2.5-14B-Prompt_c)

时光荏苒孤影长，昔日欢笑今何方。 \n 夜半钟声添寂寥，唯余清泪湿衣裳。

...

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Figure 18: An example from type *Creativity-Dense Texts* and source *Ancient Poetry*. We present texts in English and Chinese for better understanding. The original data are listed in the upper part of the dashed line, and our constructed components are in the lower part.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Type: Creativity-Dense Texts

Source: Modern Poetry

Response:

Distance \n A universe in a pile of rubble. \n Cracks magnified infinitely, we are \n bacteria under a microscope, seeing our sorrow \n in a giant's hand. Two people, \n a grain of rice apart—yet a lifetime away.

距离 \n 一堆乱石中的宇宙 \n 石缝被无限放大，我们是 \n 显微镜下细菌，在巨人的手里 \n 看见了我们的忧伤，看到两个人 \n 一粒米的距离，要付出一生

Constructed Instruction:

Write a modern poem exploring the theme of distance and the relationship between the vast universe and human insignificance.

请你写一首现代诗，探索距离这一主题，表达在浩瀚宇宙和人类微小存在之间的关系。

Synthetic Responses:

① In the vast cosmos, humanity's fleeting existence drifts like tiny planets among the stars—exploring the universe's depths while pondering our own insignificance. (By MiniCPM-2B-Prompt_o)

在深邃浩渺的宇宙中，人类微不足道的存在与无尽距离相互交错，如同微小星球在星辰间的漂流，探寻宇宙的深邃，也思考我们的微小。

② The universe is vast, humanity is small, distance is great, but hearts connect. (By MiniCPM-2B-Prompt_c)

宇宙浩瀚，人类渺小，距离遥远，心灵相通。

③ Distance—a gentle leap through the cosmos, where stars are far yet near. \n Humanity—a speck of dust, gazing at the unreachable sky, yet somehow connected. (By Qwen2.5-14B-Prompt_o)

距离，在宇宙间轻轻一跃，星辰与星辰间，遥远而亲近。 \n 人类，微尘般存在，仰望星空，触不可及，却又心有灵犀。

④ The universe is vast and boundless, drifting like dust among the stars. \n A lonely journey across light-years, you and I apart. \n In endless darkness, we seek a glimmer of light. \n Distance is not just space—it's a bridge between hearts. (By Qwen2.5-14B-Prompt_c)

宇宙广袤无垠，星河间微尘般漂泊， \n 孤独的光年旅程，你我相隔， \n 在无尽黑暗中，寻找微光， \n 距离，不仅是长度，更是心灵的桥梁。

...

Figure 19: An example from type *Creativity-Dense Texts* and source *Modern Poetry*. We present texts in English and Chinese for better understanding. The original data are listed in the upper part of the dashed line, and our constructed components are in the lower part.

1836	
1837	
1838	
1839	
1840	
1841	Type: Creativity-Dense Texts
1842	Source: Prose
1843	Response:
1844	Time gently lifts the veil of youth—dreamy eyes once filled with innocence now deepen with wisdom. Time carves its mark—soft foreheads once untouched by years now glow with maturity. A gentle breeze, soft moonlight, tranquil waters, and graceful melodies—who wouldn't long for such a life? But there is also beauty in bearing the weight of mountains, enduring ruthless trials, and emerging from life's fiercest storms with unshaken strength. That, too, is a desire of the soul.
1845	岁月把时光的幕布轻轻一掀，翩翩少年那如梦的双眸便逝去了天真，蓄满了深沉；岁月把年华的刻刀缓缓一划，婀娜少女光洁的额头上便抹去了稚嫩，倾注了成熟。....轻轻拂面的微风，柔柔照射的月光，宁静的河水，轻歌曼舞，这样的人生谁不希望？但承受山一样厚重的压力，忍受冷酷残忍的磨难，经过惊心动魄的搏浪之后而获得的慷慨豪烈的美丽，也是人生的一种渴望！
1846	
1847	
1848	
1849	
1850	
1851	
1852	
1853	
1854	
1855	Constructed Instruction:
1856	Write a prose piece on the passage of time and its impact on life, exploring the insights gained through experience and growth.
1857	请写一篇关于岁月流逝对人生影响的散文，探讨经历与成长带来的感悟。
1858	
1859	Synthetic Responses:
1860	① Time is a ruthless blade, leaving its mark on all living things—plants, animals, and humans. Its passage erases moments, fades memories, and inevitably takes life itself. Yet, every fleeting joy and irreplaceable imprint it leaves is a treasure unique to our existence. Time is relentless yet beautiful. It pushes us forward, filling our lives with experiences and memories. Let's cherish every moment, engraving it into the story of our lives as a vital part of our growth and journey. (By MiniCPM-2B-Prompt _o)
1861	岁月，是一把无情的刀。它对一切生命，无论是植物、动物还是人类的生存都有着不可抗拒的影响。岁月的流逝，意味着时间的消逝和生命的消失，无论是短暂的美好经历还是那些难以替代的岁月印记，都是生命中不可复制的财富。....岁月是残酷的，但是它又是美好的。时光的脚步催促着我们，带给我们无尽的经历和回忆。让我们珍爱时光中的每一分每一秒，让它铭刻在生命的史册中，成为我们成长和生命中的重要一部分。
1862	
1863	
1864	
1865	
1866	
1867	
1868	
1869	
1870	
1871	② Time passes like a silent feast, quietly taking away our youth while leaving behind endless memories. Life is a journey, with each stage offering different views and emotions. We should cherish every moment, face each challenge with gratitude, and let the passing of time become our greatest treasure. (By MiniCPM-2B-Prompt _c)
1872	岁月流逝，如同一场无声的盛宴，悄然间，它带走了我们青春的年华，留下了无尽的回忆。人生，就像一场旅行，我们在不同的阶段，经历了不同的风景，感悟着不同的情感。....人生，就像一场旅行，我们在不同的阶段，经历了不同的风景，感悟着不同的情感。我们应该珍惜每一分每一秒，用感恩的心去面对生活中的每一个挑战，让岁月的流逝成为我们人生中最宝贵的财富。
1873	
1874	
1875	
1876	
1877	
1878	
1879	... (continued on the next page)
1880	
1881	
1882	Figure 20: An example from type <i>Creativity-Dense Texts</i> and source <i>Prose</i> . We present texts in English and Chinese for better understanding. The original data are listed in the upper part of the dashed line, and our constructed components are in the lower part. Owing to length constraints, the middle part of each response is omitted.
1883	
1884	
1885	
1886	
1887	
1888	
1889	

1890
1891
1892 **Type: Creativity-Dense Texts**
1893 **Synthetic Responses (continued):**
1894 ③ Time flies, pushing us forward with unstoppable force. As it passes, we transform from
1895 innocent children to wise adults. Along the way, we've faced countless storms and moments
1896 of sunshine, all of which have nourished our growth and strengthened our spirits, making us
1897 more resilient and mature. Time may take away our youth, but it also brings the wisdom
1898 of growth, helping us understand the true meaning of life and cherish what we have now.
1899 (By MiniCPM-2B-Prompt_o)
1900 岁月如梭，时光匆匆，它以一种不可阻挡的力量推动着我们前行。岁月流逝，我
1901 们从一个稚嫩的孩童，变成了一个充满智慧的成年人。这期间，我们经历了无数的
1902 风雨，也经历了无数的阳光，而这一切都成为了我们成长的养分，滋养着我们的心
1903 灵，让我们变得更加坚韧、成熟。..... 岁月流逝，带走了我们的青春，却也带给了
1904 我们成长的智慧。岁月的流逝，让我们明白了人生的真谛，也让我们更加珍惜眼前
1905 的一切。
1906 ④ Time flows silently, like water, never speaking yet slowly unfolding the story of our lives.
1907 We grow from innocent children to inexperienced youths, then into mature adults, and fi-
1908 nally, elderly ones with gray hair. Each stage is a gift from time. It teaches us that
1909 every embrace, every farewell, is an essential part of life. Time reminds us that life is like
1910 a journey, where the value lies not in the destination, but in the scenery along the way and
1911 the mindset with which we experience it. Only through the passage of time can we truly
1912 appreciate the beauty of life.
1913 岁月，如流水般悄然无息地流淌，它不言不语，却在不经意间，将我们的生命画
1914 卷，缓缓展开。我们从懵懂无知的孩童，到青涩懵懂的少年，再到成熟的青年，直
1915 至白发苍苍的老者，这每一个阶段，都是岁月给予我们的馈赠。..... 它让我们懂得
1916 了，每一个拥抱，每一次告别，都是生命中不可或缺的体验。岁月让我们明白，人
1917 生就像一场旅行，不在乎目的地，而在于沿途的风景和看风景的心情。只有经历了
1918 岁月的洗礼，才能真正懂得生命的美好。
1919 ...

Figure 20: An example from type *Creativity-Dense Texts* and source *Prose* (continued).

1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

Type: Ordinary Instruction-Response Pairs

1960 **Source:** Infinity-Instruct
1961 **Instruction:**
1962 Create a catchy title for the following topic: saving money for the future.
1963 为以下主题创建一个吸引人的标题：储蓄未来的钱。
1964 **Original Response:**
1965 "The Secret to Future Wealth: How to Save to Achieve Your Dreams"
1966 "未来财富的秘密：如何储蓄实现梦想"
1967
1968 **Enhanced Response:**
1969 Time Investment: Weaving the Blueprint for Future Wealth
1970 时光储蓄：编织未来的财富蓝图。
1971 **Synthetic Responses:**
1972 ① Savings for the Future: Your Smart Investment Choice. (By MiniCPM-2B-Prompt_o)
1973 储蓄未来：您的明智投资选择
1974 ② Invest in the Future, Save for Wealth. (By MiniCPM-2B-Prompt_c)
1975 投资未来，储蓄财富。
1976 ③ Smart Budgeting, Saving for a Golden Future. (By Qwen2.5-14B-Prompt_o)
1977 巧理财，储蓄未来的黄金屋
1978 ④ Time Bank: Saving for the Future with Wise Investment (By Qwen2.5-14B-Prompt_c)
1979 时间银行：储蓄未来的智慧投资
1980 ...

1981 Figure 21: An example from type *Existing Creative Data* and source *Infinity-Instruct*. We present
1982 texts in English and Chinese for better understanding. The original data are listed in the upper part
1983 of the dashed line, and our constructed components are in the lower part.
1984

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Year	Content	Creativity	Confidence
1998	Data Labeling	Please read the content carefully and give your rating. Current page: 19	
1999			
2000			
2001			
2002			
2003			
2004	1 The cold fragrance of the Imperial Princess Flower is too faint to be retained, the graceful figure is shy. Even if the autumn cold drives the leaves to fall, it still holds the stamens and smiles on the branches.	Creativity <input type="radio"/> 1 <input type="radio"/> 2 <input type="radio"/> 3 <input type="radio"/> 4	O-1
2005			
2006			
2007	2 The petals are gently spread out, like a dream brocade, delicately depicting the splendor and tranquility of life.	Creativity <input type="radio"/> 1 <input type="radio"/> 2 <input checked="" type="radio"/> 3 <input type="radio"/> 4	O-1
2008			
2009			
2010	3 In the gentle embrace of the morning light, the petals bloom like clouds, exuding fragrance, like fairies dancing in a dream, colorful, like the whisper of spring, gentle and firm.	Creativity <input type="radio"/> 1 <input type="radio"/> 2 <input type="radio"/> 3 <input type="radio"/> 4	O-1
2011			
2012			
2013	4 In the embrace of the morning light's gentle kiss, the petals are like silk, blooming with the colors of dreams, and the fragrance spreads quietly, like the wind singing and dancing with the heartbeat of spring.	Creativity <input type="radio"/> 1 <input type="radio"/> 2 <input type="radio"/> 3 <input type="radio"/> 4	O-1
2014			
2015			
2016	5 Like the sun shining in the darkness, like the brightest star in the night sky.	Creativity <input type="radio"/> 1 <input type="radio"/> 2 <input type="radio"/> 3 <input type="radio"/> 4	O-1
2017			
2018		Confidence <input type="radio"/> 1 <input type="radio"/> 2 <input type="radio"/> 3 <input type="radio"/> 4	
2019			
2020			
2021			
2022			
2023			
2024			
2025			

Figure 22: Human annotation screenshot.

A.8 DETAILS OF HUMAN ANNOTATION

The goal of human annotation is not to eliminate subjectivity but to model shared human judgment in a reproducible and structured way using pairwise comparisons and consensus-driven aggregation. [The human annotation was conducted through a professional data annotation company](#). The recruited 30 qualified annotators are from 18 different majors, aged from 21 to 29. The group included 12 male and 18 female annotators. Though drawn from diverse backgrounds, they achieved strong inter-annotator agreement (ICC = 0.75), which is typically considered highly consistent ($>= 0.75$). While it is difficult to empirically prove that their views represent the global majority, such high consensus among 30 diverse annotators marks a notable advance over prior work that relied on fewer (2 Stevenson et al. (2022) or 10 Chakrabarty et al. (2024)) annotators.

Figure 22 illustrates the user interface used during the human annotation process. Annotators were presented with a group of responses, along with the corresponding instructions. They were instructed to carefully read both the instructions and the responses, and then give a creativity score. The interface was designed to be minimal and intuitive, allowing annotators to focus on the content rather than the mechanics of annotation. Each annotator is compensated at a rate of 50 RMB/hour.

2052
2053

A.9 LIMITATIONS

2054 Although we have established a viable evaluation method for textual creativity, understanding and
2055 analyzing the core of text creativity remains a challenge that has not yet been fully addressed by
2056 machines or even humans. Our dataset also cannot cover all possible creative scenarios that may
2057 appear in texts, which requires collective efforts from the community in the future. We hope that
2058 through improved creativity evaluation, we can ultimately enhance the model’s ability to understand
2059 and generate creativity, but the true mechanisms behind this process remain unknown and will be
2060 our future focus. In addition, there are more ways of using CrEval as a plug-in to improve any
2061 LLMs’ creativity, *e.g.*, using it as a reward model and refining LLMs via PPO. We leave this for
2062 future work.

2062

2063
2064

A.10 POTENTIAL SOCIETAL IMPACTS

2065 CreataSet and CrEval could advance the development of AI systems that better generate creative
2066 content, benefiting education, entertainment, and content creation. However, improved automated
2067 creativity assessment may also lead to over-optimization for machine-friendly metrics, potentially
2068 stifling genuine human creativity or reinforcing biases in machine-generated content.

2069

2070
2071

In this study, Large Language Models (LLMs) were utilized as tools to assist with two specific tasks:
2072 1) the construction and cleaning of datasets. The specific methodologies employed for these tasks
2073 are described in detail within the main text, and every effort was made to mitigate potential risks.
2074 2) the polishing of the manuscript’s language to improve clarity, including tasks such as rephrasing
2075 sentences, checking grammar, and improving textual flow. It is important to emphasize that the LLM
2076 did not author the manuscript or generate any of the core scientific content, analysis, or conclusions.
2077 All intellectual contributions remain solely with the authors.

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105