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Figure 1: A subgraph (center) of the heterogeneous undirected CompanyKG graph (left), where the numbered nodes represent distinct
companies and the edges signify multi-dimensional inter-company relations. Node features and edge weights are exemplified on the right.

Abstract
This paper presents CompanyKG (version 2), a large-scale het-
erogeneous graph developed for fine-grained company similarity
quantification and relationship prediction, crucial for applications
in the investment industry such as market mapping, competitor
analysis, and mergers and acquisitions. CompanyKG comprises 1.17
million companies represented as graph nodes, enriched with com-
pany description embeddings, and 51.06 million weighted edges
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denoting 15 distinct inter-company relations. To facilitate a thor-
ough evaluation of methods for company similarity quantification
and relationship prediction, we have created four annotated evalu-
ation tasks: similarity prediction, competitor retrieval, similarity
ranking, and edge prediction. We offer extensive benchmarking re-
sults for 11 reproducible predictive methods, categorized into three
groups: node-only, edge-only, and node+edge. To our knowledge,
CompanyKG is the first large-scale heterogeneous graph dataset
derived from a real-world investment platform, specifically tailored
for quantifying inter-company similarity and relationships.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning; Unsupervised learning; Neural networks; Natu-
ral language processing; •Mathematics of computing→ Graph
algorithms; • Information systems → Retrieval models and
ranking; Enterprise applications.
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1 Introduction
In the investment industry, it is often essential to identify simi-
lar companies for purposes such as market mapping, competitor
analysis1 and mergers and acquisitions (M&A)2. Identifying similar
and related companies in these scenarios is crucial, as they inform
investment decisions and discover potential synergies. Therefore,
the accurate quantification of inter-company similarity (a.k.a., com-
pany similarity quantification) is the key to successfully executing
such tasks. Formally, company similarity quantification refers to
the systematic process of measuring and expressing the degree of
likeness or resemblance between two companies with a focus on
various “traits”, typically represented through numerical values.
While a universally accepted set of “traits” does not exist, invest-
ment researchers and practitioners commonly rely on attributes,
characteristics or relationships that reflect competitive landscape,
industry sector, M&A transactions, people’s affiliation, news/event
engagement, product positioning, and more.

In data-driven investment activities, company similarity quan-
tification often forms a central component in a company expansion
system, which aims to extend a given set of companies by incorpo-
rating the similarity traits exemplified previously3. Such a system
aids in competitor analysis, where investment professionals begin
with a seed company 𝑥0 of interest (a.k.a., query company, repre-
sented by a company ID), aiming to identify a concise list of direct
competitors to 𝑥0. The identified competitor companies serve as
benchmarks for evaluating the investment potential of 𝑥0, influ-
encing the final investment decisions. Until now, implementing
such a company expansion system remains a challenge, because
(1) the crucial business impact necessitates an exceptionally high
production-ready standard of expansion recall and precision; and
(2) the underlying data has expanded to an unprecedented scale
and complexity, particularly regarding inter-company relations.

In recent years, Transformer-based Language Models (LMs) [6,
10, 11, 15, 37] have become the preferred method for encoding
textual company descriptions into vector-space embeddings. Com-
panies that are similar to the seed companies can be searched in
the embedding space using distance metrics like cosine similarity.

1Market mapping analyzes the market landscape of a product or service, while com-
petitor analysis focuses on the competitive landscape of a concrete company [51]. They
both start with identifying a set of similar companies, yet the former often expects a
more coarse and inclusive set of similar companies than the latter.
2M&A refers to the process of combining two or more companies to achieve strate-
gic and financial objectives, such as enhanced market share and profitability [40].
Investment professionals typically work with a list of M&A candidate companies and
examine them based on the sequence of their projected business compatibility.
3In domains beyond investment, related research such as [1, 28] focuses on expanding
query entities to a more extensive and relevant set, akin to our work. We emphasize
the difference to a company suggestion system which concentrates on proactively
recommending entities based on user behavior and preferences. However, company
expansion and suggestion are both concepts in the context of KG and recommender
systems with slightly different processes and implication.

Rapid advancements in Large LMs (LLMs), such as GPT-3/4 [5, 32],
LLaMA [43] and Gemini-1.5 [36], have significantly enhanced the
performance of general-purpose conversational models. Models
such as ChatGPT [33] can, for example, be employed to answer
questions related to similar company discovery and quantification
in an 𝑁 -shot prompting paradigm.

A graph is a natural choice for representing and learning diverse
company relations due to its ability to model complex relationships
between a large number of entities. By representing companies as
nodes and their relationships as edges, we can form a knowledge
graph (KG)4. A KG allows us to efficiently capture and analyze
the network structure of the business landscape. Moreover, KG-
based approaches allow us to leverage powerful tools from network
science, graph theory, and graph-based machine learning, such as
Graph Neural Networks (GNNs) [16, 18, 21, 41, 45, 56], to extract
insights and patterns to facilitate similar company analysis that
goes beyond the relations encoded in the graph. While there exist
various company datasets (mostly commercial/proprietary and non-
relational) and graph datasets for other domains (mostly for single
link/node/graph-level predictions), there are to our knowledge no
datasets and benchmarks that target learning over a large-scale KG
expressing rich pairwise company relations.

EQT Motherbrain5 is a general-purpose and proprietary invest-
ment platform developed by a team of researchers, engineers and
designers. The platform integrates over 50 data sources6 about
companies, providing EQT’s investment professionals with a com-
prehensive and up-to-date view of the individual companies and
the entire market. Meanwhile, valuable insights are collected from
the interaction between our professionals and the platform, which
often implies inter-company relations of various kinds. Based on
this unique edge, we construct and publish a large-scale heteroge-
neous graph dataset to benchmark methods for similar company
quantification. Our main contributions include:
• We introduce a real-world KG dataset – CompanyKG – for simi-
lar company quantification and relation prediction. Specifically,
1.17 million companies are represented as nodes enriched with
company description embeddings; and 15 distinct inter-company
relations result in 51.06 million weighted edges.

• To facilitate a comprehensive assessment of methods learned
on CompanyKG, we design and collate four evaluation tasks
with annotated datasets: Similarity Prediction (SP), Competitor
Retrieval (CR), Similarity Ranking (SR) and Edge Prediction (EP).

• We provide comprehensive benchmarking results (with source
code for reproduction) of node-only (embedding proximity and𝑁 -
shot prompting), edge-only (shortest path and direct neighbors)
and node+edge (self-supervised graph learning) methods.

2 Related work
Modeling company similarity typically employs a multidimensional
approach, encompassing facets such as industry classifications [19],
4A knowledge graph is a specific type of graph where nodes represent real-world
entities/concepts and edges denote relations between the entities.
5EQT: https://eqtgroup.com; Motherbrain: https://eqtgroup.com/motherbrain.
6The complete list of data sources adopted by EQT Motherbrain can not be revealed
due to legal and compliance concerns. However, we provide descriptions of the nature
of the data sources from which CompanyKG is built, which should suffice for others
with access to similar data sources to build a comparable KG for practical applications.
We refer readers to [9] for review of common sources from a Venture Capital’s view.

https://doi.org/10.1145/3637528.3671515
https://doi.org/10.1145/3637528.3671515
https://eqtgroup.com
https://eqtgroup.com/motherbrain
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financial flexibility [20], and shared directorship [24]. Commonly
used data sources in the investment domain, such as Diffbot, Pitch-
book, Crunchbase, CB Insights and S&P Capital IQ7, primarily offer
predicted similar companies without revealing their methodolo-
gies. Investment practitioners have increasingly relied on LMs and
KGs for scalable company similarity quantification. Our benchmark
tasks and methods focus primarily on graph-based company simi-
larity measurement, but a company KG of this sort could be used
for other tasks like [23, 28]. We include non-KG-based approaches
(embedding proximity and LLM prompting) for comparison, while
also acknowledging other methods like document co-occurrence
[13] or KG fusion with domain-specific signals [1].

2.1 Language Model (LM) Based Approaches
Text embedding proximity has become a popular approach for
company similarity quantification. The key idea is to represent
textual descriptions of companies as dense vectors (a.k.a., embed-
dings) in a high-dimensional space, such that the similarity between
two companies can be measured by the proximity between their
corresponding vectors. The text embeddings are usually obtained
using pretrained LMs, such as BERT [11], T5 [35], LLaMA [43]
and GPT-3/4 [5, 32]. The pretrained LMs can be used directly, or
finetuned on company descriptions in a supervised [10, 37], semi-
supervised [6], or Self-Supervised Learning (SSL) paradigm [15] to
further improve the performance of proximity search. Supervised
and semi-supervised methods typically yield superior performance
(than SSL) on domain-specific tasks, when high-quality annotations
are available[6]. This limits its applicability in scenarios where the
annotation is scarce, noisy, or costly to obtain.
𝑁 -shot prompting. The recent rapid development of LLMs such

as GPT-3/4 [5, 32], LLaMA [43], LaMDA [42] and Gemini [36] has
led to significant improvements in general-purpose conversational
AI like ChatGPT [33]. By prompting them with 𝑁 ≥ 0 examples, the
instruction tuned models can answer questions about identifying
similar companies, for example “Can you name 10 companies that
are similar to EQT?” As a result, 𝑁 -shot prompting has emerged as
a potential tool for investment professionals (e.g., [49, 50]) looking
to conduct similar company search and analysis. However, this
approach is currently limited by several factors: (1) to ensure the
model’s responses are up-to-date and relevant, a large amount of
domain-specific information must be incorporated via RAG (re-
trieval augmented generation) alike solutions; (2) the decision-
making process may not be explainable, making it difficult to un-
derstand and trust the answer; (3) the performance depends heavily
on prompt design.

2.2 Knowledge Graph (KG) Based Approaches
Companies can be represented as nodes in a graph, where each
node is enriched with attributes. There can be various types of
similarities between any two companies, which can be naturally
represented as heterogeneous edges in the graph. Moreover, the
strength of each relation can be captured by assigning appropriate
edge weights. Such a graph-based representation enables the use

7Diffbot: www.diffbot.com; Pitchbook: www.pitchbook.com; Crunchbase: www.
crunchbase.com; CB Insights: www.cbinsights.com; S&P Capital IQ: www.capitaliq.
com;. These data sources can be used beyond similar company quantification.

of heuristic algorithms or GNN models for searching and identify-
ing similar companies, based on their structural and attribute-level
similarities. According to our survey8, most public graph datasets
are designed for predicting node [52], edge [3] or graph [39] level
properties, while our graph is tailored for company similarity quan-
tification9. The most common entities in KGs are web pages [31],
papers [2], particles [4], persons [26] and so on. Relato Business
Graph10, which also represents companies as node entities, is the
closest dataset to ours. However, its limited scale and absence of
edges implying company similarity could constrain its suitability
for quantifying company similarity. To address this, we build Com-
panyKG, a large-scale company KG that incorporates diverse and
weighted similarity relationships in its edges. We present extensive
benchmarking results (over four carefully assembled evaluation
tasks) for 11 reproducible baselines categorized into three groups:
node-only, edge-only, and node+edge.

2.3 KG + LM Approaches
Recently, there has been a growing effort to integrate the strengths
of LMs and KGs. This integration can be broadly categorized into
three main approaches [12, 34]:

(1) Self-supervised training of GNN and LM for relation pre-
diction: Methods such as SimKGC [47] and others [27] focus on
training GNNs and LMs together in a self-supervised manner
to enhance relation prediction within the graph.

(2) Graph RAG (Retrieval Augmented Generation): This ap-
proach involves augmenting the prompting process of pre-
trained LMs with relevant sub-graphs retrieved from the KG.
Examples include techniques discussed in [29] and [14]. These
methods typically convert the sub-graph into a text format that
can be processed by the LM, enhancing its reasoning capabilities
with structured graph information.

(3) Joint finetuning of pretrained LM and GNN: A pretrained
LLM and a pretrained GNN are jointly finetuned to create
a multimodal LLM capable of performing complex question-
answering (QA) tasks. Examples include GreaseLM [54] and
GraphTranslator [53]. These models use a mechanism to re-
trieve relevant sub-graphs and encode them into the same lan-
guage space as the LLM, allowing for integrated reasoning over
both text and graph modalities.

This field is highly active in EQT Motherbrain, where we are de-
veloping an investor-centric QA agent leveraging a fine-grained
spatio-temporal KG11. This KG encompasses a diverse set of entity
types, including companies, persons, industry sectors, products,
deals, and more. Given that CompanyKG is specifically designed
for company similarity quantification, the remainder of this paper
will primarily focus on LM and KG-based approaches.

8We have reviewed graph datasets in SNAP [25], OGB [22], Network Repository [38],
Hugging Face (https://huggingface.co), Kaggle (https://www.kaggle.com) and Data
World (https://data.world)
9Formally, it is equivalent to edge prediction, yet edge prediction methods like Graph-
SAGE usually assume an exhaustive edge representation in the graph, which is not
the case in CompanyKG as discussed in Section 3.1.
10https://data.world/datasyndrome/relato-business-graph-database
11Private Equity KG (PEKG) will be introduced here: https://motherbrain.ai

www.diffbot.com
www.pitchbook.com
www.crunchbase.com
www.crunchbase.com
www.cbinsights.com
www.capitaliq.com
www.capitaliq.com
https://huggingface.co
https://www.kaggle.com
https://data.world
https://data.world/datasyndrome/relato-business-graph-database
https://motherbrain.ai
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3 CompanyKG (V2)
3.1 Edges (Relations): Types and Weights
We model 15 different inter-company relations as undirected edges,
each of which corresponds to a unique edge type (ET) numbered
from 1 to 15 as shown in Table 1. These ETs capture six widely
adopted categories (C1∼C6) of similarity between connected com-
pany pairs: C1 - competitor landscape (ET2, 5 and 6), C2 - industry
sector (ET3, 4, 9 and 10), C3 - M&A transaction (ET1, 7 and 11), C4
- people’s affiliation (ET8 and 15), C5 - news/events engagement
(ET12 and 14), and C6 - product positioning (ET13). Among them,
ET1, 2, 3, 7 and 10 are aligned with EQT’s scope to varying degrees,
while the other 10 ETs are not bound to EQT’s scope at all, as they
are sourced from well-known external data providers such as Pitch-
book, Crunchbase, and LinkedIn. The constructed edges do not
represent an exhaustive list of all possible edges due to incomplete
information (Appx. D-B-3 [8]). Consequently, this leads to a sparse
and occasionally skewed distribution of edges for individual ETs,
posing additional challenges for downstream learning tasks.

Associated with each edge of a certain type, we calculate a real-
numbered weight as an approximation of the similarity level of that
type. The edge definition, distribution (both absolute quantity and
percentage), and weights calculation are elaborated in Table 1. To
provide insight into the distribution of edge weights, we present
histograms of the weights for all 15 ETs (ET1-15) in Figure 2: while
some edge types (ET1-6 and ET11) have discrete weights, others
follow a continuous distribution. As depicted in Figure 1, we merge
edges between identical company pairs into one, assigning a 15-dim
weight vector. Here, the 𝑖-th dimension signifies the weight of the
𝑖-th ET. Importantly, a “0” in the edge weights vector indicates an
“unknown relation” rather than “no relation”, which also applies to
the cases when there is no edge at all between two nodes. Although
there are a few ETs that can naturally be treated as directed (e.g.
ET7, M&As), most are inherently undirected. We therefore treat
the whole graph as undirected.

3.2 Nodes (Companies): Features and Profiles
The CompanyKG graph includes all companies connected by edges
defined in the previous section, resulting in a total of 1,169,931
nodes12. Each node represents a company and is associated with a
descriptive text, such as “Klarna is a fintech company that provides
support for direct and post-purchase payments ...”. As mentioned in
Appx. D-B [8], about 5% texts are in languages other than English.
To comply with privacy and confidentiality requirements, the true
company identities or any raw interpretable features of them can
not be disclosed. Consequently, as demonstrated in the top-right
part of Figure 1, we encode the text into numerical embeddings us-
ing four different pretrained text embedding models: mSBERT (mul-
tilingual Sentence BERT) [37], ADA213, SimCSE [15] (fine-tuned
on textual company descriptions) and PAUSE [6] (specifically, the
“PAUSE-SC-10%”model in Section 4.4 of [6]). The choice of embedding
models encompasses both pre-trained, off-the-shelf (mSBERT and
12Due to the company relations originating from various data sources, leading to du-
plicated company entities, a company entity resolution system has been implemented
to ensure node uniqueness. For more details, see Appx. A.1
13ADA2 is short for “text-embedding-ada-002”, which is OpenAI’s most recent embed-
ding engine employing a 1536-dimensional semantic space, with default settings used
throughout the experiments.

ADA2) and proprietary fine-tuned (SimCSE and PAUSE) models. To
showcase the sophistication and inclusiveness of the company pro-
files, we collect five attributes (a snapshot as of February 2023) for
each company. The attributes have different rate of missing values
and are bucketed. The attributes include (1) employee (Figure 3a):
the total number of employees; (2) funding (Figure 3b): the accu-
mulative funding (in USD) received by the company; (3) geo_region
(Figure 3c): the geographic region where the company is registered;
(4) duration (Figure 3d): the number of years since the company
was founded; (5) sector (Figure 3e): the top level of industry sectors
[7] of the company. As illustrated in Figure 3, the companies are
distributed widely over each attribute, demonstrating the graph’s
sophistication and inclusiveness.

3.3 Evaluation Tasks
The main objective of CompanyKG is to facilitate developing al-
gorithms/models for recommending companies similar to given
seed/query companies. The effectiveness of such recommendations
relies on the capability of quantifying the degree-of-similarity or
predicting the relation between any pair of companies. Two-stage
paradigms are prevalent in large-scale recommender systems [46]:
the first stage swiftly generates candidates that fall into the simi-
larity ballpark, while the second stage ranks them to produce the
final recommendations. We assemble a Competitor Retrieval (CR)
task from real investment deals to assess the end-to-end perfor-
mance over the entire task of company expansion. To understand
the performance for each stage, we carefully curate two additional
evaluation tasks: Similarity Prediction (SP) and Similarity Ranking
(SR). In fact, effectively extrapolating CompanyKG’s relations/edges
into the future is crucial for performing well on the CR, SP, and SR
tasks. To this end, we introduce an additional Edge Prediction (EP)
evaluation task to provide researchers with deeper insights into the
performance and limitations of their models.

Competitor Retrieval (CR) describes how a team of experi-
enced investment professionals would carry out competitor analy-
sis, which will be a key application of a company expansion system.
Concretely, investment professionals perform deep-dive investiga-
tion and analysis of a target company once they have identified
it as a potential investment opportunity. A critical aspect of this
process is competitor analysis, which involves identifying several
direct competitors that share significant similarities (from perspec-
tives of main business, marketing strategy, company size, etc.) with
the target company. EQT maintains a proprietary archive of deep-
dive documents that contain competitor analysis for many target
companies. We select 76 such documents from the past 4 years
pertaining to distinct target companies and ask human annotators
to extract direct competitors from each document, resulting in ∼5.3
competitors per target. Ideally, for any target company, we expect
a competent algorithm/model to retrieve all its annotated direct
competitors and prioritize them at the top of the returned list.

Similarity Prediction (SP) defines the coarse binary similar-vs.-
dissimilar relation between companies. Excelling in this task often
translates to enhanced recall in the first stage of a recommender
system. It also tends to be valuable for use cases like market map-
ping, where an inclusive and complete result is sought after. For
SP task, we construct an evaluation set comprising 3,219 pairs of
companies that are labeled either as positive (similar, denoted by

https://platform.openai.com/docs/guides/embeddings/what-are-embeddings
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Type The specification of each edge type (ET) and the associated weight #edge %

ET1
(C3)

In Motherbrain platform, investment professionals (i.e., users) can create a so-called “space” by specifying a theme such as “online music streaming
service”. In each space, users are exposed to some companies that are recommended (by a linear model) as theme-compliant. Users can approve or
reject each recommended company, which will be used to continuously train the model in an active learning fashion. We create an edge between any
two confirmed companies in the same space. For any two companies with an edge with this type, the associated edge weight counts their approval
occurrences in all spaces.

117,924 0.23

ET2
(C1)

Motherbrain users can add 𝑁 ≥ 1 direct competitors for any target company, resulting in a competitor set containing 𝑁 +1 companies (𝑁 direct
competitors and the target company itself). For each target company with such a competitor set, we create one fully connected sub-graph. When
merging these sub-graphs, the duplicated edges are merged into one with a weight indicating the degree of duplication.

16,734 0.03

ET3
(C2)

Investment professionals can create “collections” of companies for various purposes such as market mapping and portfolio tracking. We manually
selected 787 (out of 1,458 up till February 2023) collections that contain companies with a certain level of similarity. We create a fully connected sub-graph
for each collection. These sub-graphs are then merged and deduplicated like ET2, so the edge weights represent the duplication degree.

374,519 0.73

ET4
(C2)

Based on a third-party data source∗ containing about 4 million company profiles, we create graph edges from company market connections. The edge
weights represent the count of the corresponding market connection in that data source. 1,473,745 2.89

ET5
(C1)

From a third-party data source∗ about companies, investors and funding rounds, we extract pairwise competitor relations and build edges out of them.
Again, the edge weights are the number of occurrences of such extracted relation. 74,142 0.15

ET6
(C1)

Same as ET5 except that competitor information is extracted from a different data source∗ that specializes in financial data from private and public
companies. 346,162 0.68

ET7
(C3)

Motherbrain, as a team, also work with deal teams on various M&A and add-on acquisition† projects. Such projects aim to produce a list of candidate
companies for a certain company to potentially acquire. For each selected project∗ up till December 2022, we create a fully connected sub-graph from a
company set containing the acquirer and all acquiree candidates. These sub-graphs are then merged and deduplicated like ET2 and ET3, so the edge
weights represent the duplication degree.

55,366 0.11

ET8
(C4)

Based on the naïve assumption that employees tend to move among companies that have some common traits, we build graph edges representing how
many employees have flowed (since 1990) between any two companies. For any two companies A and B who currently have 𝑁𝐴 and 𝑁𝐵 employees
respectively, let 𝑁𝐴:𝐵 and 𝑁𝐵:𝐴 respectively denote the number of employees flowed from A to B and from B to A. We create an edge between A and B
either when (1) 𝑁𝐴:𝐵+𝑁𝐵:𝐴 ≥ 20, or (2) 𝑁𝐴:𝐵+𝑁𝐵:𝐴 ≥ 3 and (𝑁𝐴:𝐵 + 𝑁𝐵:𝐴 )/(𝑁𝐴 + 𝑁𝐵 ) ≥ 0.15. We assign the value of (𝑁𝐴:𝐵 + 𝑁𝐵:𝐴 )/(𝑁𝐴 + 𝑁𝐵 ) as
the edge weight.

71,934 0.14

ET9
(C2)

In Motherbrain’s data warehouse, each company has some keywords (e.g., company EQT has three keywords: private equity, investment and TMT) that
are integrated from multiple data sources∗ . We filter out the overly short/long keywords and obtain 763,503 unique keywords. Then we calculate IDF
(inverse document frequency) score for every keyword and apply min-max normalization. Finally, we create an edge between any two companies that
have shared keyword(s), and assign the average (over all shared keywords) IDF score as the corresponding edge weight.

45,717,108 89.57

ET10
(C2)

EQT has defined a hierarchical sector framework [7] to support thematic investment activities. Motherbrain users can tag a company as belonging
to one or more sectors (e.g., cyber security, fintech, etc.). For each low-level sector (i.e., sub-sector and sub-sub-sector), we create a fully connected
sub-graph from all the tagged companies. The sub-graphs are further merged into one big graph with edge weights indicating duplication degree of
edges. It also worth mentioning that an edge created from a sub-sub-sector is weighted twice as important as the one created from a sub-sector.

813,585 1.59

ET11
(C3)

Mergers and/or acquisitions could imply a certain level of similarity between the acquirer and acquiree. As a result, we create an edge between the
involved companies of historical (since 1980) merger/acquisition (specifically M&A, buyout/LBO, merger-of-equals, acquihire)‡ events. The edge weight
is the number of occurrences of the company pair in those events.

260,644 0.51

ET12
(C5)

Based on a third-party data source∗ that keeps track of what events (e.g., conferences) companies have attended, we create a preliminary edge between
two companies who have had at least five co-attendance events in the past (up till June 2022). Then, we further filter the edges by computing the
Levenshtein distance between the company specialties that come with the data source in textual strings. The edge weights are the count of co-attendance
in log scale.

1,079,304 2.11

ET13
(C6)

From a product comparison service∗ , we obtain data about what products are chosen (by potential customers) to be compared. By mapping the compared
products to the owning companies, we can infer which companies have been compared in the past up till February 2023. We build a graph edge between
any two companies whose products has been compared. The edge weights are simply the number of times (in log scale) they are compared.

216,291 0.42

ET14
(C5)

Motherbrain has a news feed∗ about global capital market. Intuitively, companies mentioned in the same piece of news might be very likely connected,
thus we create an edge between any pair of the co-mentioned companies (till February 2023). When one of the co-mentioned companies is an investor,
the relation is often funding rather than similarity, therefore we eliminate those edges from the final graph. The edge weights are log-scale co-mention
count.

151,302 0.30

ET15
(C4)

One individual may hold executive roles in multiple companies, and it is possible for them to transition from one company to another. When any two
companies, each having fewer than 1,000 employees, share/have shared the same person in their executive role, we establish a graph edge between them.
To address the weak and noisy nature of this similarity signal, we refine the edges by only retaining company pairs that share at least one keyword
(cf. ET9). The edge weights are log-scale count of shared executives between the associated companies.

273,851 0.54

* The detailed information is hidden due to legal and compliance requirements. Our intent is not to re-license any third-party data; instead, we focus on sharing aggregated and anonymized data for pure research purposes only. Please refer to Appx. D-E
in [8] for more information about dataset usage.
† An add-on acquisition is a type of acquisition strategy where a company acquires another company to complement and enhance its existing operations or products.
‡ Leveraged buyout (LBO) is a transaction where a company is acquired with a significant loan. Acquihire is the process of acquiring a company primarily to recruit its employees, rather than to gain control of its products/services. A merger-of-equals is
when two companies of about the same size come together to form a new company.

Table 1: Specification of 15 edge types (ET1∼ET15), edge weights (stronger relations has higher weights), and the number of edges per type
(“#edge” column). ETs fall into six extensively recognized categories of company similarity: C1 (competitor landscape), C2 (industry sector), C3
(M&A transaction), C4 (people’s affiliation), C5 (news/events engagement), and C6 (product positioning).
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Figure 2: The weight distributions of different ETs: we randomly sample 5,000 edges for each type. The histograms of ET4 and ET5 are almost
identical, hence they are merged.

“1”) or negative (dissimilar, denoted by “0”). Of these pairs, 1,522 are
positive and 1,697 are negative. Positive company pairs are inferred
from user interactions with our Motherbrain platform – closely

related to ET2&3, although the pairs used in this test set are selected
from interactions after the snapshot date, so we ensure there is no
leakage. Each negative pair is formed by randomly sampling one

https://eqtgroup.com/
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Figure 3: The distribution (y-axis) of bucketed company/node at-
tributes (x-axis). In (c), “France Benelux” refers to France, Nether-
lands, Belgium and Luxembourg; “DACH” includes Germany, Aus-
tria and Switzerland; “RoW” stands for Rest of the World.

company from a Motherbrain collection (cf. ET3 in Table 1) and
another company from a different collection. All samples have been
manually examined by domain experts.

Similarity Ranking (SR) is designed to assess the ability of
any method to rank candidate companies (numbered 0 and 1) based
on their similarity to a query company. Excelling in this task is
of utmost significance for the second stage of a high-quality rec-
ommender system. When applied to real-world investment scenar-
ios like M&A, a fine-grained ranking capability can significantly
enhance the efficacy of prioritizing M&A candidates. During the
creation of this evaluation dataset, we need to ensure a balanced
distribution of industry sectors and increase the difficulty level of
the task. Therefore, we select the query and candidate companies
using a set of heuristics based on their sector information [7]. As a
result, both candidates will generally be quite closely related to the
target, making this a challenging task. As described in Appx. A.2,
paid human annotators, with backgrounds in engineering, science,
and investment, were tasked with determining which candidate
company is more similar to the query company. Each question was
assessed by at least three different annotators, with an additional
annotator involved in cases of disagreement. The final ground-truth
label for each question was determined by majority voting. This
process resulted in an evaluation set with 1,856 rigorously labeled
ranking questions. We retained 20% (368 samples) as a validation SR
set for model selection. The choice to use the SR task for model se-
lection, instead of the SP or CR tasks, is primarily because it covers a
more representative sample of the entire graph. See Appx. D-B-8 [8]
for further explanation.

Edge Prediction (EP) is designed to evaluate how effectively
a model can predict missing or future relationships between any
two companies. Successfully achieving this is akin to extending the
CompanyKG into the future, allowing investment professionals to
gain fine-grained, forward-looking insights in all aforementioned
CR, SP, and SR tasks. Specifically, we collected relations14 as de-
scribed in Table 1 that were first ingested into our data warehouse
between April 6, 2023, and May 25, 2024. Consequently, the edges
in the EP dataset are not present in CompanyKG, which is a snap-
shot up until April 5, 2023. To simplify the evaluation procedure,
we (1) selected only the edges whose nodes are both present in
CompanyKG, and (2) binarized the edge weights (exist vs. missing)
to form a multi-class, single-label classification problem. To balance
the samples in each edge type (ET), we randomly sampled 5,000
edges for inclusion in the EP dataset, resulting in a total of 40,000

14Due to changes in data source availability after April 5, 2023, we collected new edges
for ET2, ET3, ET4, ET5, ET8, ET9, ET14, and ET15.

samples. For each ET, we reserved 1,500 samples for validation and
used the remaining samples to report test performance.

4 Experiments
In addition to the CompanyKG dataset, we provide comprehensive
benchmarks from 11 popular and/or state-of-the-art baselines cate-
gorized into three groups: node-only, edge-only, and node+edge.

Node-only baselines use only the features of individual com-
panies provided in the graph and ignore the graph structure. We
measure the cosine similarity between the embeddings of a given
type (see Section 3.2) that are associated with any two companies in
the graph. This gives us an embedding proximity score, which can
be evaluated in the SP task, and a method of ranking candidates,
evaluated by SR and CR. In order to assess the cutting-edge 𝑁 -shot
prompting methodology, we transform each raw SP/SR/CR evalua-
tion sample into a text prompt and let ChatGPT [33] generate the
label. The prompt templates are provided in Appx. B-E [8].

Edge-only baselines merely utilize the graph structure. We
define four simple heuristics to rank companies 𝐶𝑖 by proximity to
a target company𝑇 : (1) Unweighted Shortest Path (USP) length from
𝑇 to𝐶𝑖 ; (2) total weight of theWeighted Shortest Path (WSP) from𝑇

to𝐶𝑖 (weights inverted so lower is more similar); (3) close proximity
only if 𝑇 and 𝐶𝑖 are immediate Neighbors; and (4) rank weighted
neighbors (abbreviated as W. Neighbors) – immediate neighbors to
𝑇 ranked by edge weight. All heuristics will choose randomly if not
discriminative. To allow comparison of edge and path weights from
different ETs, we scale edge weights to [0, 1] for ET and shift them
so they have a mean weight of 1. In order to avoid edge weights
playing too strong a role in WSP compared to presence/absence of
edges and paths, we add a constant15 to all weights.

Node+edge baselines leverage both the node feature and graph
structure. CompanyKG does not provide an explicit signal that can
guide supervised learning to combine these into a single company
representation for similarity measurement. As a result, we test
five popular self-supervised GNN methods: GRACE [56], MVGRL
[18],GraphSAGE [17], GraphMAE [21] and eGraphMAE [8].
GRACE and MVGRL are graph contrastive learning (GCL) ap-
proaches that construct multiple graph views via stochastic aug-
mentations before learning representations by contrasting positive
samples with negative ones [55]. GraphSAGE, which is especially
suited for edge prediction, is trained to ensure that adjacent nodes
have similar representations, while enforcing disparate nodes to be
distinct. In light of the recent success of generative SSL in Natural
Language Processing (NLP) and Computer Vision (CV) domains,
Hou et al. [21] proposed GraphMAE, a generative SSL method for
graphs that emphasizes feature reconstruction. To incorporate the
edge weights in GraphMAE, Cao et al. [8] replaced the graph atten-
tion network (GAT) [44] with an edge-featured GAT (eGAT) [48],
resulting in eGraphMAE (edge-featured GraphMAE). Unless other-
wise specified, we report the best results from a hyper-parameter
grid search detailed in Appx. B, using the validation split of the SR
task set described in Section 3.3.

15We set this constant to 5 after a few empirical explorations. Results could potentially
be improved by tuning this constant, but the method is intended here only as a simple
baseline.



CompanyKG2: A Large-Scale Heterogeneous Graph for Company Similarity Quantification KDD ’24, August 25–29, 2024, Barcelona, Spain

Figure 4: Pairwise redundancy analysis of ETs.
Figure 5: Ranking performance (SR test set) of different ETs using USP and WSP heuris-
tics. Coverage for "all" is 100%.

4.1 Comparison of ETs (Edge Types)
Before presenting the results of the evaluations on the full graph,
we intend to gain some insights into the differences between the
15 different ETs. To understand the extent of redundancy among
different ETs, we measure the overlap between any two ETs, such
as ET𝑖 and ET 𝑗 . Letting {ET𝑖} and {ET 𝑗} be the set of unweighted
edges belonging to ETs 𝑖 and 𝑗 respectively, we measure the Jaccard
coefficient 𝐽 = |{ET𝑖} ∩ {ET 𝑗}|/|{ET𝑖} ∪ {ET 𝑗}|, where | · | denotes
the size of the embodied set. The heatmap in Figure 4 shows that
for most pairs of ETs, there is effectively no overlap, whilst for
a few (e.g., 3–10, 11–14, 6–8) there is a slightly stronger overlap.
However, the coefficient for the most overlapped pair, 3–10, is still
very small (𝐽 =0.022), suggesting that the information provided by
the different ETs is complementary.

To investigate further, we create a sub-graph for each individual
ET by preserving only edges of that type, and apply the four edge-
only heuristics to evaluate on the SR task (test set) using only that
sub-graph. SR is chosen because of its superior representativeness
of companies and alignment with our model selection approach
(Section 4 and Appx. B). From Figure 5, we see some variation be-
tween the performance of different heuristics using different ETs.
Onmany ETs, performance of all heuristics is close to random, since
coverage is low (1%-47%), and few are able to yield performance
much above chance. For ET9 (highest coverage), the full-path meth-
ods, USP and WSP, perform considerably better than immediate
neighbors, but the same pattern is not seen, for example, on ET10
(also relatively high coverage). Nevertheless, the best performance
is seen when all ETs are used together, giving full coverage of the
companies in the samples, suggesting again the complementary
nature of ETs. Here we see that full-path heuristics perform much
better than immediate neighbors, reflecting useful structural infor-
mation in the graph beyond the company-company relations that
constitute the edges of the graph. Making use of the weights inWSP
helps further, suggesting that they also carry useful information.

4.2 Performance of SP (Similarity Prediction)
We apply the immediate neighbor graph heuristics by classifying
all pairs of companies that are directly connected by an edge in
the graph as similar and others as dissimilar. We extend this to the
weighted case by scaling weights to a 0-1 range and using them as
similarity scores where edges exist. Results are reported in Table 2.
Edge-only baselines perform poorly: although the test data is similar

in nature certain ETs in the graph, there is no overlap between
the test pairs and the graph edges, so such a simple heuristic is
not sufficient. Node-only baselines span a broad range, the best
achieving ∼0.8, which is comparable to ChatGPT and GNN-based
methods. Seen from the full results in Table 4, the de facto highest SP
performance (0.8253) is achieved by eGraphMAE+SimCSE, showing
a slight improvement brought by incorporating edge weights.

4.3 Performance of SR (Similarity Ranking)
To evaluate SR task for KG and embedding proximity methods,
we obtain embeddings for the query company and two candidate
companies using each method. Next, we calculate cosine similarity
scores between the query company and the two candidate com-
panies resulting in two scores. The final prediction of the more
similar company is made by choosing the candidate with the higher
score. Evaluation using edge-only graph heuristics is described in
Section 4.1. We report the SR accuracy in Table 2. Edge-only meth-
ods establish a baseline of ∼60%, while some node-only methods
(e.g., mSBERT and ADA2) are able to improve on this (∼65%), per-
haps due to pretraining on extensive multilingual corpora. These
baseline results suggest that a combination of node and edge infor-
mation into a single representation might be able to take advantage
of both sources of similarity prediction. However, the GNN-based
methods struggle to improve on the baselines. The best node+edge
method, GraphMAE, manages to slightly outperform the best node-
only baseline, achieving the overall best result. Incorporating edge
weights into the model (eGraphMAE) does not succeed in improv-
ing on this result, even though we found using graph heuristics
that the edge weights carry useful information.

4.4 Performance of CR (Competitor Retrieval)
For the CR task, we aim to determine how likely the direct competi-
tors of a target company are to appear in the top-𝐾 most similar
companies. To accomplish this, we perform an exhaustive search
in the embedding space and return the top-𝐾 companies with the
highest cosine similarity scores to the target company. We then
count the number of annotated direct competitors (denoted as𝑀)
that appear within the returned set and compute the metric of
Recall@𝐾 , which is given by 𝑀

𝑁
, where 𝑁 is the total number of

direct competitors in the CR test set. Although we test eight 𝐾
values over a wide range – 50, 100, 200, 500, 1,000, 2,000, 5,000 and
10,000 (cf. Table 4 in Appx. and Figure 6) – it is the lower end of
this range that is of most interest for downstream applications: in
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Approach / Model SP (AUC) SR (Acc%) CR Recall@50 CR Recall@100

G
ra
ph

he
ur
is
tic

s USP (Unweighted SP) N/A* 59.61 18.27 29.48
WSP (Weighted SP) N/A* 61.16 43.69 56.03
Neighbors 0.6229† 56.52 22.25 31.84
W. Neighbors 0.6020 56.65 43.50 54.65

Em
be
dd

in
g

pr
ox
im

ity

mSBERT (512-dim) 0.8060 67.14 12.96 18.24
ADA2 (1536-dim) 0.7450 67.20 14.09 21.69
SimCSE (768-dim) 0.7188 61.69 7.66 8.90
PAUSE (32-dim) 0.7542 65.19 6.84 9.62

N-shot ChatGPT-3.5 0.7501† 66.73† 30.06 31.10

Kn
ow

le
dg

e
G
ra
ph

(G
N
N
-b
as
ed
) GraphSAGE (ADA2) 0.7422 ±0.0202 62.90 ±2.25 10.12 ±3.91 11.93 ±0.96

GRACE (mSBERT) 0.7243 ±0.0233 59.36 ±0.64 2.68 ±1.82 4.64 ±1.51
MVGRL (PAUSE) 0.6843 ±0.0280 55.60 ±1.18 0.47 ±0.35 1.25 ±0.56
GraphMAE (mSBERT) 0.7981 ±0.0063 67.61 ±0.11 20.88 ±0.46 27.83 ±0.39
eGraphMAE (mSBERT) 0.7963 ±0.0030 67.52 ±0.03 18.44 ±0.21 23.79 ±0.22

* We omit SP evaluation for the path-based graph heuristics, since, whilst they are able to rank companies by similarity,
there is no obvious way to obtain a 0-1 similarity score for a pair of companies from them.
† To account for the binary nature of the SP prompts answered by ChatGPT and the Neighbors heuristic, we report
accuracy instead of AUC.

Table 2: The performance of baselines on three evaluation tasks (SP, CR and SR)
of CompanyKG. Best results are in bold. Standard deviations are reported over 3
random initializations of the trained models.
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Figure 6: Performance comparison on CR task measured
in Recall@𝐾 over the full range of 𝐾 values tested.

any search/retrieval system, the user will only in practice be able
to examine a small number of the top-ranked results. We therefore
only report Recall@50 and @100 in Table 2.

Edge-only heuristic methods, specificallyWSP andW. Neighbors,
clearly stand out as superior. This underscores the significance of
both the graph structure and edge weights, as we saw with graph
heuristics in Section 4.1. The generative graph learning methods,
GraphMAE and eGraphMAE, yield robust results, comparable to
USP and Neighbors, suggesting that they succeed in capturing some
salient aspects of the graph structure, but not in exploiting the edge
weights. However, other GNN-based methods like GRACE perform
poorly across all 𝐾s in comparison to edge-only and most node-
only baselines. Whilst the comparative performance of the methods
is similar to the other tasks, the differences are greater in CR. This
suggests CR is a challenging task and may benefit greatly from
KG-based learning, making it suited for benchmarking a model’s
ability to harness node and edge simultaneously.

4.5 Performance of EP (Edge Prediction)
In evaluating EP, we assume the availability of numerical node/company
embeddings (either learned or provided) as input features for pre-
dicting the existence of edges in the EP dataset. Our default setup
involves randomly sampling a balanced training dataset (from Com-
panyKG), formatted identically to the EP evaluation dataset. For
each edge in the training/validation/test dataset, we concatenate
the embeddings of the two end nodes to form an input feature
vector. We train a 3-layer neural network with the architecture
of Linear(512)-RELU-Dropout(0.5)-Linear(256)-RELU-Dropout(0.5)-
Linear(8), which performs 8-class classification (one class for each
included ET). Training is conducted for up to 100 epochs, utilizing
an early stopping mechanism leveraging the EP validation split. If
the performance (AUC over all ETs) on the validation split does not
improve for more than 5 consecutive epochs, training is stopped.
The model with the best validation performance is then used for
evaluation on the test split.

In Table 3, we present the overall AUC and ET-specific AUCs
on the EP test split, averaged over three trials with their respective
standard deviations. We evaluate four LM embeddings (derived
from company descriptions) and five GNN embeddings for each
LM embedding, resulting in a total of 20 different GNN embeddings.
Regarding hyperparameters, we use the optimized settings detailed
in Appx. B. We can see that GraphMAE and eGraphMAE exhibit
the best performance. Notably, eGraphMAE excels in the majority
of ETs, likely due to its ability to learn from edge weights.

4.6 Embedding Space Visualization
Intuitively, it is desirable for similar companies to cluster closely
together in the embedding space, while dissimilar ones are prefer-
ably pulled apart. To gain qualitative insights from this perspective,
we reduce the embeddings (from various baseline methods) to two
dimensions using UMAP [30], and color-code them by manually an-
notated sectors (cf. Figure 3e). We visualize the embeddings before
(e.g., mSBERT) and after GNN training in Figure 7. It is notice-
able that GNN-based methods tend to nudge companies within
the same sector closer together, which could help with tasks like
industry sector prediction [7]. However, this improved embedding
clustering has no clear positive correlation to the performance of
the evaluation tasks designed for similar company quantification.

5 Conclusion and Discussion
To represent and learn diverse company features and relations, we
propose a large-scale heterogeneous graph dataset—CompanyKG
(V2), originating from a real-world investment platform. Specifically,
1.17 million companies are represented as nodes enriched with com-
pany description embeddings, and 15 different inter-company rela-
tions result in 51.06 million weighted edges. Additionally, we care-
fully compiled four evaluation tasks (SP, CR, SR, and EP) and pre-
sented extensive benchmarking results for 11 reproducible baselines
categorized into three groups: node-only, edge-only, and node+edge.
While node-only methods show good performance in the SR task,
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Embedding Model Overall AUC ET2 AUC ET3 AUC ET4 AUC ET5 AUC ET8 AUC ET9 AUC ET14 AUC ET15 AUC

Embedding
from LMs

mSBERT 0.8172 ±0.0024 0.7544 ±0.0033 0.8138 ±0.0079 0.7566 ±0.0047 0.9265 ±0.0009 0.9263 ±0.0003 0.7627 ±0.0084 0.7885 ±0.0030 0.8086 ±0.0022
ADA2 0.8164 ±0.0055 0.7488 ±0.0225 0.8023 ±0.0071 0.7660 ±0.0014 0.9141 ±0.0026 0.9400 ±0.0004 0.7595 ±0.0059 0.8021 ±0.0029 0.7980 ±0.0112
SimCSE 0.8014 ±0.0021 0.7475 ±0.0130 0.7910 ±0.0044 0.7227 ±0.0037 0.9159 ±0.0011 0.9178 ±0.0014 0.7346 ±0.0002 0.7653 ±0.0035 0.8163 ±0.0023
PAUSE 0.7692 ±0.0015 0.7972 ±0.0171 0.5944 ±0.0078 0.7771 ±0.0040 0.9024 ±0.0028 0.8361 ±0.0059 0.6986 ±0.0076 0.7616 ±0.0020 0.7860 ±0.0029
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GraphSAGE 0.8092 ±0.0025 0.7831 ±0.0096 0.7676 ±0.0093 0.7939 ±0.0025 0.9077 ±0.0031 0.9096 ±0.0017 0.7201 ±0.0196 0.7641 ±0.0038 0.8274 ±0.0016
GRACE 0.7634 ±0.0089 0.7565 ±0.0242 0.6811 ±0.0094 0.7861 ±0.0082 0.8813 ±0.0073 0.8875 ±0.0018 0.6453 ±0.0152 0.7012 ±0.0283 0.7685 ±0.0111
MVGRL 0.7356 ±0.0022 0.7697 ±0.0115 0.6228 ±0.0098 0.7431 ±0.0034 0.8491 ±0.0040 0.8476 ±0.0041 0.6217 ±0.0062 0.6781 ±0.0130 0.7526 ±0.0045
GraphMAE 0.8350 ±0.0004 0.7482 ±0.0101 0.8151 ±0.0059 0.8150 ±0.0048 0.9342 ±0.0011 0.9301 ±0.0012 0.7928 ±0.0152 0.8032 ±0.0025 0.8417 ±0.0003
eGraphMAE 0.8355 ±0.0007 0.7565 ±0.0113 0.8140 ±0.0065 0.8170 ±0.0050 0.9320 ±0.0014 0.9280 ±0.0016 0.7910 ±0.0145 0.8000 ±0.0030 0.8390 ±0.0005

A
D
A
2
* GraphSAGE 0.8110 ±0.0030 0.7815 ±0.0102 0.7650 ±0.0085 0.7955 ±0.0031 0.9060 ±0.0028 0.9105 ±0.0102 0.7220 ±0.0185 0.7620 ±0.0041 0.8285 ±0.0020

GRACE 0.7760 ±0.0046 0.7289 ±0.0173 0.7137 ±0.0028 0.7907 ±0.0008 0.8851 ±0.0024 0.9011 ±0.0025 0.6922 ±0.0116 0.7175 ±0.0057 0.7790 ±0.0056
MVGRL 0.7184 ±0.0081 0.7921 ±0.0074 0.5905 ±0.0053 0.7377 ±0.0054 0.8301 ±0.0107 0.8338 ±0.0042 0.5700 ±0.0211 0.6655 ±0.0157 0.7280 ±0.0164
GraphMAE 0.8434 ±0.0035 0.7542 ±0.0048 0.8117 ±0.0069 0.8229 ±0.0010 0.9437 ±0.0015 0.9444 ±0.0016 0.8090 ±0.0086 0.8197 ±0.0041 0.8419 ±0.0062

Si
m
CS

E

GraphSAGE 0.8050 ±0.0052 0.7650 ±0.0083 0.7540 ±0.0061 0.7800 ±0.0047 0.8960 ±0.0045 0.9000 ±0.0080 0.7170 ±0.0074 0.7520 ±0.0052 0.8150 ±0.0070
GRACE 0.7687 ±0.0009 0.7528 ±0.0133 0.6824 ±0.0091 0.7830 ±0.0026 0.8829 ±0.0030 0.8895 ±0.0013 0.6800 ±0.0072 0.7104 ±0.0051 0.7686 ±0.0025
MVGRL 0.7055 ±0.0025 0.6800 ±0.0082 0.5180 ±0.0165 0.7468 ±0.0035 0.8440 ±0.0016 0.8168 ±0.0104 0.6203 ±0.0115 0.6881 ±0.0088 0.7300 ±0.0083
GraphMAE 0.8378 ±0.0010 0.7867 ±0.0106 0.7997 ±0.0053 0.8134 ±0.0076 0.9309 ±0.0049 0.9302 ±0.0028 0.7934 ±0.0052 0.7973 ±0.0043 0.8511 ±0.0025
eGraphMAE 0.8522 ±0.0064 0.7857 ±0.0073 0.8140 ±0.0073 0.8250 ±0.0015 0.9466 ±0.0068 0.9487 ±0.0029 0.8120 ±0.0093 0.8028 ±0.0044 0.8404 ±0.0064

PA
U
SE

GraphSAGE 0.7734 ±0.0016 0.7805 ±0.0131 0.6328 ±0.0049 0.7729 ±0.0027 0.8917 ±0.0011 0.8671 ±0.0031 0.6859 ±0.0087 0.7537 ±0.0036 0.8026 ±0.0008
GRACE 0.7089 ±0.0027 0.6879 ±0.0080 0.5148 ±0.0054 0.7566 ±0.0012 0.8560 ±0.0070 0.7944 ±0.0047 0.6188 ±0.0011 0.7107 ±0.0157 0.7319 ±0.0121
MVGRL 0.7087 ±0.0085 0.7077 ±0.0151 0.5152 ±0.0064 0.7481 ±0.0065 0.8474 ±0.0069 0.8008 ±0.0101 0.6093 ±0.0125 0.7158 ±0.0076 0.7255 ±0.0119
GraphMAE 0.7865 ±0.0033 0.7836 ±0.0169 0.6389 ±0.0155 0.7727 ±0.0069 0.9014 ±0.0046 0.8799 ±0.0012 0.7355 ±0.0073 0.7795 ±0.0018 0.8001 ±0.0050
eGraphMAE 0.8024 ±0.0049 0.7997 ±0.0053 0.6405 ±0.0120 0.7743 ±0.0075 0.9038 ±0.0051 0.8811 ±0.0078 0.7350 ±0.0081 0.7816 ±0.0025 0.8120 ±0.0066

* eGraphMAE is omitted for ADA2 node embedding due to OOM (out-of-memory).

Table 3: The benchmark results on EP (edge prediction) task measured by overall AUC and per-ET AUCs. Best results are in bold.
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Figure 7: Dimension reduction and visualization of embeddings from different LMs (the first row) and GNN-based models (other rows).

edge-only methods clearly excel in the CR task. For the SP task,
node-only and GNN-based approaches outperform edge-only ones
by a large margin, with the best result obtained by eGraphMAE,
which incorporates node embeddings, edges, and their weights. In
the EP task, GraphMAE and eGraphMAE exhibit the best perfor-
mance, with eGraphMAE excelling in the majority of edge types,
likely due to its ability to learn from edge weights. Although gen-
erative graph learning exhibits robust performance in general, no
single method leads across all CompanyKG tasks, indicating the

need for future work to develop more robust learning methods that
can effectively incorporate both node and edge information. Over-
all, CompanyKG can accelerate research on company similarity
quantification in the investment domain while serving as a bench-
mark for assessing self-supervised graph learning methods. Given
the continuous evolution of nodes and edges, a logical extension
involves capturing KG snapshots over time, thereby transforming
it into a spatio-temporal KG.
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A Additional Information of CompanyKG (V2)
A.1 Errors, Noises and Redundancies
Each ET in the graph has a varying degree of incompleteness. In
most cases, quantifying the degree of completeness is challenging,
especially for edge types that rely on third-party information. Con-
sequently, we recommend using all ETs together when training
graph learning algorithms on CompanyKG to mitigate this issue.
Furthermore, both node features and edge weights can be prone
to noise: (1) The node features are based on company description
embeddings, and the quality of these embeddings is influenced by
the completeness and relevance of the raw textual descriptions. (2)
The statistics used to calculate edge weights may be somewhat
inaccurate. For instance, inaccuracies may arise in determining
people’s affiliations when deriving edge weights for ET8.

Because CompanyKG integrates multiple data sources, we es-
tablished an entity resolution system to merge information from
different data sources. During that merging process, two types of
errors may emerge: (1) incorrectly merging two different companies
into a single graph node and (2) representing the same company
as different nodes. The core of the entity resolution system is a
trained DNN classifier. We have an entity matching error report
UI where users can report the duplicated entities. Over the past
year, we received 95 cases among 15,465 active companies (the

Figure 8: Screenshot of the web application for labeling SR task.

companies that any user has worked on), representing an empirical
duplication ratio of merely 0.6%.

A.2 Collection, Annotation and Software
The integration of multi-source information into unified Mother-
brain company entities was performed by the Data Engineers at
EQT Motherbrain. The construction of the CompanyKG dataset
from these entities was carried out by the authors of this paper. The
individuals involved in creating the four evaluation datasets (SP,
SR, CR, and EP) are detailed below:
• SP: Two EQT Motherbrain employees verified the labels.
• SR: Ten EQT Motherbrain employees (mainly data scientists and
machine learning engineers) labeled the first 119 questions. Sub-
sequently, approximately 15 experienced labelers hired by Appen
(https://appen.com) labeled 2,400 carefully curated questions at a
cost of about 18,000 EUR. See Appx. D-C-2 in [8] for more details.

• CR: Four experienced EQT employees manually extracted data
from PE deal materials.

• EP: The first author created SQL queries to capture future edges
in ET2, 3, 4, 5, 8, 9, 14, and 15. Additionally, he manually selected
36 similarity-informative collections for ET3.
Since the “raw” data isn’t publicly available, we do not release

the software for preprocessing or cleaning it. For the SP task, EQT’s
proprietary platform, Motherbrain, was utilized to acquire labels.
For the SR task, we developed a labeling web application using
Retool (https://retool.com), as depicted in Figure 8.

B Experimental Settings and Hyper-Parameters
GraphSAGE was trained on a Linux machine with 8 vCPUs, 52GB
RAM, 1024GB SSD Disk, and one Nvidia Tesla P100 GPU. The
training utilized a mini-batch methodology, achieved by sampling
a restricted number of neighboring nodes, and was limited to a
maximum of two epochs due to the large scale of the dataset. We

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ
https://appen.com
https://retool.com
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Approach / Model
SP
AUC

SR
Acc%

CR
Recall@50

CR
Recall@100

CR
Recall@200

CR
Recall@500

CR
Recall@1k

CR
Recall@2k

CR
Recall@5k

CR
Recall@10k

Graph
heuristics

USP N/A* 59.61 18.27 29.48 40.38 57.62 72.46 75.56 78.74 83.08
WSP (Weighted SP) N/A* 61.16 43.69 56.03 62.72 68.67 73.10 75.58 77.62 79.37
Neighbors 0.6229† 56.52 22.25 31.84 46.50 60.16 66.81 67.19 67.19 67.19
W. Neighbors 0.6020 56.65 43.50 54.65 60.86 65.86 67.19 67.19 67.19 67.19

Embedding
proximity

mSBERT (512-dim) 0.8060 67.14 12.96 18.24 23.03 31.10 41.43 47.71 55.84 63.49
ADA2 (1536-dim) 0.7450 67.20 14.09 21.69 28.41 37.61 48.05 56.13 66.00 71.18
SimCSE (768-dim) 0.7188 61.69 7.66 8.90 11.94 14.93 18.55 23.48 33.21 41.79
PAUSE (32-dim) 0.7542 65.19 6.84 9.62 13.11 20.84 31.96 39.60 51.45 65.92

𝑁 -shot Prompt. ChatGPT-3.5 0.7501† 66.73 30.06 31.10 31.91 N/A‡ N/A‡ N/A‡ N/A‡ N/A‡

Kn
ow

le
dg

e
G
ra
ph

:G
N
N
-b
as
ed

M
et
ho

ds
(in

iti
at
ed

w
ith

di
ffe

re
nt

no
de

em
be
dd

in
gs
)

m
SB

ER
T

GraphSAGE 0.7415 ±0.0102 62.03 ±3.11 10.80 ±3.61 13.04 ±2.15 17.63 ±1.60 25.29 ±1.82 33.68 ±0.82 43.29 ±2.40 53.82 ±1.11 64.30 ±1.69
GRACE 0.7243 ±0.0233 59.36 ±0.64 2.68 ±1.82 4.64 ±1.51 8.03 ±1.34 13.10 ±0.29 20.03 ±0.28 30.61 ±1.32 43.98 ±2.21 53.46 ±4.58
MVGRL 0.7208 ±0.0336 58.29 ±0.74 2.17 ±1.03 3.56 ±0.33 5.83 ±0.86 10.65 ±1.25 15.52 ±3.61 23.37 ±2.79 35.96 ±2.18 44.37 ±0.47
GraphMAE 0.7981 ±0.0063 67.61 ±0.11 20.88 ±0.46 27.83 ±0.39 36.48 ±0.53 50.27 ±0.26 56.21 ±0.37 64.43 ±0.76 76.06 ±0.40 84.69 ±0.40
eGraphMAE 0.7963 ±0.0030 67.52 ±0.03 18.44 ±0.21 23.79 ±0.22 32.47 ±0.20 42.68 ±0.55 50.82 ±0.41 61.39 ±0.18 70.73 ±0.88 79.69 ±1.10

A
D
A
2

GraphSAGE 0.7422 ±0.0202 62.90 ±2.25 10.12 ±3.91 11.93 ±0.96 17.51 ±2.44 24.85 ±0.92 32.87 ±1.90 43.26 ±1.74 54.98 ±1.92 63.13 ±1.42
GRACE 0.7548 ±0.0264 58.20 ±0.47 3.09 ±0.59 4.83 ±0.78 7.60 ±1.20 12.88 ±2.79 21.40 ±2.45 31.63 ±5.07 44.33 ±5.58 54.71 ±4.24
MVGRL 0.6638 ±0.0557 55.85 ±0.88 1.00 ±0.35 1.77 ±0.24 3.27 ±0.90 7.11 ±1.56 10.85 ±3.33 15.42 ±3.11 24.04 ±6.59 33.38 ±7.50
GraphMAE 0.8132 ±0.0053 65.10 ±0.06 24.14 ±0.30 29.15 ±0.26 35.06 ±0.36 46.24 ±0.52 58.21 ±0.67 67.53 ±0.36 75.61 ±0.21 88.32 ±1.20
eGraphMAE OOM! OOM! OOM! OOM! OOM! OOM! OOM! OOM! OOM! OOM!

Si
m
CS

E

GraphSAGE 0.7390 ±0.0095 59.90 ±2.26 10.26 ±0.92 14.07 ±3.06 17.47 ±1.24 25.71 ±0.86 38.13 ±2.25 45.84 ±1.87 54.80 ±0.70 64.77 ±0.94
GRACE 0.7149 ±0.0524 57.26 ±1.38 0.39 ±0.57 1.07 ±0.86 2.25 ±1.65 4.34 ±3.31 6.93 ±4.87 11.77 ±6.69 19.25 ±9.51 29.53 ±11.09
MVGRL 0.7180 ±0.0600 55.82 ±0.69 0.79 ±0.10 1.20 ±0.45 2.14 ±1.03 4.95 ±1.57 8.36 ±2.31 14.11 ±3.77 21.22 ±4.06 29.33 ±4.68
GraphMAE 0.8108 ±0.0066 65.46 ±0.05 19.67 ±1.14 26.61 ±0.63 33.24 ±2.20 44.32 ±1.16 53.06 ±2.32 63.45 ±2.67 76.45 ±1.77 84.39 ±0.95
eGraphMAE 0.8253 ±0.0089 66.09 ±0.38 18.53 ±0.19 26.33 ±0.17 33.42 ±0.91 44.39 ±0.58 51.50 ±1.02 63.71 ±0.76 74.69 ±0.52 83.81 ±0.24

PA
U
SE

GraphSAGE 0.7421 ±0.0121 60.09 ±1.83 5.79 ±1.24 8.02 ±2.03 12.20 ±1.77 17.22 ±1.81 24.82 ±1.70 31.98 ±0.89 42.84 ±7.07 55.22 ±2.47
GRACE 0.6698 ±0.0135 58.15 ±0.78 0.66 ±0.36 1.31 ±0.36 2.07 ±0.48 5.44 ±0.71 9.58 ±0.80 15.40 ±1.51 26.27 ±4.46 36.47 ±3.97
MVGRL 0.6843 ±0.0280 55.60 ±1.18 0.47 ±0.35 1.25 ±0.56 2.94 ±0.77 6.39 ±1.76 11.19 ±2.67 17.29 ±2.72 26.68 ±0.79 35.52 ±1.83
GraphMAE 0.7727 ±0.0113 64.81 ±0.40 10.16 ±1.13 12.51 ±0.62 14.87 ±0.43 19.59 ±0.46 25.41 ±1.32 31.90 ±0.12 42.85 ±1.13 54.33 ±2.75
eGraphMAE 0.7742 ±0.0068 65.17 ±0.95 11.62 ±0.33 13.95 ±1.50 15.42 ±0.97 19.28 ±0.44 26.88 ±0.53 37.49 ±1.28 49.92 ±0.75 62.53 ±1.47

* We omit SP evaluation for the path-based graph heuristics, since, whilst they are able to rank companies by similarity, there is no obvious way to obtain a 0-1 similarity score for a pair of companies from them.
† To account for the binary nature of the SP prompts answered by ChatGPT, we report accuracy (Acc.) instead of AUC.
‡ As ChatGPT’s answer on the CR task is not limited to the companies in CompanyKG and is not mapped to any specific company/node IDs, we conducted a manual examination of the top-𝐾 responses and
counted the number of entries that match the ground truth competitors. As a result, when the value of 𝐾 exceeds 200, it becomes overly tedious to calculate hit rate for ChatGPT.

Table 4: The performance of the popular and state-of-the-art baselines on three evaluation tasks of CompanyKG: SP, SR and CR which are
compared with AUC, Accuracy (Acc.) and Recall@𝐾 respectively. Best results are in bold. “OOM!” means out-of-memory.

adopted the “SAGEConv” implementation from the DGL (https:
//www.dgl.ai) library with a GCN aggregator.

GRACE and MVGRL were trained on a Linux machine with 8
vCPUs, 52GB RAM, 300GB SSD Disk, and one Nvidia V100 GPU.
Both models employed a mini-batch scheme, loading neighbors of
nodes sampled in each mini-batch to a depth sufficient to compute
the full loss function for the sampled nodes. We used Adam opti-
mization with a learning rate of 0.1, betas of 0.9 and 0.999, and no
weight decay, training each model for 100 epochs.

GraphMAE was trained on a Linux machine with 12 vCPUs,
85GB RAM, 1024GB SSD Disk, and one Nvidia Tesla A100 GPU.
Given that GraphMAE is a full-batch algorithm, we employed a
randomized multi-scale mini-batch approach to accommodate the
entire graph in GPU memory. Training was performed for up to
1,000 epochs with an early stopping mechanism. The learning rate
was decayed at the end of each epoch using a cosine decay sched-
ule. eGraphMAE, which requires significantly more memory than
GraphMAE, was conducted on a Linux machine with 24 vCPUs,
170GB RAM, a 1024GB SSD Disk, and one Nvidia Tesla A100 GPU.
We used the same optimal set of hyper-parameter values as Graph-
MAE, with an additional hyper-parameter for the number of di-
mensions in the output edge embeddings, set to 32.

Hyper-params Searched Selected hyper-params
mSBERT ADA2 SimCSE PAUSE

G
ra
ph

SA
G
E

# neighbors 6, 12 12 12 12 12
# GNN layers 2, 3 2 2 2 2
batch size 210 , 212 212 212 212 212
epochs 1, 2 1 1 1 2
dropout rate .1, .3 .3 .3 .3 .1
learning rate .001, .0001 .0001 .0001 .001 .001
embedding dim 25 , 26 , 27 26 27 27 25

G
RA

CE # neighbors 5, 10 5 10 10 10
# GNN layers 2, 3 3 2 3 3
hidden dim 8, 16, 32 16 32 8 16

M
VG

RL # neighbors 5, 10 10 5 10 5
# GNN layers 2, 3 2 3 2 3
hidden dim 8, 16, 32 16 16 8 16

(e
)G
ra
ph

M
A
E

# GNN layers 2, 3 2 2 2 2
# attention heads 4, 8 8 4 4 4
node mask rate .1, .3, .5, .7 .3 .3 .7 .5
dropout rate* .1, .3 .3 .1 .1 .1
learning rate .001, .0005 .001 .0005 .001 .001
edge drop rate .1, .3, .5, .7 .1 .5 .5 .3
embedding dim 26 , 27 , 28 , 29 28 29 27 27

* It refers to the dropout rate of the attention dropout layer; the dropout rate of the feature dropout
layers is always set to 0.1 higher than the attention dropout rate, up to a maximum of 1.0.

Table 5: Searched and selected (bold) hyper-params for GraphSAGE,
GRACE,MVGRL and (e)GraphMAE over different node feature types.

The grid-searched and selected hyper-parameters for each model
are gathered in Table 5. For implementation details, please refer to
https://github.com/llcresearch/CompanyKG2

OOM!
https://www.dgl.ai
https://www.dgl.ai
https://github.com/llcresearch/CompanyKG2
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