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ABSTRACT

The pursuit of boosting classification performance in Machine Learning has pri-
marily focused on refining model architectures and hyperparameters through prob-
abilistic loss optimization. However, such an approach often neglects the pro-
found, untapped potential embedded in internal structural information, which can
significantly elevate the training process. In this work, we introduce Latent Boost,
a novel approach that incorporates the very definition of classification via latent
representation distance metrics to enhance the conventional dataset-oriented clas-
sification training. Thus during training, the model is not only optimized for clas-
sification metrics of the discrete data points but also adheres to the rule that the
collective representation zones of each class should be sharply clustered. By lever-
aging the rich structural insights of high-dimensional latent representations, La-
tent Boost not only improves classification metrics like F1-Scores but also brings
additional benefits of improved interpretability with higher silhouette scores and
steady-fast convergence with fewer training epochs. Latent Boost brings these
performance and latent structural benefits with minimum additional cost and no
data-specific requirements.

1 INTRODUCTION

Traditional data-driven classification training often employs a black-box approach that focuses
solely on optimizing classification scores for discrete datasets, neglecting important aspects such
as clusters within the continuous representation. In contrast, we explore an innovative approach
by explicitly integrating the classification task into the latent representation through distance metric
learning. In this work, we introduce a novel method that seamlessly integrates latent cluster distance
metrics into probabilistic training, fundamentally transforming the paradigm of structured latent
representations. While conventional probabilistic approaches typically center on individual data
samples, they often overlook the intricate relationships among data points, particularly within clus-
ters, where the interdependencies and structural nuances are essential for capturing the underlying
information. In other words, while the end-to-end classification performance might be satisfactory,
the results like the F1-Score are derived from discrete data points. Internally, the collective clusters
of different classes could still be cluttered in the continuous latent representation, as the training
processes only optimize for the probabilistic loss of the dataset. In contrast, our innovative approach
guarantees that semantically similar data points are thoroughly aligned in proximity, while dissimilar
points are distinctly separated, thereby enhancing the model’s capacity for nuanced differentiation.

Although distance metric learning has established its efficacy in Machine Learning—particularly
in clustering and pre-training tasks (Kulis et al., 2013; Kaya & Bilge, 2019)—its application in
classification has been limited to simpler models like K-nearest Neighbors (Cover & Hart, 1967)
and Support Vector Machines (Cortes, 1995). We assert that intermediate latent representations hold
critical structural information essential for class distributions, and enhancing their cluster separation
can significantly boost classification performance. To the best of our knowledge, Latent Boost is the
first method to integrate distance metrics into the classification loss function, empowering the model
to cultivate more meaningful and discriminative features without requiring explicit supervision.
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Our key contributions include:

• We propose a distance-based loss Latent Boost which is inspired by the Magnet loss, ad-
dressing previously overlooked nuisances with dynamic adaptation and discriminative in-
formation density.

• We identify the advantages of fusing probabilistic loss distance-based metrics extracted
from latent layers through a weighted sum loss equation.

• We demonstrate Latent Boost is a simple yet efficient approach to enhance performance
and interpretability while shrinking computational demand through faster convergence.

Figure 1: Oppose to traditional training, relying on probabilistic loss only, Latent Boost injects
distance metric information, obtained from the model’s hidden latent representations, as addition
into the training through balanced weighted sum equations.

2 RELATED WORK

Distance Metric Learning has emerged as a crucial area in Machine Learning, offering a wide range
of techniques aimed at improving performance in tasks of primarily unsupervised clustering and
retrieval of latent representation information in general (Kulis et al., 2013; Wang & Sun, 2015). Such
loss functions generally focus on minimizing intra-cluster variance and maximizing inter-cluster
distances by learning a latent representation where similar points are closer together, and dissimilar
points are further apart (Kaya & Bilge, 2019). These functions penalize the model until the latent
representation aligns with the desired distance metric priorities.

The structure and information density in latent representations also improves interpretability. Dis-
criminative Dimension Selection can be utilized to enhance the interpretability and clustering per-
formance, especially for K-means clustering by selectively retaining relevant features as proposed
by Lian et al. (2024). Similarly, works on adaptive feature selection have focused on developing
efficient strategies to reduce the burden of complex dimensionality, such as Zhou & He (2024), im-
proving clustering accuracy across several benchmarks. Oppose to utilizing the Euclidean distance
information, a boosting algorithm to effectively learn Mahalanobis distance metrics was proposed
by Chang (2012), demonstrating its effectiveness on popular datasets to capture intrinsic distance
relationships. Mahalanobis-based techniques have been widely adopted, with approaches such as
Large Margin Nearest Neighbor (LMNN) (Weinberger & Saul, 2009) maximizing the margin be-
tween different classes, and Information-Theoretic Metric Learning (ITML) (Davis et al., 2007),
which minimizes the relative entropy between distance distributions.

Pairwise and Contrastive loss functions have shown remarkable improvements in distance metric
learning, such as the Contrastive loss function introduced by Hadsell et al. (2006) for learning
dimensionality-reducing embeddings. This principle has been adopted in domains like zero-shot
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learning (Wang & Chen, 2017), cross-modal retrieval (Wang et al., 2017), and large-scale face recog-
nition (Liu et al., 2017). Contrastive learning has also been used in self-supervised settings, where
methods such as SimCLR (Chen et al., 2020) leverage this loss to learn robust features without
labels. The promising approaches of triplet-based methods for distance metric learning have been
challenging to optimize due to the need for finding informative triplet anchor points (Do et al., 2019).
To address this, semi-hard triplet mining methods like Schroff et al. (2015) have been developed,
leading to more efficient training. Advanced sampling strategies have been proposed to improve
the performance of triplet-based learning systems Hermans et al. (2017). Additionally, using proxy
points to approximate original data points, as shown by Movshovitz-Attias et al. (2017), further im-
proves convergence and stability in Triplet loss optimization. Magnet loss has gained attention in
recent years as an effective method for distance metric learning, particularly in dealing with high-
dimensional data where traditional losses like Triplet loss face challenges (Rippel et al., 2015). Yu
et al. (2020) introduces Semantic Drift Compensation as part of Magnet loss as a method to address
catastrophic forgetting in class-incremental learning by estimating and compensating for the feature
drift of previous tasks, significantly improving performance in embedding networks without requir-
ing exemplars. By focusing on the distribution of latent representations within each class, Magnet
loss works to minimize the overlap between class clusters, thus providing better discrimination,
especially in face identification in noisy and large-scale datasets (Deng et al., 2020).

Metric learning with constraints has led to significant advances, with pairwise constraints being
integrated into methods like Constrained Clustering via Metric Learning (Bilenko & Basu, 2004).
Similarly, Ding & Li (2007) extended this concept into semi-supervised clustering, demonstrating
the utility of leveraging partial label information. In sparse and high-dimensional data scenarios,
sparse subspace clustering (Liu et al., 2010) has been a successful approach.

Methods like DeepCluster (Caron et al., 2018) and the cluster-based contrastive learning proposed
by Caron et al. (2020) demonstrate how metric learning can generate meaningful representations for
downstream tasks such as image retrieval. The innovation in these approaches lies in integrating
clustering with deep learning techniques to build robust data representations. Hybrid models that
integrate different learning techniques have also gained attention. For example, Lee et al. (2018)
employed stacked attention networks for cross-modal tasks, combining textual and visual data within
joint latent spaces to enable multi-modal learning.

Fairness in distance metric learning has also become a crucial area of focus, with works like Lahoti
et al. (2020) exploring how adversarial techniques can be used to ensure fairness in learned distance
metrics. These methods prevent demographic bias and ensure equitable performance across different
groups, a significant consideration for real-world applications.

Based on the previously referenced works, we identified the Contrastive, Triplet, N-pair, and Magnet
loss as the currently most relevant and recent choices wherefore we outline their concepts in the
following:

Contrastive Loss is one of the simplest and most widely used loss functions for distance metric
learning, introduced in the context of training Siamese networks (Chopra et al., 2005). The goal of
Contrastive loss is to minimize the distance between pairs of samples that are similar and maximize
the distance between pairs of samples that are dissimilar up to a certain margin. The Contrastive
loss function is formulated in Equation (1), where yi ∈ {0, 1} is a binary indicator of similarity,
with yi = 1 for similar pairs and yi = 0 for dissimilar ones. The Euclidean distance di is calculated
between the latent representations of the two samples. The equation is applied across the total
number of pairs N . Additionally, m works as a penalization, defining the margin as the minimum
distance for dissimilar pairs.

Lcontrast =
1

2N

N∑
i=1

(
yi · d2i + (1− yi) ·max(0,m− di)

2
)

(1)

Triplet Loss was popularized by the FaceNet model architecture, introducing the triplets of samples
(Schroff et al., 2015) as shown in Equation (2). An anchor ai, a positive sample pi , and a negative
sample ni form one triplet. The goal is to ensure that the distance between the anchor and the positive
sample is smaller than the distance between the anchor and the negative sample by at least a margin
α. Compared to Contrastive loss, the Triplet loss is based on the anchor as opposed to calculating it
solely on the pairwise samples. The Euclidean distance is calculated between the representations of
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the positive and negative sample to its anchor with m as the margin term.

Ltriplet =
1

N

N∑
i=1

max (0, d(ai, pi)− d(ai, ni) +m) (2)

N-pair Loss shares similarity with Triplet loss and aims to converge more stable across the clus-
ters (Sohn, 2016). Instead of using a single negative sample per triplet, N-pair loss optimizes the
distance between the anchor and the positive sample while contrasting it with multiple negatives
simultaneously. N-pair loss is particularly effective in multi-class classification tasks for large-scale
datasets. The N-pair loss is defined in Equation (3) (fi is the embedding of the anchor sample, f+i
and f−i are positive and negative samples)

LN-pair =
1

N

N∑
i=1

log

1 +
∑

i+ ̸=i−

ef
T
i f−i −fTi f+i

 (3)

Magnet Loss, introduced by Rippel et al. (2015), is designed to address the challenges of high-
dimensional and complex data distributions by grouping data into clusters instead of focusing on
pairwise or triplet calculations. To benefit from cluster-based information, Magnet loss penalizes
a sample based on its distance to the centroid of the correct cluster and the other false clusters.
The behavior of a Magnet is obtained by accounting for both intra-class compactness and inter-
class separation. The Magnet loss function is formulated in Equation (4), where rn is the latent
representation of the sample, µ(rn) is the mean of the cluster containing rn, and µc are the means
of other clusters. σ is the standard deviation, α is a margin term. N is the total number of samples
whereas K represents the number of clusters.

Lmagnet =
1

N

N∑
n=1

{
− log

(
e−

1
2σ2 ∥rn−µ(rn)∥2

2−α∑
c̸=C(rn)

∑K
k=1 e

− 1
2σ2 ∥rn−µc

k∥
2
2

)}
(4)

3 LATENT BOOST METHODOLOGY

Among the hitherto loss functions, Magnet loss provides superior potential in enhancing classifi-
cation performance as the following section 4.2 experiments. However, no modifications or opti-
mizations of the hyperparameters associated with the Magnet loss have been explored so far. Ad-
ditionally, in the original formulation, the distance metric loss is computed across the full latent
space. While this approach captures the complete available information, in early training epochs,
this might introduce noise if the latent representation includes dimensions that do not yet provide
beneficial information.

To address this, we propose incorporating a dimensionality reduction step before calculating the
Latent Boost batch loss by applying Principal Component Analysis (PCA) to reduce the dimensions
of the latent vectors. Let WPCA ∈ Rd′×d denote the matrix of the top principal components, where
d′ is the reduced dimension and d is the original dimension. Each latent vector rn is projected onto
the lower-dimensional subspace as:

r′n = WPCArn (5)

Similarly, the cluster centroids µrn and µck are projected onto the same subspace as:

µ′
rn = WPCAµrn , µ′

ck
= WPCAµck (6)

The number of retained principal components dim is determined by ensuring a predefined threshold
T of cumulative explained variance is met, as follows:

dim = min

i

∣∣∣∣∣∣
∑i

j=1

S2
j

m−1∑max dim
j=1

S2
j

m−1

≥ T

 or dim = dimmax if no such i exists (7)

Here, Sj are the singular values from the Singular Value Decomposition (SVD) that is extracted from
the PCA dimension reduction process, m is the number of samples, n is the number of available
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features, and max dim = min(m,n) is the maximum number of possible components. T represents
the threshold for cumulative explained variance, which we set to 0.95 based on initial investigations
(see Appendix).

After applying PCA, we compute the Latent Boost loss using the reduced latent representations r′n
and µ′. The Latent Boost loss is based on the orignal Magnet loss from Equation (4), with several
enhancements:

First, the variance for each cluster σ2
C is now computed based on the spread of points within each

cluster individually. Specifically, the variance represents the average squared distance of the points
ri in cluster C from the cluster mean µC . The formula for calculating the variance for a cluster C is
given by:

σ2
C =

1

|C| − 1

∑
ri∈C

∥ri − µC∥2 (8)

Here, |C| denotes the number of points in cluster C and adjusts the degree of freedom. ri represents
the position of the i-th point in the cluster and µC is the centroid of the cluster from which we
calculate the squared Euclidean distance between. This dynamic variance allows the model to adapt
to clusters with varying densities, meaning clusters that are more spread out will have larger variance
and be more forcefully compressed compared to tighter clusters.

Additionally, we introduce a hyperparameter β in the denominator of the loss function. The Magnet
loss is composed of two main components: intra-cluster variance minimization, controlled by α ,
and inter-cluster separation, now influenced by β . To balance these competing objectives, we devel-
oped dynamic strategies to adjust α and β based on the current training epoch E, as formulated in
Equation (9). Initially, the focus is on achieving tight clustering of intra-class samples by assigning
larger values to α . Subsequently, β plays a greater role in encouraging separation between clus-
ters. The update rule for α follows an exponential decay schedule due to the simple subtraction as
a margin term. It starts at a value of 1 + α0 , where α0 controls the initial strength, and gradually
decreases by the factor e−

E
1.05·Etotal towards the commonly set value of 1.0 as training progresses.

In contrast, the update rule for β follows a linear schedule, starting from β0 and decreases linearly
until it reaches zero after the first 20% of the conventional training period. This schedule ensures that
β gradually diminishes and therefore increases the effect of distancing the clusters. This mechanism
allows the model to be unconstrained by β in the early stages due to the multiplication factor and
its initialization with 1.0, but ensures that the influence of the inter-cluster distance denominator
increases for the overall loss.

Based on our experiments, the intra-cluster is mostly relevant during early epochs, whereas the
exponential decrease of α helps to diminish the effect of intra-cluster variance distance later in the
training progress. However, the inter-cluster importance needs to be linearly increased by decreasing
β in order to move the clusters continuously and gradually farther apart till the model converges. An
exemplary schedule of α and β for 100 epochs is shown in Appendix C.

To ensure numerical stability across our experiments, we added ϵ and set it to 1 · 10−8 as a small
constant to prevent division by zero and underflow of floating point numbers.

α = 1 + α0 · e−
E

1.05·Etotal β = β0 ·
(
1− E

0.2 · Etotal

)
(9)

Finally, the complete Latent Boost loss is given by:

LLB =
1

N

N∑
n=1

− log

 e
− 1

2σ2
Ck

∥r′n−µ′
rn

∥2
2−α

∑
c ̸=C(rn)

∑K
k=1 e

− 1

2σ2
Ck

∥r′n−µ′
ck

∥2
2·β

+ ϵ


 (10)

Here, r′n and µ′ represent the reduced-dimensional representations of the samples and cluster cen-
troids, respectively, after applying PCA.

In summary, LLB is inspired by Magnet loss with improvements addressing the following aspects,
calculated dynamically and independently within every batch:

1. We reduce noisy dimensions using PCA before calculating the loss term.
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2. Instead of an indiscriminate variance, we calculate the variance for different class labels,
allowing the model to adapt to clusters with varying densities.

3. We developed dynamic update rules to decouple the intra-cluster variance and inter-cluster
separation, to first emphasize on shrinking the clusters and then pushing them apart.

4 EXPERIMENTS

As another novel contribution, we incorporate distance metric information, which has been hith-
erto primarily used for unsupervised clustering, into supervised classification with probabilistic loss
through a weighted sum loss function. Equation (11) outlines the total loss calculation on which
our experiments rest. We introduce the hyperparameter λ to balance the weight between the two
loss components. The range of λ is continuous between 0 to 1, with 0 giving full weight to the
probabilistic loss whereas 1 gives full weight to the distance metric loss. To isolate the influence of
λ and the effect of each selected distance metric, we fixed the probabilistic loss to shrink the overall
experiment complexity. We therefore selected the well-established soft-max cross-entropy, which
matches the idea of utilizing the weighted sum equation for multi-class classification.

Our preliminary experiments, as evaluated in Section 4.2, explore the standard version of the pre-
sented distance metric losses induced with different weights of λ. On top of that, we replace the
distance loss with our custom Latent Boost solution (abbreviated LLB) in Section 3.

Ltotal = λ · Ldist + (1− λ) · Lcross-entropy

with Ldist ∈ {Lcontrast,Ltriplet,LN-pair,Lmagnet,LLB}, Lcross-entropy = −
∑
∀x

p(x) log(q(x)) (11)

4.1 EXPERIMENT SETUP

We selected three different experiment setups of different complexity to explore the effects of the
previously introduced distance metric losses through the weighted sum equations. Starting with a
simple Convolutional Neural Network (CNN) trained on Fashion-MNIST (Xiao et al., 2017), we
trained a VGG-16 model (Simonyan & Zisserman, 2014) on CIFAR10 (Krizhevsky et al., 2009),
followed by training a ResNet-50 (He et al., 2016) architecture on CIFAR-100 (Krizhevsky et al.,
2009). The full description of each model architecture can be found in Appendix A.1. For our initial
investigation in the following section, we kept the distance metric losses hyperparameters constant
and initialized to the standard recommendations (see Appendix A.3 for details). For each experi-
ment, we extracted the latent representation after the convolutional part in the network architecture,
meaning just before the classification section. For the CNN the latent representation has a dimension
of 64, the VGG-16 model obtains 512 dimensions on that layer and the ResNet-50 generates a latent
representation of 2048 dimensions. The choice to extract latent features from layers just before the
classification head is based on their ability to capture high-level, task-specific representations that
balance discriminative power and compactness, as these layers contain semantically rich informa-
tion essential for classification tasks. Earlier layers typically emphasize low-level features and may
lack the necessary information density required for effective downstream processing, making deeper
layers more suitable.

Each setup was implemented in PyTorch (Paszke et al., 2019) with a learning rate scheduler that
reduced the learning rate by factor 5 when a plateau was reached after 10 epochs. The Adam
optimizer was utilized for each experiment to efficiently work out the gradients (Kingma, 2014).
We applied early stopping metrics with 20 epochs patience based on the validation accuracy to
additionally compare the convergence speed next to the classification performance. Finally, we
trained each experiment setup five times to provide meaningful results. We assigned each trial a
different random seed, which we kept constant within the trials different runs across the variation of
lambda to balance the distance metric with the classic cross-entropy.

4.2 PRELIMINARY EVALUATION

In this section, we evaluate the effect of varying the hyperparameter λ across different loss func-
tions while keeping the other hyperparameters untouched. The results are reported across our three
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Table 1: Baseline comparison of accuracy (↑) and Micro-F1 score (↑) across our three experiments
using different loss functions and varying λ values; the baseline (λ=0.0) represents the standard
model without additional loss integration.

Dataset Loss Type λ Accuracy (Mean ± Std) Micro-F1 (Mean ± Std)

Fashion MNIST

Baseline 0.0 88.59 ± 0.15 0.8867 ± 0.0020

Contrast
0.25 88.83 ± 0.08 0.8884 ± 0.0015
0.5 88.57 ± 0.14 0.8850 ± 0.0019
0.75 87.79 ± 0.25 0.8773 ± 0.0022

Triplet
0.25 89.13 ± 0.18 0.8909 ± 0.0011
0.5 89.13 ± 0.34 0.8915 ± 0.0036
0.75 88.97 ± 0.33 0.8900 ± 0.0038

N-pair
0.25 88.85 ± 0.07 0.8883 ± 0.0010
0.5 89.25 ± 0.09 0.8923 ± 0.0005
0.75 88.71 ± 0.53 0.8869 ± 0.0044

Magnet
0.25 89.27 ± 0.29 0.8928 ± 0.0023
0.5 89.07 ± 0.21 0.8911 ± 0.0022
0.75 89.52 ± 0.34 0.8946 ± 0.0040

CIFAR-10

Baseline 0.0 85.88 ± 0.40 0.8586 ± 0.0042

Contrast
0.25 86.01 ± 0.99 0.8600 ± 0.0102
0.5 86.87 ± 0.56 0.8693 ± 0.0049
0.75 84.74 ± 0.44 0.8479 ± 0.0045

Triplet
0.25 86.81 ± 0.25 0.8667 ± 0.0025
0.5 86.88 ± 0.64 0.8683 ± 0.0059
0.75 86.95 ± 0.42 0.8690 ± 0.0039

N-pair

0.25 84.52 ± 0.71 0.8446 ± 0.0067
0.5 86.43 ± 0.78 0.8643 ± 0.0081
0.75 85.91 ± 0.40 0.8583 ± 0.0042

Magnet
0.25 86.91 ± 0.69 0.8692 ± 0.0073
0.5 86.72 ± 1.77 0.8671 ± 0.0174
0.75 87.36 ± 0.82 0.8738 ± 0.0081

CIFAR-100

Baseline 0.0 61.77 ± 0.49 0.6163 ± 0.0064

Contrast
0.25 61.04 ± 0.81 0.6088 ± 0.0087
0.5 60.00 ± 0.71 0.5984 ± 0.0087
0.75 54.91 ± 0.71 0.5482 ± 0.0071

Triplet
0.25 62.36 ± 0.91 0.6213 ± 0.0070
0.5 60.41 ± 0.51 0.6022 ± 0.0041
0.75 56.13 ± 0.76 0.5597 ± 0.0082

N-pair
0.25 61.54 ± 0.83 0.6139 ± 0.0075
0.5 60.13 ± 0.94 0.5991 ± 0.0075
0.75 47.73 ± 1.79 0.4694 ± 0.0168

Magnet
0.25 62.43 ± 0.38 0.6242 ± 0.0039
0.5 62.75 ± 0.51 0.6256 ± 0.0057
0.75 62.66 ± 0.54 0.6242 ± 0.0045

experiment setups, comparing accuracy and Micro-F1 Scores. The explanation of both metrics can
be found in Appendix A.2. Table 1 shows the most relevant λ values to compare and recognize
trends, whereas more detailed tables with smaller λ step size can be found in Appendix B. The re-
sults show that adjusting λ can improve performance, Magnet loss. On Fashion MNIST, Magnet
loss outperforms other methods, achieving 89.52% accuracy and 0.8946 Micro-F1 scores at λ =
0.75. On CIFAR-10, Magnet loss also achieves the highest results, with an accuracy of 87.36% and
a Micro-F1 score of 0.8738 at λ = 0.75. However, on CIFAR-100, the results were less conclusive
due to its high complexity, but Magnet loss still showed some improvement over the baseline. As a
result, the Magnet loss is the most robust method across our experiments, especially when selecting
λ values in the range 0.5 to 0.9, since it properly improves classification performance across datasets
by leveraging latent information and reducing intra-class variability with proper priority.

4.3 LATENT BOOST’S PERFORMANCE

We conducted the same experiment, based on our three datasets and model combinations, with the
adapted Latent Boost distance metric. As shown in Section 4.3, we track the accuracy, Micro-F1
Score, and the duration of training epochs. We calculated the average and standard deviation across
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our five experiment trials. The selected λ values mimic the range of the preliminary experiment. The
full results can be found in Appendix D. Latent Boost proves to consistently outperform the baseline
and the classic Magnet loss results from the previous experiments of Table 1. For Fashion-MNIST
and CIFAR-10, λ selection of 0.75 and 0.5 for the CIFAR-100 obtained the best performance equal
to the original Magnet loss results. The Fashion MNIST shows a 2.56% increase in accuracy and a
1.93% increase in F1 Score, while CIFAR-10 and CIFAR-100 exhibit comparable improvements of
around 2-3%. These gains are accompanied by reduced standard deviations, indicating a more stable
and reliable convergence due to the additional structural information from latent representation. The
tighter variability in performance indicates that Latent Boost is more consistent across datasets.

Another advantage of Latent Boost is its faster and more stable convergence next to the model
performance. The number of epochs required for Fashion MNIST training is reduced by around
14%, while CIFAR-10 and CIFAR-100 show reductions of around 13% and 21%, respectively. This
reduction not only speeds up training but also offers potential sustainability benefits by decreasing
computational resources and energy consumption.

As stated before, the threshold for selecting the number of principal components was decided to be
at 95% of cumulative explained variance. For Fashion-MNIST, the number of principal components
ranged around 45 to 50, with slight degradation to 40 components when the latent representation
reaches a sufficient structure. For CIFAR-10, the number of principal components started around 65
and decreased to 40 components, stating that the latent representation is well structured throughout
the epochs. For the final CIFAR-100 experiment, the principal components used were around 100
to 110 without a decent decrease over time. That being said, it reflects our findings of struggling to
structure the large latent representation properly.

Table 2: Accuracy (↑), Micro-F1 Score (↑), and epoch duration (↓) between baseline (λ = 0),
standard Magnet loss and the Latent Boost on the unseen test dataset (best λ selection); percentage
improvement compares Latent Boost with the baseline for each metric.

Metric Baseline Magnet Latent Boost Improv. (%)

Fashion MNIST
Accuracy 88.59 ± 0.15 89.52 ± 0.34 90.86 ± 0.21 2.56%
Micro-F1 0.8867 ± 0.002 0.8946 ± 0.004 0.9038 ± 0.005 1.93%

Nr. Epochs 40.67 ± 4.19 37.67 ± 6.18 34.67 ± 3.09 -14.76%

CIFAR-10
Accuracy 85.88 ± 0.40 87.36 ± 0.82 88.44 ± 0.28 2.98%
Micro-F1 0.8586 ± 0.0042 0.8738 ± 0.0081 0.8843 ± 0.0024 2.99%

Nr. Epochs 76.33 ± 8.65 72.67 ± 1.70 66.33 ± 4.50 -13.09%

CIFAR-100
Accuracy 61.77 ± 0.49 62.75 ± 0.51 63.04 ± 0.48 2.06%
Micro-F1 0.6163 ± 0.0064 0.6256 ± 0.0057 0.6288 ± 0.0051 2.03%

Nr. Epochs 86.67 ± 9.46 69.67 ± 8.73 68.67 ± 6.02 -20.74%

4.4 LATENT REPRESENTATION

Due to the increase in performance as stated in the previous section, we additionally want to evaluate
the structure of the latent representation. Even though we only utilize the distance information from
the model’s latent representation to calculate the metric and not the data itself, the latent representa-
tion within the model should include some enhancements in order to reflect the performance.

In Figure 2, we plotted the 2-dimensional representation of the high-dimensional latent space for
each of our experiments. We passed the test dataset of each experiment through the model and
extracted the latent representation the same way as previously proposed. However, we do not cal-
culate the Latent Boost metric but rather utilize the data and shrink its dimension with classic and
state-of-the-art TSNE (Van der Maaten & Hinton, 2008) for visualization purposes. We utilized the
TSNE according to best practices, keeping hyperparameters in its standard initialization and fixing
the random seed. The visualizations from left to right show the latent representation for the best
trial of baseline training without any distance metric information, the Magnet loss training from our
preliminary experiments, and the Latent Boost approach. From top to bottom, we show each of the
experiment models and dataset combinations.

Starting with the Fashion MNIST, even though the clusters were separated properly in the baseline
already, we can see that in the Latent Boost clusters are formed with more concentrated density and
classes such as brown and grey are well separated. In the scenario with CIFAR-10, a similar trend can
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be recognized. Even though there is much more confusion within the latent representation compared
to the Fashion MNIST, clusters are more dense in the final stage of Latent Boost. Additionally, the
main confusion between green and red class from the baseline could partially be resolved. Some
classes are much better formed for clustering and boundaries between the classes can be recognized
stronger. For the final experiment on CIFAR-100, the visualization is not meaningful enough to
show a clear separation of clusters. This however may be the issue of visualizing the 100 classes
with different color shades. Only the surrounding areas of the latent representation form small
clusters without significant visible impact.

(a) Fashion MNIST Baseline (b) Fashion MNIST Magnet (c) Fashion MNIST Latent Boost

(d) CIFAR-10 Baseline (e) CIFAR-10 Magnet (f) CIFAR-10 Latent Boost

(g) CIFAR-100 Baseline (h) CIFAR-100 Magnet (i) CIFAR-100 Latent Boost

Figure 2: Comparison of baseline (λ=0), standard Magnet loss, and our Latent Boost approach
across the three experiment setups.

Since TSNE compresses the latent space and therefore loses the detailed information from the full
dimensional representation, the visualizations can only be utilized for visual cross-comparison but
do suffice for compelling quantitative evaluation. To quantify the density of clusters and their sep-
aration from each other in the original dimension, we selected the Silhouette Score to measure the
quality of the latent representation. Originally proposed by Rousseeuw (1987), the Silhouette Score
is calculated for each data point by comparing the cohesion within its own cluster and the separation
from the nearest neighboring cluster. It has been widely used for quantifying representation inter-
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pretability in recent works (Bagirov et al., 2023; Januzaj et al., 2023; Du et al., 2024). The score
ranges from −1 to 1, with -1 indicating the location or assignment of samples to the wrong cluster,
whereas 0 is between clusters and 1 is the best-case with clear allocation to the correct cluster. For
a given data point i in a cluster Ci, the Silhouette Score s(i) is calculated following Equation (12).
a(i) represents the cohesion as to how closely related a data point is to its own cluster, whereas
b(i) represents the separation, meaning the distance between a data point to its nearest but not own
neighbor cluster.

Silhouette Score =
1

N

N∑
i=1

b(i)− a(i)

max(a(i), b(i))

a(i) =
1

|Ci| − 1

∑
j∈Ci,j ̸=i

d(i, j) b(i) = min
C ̸=Ci

 1

|C|
∑
j∈C

d(i, j)

 (12)

To evaluate the impact of different training approaches on the latent representation, we calculated the
Silhouette Scores for the previously discussed latent representations in Figure 2. The results, shown
in Table 3, highlight that both the Magnet loss and Latent Boost methods improve cluster separation
on the full dimension, relative to the baseline. Latent Boost yields the highest score in all cases,
with particularly strong improvements observed for CIFAR-10. The results reflect the preliminary
experiment hypothesis across the three datasets. Checking the improvement between baseline and
Latent Boost, the Fashion MNIST experiment showed slight improvement, since the baseline latent
space was already well separated. The CIFAR-10 achieved greatest improvement in the dimensional
representation with around 168 %, restating the model’s complexity potential for improvement,
especially in the high dimensions. For the CIFAR-100, even though some minor improvement could
be recognized, the Latent Boost approach does not sufficiently support the training as expected.
Since the Silhouette Score ranges in negative values for CIFAR-100, major confusion between the
large set of classes still dominates the classification despite the slight increase.

Table 3: Silhouette score to quantify cluster separation (larger values in range -1 to 1 represent
greater separation); calculated on the models’ latent representation without compression from the
unseen test dataset; the percentage improvement compares Latent Boost with the baseline.

Baseline Magnet Latent Boost Improvement (%)
Fashion MNIST 0.347 0.375 0.395 13.84%

CIFAR-10 0.131 0.186 0.351 167.94%
CIFAR-100 -0.280 -0.264 -0.250 10.71%

While the Silhouette Score captures the quality of latent representation, it is important to note that
the model is not directly trained on the latent representation data. Instead, the calculated metrics are
injected as additional information through the loss function, helping the model to indirectly improve
its internal representation structures. This approach leverages the power of the latent representation
without requiring explicit supervision, allowing the model to develop more meaningful features.

5 CONCLUSION

Overall, Latent Boost explicitly inserts the very definition of classification in the latent layer of
an otherwise black-box model, which stimulates the model to produce better-separated clusters in
the target latent layer while optimizing for the classification task. This consequentially leads to
improved classification results, enhanced interpretability metrics, and more efficient training con-
vergence. While the classification metrics uplift is moderate, the improvement is consistent across
all benchmarks with the least deviation. By leveraging both intra-class compactness and inter-class
separation in a dynamic manner, Latent Boost proves its ability to adapt latent representations for
more robust feature learning. One limitation of our approach requires a few epochs to take effect to
gradually manipulate the clusters, thus the benefits are diminished in cases with already subnormal
training epochs. Furthermore, Latent Boost relies on the distance to the cluster center, which as-
sumes a high-dimensional sphere in the latent representation. It remains to be investigated whether
other cluster formation strategies can further enhance the performance of the method in question.

10
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A EXPERIMENT SETUP DETAILS

A.1 MODEL ARCHITECTURES

The model architecture trained on Fashion MNIST (Xiao et al., 2017) is a convolutional neural
network (CNN) adapted for grayscale images. The network starts with a convolutional layer that
takes single-channel (grayscale) 28x28 images and outputs a set of feature maps, followed by ReLU
activation and max-pooling. The model employs two convolutional layers, with each followed by
pooling and dropout of 25% to mitigate overfitting. The resulting feature maps are flattened and
passed through fully connected layers. From the flattening layer, we extract the latent features. The
final fully connected layer outputs the class probabilities for the 10 fashion categories.

The model architecture used for CIFAR-10 (Krizhevsky et al., 2009) is based on the VGG-16 net-
work (Simonyan & Zisserman, 2014). VGG-16 is a deep convolutional network known for its
success in image classification tasks on complex color images like CIFAR-10. This architecture
consists of 16 layers, with 13 convolutional layers interspersed with ReLU activations and max
pooling to downsample the feature maps, followed by three fully connected layers. The network
extracts progressively richer features from the images, which are then classified into one of the 10
classes.

The model trained on CIFAR-100 (Krizhevsky et al., 2009) is based on the ResNet-50 architecture
(He et al., 2016) and comprises several key layers to efficiently process the input images. The ar-
chitecture begins with a modified convolutional layer that accepts three input channels and employs
a kernel size of 3 times 3, followed by batch normalization and ReLU activation. It includes four
residual blocks (layer1 to layer4), each containing a series of convolutional layers, batch normaliza-
tion, and skip connections to enhance gradient flow. The network concludes with an average pooling
layer, which is flattened to extract the latent representations and a fully connected layer that outputs
the final class predictions, specifically tailored for the CIFAR-100 classification task.

A.2 EVALUATION METRICS

Across our work, we utilized the accuracy and the Micro-F1 Score as the main metrics to validate
our approaches and experiments. We selected the Micro-F1 Score to aggregate the contributions of
all classes to the overall results.

The Micro-F1 score is given in the range 0 to 1 and defined as:

Micro-F1 = 2 · Micro Precision · Micro Recall
Micro Precision + Micro Recall

with Micro Precision =
TPtotal

TPtotal + FPtotal
, Micro Recall =

TPtotal

TPtotal + FNtotal

(13)

The Accuracy is given in percentage values and defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

For both, the following abbreviations apply:

• TP = True Positives
• TN = True Negatives
• FP = False Positives
• FN = False Negatives

A.3 DEFAULT DISTANCE METRIC HYPERPARAMETERS

Table 4 summarizes the original hyperparameter settings for various distance metric loss functions
used in our preliminary experiments. For Contrastive loss, the positive and negative margins are
set to 0.0 and 1.0, respectively, which determine the threshold for distinguishing between positive
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and negative pairs. The Triplet loss employs a margin of 0.05 and considers all possible triplets
per anchor, ensuring a comprehensive evaluation of relative distances in the latent representations.
N-Pair loss utilizes a MeanReducer as its reducer, which averages the distances, while Magnet loss
is configured with an α value of 1.0, controlling the aggressiveness for forcing the latent space
separation. These initial values were chosen based on established practices in the literature to ensure
a fair comparison independently of the distance metric initialization or adaptation.

Loss Function Hyperparameter Initial Value

Contrast positive margin 0.0
negative margin 1.0

Triplet margin 0.05
triplets per anchor all

N-Pair reducer MeanReducer
Magnet α 1.0

Table 4: Original hyperparameter setting for each distance metric utilized in the preliminary experi-
ment.

B LAMBDA VARIATION IN PRELIMINARY EXPERIMENT

The Tables 5 to 7 present the complete set of λ variations in the range of 0.1 to 0.9 across our
weighted sum equation to combine distance and probabilistic loss. The results cover the four se-
lected experiments of traditional distance metrics trained on the three setups of models and datasets.

C LATENT BOOST HYPERPARAMETER

As an addition to the introduced scheduling of α and β within our Latent Boost approach as in-
troduced in Section 3, we present an exemplary schedule of hyperparameters across 100 epochs in
Figure 3. Throughout our experiments, we initialized and dynamically changed the two hyperpa-
rameters according to that process.

Figure 3: Example based on 100 epochs for the exponential decrease of α and linear decrease of
β to dynamically adapt the importance of intra- and inter-class loss between cluster in the Latent
Boost approach.

D LATENT BOOST LAMBDA VARIATIONS

The following table outlines the complete set of λ variations in range of 0.1 to 0.9 for the Latent
Boost approach, also covering the unpromising selection of λ
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Table 5: Baseline comparison with extended λ values for Fashion MNIST

Dataset Loss Type λ Accuracy (Mean ± Std) Micro-F1 (Mean ± Std)

Fashion MNIST

Baseline 0.0 88.59 ± 0.15 0.8867 ± 0.0020

Contrast

0.1 88.71 ± 0.10 0.8870 ± 0.0017
0.2 88.78 ± 0.12 0.8875 ± 0.0016
0.25 88.83 ± 0.08 0.8884 ± 0.0015
0.3 88.85 ± 0.12 0.8887 ± 0.0018
0.4 88.90 ± 0.11 0.8893 ± 0.0017
0.5 88.57 ± 0.14 0.8850 ± 0.0019
0.6 88.45 ± 0.15 0.8842 ± 0.0020
0.7 88.33 ± 0.16 0.8830 ± 0.0021
0.75 87.79 ± 0.25 0.8773 ± 0.0022
0.8 87.55 ± 0.22 0.8749 ± 0.0020
0.9 87.30 ± 0.25 0.8725 ± 0.0025

Triplet

0.1 88.95 ± 0.18 0.8890 ± 0.0017
0.2 89.05 ± 0.19 0.8905 ± 0.0016
0.25 89.13 ± 0.18 0.8909 ± 0.0011
0.3 89.18 ± 0.20 0.8911 ± 0.0018
0.4 89.23 ± 0.21 0.8917 ± 0.0020
0.5 89.13 ± 0.34 0.8915 ± 0.0036
0.6 89.10 ± 0.33 0.8909 ± 0.0034
0.7 89.05 ± 0.30 0.8905 ± 0.0031
0.75 88.97 ± 0.33 0.8900 ± 0.0038
0.8 88.85 ± 0.32 0.8887 ± 0.0035
0.9 88.73 ± 0.28 0.8875 ± 0.0030

N-pair

0.1 88.65 ± 0.10 0.8870 ± 0.0016
0.2 88.75 ± 0.09 0.8881 ± 0.0017
0.25 88.85 ± 0.07 0.8883 ± 0.0010
0.3 88.90 ± 0.08 0.8885 ± 0.0012
0.4 88.95 ± 0.07 0.8890 ± 0.0010
0.5 89.25 ± 0.09 0.8923 ± 0.0005
0.6 89.00 ± 0.11 0.8895 ± 0.0010
0.7 88.90 ± 0.12 0.8887 ± 0.0014
0.75 88.71 ± 0.53 0.8869 ± 0.0044
0.8 88.55 ± 0.52 0.8852 ± 0.0045
0.9 88.45 ± 0.50 0.8840 ± 0.0040

Magnet

0.1 89.15 ± 0.28 0.8915 ± 0.0024
0.2 89.22 ± 0.29 0.8919 ± 0.0026
0.25 89.27 ± 0.29 0.8928 ± 0.0023
0.3 89.35 ± 0.31 0.8933 ± 0.0025
0.4 89.42 ± 0.33 0.8939 ± 0.0031
0.5 89.07 ± 0.21 0.8911 ± 0.0022
0.6 89.25 ± 0.33 0.8924 ± 0.0032
0.7 89.45 ± 0.35 0.8939 ± 0.0035
0.75 89.52 ± 0.34 0.8946 ± 0.0040
0.8 89.35 ± 0.32 0.8932 ± 0.0036
0.9 89.30 ± 0.30 0.8925 ± 0.0034
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Table 6: Baseline comparison with extended λ values for CIFAR-10

Dataset Loss Type λ Accuracy (Mean ± Std) Micro-F1 (Mean ± Std)

CIFAR-10

Baseline 0.0 85.88 ± 0.40 0.8586 ± 0.0042

Contrast

0.1 85.90 ± 0.95 0.8592 ± 0.0097
0.2 85.95 ± 0.98 0.8596 ± 0.0099
0.25 86.01 ± 0.99 0.8600 ± 0.0102
0.3 86.10 ± 0.92 0.8608 ± 0.0095
0.4 86.45 ± 0.70 0.8641 ± 0.0074
0.5 86.87 ± 0.56 0.8693 ± 0.0049
0.6 85.78 ± 0.48 0.8579 ± 0.0045
0.7 85.30 ± 0.45 0.8523 ± 0.0041
0.75 84.74 ± 0.44 0.8479 ± 0.0045
0.8 84.12 ± 0.55 0.8418 ± 0.0052
0.9 84.00 ± 0.52 0.8412 ± 0.0048

Triplet

0.1 86.75 ± 0.27 0.8660 ± 0.0027
0.2 86.78 ± 0.29 0.8662 ± 0.0029
0.25 86.81 ± 0.25 0.8667 ± 0.0025
0.3 86.85 ± 0.31 0.8670 ± 0.0028
0.4 86.87 ± 0.37 0.8681 ± 0.0035
0.5 86.88 ± 0.64 0.8683 ± 0.0059
0.6 86.78 ± 0.52 0.8675 ± 0.0049
0.7 86.70 ± 0.43 0.8665 ± 0.0037
0.75 86.95 ± 0.42 0.8690 ± 0.0039
0.8 86.70 ± 0.50 0.8669 ± 0.0053
0.9 86.60 ± 0.38 0.8650 ± 0.0042

N-pair

0.1 84.80 ± 0.69 0.8463 ± 0.0065
0.2 84.65 ± 0.72 0.8454 ± 0.0069
0.25 84.52 ± 0.71 0.8446 ± 0.0067
0.3 85.10 ± 0.63 0.8502 ± 0.0061
0.4 85.70 ± 0.55 0.8561 ± 0.0052
0.5 86.43 ± 0.78 0.8643 ± 0.0081
0.6 85.63 ± 0.52 0.8563 ± 0.0057
0.7 85.42 ± 0.47 0.8539 ± 0.0044
0.75 85.91 ± 0.40 0.8583 ± 0.0042
0.8 85.15 ± 0.45 0.8509 ± 0.0043
0.9 85.23 ± 0.43 0.8521 ± 0.0045

Magnet

0.1 86.70 ± 0.65 0.8669 ± 0.0069
0.2 86.85 ± 0.70 0.8683 ± 0.0072
0.25 86.91 ± 0.69 0.8692 ± 0.0073
0.3 87.10 ± 0.68 0.8702 ± 0.0071
0.4 87.25 ± 0.85 0.8723 ± 0.0075
0.5 86.72 ± 1.77 0.8671 ± 0.0174
0.6 87.28 ± 0.79 0.8730 ± 0.0079
0.7 87.20 ± 0.88 0.8719 ± 0.0084
0.75 87.36 ± 0.82 0.8738 ± 0.0081
0.8 87.05 ± 0.70 0.8708 ± 0.0076
0.9 87.10 ± 0.59 0.8714 ± 0.0056
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Table 7: Baseline comparison with extended λ values for CIFAR-100

Dataset Loss Type λ Accuracy (Mean ± Std) Micro-F1 (Mean ± Std)

CIFAR-100

Baseline 0.0 61.77 ± 0.49 0.6163 ± 0.0064

Contrast

0.1 61.05 ± 0.83 0.6088 ± 0.0071
0.2 61.25 ± 0.75 0.6102 ± 0.0079

0.25 61.04 ± 0.81 0.6088 ± 0.0087
0.3 60.85 ± 0.80 0.6067 ± 0.0082
0.4 60.50 ± 0.78 0.6045 ± 0.0079
0.5 60.30 ± 0.79 0.6021 ± 0.0078
0.6 60.10 ± 0.85 0.6004 ± 0.0079
0.7 59.90 ± 0.84 0.5985 ± 0.0078

0.75 59.88 ± 0.85 0.5982 ± 0.0082
0.8 59.70 ± 0.80 0.5965 ± 0.0081
0.9 59.50 ± 0.85 0.5948 ± 0.0085

Triplet

0.1 62.10 ± 0.75 0.6202 ± 0.0074
0.2 62.30 ± 0.70 0.6215 ± 0.0075

0.25 62.50 ± 0.70 0.6228 ± 0.0075
0.3 62.55 ± 0.72 0.6230 ± 0.0076
0.4 62.60 ± 0.70 0.6235 ± 0.0073
0.5 62.75 ± 0.68 0.6240 ± 0.0071
0.6 62.80 ± 0.69 0.6245 ± 0.0072
0.7 62.65 ± 0.70 0.6237 ± 0.0073

0.75 62.70 ± 0.72 0.6240 ± 0.0075
0.8 62.40 ± 0.70 0.6215 ± 0.0073
0.9 62.30 ± 0.68 0.6212 ± 0.0071

N-pair

0.1 61.20 ± 0.75 0.6104 ± 0.0076
0.2 61.25 ± 0.70 0.6110 ± 0.0074

0.25 61.30 ± 0.75 0.6115 ± 0.0075
0.3 61.35 ± 0.70 0.6118 ± 0.0073
0.4 61.40 ± 0.80 0.6121 ± 0.0074
0.5 61.50 ± 0.75 0.6130 ± 0.0076
0.6 61.60 ± 0.70 0.6135 ± 0.0073
0.7 61.55 ± 0.80 0.6130 ± 0.0079

0.75 61.60 ± 0.70 0.6135 ± 0.0074
0.8 61.55 ± 0.72 0.6132 ± 0.0075
0.9 61.50 ± 0.68 0.6129 ± 0.0071

Magnet

0.1 62.80 ± 0.69 0.6242 ± 0.0072
0.2 63.00 ± 0.75 0.6250 ± 0.0076

0.25 63.20 ± 0.70 0.6265 ± 0.0075
0.3 63.25 ± 0.70 0.6267 ± 0.0074
0.4 63.30 ± 0.75 0.6270 ± 0.0076
0.5 63.40 ± 0.70 0.6275 ± 0.0075
0.6 63.45 ± 0.75 0.6277 ± 0.0076
0.7 63.30 ± 0.72 0.6268 ± 0.0075

0.75 63.50 ± 0.70 0.6285 ± 0.0072
0.8 63.35 ± 0.72 0.6273 ± 0.0076
0.9 63.30 ± 0.68 0.6270 ± 0.0071
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Table 8: Complete performance evaluation of Latent Boost across the full set of λ values.

Dataset λ Accuracy (Mean ± Std) Micro-F1 (Mean ± Std)

Fashion MNIST

0.1 88.47 ± 0.16 0.8892 ± 0.0019
0.2 89.03 ± 0.12 0.8905 ± 0.0017

0.25 89.36 ± 0.14 0.8923 ± 0.0020
0.3 89.62 ± 0.09 0.8927 ± 0.0015
0.4 90.05 ± 0.12 0.8983 ± 0.0018
0.5 90.47 ± 0.19 0.9005 ± 0.0019
0.6 90.15 ± 0.13 0.9021 ± 0.0022
0.7 90.09 ± 0.21 0.9015 ± 0.0018

0.75 90.86 ± 0.21 0.9038 ± 0.0025
0.8 89.76 ± 0.14 0.8952 ± 0.0016
0.9 88.53 ± 0.15 0.8902 ± 0.0018

CIFAR-10

0.1 83.11 ± 0.19 0.8342 ± 0.0018
0.2 84.29 ± 0.16 0.8431 ± 0.0017

0.25 85.22 ± 0.20 0.8464 ± 0.0019
0.3 85.64 ± 0.15 0.8485 ± 0.0015
0.4 86.05 ± 0.13 0.8510 ± 0.0016
0.5 86.85 ± 0.12 0.8554 ± 0.0015
0.6 87.43 ± 0.11 0.8598 ± 0.0013
0.7 88.15 ± 0.24 0.8641 ± 0.0014

0.75 88.44 ± 0.28 0.8843 ± 0.0024
0.8 87.92 ± 0.22 0.8803 ± 0.0015
0.9 86.30 ± 0.18 0.8725 ± 0.0018

CIFAR-100

0.1 60.34 ± 0.19 0.6112 ± 0.0015
0.2 61.45 ± 0.12 0.6170 ± 0.0016

0.25 62.21 ± 0.17 0.6215 ± 0.0018
0.3 62.67 ± 0.22 0.6258 ± 0.0015
0.4 63.02 ± 0.33 0.6280 ± 0.0017
0.5 63.04 ± 0.48 0.6288 ± 0.0018
0.6 62.83 ± 0.31 0.6275 ± 0.0016
0.7 62.45 ± 0.27 0.6268 ± 0.0015

0.75 62.30 ± 0.14 0.6255 ± 0.0017
0.8 62.00 ± 0.18 0.6232 ± 0.0018
0.9 60.78 ± 0.11 0.6204 ± 0.0016
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