
STAIR: Addressing Stage Misalignment through
Temporal-Aligned Preference Reinforcement Learning

Yao Luan∗1, Ni Mu∗1, Yiqin Yang† 2, Bo Xu2, Qing-Shan Jia† 1
1 Beijing Key Laboratory of Embodied Intelligence Systems,

Department of Automation, Tsinghua University, Beijing, China
2 The Key Laboratory of Cognition and Decision Intelligence for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing, China
{luany23,mn23}@mails.tsinghua.edu.cn

yiqin.yang@ia.ac.cn, jiaqs@tsinghua.edu.cn

Abstract

Preference-based reinforcement learning (PbRL) bypasses complex reward en-
gineering by learning rewards directly from human preferences, enabling better
alignment with human intentions. However, its effectiveness in multi-stage tasks,
where agents sequentially perform sub-tasks (e.g., navigation, grasping), is limited
by stage misalignment: Comparing segments from mismatched stages, such as
movement versus manipulation, results in uninformative feedback, thus hindering
policy learning. In this paper, we validate the stage misalignment issue through
theoretical analysis and empirical experiments. To address this issue, we propose
STage-AlIgned Reward learning (STAIR), which first learns a stage approximation
based on temporal distance, then prioritizes comparisons within the same stage.
Temporal distance is learned via contrastive learning, which groups temporally
close states into coherent stages, without predefined task knowledge, and adapts
dynamically to policy changes. Extensive experiments demonstrate STAIR’s su-
periority in multi-stage tasks and competitive performance in single-stage tasks.
Furthermore, human studies show that stages approximated by STAIR are con-
sistent with human cognition, confirming its effectiveness in mitigating stage
misalignment. Code is available at https://github.com/iiiiii11/STAIR.

1 Introduction

Reinforcement Learning (RL) has achieved significant progress in various applications, including
robotics [17, 5], gaming [39, 34, 26], and autonomous systems [2, 8, 25]. Yet, the effectiveness of
RL relies heavily on well-designed reward functions, which often require substantial manual effort
and expert knowledge. To address this challenge, preference-based reinforcement learning (PbRL)
has emerged as a promising alternative. This approach leverages human preferences among different
agent behaviors as the reward signal, thereby alleviating the need for complex reward design.

However, many real-world sequential tasks exhibit multi-stage structures [41, 20], a factor often
overlooked in existing research. For example, in a robotic “go-fetch-return” task, where an agent
retrieves an object from a distance, the agent must ① navigate to the object, ② grasp it, and ③
transport it to a target location, as illustrated in Figure 1. Current PbRL methods [22, 32] face
challenges of stage misalignment when collecting human preferences for these multi-stage tasks.
This issue arises when behaviors from different stages, such as navigation and grasping, are presented

*Yao Luan and Ni Mu contributed equally.
†Correspondence to Yiqin Yang and Qing-Shan Jia.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/iiiiii11/STAIR

Implicit Stages
Stage

Approximation

Stage ①

Stage ②

Stage ③

Phase 1: Learning a Stage Approximation Phase 2: Stage-Aligned Query Selection

Temporal Distance

Distinguish ’s true future
states from other states
via contractive learning

Inefficient

Efficient for
Reward Learning

Stage-aligned
query (,)

Stage-misaligned
query (,)

: Segment’s color indicating
 the approximated stage

Figure 1: An overview of the proposed STAIR. (1) Learn the temporal distance to construct an
on-policy stage difference approximator. (2) Use the temporal distance to select stage-aligned queries.

to humans for comparison. It leads to ambiguous feedback, as labelers struggle to compare behaviors
in distinct subtasks, like efficient movement versus precise manipulation. This ambiguity can be
clarified by event segmentation theory from cognitive science [45, 19]. The theory suggests that
humans process action sequences by dividing them into discrete event boundaries. Consequently,
comparisons involving behaviors that cross these natural event boundaries (from different stages)
impose a higher cognitive load on labelers, thereby increasing ambiguity in their assessments.
Moreover, significant differences in state distributions across stages can reduce the information
gained from stage-misaligned queries, adversely impacting policy learning.

In this paper, we systematically analyze the impact of stage misalignment both theoretically and
empirically. As illustrated in Proposition 2, comparing behaviors across different stages leads to
inefficient policy learning, which requires significantly more feedback. Additionally, Proposition 3
and the experiments in Figure 3 reveal that when humans have inherent preferences for certain stages
(e.g., favoring stages closer to task completion), conventional methods show quadratic growth in
feedback demands, while the stage-aligned approach scales linearly. These findings underscore the
importance of stage alignment for efficient preference learning in multi-stage tasks.

To address the stage misalignment issue, we focus on selecting queries with aligned stages for
comparison, where a key challenge is identifying these stages without prior task knowledge. We
propose a novel method, STAIR, which leverages temporal distance to measure stage differences.
Temporal distance is learned through contrastive learning, grouping closely occurring states together,
while separating those with significant temporal gaps. As illustrated in Figure 1, STAIR involves two
main phases: 1) utilize contrastive learning to develop a temporal distance model for measuring stage
differences; and 2) prioritize the comparison of segments with small stage differences. Extensive
experiments show that STAIR outperforms state-of-the-art PbRL methods, achieving higher success
rates, improved feedback efficiency, and faster convergence. Moreover, human studies validate that
queries selected by STAIR align with human cognition, confirming its effectiveness in addressing
stage misalignment.

In summary, our contributions are threefold: (1) We identify the critical issue of stage misalignment
in PbRL through theoretical analysis and human experiments. (2) We propose STAIR, a novel stage-
aligned learning method that automatically approximates stage differences via temporal distance,
and selects stage-aligned queries to address the stage misalignment issue. (3) Extensive experiments
show that STAIR outperforms existing methods, validating our key insight that stage alignment
significantly improves preference learning efficiency in multi-stage scenarios.

2 Preliminaries

Reinforcement learning. An RL problem typically builds on a Markov Decision Problem (MDP)
characterized by a tuple (S,A, P, r, µ0, γ), where S and A are the state space and the action space,
P : S × A → ∆(S) is the state transition, r : S × A → R is the reward function, µ0 is the initial
state distribution, and γ ∈ (0, 1) is the discount factor. A policy π : S → ∆(A) interacts with the
environment by sampling action a from the distribution π(a|s) when observing state s. The goal of

2

RL agent is to learn a policy π, which maximizes the expectation of a discounted cumulative reward:
J (π) = Eµ0,π [

∑∞
t=0 γ

tr(st, at)].

Preference-based reinforcement learning. In PbRL, the true reward function is not available
and is replaced by an estimated reward function r̂ψ parameterized by ψ, which is trained to be
consistent with human preference. Specifically, given a segment pair (σ0, σ1), where a segment
σ = {sk, ak, . . . , sk+H−1, ak+H−1} is a state-action sequence with fixed length H , the preference
y is a binary indicating the index of the preferred segment. To construct r̂ψ, we follow the the
Bradley-Terry model [4, 7], and define the preference predictor Pψ as follows:

Pψ[σ1 ≻ σ0] =
exp(

∑
(s1t ,a

1
t)∈σ1

r̂ψ(s
1
t , a

1
t))∑

i∈{0,1} exp(
∑

(sit,a
i
t)∈σi

r̂ψ(sit, a
i
t))
, (1)

where σ1 ≻ σ0 indicates the human prefer σ1 than σ0. Then, r̂ψ can be trained by minimizing the
cross-entropy loss between the true preference y and the preference estimated by Pψ:

Lreward(ψ) = −E(σ0,σ1,y)∼Dσ

[
(1− y) logPψ[σ0 ≻ σ1] + y logPψ[σ1 ≻ σ0]

]
, (2)

where Dσ is the preference buffer storing (σ0, σ1, y) labeled by human.

Stage Formulation. For complex tasks with multi-stage characteristics, such as the “go-fetch-
return” task in Figure 1, we reformalize the problem as a chain of stages as ω1 → ω2 → · · · →
ωNstage . Each stage ω represents an aggregation of states, and all stages comprise the stage space
Ω = {ω1, . . . , ωNstage}, Nstage = |Ω|. A mapping function F (s, ω) : S × Ω → [0, 1] assigns the
probability of a state s belonging to stage ω. Using F (s, ω), we can sequentially decomposed a
trajectory τ = (sτ0 , a

τ
0 , . . . , s

τ
T−1, a

τ
T−1) into Nτ segments {στi }

Nτ
i=1 (Nτ ≤ Nstage), where all states

within a segment belong to the same stage. Specifically, let Gτ (i) denote the index of the stage for
state sτi , then, the segmentation of τ is obtained by solving the following optimization problem:

max
Gτ (·)

Esτi ∈τ [F (s
τ
i , ωGτ (i))],

s.t. Gτ (0) = 1, Gτ (i)− 1 ≤ Gτ (i− 1), Gτ (i− 1) ≤ Gτ (i), i ∈ {1, . . . , T − 1}.
(3)

This optimization problem maximizes the likelihood of the stage decomposition, quantified by F ,
while maintaining the sequential chain structure of stage transitions. Once Gτ (·) is solved, segments
can be derived as στi = (sj , aj)Gτ (j)=i, i = 1, . . . , Nτ , where Nτ = maxiG

τ (i) is the number of
stages in trajectory τ . Nτ = Nstage holds only if the task is completed within this trajectory. The
optimal objective value of problem (3) quantifies the degree to which the trajectory τ can be divided
into stages. To evaluate the degree to which an MDP can be divided into stages, we propose using the
average optimal objective value of problem (3) across trajectories generated by the optimal policy π∗.
This measure can be formally expressed as: F ≜ Eτ∼π∗ [maxGτ (·) Esτi ∈τ [F (s

τ
i , ωGτ (i))]].

3 Impact of Stage Misalignment

3.1 Impact of Stage Misalignment in Multi-Stage Tasks

In this subsection, we first validate the existence of the multi-stage property in real-world tasks, then
demonstrate the negative effects of stage misalignment. To verify the multi-stage property, we analyze
the state distributions at each timestep, as greater differences among them suggest a higher potential
for problem segmentation into stages. Formally, we introduce Proposition 1 (proof in Appendix A),
which considers a classifier that predicts the collected timestep for a given state, with high accuracy
suggesting the task’s multi-stage property. Note that Proposition 1 holds independently of Nstage.
Proposition 1. For an MDP and trajectories generated by its optimal policy π∗, consider a calibrated
classifier T̂ (s) that takes a state s as input and outputs the probability pt(s) that the state s is
collected at step t ∈ {1, 2, . . . N}, T̂ (s) = maxt pt(s). Denote the accuracy of the classifier as acc,
the multi-stage measure F has a lower bound F ≥ acc2.

To empirically verify the multi-stage property in real-world scenarios, we analyze MetaWorld robotic
manipulation tasks [44] as an example, since most MetaWorld tasks are multi-stage. For example,

3

𝑣1,1 𝑣1,5

𝜔1

𝑣1,2 ……

𝜔3

𝑣2,1 𝑣2,5𝑣2,2 ……

𝜔100

𝑣100,1 𝑣100,5𝑣100,2 ……

…

𝜔T

𝜔2

𝑣1,1 𝑣1,5
stage
𝜔1

stage
𝜔2

𝑣1,2 ……

stage
𝜔3

𝑣2,1 𝑣2,5𝑣2,2 ……

stage
𝜔100

𝑣100,1 𝑣100,5𝑣100,2 ……

…

𝜔T

𝑣1,1 𝑣1,5

𝜔1

𝜔2

𝑣1,2 ……

𝜔3

𝑣2,1 𝑣2,5𝑣2,2 ……

𝜔100

𝑣100,1 𝑣100,5𝑣100,2 ……

…

𝜔T

𝑣1,1 𝑣1,5
stage
𝜔1

stage
𝜔2

𝑣1,2 ……

stage
𝜔3

𝑣2,1 𝑣2,5𝑣2,2 ……

stage
𝜔100

𝑣100,1 𝑣100,5𝑣100,2 ……

…

Figure 2: An illustration
of the experiment in the
abstract MDP model.

0 20 40 60 80 100
Start Step of Segment 0

0

20

40

60

80

100

St
ar

t S
te

p
of

 S
eg

m
en

t 1

 Prefer σ0 Prefer σ1
Prefer Both

window-open

0 25 50 75 100
Epochs

45

60

75

90

Ep
iso

de
 R

ew
ar

d

Rbias = 20

0 25 50 75 100
Epochs

45

60

75

90

Rbias = 40

Stage-Aligned PbRL Conventional PbRL

Figure 3: (Left) Human preferences of segments started at different
timesteps in the window-open task. Each point (tx, ty) represents that
segment σ0 and σ1 are collected from steps tx and ty. Humans prefer
segments in later timesteps, suggesting a stage reward bias, where humans’
underlying reward is higher in these later stages. (Right) Normalized
episode reward of various Rbias in the abstract MDP model. Additional
results are shown in Appendix F.1.

the window-open task requires the arm to open the window, which can be divided into two stages:
grasping the handle and pulling the handle. Specifically, we train a classifier as in Proposition 1
using trajectories of the expert policy. The classifier achieves an impressive 81% accuracy, indicating
significant differences in state distributions across timesteps, thereby supporting the presence of the
multi-stage property in these tasks. Experimental details are shown in Appendix D.1.

Then, we theoretically evaluate the impact of stage misalignment on efficiency in multi-stage tasks.
We reformalize these tasks to an abstract MDP (Ω, {Υi}|Ω|

i=1, P̄ , r̄, µ̄0, γ̄), where each state wi rep-
resents a stage1 and has |Υi| actions {υi,j}|Υi|

j=1. Transitions follow a deterministic chain structure
(ωi → ωi+1), and the reward function r̄ perfectly aligns with human preferences. With this for-
mulation, we compare two query selection methods: (1) stage-aligned selection samples segments
within the same stage, and (2) conventional selection samples segments across all stages [7, 22].
As analyzed by Proposition 2, generally, the conventional PbRL requires more queries to learn an
optimal policy than the stage-aligned PbRL. The analysis leverages the similarity between PbRL and
ranking methods, where the true ordering is defined by the reward function r̄(ω, υ). The stage-aligned
method learns local orderings for actions in each stage, and the conventional method learns a global
ordering of all stage-action pairs. Detailed assumptions and the proof are provided in Appendix A.

Proposition 2. In the worst case scenario, the conventional PbRL needs O(|Ω||Υ| log(|Ω||Υ|))
additional queries to learn the optimal policy compared to the stage-aligned PbRL.

3.2 Impact of Stage Misalignment Under Stage Reward Bias

While Section 3.1 analyzes the impact of stage misalignment in general multi-stage tasks, this
subsection focuses on a specific case, where humans prefer certain stages over others. Our theoretical
and empirical analysis shows that stage misalignment has a more pronounced effect in these scenarios.

Assuming human preferences can be modeled by a reward function, we formalize these multi-stage
tasks through a reward decomposition: r(s, a) = rstage(s) + rsa(s, a), where rstage(s) represents the
average reward of the stage containing state s, and rsa(s, a) denotes the reward advantage of the
state-action pair within that stage. This decomposition reflects that stages differ in importance in
human preference judgments. We refer to rstage(s) as the stage reward bias, since a higher stage
reward bias reflects more preferred stages. Note that this decomposition is primarily for validating
the severity of stage misalignment, and is not necessary for the proposed method (Section 4).

To validate the existence of stage reward bias in practical tasks, we conduct a human preference
experiment. We sample segments of 20-timestep lengths from expert trajectories, and collect human
preference labels for segment pairs. Human labelers watch video renderings of each segment and

1To avoid confusion with the general MDP formulation, we use ω to denote both the state and the stage for
the abstract MDP, and use υ to denote the action.

4

select the one that is more beneficial for achieving the task objective, as detailed in Appendix D.1.
Results in Figure 3 (Left) indicate a clear human preference for segments starting later, which
empirically demonstrates the existence of stage reward bias in human preference, where certain stages
receive higher valuation than others.

Further, we evaluate the benefit of stage-aligned query selection under stage reward bias. Specifically,
we instantiate the abstract MDP model as in Figure 2, where ωi, υi,j denote the i-th stage and the
j-th action in stage ωi. In this model, |Ω| = 101, |Υi| = 5, i ∈ {1, · · · , 100,T} (wT is a terminal
state) and r̄stage(ωi) ∼ Uniform[0, Rbias], r̄sa(ωi, υj) ∼ Uniform[0, 10], with Rbias controls the scale
of stage reward bias. As shown in Figure 3 (Right), stage-aligned selection yields better learning
efficiency than conventional methods in this model. This advantage may result from stage-misaligned
queries providing limited information for action selection in the current stage, especially under
significant stage reward bias. Experimental details are provided in Appendix D.1.

We also provide a theoretical analysis on query complexity to support these findings. Proposition 3
analyzes cases with significant stage reward bias, yielding a more precise result than Proposition 2.
Detailed assumptions and proofs are available in Appendix A.
Proposition 3. If the stage reward bias is sufficiently large, such that the reward ordering between
(ωi, υj) and (ωi′ , υj′) depends solely on ωi and ωi′ for i ̸= i′, then in the worst case scenario,
conventional PbRL requires O(|Ω|2|Υ| log(|Υ|)) additional queries to learn the optimal policy
compared to stage-aligned PbRL.

In practice, the stage reward bias is often less significant than that assumed in Proposition 3. Con-
sequently, the sample complexity for conventional PbRL ranges from O(|Ω||Υ| log(|Ω||Υ|)) and
O(|Ω2||Υ| log(|Υ|)), which remains considerably higher than that of stage-aligned PbRL. In sum-
mary, in multi-stage tasks, stage-aligned query selection enhances policy learning by eliminating less
informative queries, especially when stage-specific bias is significant.

4 Stage-Aligned Reward Learning

To address the stage misalignment in PbRL, we focus on selecting stage-aligned queries. However,
two key challenges arise: First, stage definitions are often based on subjective expertise of specific
tasks, limiting their generalizability across different tasks. Second, stage measurement should be
adaptable to evolving policies; otherwise, stages assessed with early suboptimal policies may become
incompatible with the newer, improved ones. We elaborate on these challenges in Appendix C.

To tackle these challenges, we propose STage-AlIgned Reward learning (STAIR). A core innovation
of STAIR is the use of temporal distance to develop an on-policy stage difference approximator.
First, STAIR employs contrastive learning to construct a temporal distance model, which efficiently
approximates stage differences between states in an on-policy manner, as detailed in Section 4.1.
Then, we design a query selection method in Section 4.2 to identify stage-aligned queries. The overall
framework of STAIR is illustrated in Figure 1 and Algorithm 1.

4.1 Learning Temporal Distance

In STAIR, we utilize temporal distance as a measure of stage differences, as it effectively addresses
the aforementioned challenges. Specifically, temporal distance quantifies the transition probabilities
between states under a given policy. Easily reachable state pairs have smaller temporal distances,
indicating similar stages, whereas hard-to-reach state pairs show larger distances, suggesting distinct
stages. This measure does not rely on any predefined task-specific stage definitions, and could adapt
dynamically to policy changes, as temporal distance can be learned in an on-policy manner. Therefore,
temporal distance serves as an effective stage approximator.

Let pπγ (s+ = y|s0 = x) denote the discounted state occupancy measure of state y when starting from
x under policy π. It represents the discounted probability of reaching state y from x:

pπγ (s+ = y|s0 = x) = (1− γ)
∞∑
k=0

γkpπ(sk = y|s0 = x), (4)

where pπ(sk = y|s0 = x) is the probability of reaching y from x in exactly k steps under policy
π. Using the discounted state occupancy measure in (4), temporal distance quantifies the transition

5

probability between states. The successor distance [30] serves as a start-of-the-art implementation of
the temporal distance, which is defined as

dπSD(x, y) = log
(
pπγ (s+ = y|s0 = y)/pπγ (s+ = y|s0 = x)

)
. (5)

The successor distance is proven to be a quasimetric [30], even in stochastic MDPs, making it a
reliable measure of the stage difference between states.

To learn the successor distance dπSD(x, y), we employ contrastive learning [30]. This method trains
an energy function fθ(x, y) that assigns higher scores to state pairs (x, y) belonging to the same
trajectory, which follows the joint distribution pπγ (s+ = y|s0 = x); and that assigns lower scores to
pairs (x, y) from different trajectories, which are equivalently sampled from the marginal distributions
ps(x) and p+(y) ≜

∫
s
ps(x)p

π
γ (sf = y|s0 = x) respectively. The energy function fθ(x, y) is

optimized using the symmetrized infoNCE loss [31]:

Lθ =
B∑
i=1

[
log

exp(fθ(xi, yi))∑B
j=1 exp(fθ(xi, yj))

+ log
exp(fθ(xi, yi))∑B
j=1 exp(fθ(xj , yi))

]
. (6)

As the optimal energy function fθ∗ satisfies fθ∗(x, y) = log
(
pπγ (s+=y|s0=x)

C·p+(y)

)
[35], the successor

distance could be derived by dπSD(x, y) = fθ∗(y, y) − fθ∗(x, y). Following prior work [30], we
parameterize the score function as fθ(x, y) = cθc(y) − dθd(x, y), where θ = (θc, θd). Then after
contrastive learning, we have dπSD(x, y) = dθ∗d (x, y), allowing dθ∗d (x, y) to serve directly as the
temporal distance.

4.2 Stage-Aligned Query Selection

In this subsection, we focus on addressing the stage misalignment issue via temporal distance.
Specifically, we propose a stage-aligned query selection method, which mitigates stage misalignment
by filtering out queries identified as misaligned based on temporal distance.

Measuring stage difference between segments. The query selection method requires measuring
the stage difference between two segments σ0, σ1. However, the temporal distance in Section 4.1
was originally designed to measure state distances. Therefore, we propose a quadrilateral distance to
adapt the temporal distance in Section 4.1 for segment distances:

dstage(σ0, σ1) =
1

4
· (dπSD(s

0
0, s

1
0) + dπSD(s

0
H−1, s

1
H−1) + dπSD(s

0
0, s

1
H−1) + dπSD(s

0
H−1, s

1
0)), (7)

𝜎𝜎0

𝜎𝜎1

(𝑠𝑠𝐻𝐻−10 ,𝑎𝑎𝐻𝐻−10)(𝑠𝑠00,𝑎𝑎00)

(𝑠𝑠01,𝑎𝑎01)

(𝑠𝑠𝐻𝐻−11 ,𝑎𝑎𝐻𝐻−11)

The length is
𝑑𝑑TD𝜋𝜋 (𝑠𝑠00, 𝑠𝑠01)

𝜎𝜎0

𝜎𝜎1

(𝑠𝑠𝐻𝐻−10 ,𝑎𝑎𝐻𝐻−10)(𝑠𝑠00,𝑎𝑎00)

(𝑠𝑠01,𝑎𝑎01)

(𝑠𝑠𝐻𝐻−11 ,𝑎𝑎𝐻𝐻−11)

Length
measured
by 𝑑𝑑TD𝜋𝜋

Figure 4: An illustration of the
quadrilateral distance defined in (7).
The distance dstage(σ0, σ1) is the av-
erage length (measured by tempo-
ral distance dπSD) of the four dashed
lines in the quadrilateral.

where si0 and siH−1 denote the initial and final states of seg-
ment σi. This quadrilateral distance ensures that stage-aligned
segments yield smaller dstage values. As visualized in Fig-
ure 4, the side terms, dπSD(s

0
0, s

1
0) + dπSD(s

0
H−1, s

1
H−1), favor

segments with closely aligned starting and ending points, in-
dicating straightforward stage alignment. The diagonal terms,
dπSD(s

0
0, s

1
H−1) + dπSD(s

0
H−1, s

1
0), favor segments with shorter

temporal spans, thereby focusing on segments concentrated
within a single stage. We further analyze the behaviour of
dstage theoretically in Appendix A.3.

Query selection. Using the stage difference metric, we then
propose the stage-aligned query selection method in Algorithm
2. This method calculates a score function I(σ0, σ1) for each
candidate segment pair (σ0, σ1), and selects queries with the
largest scores. To enhance the informativeness of comparisons,
in the score function, we integrate stage alignment with the
reward model’s uncertainty, a widely adopted metric of infor-
mativeness [22, 38]. We represent this uncertainty with dstate(σ0, σ1), which calculates the variance
of Pψ[σ0 ≻ σ1] value across ensemble members: dstate(σ0, σ1) = Var[Pψi

[σ0 ≻ σ1]
ne
i=1], follow-

ing [22]. Here Pψi
[σ0 ≻ σ1]ne

i=1 denotes an ensemble of ne identical reward models with different
randomly initalized parameters. Formally, the selection score is defined as:

I(σ0, σ1) = (cstage − dstage(σ0, σ1))(cstate + dstate(σ0, σ1)), (8)

6

0.00 0.25 0.50 0.75 1.00
×106

0
25
50
75

100

Su
cc

es
s R

at
e

(%
) door-open (Ntotal=5000)

0.00 0.25 0.50 0.75 1.00
×106

0
25
50
75

100 door-open (Ntotal=10000)

0.00 0.25 0.50 0.75 1.00
×106

0
25
50
75

100sweep-into (Ntotal=10000)

0.00 0.25 0.50 0.75 1.00
×106

0
25
50
75

100sweep-into (Ntotal=20000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100

Su
cc

es
s R

at
e

(%
) window-open (Ntotal=2000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100window-close (Ntotal=2000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100 door-unlock (Ntotal=5000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100 faucet-open (Ntotal=3000)

SAC with task reward (oracle) STAIR PEBBLE RUNE MRN QPA RIME

Figure 5: Learning curves on robot manipulation tasks from MetaWorld. The solid line and the
shaded area represent the mean and the standard deviation of success rates (%).

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
250
500
750

1000

Ep
iso

di
c

Re
tu

rn

walker-run (Ntotal=1000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
250
500
750

1000
quadruped-walk (Ntotal=2000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
250
500
750

1000
quadruped-run (Ntotal=2000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100

Su
cc

es
s R

at
e

(%
) push-green (Ntotal=1000)

SAC with task reward (oracle) STAIR PEBBLE RUNE MRN QPA RIME

DMControl RoboDesk

Figure 6: Learning curves on locomotion tasks from DMControl and a robot manipulation task from
RoboDesk. The solid line and the shaded area represent the mean and the standard deviation of the
episodic returns (DMControl) and success rates (RoboDesk).

where dstage and dstate are normalized to [0, 1], and cstage, cstate are hyperparameters. The first term
encourages stage alignment, while the second term emphasizes queries where the reward model
shows high uncertainty.

5 Experiments

We design our experiments to answer the following questions: Q1: How does STAIR compare to
other state-of-the-art methods in multi-stage tasks? Q2: Is the stage-aligned query selection still
beneficial in single-stage tasks? Q3: Does the stage approximated by temporal distance align with
human cognition? Q4: What is the contribution of each of the proposed techniques in STAIR?

5.1 Setup

Domains. We evaluate STAIR on several complex robotic manipulation and locomotion tasks from
MetaWorld [44], DMControl [40], RoboDesk [16]. In RoboDesk, we modify the task representation
from a pixel-based camera image to a robot-arm state representation, which aligns with MetaWorld.
Details of these domains are shown in Appendix D.2. MetaWorld and RoboDesk focus on multi-stage
tasks that achieve specific objectives, such as opening a window, which requires an arm to first grasp
the handle and then pull it. Conversely, DMControl includes single-stage tasks, which focus on
maximizing travel distance or velocity, posing challenges in defining stages for humans. We evaluate
STAIR in both multi-stage and single-stage domains to show its robustness and generalizability.

Baselines and Implementation. We compare STAIR with several state-of-the-art PbRL methods,
including PEBBLE [22], RUNE [23], MRN [24], RIME [6] and QPA [13]. We also evaluate
SAC [11] with ground truth reward as a performance upper bound. For PEBBLE and RUNE, we
employ disagreement-based query selection, as it yields the best performance. Following prior works

7

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100

Su
cc

es
s R

at
e

(%
) door-open (Ntotal=5000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100
sweep-into (Ntotal=10000)

STAIR STAIR (ISR) Timestep PEBBLE

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100

Su
cc

es
s R

at
e

(%
) door-open (Ntotal=5000)

0.00 0.25 0.50 0.75 1.00
Timesteps ×106

0
25
50
75

100
sweep-into (Ntotal=10000)

STAIR (KSD=1) STAIR (KSD=4) STAIR (KSD=16)

Figure 7: Ablation results. (Left) Performance of STAIR with various stage difference approximators.
(Right) Performance of STAIR under a range of temporal distance update frequencies KSD.

[21, 22, 23], we consider an oracle script teacher that provides preference by comparing the total task
reward of two segments. Please refer to Appendix D.3 for further details.

5.2 Results on Benchmark Tasks

Multi-stage tasks in MetaWorld and RoboDesk. As shown in Figure 5 (MetaWorld) and 6
(RoboDesk), STAIR outperforms baselines across all evaluated multi-stage tasks, achieving success
rates close to 100% in most cases. Moreover, STAIR shows a faster convergence speed. For example,
in door-open (Ntotal=5000) and window-open (Ntotal=2000), STAIR’s performance rapidly improves
over fewer time steps, and reaches a stable high performance earlier than the other baselines.

Single-stage tasks in DMControl. As shown in Figure 6, STAIR outperforms PEBBLE and is
competitive with other baselines, even in single-stage tasks. This suggests the potential of STAIR
for broader applications. This success may arise from the implicit curriculum learning induced by
STAIR: Though the task is not multi-stage, STAIR implicitly divides the reward learning process into
stages by introducing queries progressively. Later learning stages are presented only after the agent
masters the earlier ones, enabling the model to focus on the complexities of the newly added stages.
We provide further discussions on it in Appendix G, and will explore this further in future work.

5.3 Human Experiments

door-open window-close window-open
0

25

50

75

100

Al
ig

n
Ra

tio
 (%

)

STAIR PEBBLE

Figure 8: The ratio of two selected seg-
ments in a query being at the same stage
from a human perspective.

We conducted a human labeling experiment to examine
whether the stages approximated by temporal distance
align with human cognition. Specifically, human labelers
are instructed to review queries generated by STAIR and
PEBBLE, and assess whether the two segments in a query
correspond to the same stage, as detailed in Appendix E.
Figure 8 shows the ratio of queries identified by labelers as
stage-aligned. Additionally, Figure 13 visualizes segment
pairs selected by STAIR and PEBBLE, where the pair
selected by STAIR shows different behaviors in similar
stages, and the one of PEBBLE exhibits different stages.
The results indicate that STAIR effectively selects queries
recognized by humans as stage-aligned, thereby facilitating human labeling.

5.4 Ablation Study

Impact of the stage difference approximator. To show the efficiency of the segment stage
difference approximator in (7), we design two variants of STAIR: (1) Timestep: This variant uses
the collected timestep of a state as the stage approximation, then uses Interval Span Ratio (ISR)
dISR(σ0, σ1) =

ω̃0,max−ω̃1,min

ω̃1,max−ω̃0,min
to assess the stage difference between two segments σ0, σ1, where

ω̃i,min and ω̃i,max are the minimum and maximum approximated stage for states in σi. It is assumed
that ω̃0min ≤ ω̃1,min, otherwise, we swap σ0 and σ1. The ISR quantifies the alignment between two
intervals by measuring their intersection if they overlap, or the gap between them otherwise, thereby
serving as an indicator of stage alignment. (2) STAIR (ISR): This variant uses the temporal distance
from the current state to the trajectory’s initial state as the stage approximation, which serves as

8

Table 1: Performance of STAIR with various
cstage and cstate values.

cstage cstate
door-open

(Ntotal = 5000)

sweep-into
(Ntotal = 10000)

1 0.1 99.91 ± 0.07 87.81 ± 7.57

1 0.5 99.53 ± 0.44 92.31 ± 2.28

2 0.1 100.00 ± 0.00 91.08 ± 3.42

2 0.5 98.67 ± 1.14 93.58 ± 4.82

Table 2: Performance of STAIR and PEBBLE
on door-open using different numbers of query
feedback.

Ntotal STAIR PEBBLE

500 52.01 ± 23.18 20.00 ± 17.88

2000 77.77 ± 11.67 28.79 ± 17.02

5000 100.00 ± 0.00 85.57 ± 12.77

10000 99.93 ± 0.06 92.53 ± 6.53

the on-policy version of timestep, and also uses ISR to evaluate the stage difference between two
segments.

As shown in Figure 7 (Left), STAIR outperforms all the variants. The limitation of these variants
may lie in measuring stage differences between segments in a one-dimensional axis. In contrast, our
quadrilateral distance evaluates stage differences in a two-dimensional space, effectively modeling
more complex relationships between segments.

Impact of temporal distance update frequency. Accurately estimating stage differences requires
the stage approximator to adapt effectively to the evolving policy. Figure 7 (Right) shows that a lower
frequency of temporal distance updates (larger KSD) leads to a decreased performance of STAIR.
This emphasizes the importance of training the stage difference approximator in an on-policy manner.

Robustness on query selection hyperparameters. Table 1 shows that STAIR’s performance
remains consistent across hyperparameter configurations. This shows the robustness of STAIR to
hyperparameter changes, which ensures stable and effective learning in more general settings.

Enhanced feedback efficiency. We compare the performance of STAIR and PEBBLE using
different numbers of queries (Ntotal) on the MetaWorld door-open task. Table 2 shows that STAIR
consistently outperforms PEBBLE, demonstrating its effectiveness in utilizing limited feedback. This
result arises from STAIR’s stage-aligned query selection, which offers more informative queries for
policy learning, enabling the agent to learn effectively with fewer feedback.

6 Related Work

Preference-based reinforcement learning. PbRL has emerged as a promising framework for
aligning agent behaviors with human intentions, thereby alleviating the need for complex reward
engineering [7, 21, 27, 28]. To enhance feedback efficiency, prior works have explored unsupervised
pre-training [22], semi-supervised data augmentation [32, 1], reward uncertainty-based exploration
[23], on-policy query selection [13], and meta-learning [12]. These methods aim to minimize
dependence on human feedback by selecting more informative queries based on entropy [14],
ensemble disagreement [22], or feature-space diversity [3]. However, they often overlook the inherent
multi-stage nature of real-world tasks [41, 20], where comparisons of cross-stage segments can lead
to inefficient learning. Our approach addresses this by introducing stage-aligned query selection
based on temporal distance, which improves learning efficiency by focusing on segment comparisons
within the same stage.

Temporal distance learning in RL. Temporal distance quantifies the expected transition steps
between states under a given policy, which is essential in goal-conditioned RL [9], skill discovery
[33], and state representation learning [37]. Prior works learn it through spectral decomposition
of state transitions [43], constrained optimization for temporal consistency [42], and contrastive
learning that groups temporally adjacent states [30]. Recent research [30] introduced successor
distance, which is formally guaranteed to be a quasimetric. The quasimetric characteristic ensures the
successor distance to be a reliable state similarity measure, which thus has been employed to design
intrinsic rewards that enhance exploration [15]. Nevertheless, these methods remain underexplored in
multi-stage sequential decision problems. Our work fills this gap by employing temporal distance as
a stage similarity measure, enabling stage decomposition without task knowledge.

9

7 Conclusion

This paper presents STAIR, a novel approach for addressing stage misalignment in multi-stage
environments. STAIR first constructs a stage difference approximator via temporal distance, learned
through contrastive learning. Then, STAIR extends the temporal distance to assess segment distances
via quadrilateral distance, enabling the selection of stage-aligned queries. Experiments show that
STAIR outperforms baselines in multi-stage tasks and remains competitive in single-stage domains.
Human experiments further confirm the effectiveness of the learned stage approximation.

Limitations. One limitation of STAIR is that the quadrilateral distance only assesses pairwise
segment differences, limiting its applicability to other preference formats. We will explore this in
future work.

Acknowledgments and Disclosure of Funding

This work is supported by NSFC (No. 62125304), the National Key Research and Development
Program of China (2022YFA1004600), the 111 International Collaboration Project (BP2018006), the
Beijing Natural Science Foundation (L233005), and BNRist project (BNR2024TD03003).

References
[1] Fengshuo Bai, Rui Zhao, Hongming Zhang, Sijia Cui, Ying Wen, Yaodong Yang, Bo Xu, and

Lei Han. Efficient preference-based reinforcement learning via aligned experience estimation.
arXiv preprint arXiv:2405.18688, 2024.

[2] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C Machado,
Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

[3] Erdem Biyik, Nicolas Huynh, Mykel Kochenderfer, and Dorsa Sadigh. Active preference-based
gaussian process regression for reward learning. In Robotics: Science and Systems, 2020.

[4] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[5] Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu,
Stephen McAleer, Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level
bimanual dexterous manipulation with reinforcement learning. Advances in Neural Information
Processing Systems, 35:5150–5163, 2022.

[6] Jie Cheng, Gang Xiong, Xingyuan Dai, Qinghai Miao, Yisheng Lv, and Fei-Yue Wang.
Rime: Robust preference-based reinforcement learning with noisy preferences. arXiv preprint
arXiv:2402.17257, 2024.

[7] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[8] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–
419, 2022.

[9] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Ruslan Salakhutdinov. Contrastive
learning as goal-conditioned reinforcement learning. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022.

[10] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International conference on machine learning, pages
1515–1528. PMLR, 2018.

10

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pages 1861–1870. PMLR,
10–15 Jul 2018.

[12] Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop
rl. In Conference on Robot Learning, pages 2014–2025. PMLR, 2023.

[13] Xiao Hu, Jianxiong Li, Xianyuan Zhan, Qing-Shan Jia, and Ya-Qin Zhang. Query-policy
misalignment in preference-based reinforcement learning. arXiv preprint arXiv:2305.17400,
2023.

[14] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

[15] Yuhua Jiang, Qihan Liu, Yiqin Yang, Xiaoteng Ma, Dianyu Zhong, Hao Hu, Jun Yang, Bin
Liang, Bo XU, Chongjie Zhang, and Qianchuan Zhao. Episodic novelty through temporal
distance. In The Thirteenth International Conference on Learning Representations, 2025.

[16] Harini Kannan, Danijar Hafner, Chelsea Finn, and Dumitru Erhan. Robodesk: A multi-task
reinforcement learning benchmark. https://github.com/google-research/robodesk,
2021.

[17] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun, and
Davide Scaramuzza. Champion-level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, 2023.

[18] Changyeon Kim, Jongjin Park, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee.
Preference transformer: Modeling human preferences using transformers for rl. arXiv preprint
arXiv:2303.00957, 2023.

[19] Christopher A Kurby and Jeffrey M Zacks. Segmentation in the perception and memory of
events. Trends in cognitive sciences, 12(2):72–79, 2008.

[20] Gilwoo Lee, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Hierarchical planning for multi-
contact non-prehensile manipulation. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 264–271, 2015.

[21] Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-
based reinforcement learning. arXiv preprint arXiv:2111.03026, 2021.

[22] Kimin Lee, Laura M Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. In International
Conference on Machine Learning, pages 6152–6163. PMLR, 2021.

[23] Xinran Liang, Katherine Shu, Kimin Lee, and Pieter Abbeel. Reward uncertainty for exploration
in preference-based reinforcement learning. arXiv preprint arXiv:2205.12401, 2022.

[24] Runze Liu, Fengshuo Bai, Yali Du, and Yaodong Yang. Meta-reward-net: Implicitly differ-
entiable reward learning for preference-based reinforcement learning. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[25] Yao Luan, Qing-Shan Jia, Yi Xing, Zhiyu Li, and Tengfei Wang. An efficient real-time
railway container yard management method based on partial decoupling. IEEE Transactions on
Automation Science and Engineering, 2025.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

11

https://github.com/google-research/robodesk

[27] Ni Mu, Hao Hu, Yiqin Yang, Bo Xu, and Qing-shan Jia. Clarify: Contrastive preference rein-
forcement learning for untangling ambiguous queries. In Proceedings of the 42th International
Conference on Machine Learning, 2025.

[28] Ni Mu, Yao Luan, and Qing-Shan Jia. Preference-based multi-objective reinforcement learning.
IEEE Transactions on Automation Science and Engineering, 2025.

[29] Ni Mu, Yao Luan, Yiqin Yang, and Qing-shan Jia. S-epoa: Overcoming the indistinguisha-
bility of segments with skill-driven preference-based reinforcement learning. arXiv preprint
arXiv:2408.12130, 2024.

[30] Vivek Myers, Chongyi Zheng, Anca Dragan, Sergey Levine, and Benjamin Eysenbach. Learn-
ing Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for
Decision-Making. In International Conference on Machine Learning, 2024.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[32] Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Surf:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. arXiv preprint arXiv:2203.10050, 2022.

[33] Seohong Park, Oleh Rybkin, and Sergey Levine. METRA: Scalable unsupervised RL with
metric-aware abstraction. In The Twelfth International Conference on Learning Representations,
2024.

[34] Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

[35] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pages
5171–5180. PMLR, 2019.

[36] Sebastien Racaniere, Andrew Lampinen, Adam Santoro, David Reichert, Vlad Firoiu, and
Timothy Lillicrap. Automated curriculum generation through setter-solver interactions. In
International conference on learning representations, 2020.

[37] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video.
In 2018 IEEE international conference on robotics and automation (ICRA), pages 1134–1141.
IEEE, 2018.

[38] Daniel Shin, Anca D Dragan, and Daniel S Brown. Benchmarks and algorithms for offline
preference-based reward learning. arXiv preprint arXiv:2301.01392, 2023.

[39] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[40] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[41] Dexin Wang, Chunsheng Liu, Faliang Chang, Hengqiang Huan, and Kun Cheng. Multi-stage
reinforcement learning for non-prehensile manipulation. IEEE Robotics and Automation Letters,
9(7):6712–6719, 2024.

[42] Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching
reinforcement learning via quasimetric learning. In International Conference on Machine
Learning, pages 36411–36430. PMLR, 2023.

12

[43] Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in RL: Learning representations
with efficient approximations. In International Conference on Learning Representations, 2019.

[44] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

[45] Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds.
Event perception: a mind-brain perspective. Psychological bulletin, 133(2):273, 2007.

[46] Dianyu Zhong, Yiqin Yang, and Qianchuan Zhao. No prior mask: Eliminate redundant action for
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 17078–17086, 2024.

[47] Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. In International Conference on Learning Representations, 2020.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: See Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix D and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]
Justification: We provide code in the anonymous Github linked in Appendix D.3.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix D and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We present the standard deviation of the results. See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work studies general multi-stage tasks, and is not tied to particular
applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix D.3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code in the anonymous Github linked in Appendix D.3, with a
README file along with it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Proof

A.1 Proof of Proposition 1

Proposition 4. For an MDP and trajectories generated by its optimal policy π∗, consider a classifier
T̂ (s) that takes a state s as input and outputs the probability pt(s) that the state s is collected at step
t ∈ {1, 2, . . . N}, T̂ (s) = maxt pt(s). Denote the accuracy of the classifier as acc, the multi-stage
measure F is lower bounded by acc · Eτ∼π∗,s∈τ [maxt pt(s)].

Proof. We prove this proposition by constructing a stage chain with the classifier.

First, we aggregate the timesteps into |Ω| sets by defining

t+i = {t|
⌈

t

T/|Ω|

⌉
= i}. (9)

Then, we define an aggregated classifier T̂+(s) that receives a state and outputs the probability pt+i (s)
that the given state is collected at the aggregated step t+i , i ∈ {1, 2, . . . |Ω|}, Specifically, we have

p+
t+i
(s) =

∑
t∈t+i

pt(s), (10)

and the aggregated classifier is defined as

T̂+(s) = max
t+i

pt+i
(s). (11)

The accuracy of the classifier is given by

acc = Eτ∼π∗,s∈τ [I(t∗(s, τ) = argmax
t
pt(s))], (12)

where t∗(s, τ) is the step of state s in trajectory τ . Therefore, the accuracy of the aggregated classifier
is lower bounded by acc, since any errors made by the aggregated classifier must also be present in
the original classifier, while the reverse is not true.

Note that the aggregated timestep set shows a chain structure. We divide the stages according to these
aggregated timestep sets, where the stage ωi corresponds to the aggregated timestep set t+i . Then we
model the probability of state s being in stage ωi using the aggregated classifier:

F (s, ωi) = pt+i
(s). (13)

If the classifier is perfectly accurate, i.e. acc = 1, the chain constraints defined in (3) are naturally
satisfied since the stages are determined by the aggregated time steps. In this ideal scenario, we
achieve a multi-stage measure represented as:

F∗ = Eτ∼π∗,s∈τ [max
i
p+
t+i
(s)]. (14)

However, in practice, acc ̸= 1. In this case, each state s has a worst-case probability 1− acc of being
assigned to a wrong stage ω−, where ω− ̸= ω⌈ t∗(s,τ)

T/|Ω| ⌉. Consequently, the mapping probability F of

the true stage is
F (s, ω⌈ t∗(s,τ)

T/|Ω| ⌉|ω⌈ t∗(s,τ)
T/|Ω| ⌉ ̸= argmax

ωj

F (s, ωj)) ≥ 0. (15)

Therefore, we could derive a lower bound of F :

F ≥ acc · Eτ∼π∗,s∈τ

[
max
i
p+
t+i
(s)

]
= acc · Eτ∼π∗,s∈τ

max
i

∑
t∈t+i

pt(s)


≥ acc · Eτ∼π∗,s∈τ

[
max
t
pt(s)

]
,

(16)

which concludes the proof.

21

Lemma 1. For a multi-class classification problem, whereX is the input space, Y = {1, 2, . . . ,K} is
the set of classes. Consider a classifier f : X → ∆Y , and let fk(x) denote the predicted probability
that sample x belongs to class k. Suppose the data (x, y(x)) (or (x, y) for simplicity) follows the joint
distribution P . Define the accuracy of the classifier as acc = E(x,y)∼P [I(y = argmaxk fk(x))]. If
the classifier is perfectly calibrated, i.e., for all classes k ∈ Y and probability p ∈ [0, 1], we have
Pr(y = k|fk(x) = p) = p, then we have acc = Ex∼P [maxk fk(x)].

Proof. Since the classifier is perfectly calibrated, we have

Pr(y(x) = k|fk(x) = p) = p

⇔ Pr(y(x) = k, fk(x) = p)

Pr(fk(x) = p)
= p

⇔ Pr(x)Pr(y(x) = k, fk(x) = p|x)
Pr(x)Pr(fk(x) = p|x)

= p

⇔ Pr(x)Pr(y(x) = k|x)Pr(fk(x) = p|x)
Pr(x)Pr(fk(x) = p|x)

= p

⇔ Pr(y(x) = k|x) = p = fk(x),

(17)

where Pr(x) represents the marginal distribution of sample x. The fourth line is because the classifier
is conditionally independent of the ground truth label given the sample x.

Then, we focus on the accuracy:

acc = E(x,y)∼P [I(y = argmax
k

fk(x))]

= Ex
∑
y

Pr(y|x)[I(y = argmax
k

fk(x))]

= Ex
∑
y

fy(x)[I(y = argmax
k

fk(x))]

= Ex[fargmaxk fk(x)(x)]

= Ex[max
k

fk(x)],

(18)

where the third equation is obtained by substituting (17). That concludes the proof.

Proposition 1. For an MDP and trajectories generated by its optimal policy π∗, consider a calibrated
classifier T̂ (s) that takes a state s as input and outputs the probability pt(s) that the state s is
collected at step t ∈ {1, 2, . . . N}, T̂ (s) = maxt pt(s). Denote the accuracy of the classifier as acc,
the multi-stage measure F has a lower bound F ≥ acc2.

Proof. Using Proposition 4, we have

F ≥ acc · Eτ∼π∗,s∈τ

[
max
t
pt(s)

]
, (19)

Using Lemma 1, we have Eτ∼π∗,s∈τ [maxt pt(s)] = acc, which leads to the conclusion straightfor-
wardly.

A.2 Proof of Proposition 2 and 3

The proofs are based on the abstract MDP introduced in Section 3.1. This MDP is fully stage-wise,
with a discrete state space Ω and a discrete action space Υ, where each state comprises a stage. In
addition, we make the following assumptions:

• Human preferences are perfectly aligned with an oracle reward function r̄(ω, υ). The
estimated reward function r̄ψ(ω, υ) is modeled with a tabular model, which is parameterized
by a matrix ψ of shape |Ω| × |Υ|.

22

• The learning process is ideal, i.e., consider the PbRL problem as a ranking problem where
the true order is defined by the reward function r̄(ω, υ), and suppose the model can fully
fit all preferences provided during training. Such an oracle learning process exists. For
instance, the algorithm could utilize a decision forest to comprehensively represent all
provided preferences, where each parent node is more preferred than its child nodes.

Lemma 2. Recover the order of n elements needs C(n) = log2(n!) = O(n log n) queries.

Proof. Consider a set of n arbitrary elements, where the total number of possible sorting outcomes is
n!. The ranking process can be modeled with a decision tree, where each leaf node corresponds to a
distinct sorted outcome, and each branch represents a comparison between two elements. The height
of this decision tree reflects the minimum number of comparisons required to arrive at a correctly
ordered result, i.e., the number of comparisons required can be expressed as C(n) = log2(n!). Then,
it is intuitive to check log2(n!) = O(n log n), which concludes the proof.

Proposition 2. In the worst case scenario, the conventional PbRL needs O(|Ω||Υ| log(|Ω||Υ|))
additional queries to learn the optimal policy compared to the stage-aligned PbRL.

Proof. We consider the worst-case scenario, where the optimal solution can only be determined after
recovering the total order relation of action υ for each stage ω, i.e., (ωi, υ0), (ωi, υ1), . . . , (ωi, υ|Υi|)
is ordered for each ωi.

Stage-aligned PbRL ranks all actions from each stage, which requires c1 = |Ω| · C(|Υ|) =
|Ω| log((|Υ|)!) queries to learn the optimal policy.

Conventional PbRL ranks all stage-action pairs (ω, υ). If the |Ω| groups of actions are ordered, the
optimal policy is derived. Similar to Lemma 2, there are (|Ω||Υ|)! possible choices, and (|Ω|)! of
them are correct. Therefore, conventional PbRL requires c2 = log((|Ω||Υ|)!)− log((|Ω|)!) queries
to learn the optimal policy.

Compare c1 and c2, we have

exp (c2 − c1) =
(|Ω||Υ|)!

e|Ω|(|Υ|)!(|Ω|)!
≈ 1√

2π

|Ω||Ω|(|Υ|−1)|Υ||Υ|(|Ω|−1)

e|Ω|+|Ω||Υ|−(|Ω|+|Υ|) , (20)

where the approximation is based on Stirling’s formula, i.e., n! ∼
√
2πn

(
n
e

)n
. As |Ω|, |Υ| ≫ e, we

simplify the above equation to

exp (c2 − c1) ≈
1√
2π

|Ω||Ω||Υ||Υ||Ω||Υ|

e|Ω||Υ| =
1√
2π

(
|Ω||Υ|
e

)|Ω||Υ|

≫ 1. (21)

Then, we have
c2 − c1 = O(|Ω||Υ| log(|Ω||Υ|)), (22)

Which concludes the proof.

Proposition 3. If the stage reward bias is sufficiently large, such that the reward ordering between
(ωi, υj) and (ωi′ , υj′) depends solely on ωi and ωi′ for i ̸= i′, then in the worst case scenario,
conventional PbRL requires O(|Ω|2|Υ| log(|Υ|)) additional queries to learn the optimal policy
compared to stage-aligned PbRL.

Proof. In scenarios with large stage bias, queries with i ̸= i′ do not contribute to the ranking (in fact,
only |Ω| of them do some contribution, as to determine the order of ωi).

The probability to sample ωi, ωi′ s.t. i = i′ in all stage-action pair is

|Ω| · C2
|Υ|

C2
|Ω||Υ|

=
|Ω||Υ|(|Υ| − 1)

|Ω||Υ|(|Ω||Υ| − 1)
≈ 1

|Ω|
, (23)

As stage-aligned PbRL ranks all actions from each stage, which requires c1 = |Ω| ·
C(|Υ|) = |Ω| log((|Υ|)!) queries to learn the optimal policy, the conventional PbRL requires
O(|Ω|2|Υ| log(|Υ|)) queries to derive the optimal policy.

23

A.3 Theoretical Analysis for the Quadrilateral Distance

Proposition 5. Let Ω be the set of stages and dSD : S ×S → R+ be a quasimetric temporal distance
function. Assume:

(1) (Ideal stage partition) For each state s ∈ S, there exists a unique stage ω ∈ Ω such that
F (s, ω) = 1, denoted as s ∈ ω.
(2) (Stage compactness) For any stage ω ∈ Ω, there exists δ+s ≥ 0 s.t. ∀s, s′ ∈ ω, dSD(s, s

′) ≤ δ+s .
(3) (Cross-stage separation) There exists δ−c > 0 s.t. if s ∈ ω and s′ ∈ ω′ with ω ̸= ω′, then
dSD(s, s

′) ≥ δ−c .
(4) (Boundedness) There exists ∆+ ≥ δ+s s.t. ∀s, s′ ∈ S, dSD(s, s

′) ≤ ∆+.

For two segments σ0 = (s00, s
H−1
0) and σ1 = (s01, s

H−1
1), we define the quadrilateral distance

dstage(σ0, σ1) as in (7). As visualized in Figure 4, dstage(σ0, σ1) is calculated as the average value of
temporal distances between the two start and end points of the two segments:

dstage(σ0, σ1) =
1

4

[
dSD(s

0
0, s

0
1) + dSD(s

H−1
0 , sH−1

1) + dSD(s
0
0, s

H−1
1) + dSD(s

H−1
0 , s01)

]
.

Then, dstage satisfies the upper and lower bounds as in Table 3, and the upper bounds and lower
bounds are strictly increasing across each alignment case, indicating smaller distance values for
stage-aligned queries.

Table 3: The upper and lower bounds of quadrilateral distance dstage(σ0, σ1) in alignment cases.
Case Stage Alignment Condition Bounds of dstage(σ0, σ1)

A All start and end points ∈ ω 0 ≤ dstage(σ0, σ1) ≤ δ+s
B s00, s

0
1 ∈ ω, sH−1

0 , sH−1
1 ∈ ω′ δ−c /2 ≤ dstage(σ0, σ1) ≤ (δ+s +∆+)/2

C s00, s
0
1 ∈ ω, others /∈ ω 3δ−c /4 ≤ dstage(σ0, σ1) ≤ (δ+s + 3∆+)/4

D All start and end points are in distinct stages δ−c ≤ dstage(σ0, σ1) ≤ ∆+

Proof. Case A (Complete Alignment): If all endpoints belong to the same stage ω, the stage
compactness implies all terms in dstage(σ0, σ1) to be smaller than δ+s . Thus,

dstage(σ0, σ1) ≤
1

4
(4δ+s) = δ+s . (24)

Non-negativity of dSD ensures dstage ≥ 0.

Case B (Endpoint Alignment): For the aligned start points s00, s
0
1 ∈ ω and the aligned end

points sH−1
0 , sH−1

1 ∈ ω′, the cross-stage terms in dstage(σ0, σ1) satisfy dSD(s
0
0, s

H−1
1) ≥ δ−c and

dSD(s
H−1
0 , s01) ≥ δ−c . Thus, the lower bound and upper bound of dstage(σ0, σ1) are

dstage ≥
1

4
(0 + 0 + δ−c + δ−c) =

δ−c
2
, (25)

dstage ≤
1

4
(δ+s + δ+s +∆+ +∆+) =

δ+s +∆+

2
. (26)

Case C (Partial Alignment): With only s00, s
0
1 ∈ ω, three terms in dstage(σ0, σ1) involve cross-stage

pairs. Thus, the lower bound and upper bound of dstage(σ0, σ1) are

dstage ≥
1

4
(0 + δ−c + δ−c + δ−c) =

3δ−c
4
, (27)

dstage ≤
1

4
(δ+s +∆+ +∆+ +∆+) =

δ+s + 3∆+

4
. (28)

Case D (No Alignment): In this case, all pairs are cross-stage. Thus, the lower bound and upper
bound of dstage(σ0, σ1) are

δ−c ≤ dstage ≤ ∆+. (29)

24

Priority Ordering: From ∆+ > δ−c , we derive:

δ+s <
δ+s +∆+

2
<
δ+s + 3∆+

4
< ∆+, (30)

0 <
δ−c
2
<

3δ−c
4

< δ−c . (31)

Thus, strict inequality A < B < C < D holds for both bounds.

B Algorithm Implementation

We illustrate the full process of STAIR as in Algorithm 1 and 2.

Algorithm 1 STAIR

Require: Feedback frequency K, number of queries per feedback session M , Total feedback Ntotal,
temporal distance update frequency KSD

1: Initialize replay buffer D,DSD, feedback buffer Dσ
2: Initialize the policy π(a|s) with unsupervised pretraining [22]
3: for each iteration do
4: Rollout with π(a|s) and store (s, a, r, s′) into D,DSD

5: if iteration % K = 0 and |Dσ| < Ntotal then
6: Select {(σ0, σ1)}Mi=1 ∼ D using stage-aligned query selection (see Section 4.2)
7: Query the teacher for preference {y}Mi=1

8: Store preference {(σ0, σ1, y)}Mi=1 into Dσ
9: end if

10: Update the reward model r̂ψ with Dσ using (2)
11: if iteration % KSD = 0 then
12: Update the temporal distance model with DSD using (6)
13: Set DSD ← ∅
14: end if
15: Relabel D with r̂ψ
16: Update the policy π(a|s) using D
17: end for

Algorithm 2 STAGE-ALIGNED QUERY SELECTION

Require: Number of candidate queries Nc, number of queries per feedback session M
1: Sample Nc segment pairs {(σi0, σi1)}

Nc
i=1

2: Initialize query selection vector of shape Nc with zeros: Î = [0, 0, . . . , 0].
3: for each segment pair (σi0, σ

i
1) do

4: Calculate selection score and store it in Î: Î(i)← I(σi0, σ
i
1)

5: end for
6: Select M queries with the largest selection score Î

25

C Challenges in Stage-Aligned Reward Learning

Challenge 1: Stage definitions are often based on
subjective expertise and lack generalizability across tasks.

Go to the box

Fetch the box

Return with the box

Go to the box

Return with the box

Fetch: Before obtaining the box

Fetch: After obtaining the box

Two reasonable stage definitions for the go-fetch-return task.

Challenge 2: Stage measurement should remain valid and
reliable as the policy evolves. (Take timestep as an example)

Policy in early epochs:
fails to reach the box

Policy in later epochs:
complete the entire task

Stage distribution along the trajectory

Stage is at
timestep 𝑡

Stage is at
timestep 𝑡

Aligning the timestep 𝑡 does not align the stage ,
since the policy evolves!

Figure 9: Illustrations of the two challenges that emerged in the design of the stage-aligned reward
learning method.

Stage definitions are often based on subjective expertise and lack generalizability across tasks.
The definition of the stage often requires expert insights and subjective judgment, and can vary
significantly across domains and individuals. For instance, in the go-fetch-return example shown
in Figure 1, one might opt to further subdivide the retrieval stage into two parts: before and after
obtaining the box. Therefore, there is a need for an alternative framework that approximates stages
without requiring explicit stage definitions. Meta-learning approaches learning task embeddings for
segments [47] or clustering methods [46], could potentially address this challenge. However, these
methods are typically complex and demand large amounts of data for effective learning, which is
unavailable in PbRL.

Stage measurement should remain valid and reliable as the policy evolves. Take an intuitive
approximation, timestep, as an example. For a fixed policy, the timestep serves as a continuous
approximation of the stage, as states that are close together on a trajectory tend to belong to the same
stage. However, the timestep relies on the sampling policy, which cannot be relabeled once collected.
As the policy evolves during the training process and given that state-of-the-art PbRL methods are
off-policy for query reuse, segments collected in the early training phases may confuse the query
selection in later phases. Therefore, it is essential to develop a stage approximation that is tied to a
specific policy and can be easily relabeled according to the trained policy.

26

D Experimental Details

D.1 Analysis of the Impact of Stage Misalignment

This section provides the setups and implementation details of experiments in Section 3.

Details on the classification experiment in Section 3.1. We conduct the classification experiment
in Section 3.1 on Metaworld door-open, drawer-open, and window-open tasks. For each task, we first
train a policy using SAC [11] with the ground truth task reward as the expert policy, and then collect
1e6 transitions (s, r, t) with the trained policy, where t is the timestep. The SAC is implemented with
the code provided by BPref [21], and is consistent with the SAC used in Section 5. The detailed
hyperparameters of SAC are shown in Table 7.

Then, to verify the multi-stage property, we train a classifier which outputs the estimated timestep t̂
of the input state s. Among the collected 1× 106 transitions, we randomly select 5× 105 transitions
for training the classifier, and report the result that is evaluated on the other 5× 105 transitions. The
detailed hyperparameters of the classifier are shown in Table 4.

Table 4: Hyperparameters of the timestep classifier.
Hyperparameter Value
Size of hidden layers 256
Number of hidden layers 3
Train epochs 20
Batch size 256
Learning rate 1× 10−4

Optimizer Adam

Details on the human segment preferences experiment in Section 3.2. To show the existence of
the stage reward bias, where the reward here refers to the underlying reward of humans, we sample
segments of length 20 from the SAC trajectories, compose them into queries randomly, and then let
humans label preferences. Details about the human experiments are shown in Appendix E.

Details on the abstract MDP experiment in Section 3.2. To show the benefits of stage-aligned
query selection in multi-stage problems, we instantiate the abstract MDP introduced in Section
3.2 with |Ω| = 101, |Υi| = 5, i ∈ {1, · · · , 100,T}, as shown in Figure 2. The reward function
is r̄(ω, υ) = r̄sa(ω, υ) + r̄stage(ω), where r̄stage(ω) denotes the stage reward bias. r̄stage(ωi) ∼
Uniform[0, Rbias], r̄sa(ωi, υj) ∼ Uniform[0, 10]. Rbias indicates the strength of the stage reward bias.
Additionally, we normalize the reward to ensure a fixed scale across all Rbias values, eliminating the
need to tune hyperparameters for policy training. Specifically, we normalize the reward function as
follows:

r̄′(ω, υ) =
r̄(ω, υ)− 1

|Ω|
∑
ω′ minυ′ r̄(ω′, υ′)

1
|Ω|

∑
ω′ maxυ′ r̄(ω′, υ′)− 1

|Ω|
∑
ω′ minυ′ r̄(ω′, υ′)

, (32)

i.e., normalize the reward such that the performance of an arbitrary policy is in [0, |Ω|]. We assume
that human preference could be perfectly modeled by this underlying reward function.

In this problem, we use a tabular reward function r̄ψ(s, a) parameterized by a matrix ψ of shape
|Ω| × |Υ|. The conventional PbRL and the stage-aligned PbRL are implemented as described in
Algorithm 3, which details the training process of this reward model based on the Bradley-Terry
model. Specifically, lines 3∼4 describe the query collection process of the two methods: conventional
sampling uniformly samples state-action pairs from the entire state space, while stage-aligned
sampling ensures that both state-action pairs come from the same stage. Then, in line 5, the reward
model is trained by optimizing the cross-entropy loss.

27

Algorithm 3 Tabular PbRL Algorithms for the Abstract MDP

Require: Number of queries in one epoch M .
1: Initialize tabular reward function r̄ψ(s, a) by setting ψ to a zero matrix.
2: for each epoch do
3: (For conventional PbRL) Randomly sample 2M state-action pairs {((si, ai)}Mi=1, composing

M queries D = {((s2i−1, a2i−1), (s2i, a2i))}Mi=1.
4: (For stage-aligned PbRL) Randomly sample M states {si}Mi=1 and 2M actions {ai}2Mi=1,

comprising M queries D = {((si, a2i−1), (si, a2i))}Mi=1.
5: Update ψ by conducting gradient descent with loss function (2) with D.
6: end for

Hyperparameters of the tabular PbRL algorithms are shown in Table 5.

Table 5: Hyperparameters for policy training in the abstract MDP.
Hyperparameter Value
Train epochs 100
Number of queries in one epoch 200
Learning rate 0.05
Optimizer Adam

D.2 Tasks

The locomotion tasks from DMControl [40] and robotic manipulation tasks from MetaWorld [44]
used in our experiments are shown in Figure 10.

(a) door-open (b) sweep-into (c) window-open (d) window-close (e) door-unlock

(g) walker (h) quadruped (i) push-green(f) faucet-open

Figure 10: Rendered images of tasks from MetaWorld (a-f), DMControl (g-h), and RoboDesk (i).

Robotic manipulation tasks in MetaWorld. MetaWorld [44] provides diverse high-dimensional
robotic manipulation tasks. We choose the following complex tasks in this work.

• Door-open: An agent controls a robotic arm to open a door with a revolving joint. The door
is placed at a random position.

• Sweep-into: An agent controls a robotic arm to sweep a block into the hole. The block is at
a random position. The hole is placed at a fixed location.

• Window-open: An agent controls a robotic arm to open a window. The window is placed at
a random position.

28

• Window-close: An agent controls a robotic arm to close a window. The window is placed at
a random position.

• Door-unlock: An agent controls a robotic arm to unlock a door by rotating the lock counter-
clockwise. The door is placed at a random position.

• Faucet-open: An agent controls a robotic arm to open a faucet by rotating the faucet
counter-clockwise. The faucet is placed at a random position.

Please refer to [44] for detailed descriptions of the state space, action space, and the ground truth
rewards.

Locomotion tasks in DMControl suite. DMControl suite [40] provides diverse high-dimensional
locomotion tasks. We choose the following complex tasks in this work.

• Walker-run: A planar walker is trained to control its body and walk on the ground.
• Quadruped-walk: A four-legged ant is trained to control its body and limbs, and crawl

slowly on the ground.
• Quadruped-run: A four-legged ant is trained to control its body and limbs, and crawl fast on

the ground.

The ground truth reward incorporates components designed to promote forward velocity across all
tasks. Additionally, for tasks such as Walker-run, Quadruped-walk, and Cheetah-run, supplementary
terms are included to encourage an upright torso posture.

Robotic manipulation tasks in RoboDesk. RoboDesk [16] provides diverse robotic manipulation
tasks that test diverse behaviors within the same environment. We choose the following complex
tasks in this work.

• Push-green: A robotic arm is trained to push the green button to turn the green light on.

We modify the state representation from the original implementation [16], while keeping the action
and ground truth rewards unchanged. Specifically, the state is represented as a 68-dimensional vector
that combines current and previous timestep information, including the end-effector coordinates (3
dimensions), the wrist joint angle (1 dimension), the gripper finger position (1 dimension), and the
positions of all objects in the scenario (29 dimensions).

D.3 Implementation Details

The implementation of STAIR is based on BPref [21]. Code is available at:

https://github.com/iiiiii11/STAIR

For the implementation of SAC [11], PEBBLE [22], RIME [6], RUNE [23], and QPA [13], we refer
to their corresponding official repositories, as shown in Table 6.

Table 6: Source codes of baselines.
Algorithm Url License
SAC, PEBBLE https://github.com/rll-research/BPref MIT
RUNE https://github.com/rll-research/rune MIT
MRN https://github.com/RyanLiu112/MRN MIT
RIME https://github.com/CJReinforce/RIME_ICML2024 MIT
QPA https://github.com/huxiao09/QPA MIT

SAC serves as a performance upper bound because it uses the ground-truth reward function, which is
unavailable in PbRL settings for training. The detailed hyperparameters of SAC are shown in Table 7.
PEBBLE’s settings remain consistent with its original implementation, and the specifics are detailed
in Table 8. For RUNE, MRN, RIME, QPA and STAIR, most hyperparameters are the same as those

29

https://github.com/iiiiii11/STAIR
https://github.com/rll-research/BPref
https://github.com/rll-research/rune
https://github.com/RyanLiu112/MRN
https://github.com/CJReinforce/RIME_ICML2024
https://github.com/huxiao09/QPA

of PEBBLE, and other hyperparameters are detailed in Table 9, 10, 11, 12 and 13, respectively. For
RIME, we employ an oracle script teacher in BPref by setting eps_skip=0, replacing the noisy
teacher, as non-ideal feedback falls outside the scope of this paper. For QPA, we remove the data
augmentation to ensure a fair comparison, as none of the other baselines incorporates this technique,
and the authors of QPA have noted that data augmentation does not have a significant effect on
performance in the MetaWorld environment in the official repository of QPA.2 The total amount of
feedback and feedback amount per session are detailed in Table 14.

The experiments are conducted on a server with Intel(R) Xeon(R) Platinum 8352V CPU, 512 GB
RAM, NVIDIA RTX 4090 GPU, and Ubuntu 20.04 LTS. For all baselines and our method, we run 5
different seeds, and report the mean performance and the standard deviation.

Table 7: Hyperparameters of SAC.
Hyperparameter Value
Number of layers 2 (DMControl), 3 (MetaWorld)
Hidden units per layer 1024 (DMControl), 256 (MetaWorld)
Activation function ReLU
Optimizer Adam
Learning rate 0.0005 (DMControl), 0.0001 (MetaWorld)
Initial temperature 0.2
Critic target update freq 2
Critic EMA τ 0.01
Batch Size 1024 (DMControl), 512 (MetaWorld)
(β1, β2) (0.9, 0.999)
Discount γ 0.99

Table 8: Hyperparameters of PEBBLE.
Hyperparameter Value
Segment length 50
Learning rate 0.0005 (DMControl), 0.0001 (MetaWorld)
Feedback frequency 20000 (DMControl), 5000 (MetaWorld)
Num of reward ensembles 3
Reward model activator tanh
Unsupervised pretraining steps 9000

Table 9: Hyperparameters of RUNE.
Hyperparameter Value
Initial weight of intrinsic reward β0 0.05
Decay rate ρ 0.001

2https://github.com/huxiao09/QPA/issues/1

30

https://github.com/huxiao09/QPA/issues/1

Table 10: Hyperparameters of MRN.
Hyperparameter Value
Bi-level updating frequency N 5000 (Cheetah, Hammer, Button Press), 1000 (Walker)

3000 (Quadruped), 10000 (Sweep Into)

Table 11: Hyperparameters of RIME.
Hyperparameter Value
Coefficient α in the lower bound τlower 0.5
Minimum weight βmin 1
Maximum weight βmax 3
Decay rate k 1/30 (DMControl), 1/300 (MetaWorld)
Upper bound τupper 3 ln(10)
δ for the intrinsic reward 1× 10−8

Steps of unsupervised pre-training 9000

Table 12: Hyperparameters of QPA
Hyperparameter Value
Learning rate 0.0005 (walker-run),

0.0001 (quadruped-walk, quadruped-run, MetaWorld)
Size of policy-aligned buffer N 30 (door-unlock), 60 (door-open),

10 (Other tasks)
Data augmentation ratio τ 20
Hybrid experience replay sample ratio ω 0.5
Min/Max length of subsampled snippets [35, 45]

Table 13: Hyperparameters of STAIR.
Hyperparameter Value
State coefficient of the quadrilateral distance cstate 0.1
Stage coefficient of the quadrilateral distance cstage 2
The frequency of temporal distance updateKSD 1
Learning rate of the temporal distance 3× 10−4

Number of layers of Temporal distance 3
Hidden units per layer 256
Energy function in Temporal distance MRN-POT [15]
Contrastive loss function in Temporal distance InfoNCE Symmetric [15]

Table 14: Feedback amount in each environment. The “value” column refers to the feedback amount
in total / per session.

Environment Value Environment Value
walker-run 1000/100 window-open 2000/50
quadruped-walk 2000/200 window-close 2000/50
quadruped-run 2000/200 door-unlock 5000/50
door-open 5000/50 faucet-open 3000/50

- 10000/50 push-green 1000/50
sweep-into 10000/50

- 20000/50

31

E Human Experiments

E.1 Preference collection

In human experiments, we collect feedback from human labelers (the authors) familiar with the tasks.

Task 1. For the human experiment in Section 3.1, the labelers provide 20 pieces of feedback to
each task. Since the task is completed in 100 steps, we only sample segments that begin before the
100th step. Each segment is about 1 second long, which has 20 timesteps. The labelers are instructed
to watch a video rendering each segment and determine which one performs better in achieving the
specified objective. For each query, the labelers are presented with three options: (1) σ0 is better, (2)
σ1 is better, and (3) the two segments are indistinguishable.

Task 2. For the human experiment in Section 5.3, the labelers provide 50 pieces of feedback
to each task. Each segment is about 2 seconds long, which has 50 timesteps. To ensure fairness,
we shuffle the queries generated by the algorithms so that the labelers do not know the algorithm
that generates the queries. The labelers are instructed to watch a video rendering each segment and
determine whether the two segments are in the same stage of this task from their perspective. For
each query, the labelers are presented with two options: (1) the two segments are in the same stage,
(2) the two segments are in different stages.

E.2 Guidance to human labelers

Below, we provide the instructions we provided to the human labelers. The instructions are inspired
by [7, 18, 29].

Door-open. The target behavior is that the robot arm smoothly rotates the door until it stays fully
open at a clearly visible angle. (For task 1 only) If the arm moves abnormally, lower your priority for
the segment.

Drawer-open. The target behavior is that the drawer is fully extended to its final position with
controlled, direct pushing. (For task 1 only) If the arm moves abnormally, lower your priority for the
segment.

Window-open. The target behavior is that the window slides horizontally to a clearly open position
with coordinated gripper guidance. (For task 1 only) If the arm moves abnormally, lower your priority
for the segment.

Window-close. The target behavior is that the window slides horizontally to a clearly closed
position with coordinated gripper guidance. (For task 1 only) If the arm moves abnormally, lower
your priority for the segment.

32

F More Experimental Results

F.1 Multi-Stage Property and Stage Misalignment

In this section, we provide additional results for Section 3. Figure 11 provides additional human
experiments validating the existence of stage reward bias in MetaWorld domains, which serves as an
example for practical tasks. Figure 12 provides the episode reward and reward estimation error of
different Rbias in the abstract MDP model.

0 20 40 60 80 100
Start Step of Segment 0

0

20

40

60

80

100

St
ar

t S
te

p
of

 S
eg

m
en

t 1

door-open

0 20 40 60 80 100
Start Step of Segment 0

0

20

40

60

80

100
drawer-open

0 20 40 60 80 100
Start Step of Segment 0

0

20

40

60

80

100
window-open

Prefer σ0 Prefer σ1 Prefer Both

Figure 11: Human Preferences of segments started at different timesteps in the MetaWorld. Each
point (tx, ty) represents that segment 0 and segment 1 are collected from steps tx and ty respectively.
Humans prefer segments in later timesteps, suggesting a stage reward bias where the humans’
underlying reward is higher in these later stages.

0 25 50 75 100
45

60

75

90

Ep
iso

de
 R

ew
ar

d

Rbias = 0

0 25 50 75 100
Epochs

0

8

16

24

Re
wa

rd
 G

ap

0 25 50 75 100
45

60

75

90

Rbias = 10

0 25 50 75 100
Epochs

0

8

16

24

0 25 50 75 100
45

60

75

90

Rbias = 20

0 25 50 75 100
Epochs

0

8

16

24

0 25 50 75 100
45

60

75

90

Rbias = 30

0 25 50 75 100
Epochs

0

8

16

24

0 25 50 75 100
45

60

75

90

Rbias = 40

0 25 50 75 100
Epochs

0

8

16

24

Stage-Aligned PbRL Conventional PbRL

Figure 12: Episode reward (upper row) and reward estimation error (lower row) of different Rbias
in the abstract MDP model. The solid line and the shaded area represent the mean and the standard
deviation of the corresponding value.

F.2 Query Visualization

In Figure 13, we visualize the queries selected by PEBBLE and STAIR, respectively. The segment
pair (σ0, σ1) selected by PEBBLE is in different stages: the window is already closed in σ0, while
the arm is in the process of closing the window in σ1. Comparing these two segments does not
provide the arm with sufficient information to learn how to perform the task of closing the window.
In contrast, for the segment pair (σ′

0, σ
′
1) selected by STAIR, the arm is closing the window in two

different ways, and the two segments are within the same stage. This comparison directly provides the
arm with actionable information on the mechanics of closing the window, making it more beneficial
for learning.

F.3 Performance on noisy feedback

To evaluate STAIR’s robustness to noisy feedback, which mimics imperfect and inconsistent human
feedback, we conduct experiments considering two types of “scripted teachers”, following prior work

33

Query selected by PEBBLE: (𝜎𝜎0,𝜎𝜎1)

Query selected by STAIR: (𝜎𝜎0′ ,𝜎𝜎1′)

𝜎𝜎0

𝜎𝜎1

𝜎𝜎0′

𝜎𝜎1′

Figure 13: Visualization of segment pairs selected by (a) PEBBLE (disagreement-based query
selection) and (b) STAIR (stage-aligned query selection), under the window-open task.

[21]. Specifically, we consider two types of “scripted teachers”: (1) Error teacher: A teacher with a
random error rate ϵ = 0.1, resulting in 10% incorrect feedback. (2) Inconsistent teacher: Feedback is
randomly sampled from a mixture of two sources: a myopic teacher with discounted factor γ = 0.9,
and an error teacher with ϵ = 0.2.

We show the results on door-open (Ntotal = 5000) and sweep-into (Ntotal = 10000) in Table 15. As
shown in the table, STAIR consistently outperforms baselines under both conditions, highlighting its
robustness to non-ideal feedback.

Table 15: Performance on noisy feedback.
Door-open Sweep-into

Teacher Error Inconsistent Error Inconsistent

STAIR 99.89 ± 0.09 98.53 ± 1.36 49.12 ± 14.71 56.67 ± 11.18

PEBBLE 91.41 ± 6.61 88.83 ± 7.29 29.64 ± 11.66 29.86 ± 14.41

RUNE 63.15 ± 13.50 75.97 ± 13.28 11.82 ± 5.88 10.66 ± 8.76

34

G Further Discussions

Explanation for performance in single-stage tasks. In single-stage tasks, the performance of
STAIR primarily comes from the induced implicit curriculum learning mechanism, where the method
adaptively adjusts the learning focus based on the evolving policy.

To explain how the curriculum learning works, we use the Quadruped task as an example. In the
quadruped task, early training with STAIR might prioritize selecting segments before and after a
fall (which has a small temporal distance), helping the agent learn stability. As training progresses
and the policy improves (with the quadruped becoming more stable), the temporal distance between
such segments (before and after a fall) increases. At this point, STAIR shifts its focus to segments
where the quadruped shows different movement behaviors, rather than emphasizing stability-related
segments. This gradual shift enables the agent to learn better movement behaviors while avoiding
excessive focus on already-learned behaviors like maintaining stability.

This induced automatic curriculum learning mechanism implicitly divides the reward learning process
into stages by introducing queries progressively. In this way, later learning stages (e.g., learning how
to walk faster) are presented only after the agent masters the earlier ones (e.g., ensuring stability),
enabling the model to focus on the complexities of the newly added stages. Recent works have
demonstrated the effectiveness of automatic curriculum learning, which guides the agent with tasks
that align with its current capabilities [10, 36].

35

	Introduction
	Preliminaries
	Impact of Stage Misalignment
	Impact of Stage Misalignment in Multi-Stage Tasks
	Impact of Stage Misalignment Under Stage Reward Bias

	Stage-Aligned Reward Learning
	Learning Temporal Distance
	Stage-Aligned Query Selection

	Experiments
	Setup
	Results on Benchmark Tasks
	Human Experiments
	Ablation Study

	Related Work
	Conclusion
	Proof
	Proof of Proposition 1
	Proof of Proposition 2 and 3
	Theoretical Analysis for the Quadrilateral Distance

	Algorithm Implementation
	Challenges in Stage-Aligned Reward Learning
	Experimental Details
	Analysis of the Impact of Stage Misalignment
	Tasks
	Implementation Details

	Human Experiments
	Preference collection
	Guidance to human labelers

	More Experimental Results
	Multi-Stage Property and Stage Misalignment
	Query Visualization
	Performance on noisy feedback

	Further Discussions

